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Abstract Urban transport systems analysis requires some explicit or implicit
representation of the network, activity pattern and flows pattern of the city.
When dealing with transit design in real systems, detailed descriptions of cities
are too complex to allow an analytical formulation that leads to exact results, so
heuristics have been used. Alternatively, optimal design of transit systems at a
strategic level has been done based on simplified descriptions using regular
patterns or small networks to face and solve ad-hoc transit design problems. In
this paper we propose a parametric description of cities for the normative analysis
of transit systems. This is achieved after a synthesis of different ways to describe a
city’s urban form that can be found in the literature, with an emphasis on the road
network and the role of centers and subcenters. These diverse descriptions are
assessed with the help of topological indicators and synthetic information regard-
ing real cities. The parameters characterize the underlying network, the zones
involved and the spatial pattern of transport demand, such that the design of public
transport systems can be studied normatively for different city shapes. The model
is applied to describe three very different real cities.

Keywords Urban form . Transit system . Polycentrism . Topological analysis

1 Introduction

Understanding modern cities is a highly relevant task because it is the space where
the great majority of the individuals interact socially, economically and politically.
From a normative viewpoint intervening that space by means of models is a very

Netw Spat Econ (2017) 17:343–365
DOI 10.1007/s11067-016-9329-7

* Sergio Jara-Diaz
jaradiaz@ing.uchile.cl

1 Universidad de Chile, Casilla 228-3, Santiago, Chile

http://crossmark.crossref.org/dialog/?doi=10.1007/s11067-016-9329-7&domain=pdf


challenging problem because of its complexity and because activities and their
connectivity evolve dynamically and interactively. There are several ways to
describe cities and their respective urban forms, which depend on the objective
pursued by the intended research question. It makes a difference if the focus is on
the spatial distribution of activities in order to analyze land use patterns, or if the
issue under study is the connectivity network and the spatial structure of displace-
ments when the motivation is to understand and solve transport problems. This
latter is the subject of this paper.

Transport systems analysis deal with the movements of persons and goods
between different points in space at different moments. In the urban case this
analysis requires some explicit or implicit representation of the city. The network
and the activity pattern are crucial on these descriptions because of their relevance
for transport modelling. Typical implicit models follow some type of regularity, as
in the case of concentric cities (e.g. Byrne 1975; Tirachini et al. 2010) and cities
shaped as a grid (e.g. Newell 1979; Daganzo 2010). These and other models are
chosen to introduce simplicity and workability simultaneously, without
questioning their properties as a reasonable representation of actual urban forms
and properties. We consider this as a limitation for relevant transport modelling
from a normative viewpoint, as there is a co-evolution of urban settlements and
road systems (Yamins et al. 2003; Sun et al. 2007).

The objective of this paper is to study different ways to describe a city’s urban
form analytically and to propose a flexible description based on parameters such
that the public transport system can be studied normatively. We begin by
reviewing previous studies on urban forms emphasizing those papers whose scope
is useful for the analysis of the transport system. This means focusing on those
elements that give information about the generation and attraction of trips, and on
the elements that explain the network structure, i.e. the physical space where the
buses, cars and different transport modes move. We will examine how good
available representations are through different metrics in order to propose a new
model which is coherent with the state of the art in this area and that is useful for
modeling transport problems. We will search for simplicity, noting that there exist
many regularities that can be taken into account to create a model, but keeping
those characteristics of the cities that are relevant to analyze the optimal shape of
transport services.

In the next section we review different ways to represent urban forms
explicitly or implicitly, looking at cities’ descriptions and classifications, with
emphasis on those that are useful for transport modeling; the role played by the
dominant zones within a city will receive particular attention, because they
explain much of the generation and attraction of trips. Then we describe the
graph representations of cities that underlie the formulation of transit design
problems, in order to understand their connectivity features and their street
structure. In section 3 we compare the behavior of some indicators calculated
over these graph representations for real cities and for some ideal graphs.
Section 4 contains the description of a parametric graph model that incorporates
the discussion of the previous sections. The new model is applied in section 5
finding the parameters that represent three cities. In section 6 we summarize
and conclude.
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2 Representing Urban Form

2.1 Classification of Cities

It is useful to start reviewing different ways of classifying urban forms in order to
realize the large diversity of approaches and to decide which elements are relevant for
the analysis of transport problems. Some classifications are based on multivariable
analysis, while others consider the geopolitical characteristics, the role played by the
dominant zones, the shape of the street network or other criteria.

Under the multivariable approach, more than 30 variables are considered in order to
classify cities according to the value of a series of variables like density, proximity
between the center and the residential zones, the percentage of built land, the porosity
(i.e., the presence of empty spaces), the residential use of the built zones and many
others. Huang et al. (2007) and Kasanko et al. (2006) use clusterization methods to
make the classification, while Schwarz (2010) uses a principal component analysis.

Using the same type of information it is possible to obtain a classification based on
geopolitical distinctions. The cities from the so-called developed countries are usually
less dense, less compact and have higher porosity than the cities from the developing
ones. Kasanko et al. (2006) show this conclusion when comparing the countries from
southern Europe with those from central and northern Europe. Huang et al. (2007)
deepen this analysis, and show that the Asian cities -excluding those from Japan- are
denser (but also have more porosity) than the Latin American cities. They also find
differences between the cities from the developed countries: the cities from the USA are
less dense, have more open spaces and are more compact than the European and
Japanese cities.

There are three classical ways to classify cities and their zones: by homogeneity (i.e.,
where each zone presents a low dispersion for some previously defined variable),
political division (e.g. municipalities), and dominance of a center. A center is a zone
of the city that presents a high concentration of economic activity and/or political
control. Because the economic activities are the most relevant attractors and generators
of trips, center dominance is a most important element for the analysis of transport
problems. For this analysis the concept of a Central Business District (CBD) is quite
important: it is the area of the city, usually located close to the city geometrical center
(but not necessarily so), with the highest concentration of labor activity, and thus, the
area that attracts most of the trips in the morning peak.

A classical city model referred to this kind of classification is the monocentric
model, defined by Anas et al. (1998) as the city Benvisaged as a circular residential
area surrounding a central business district (CBD) of radius r, in which all jobs are
located^. It assumes then that the city functions around the CBD, such that the most
important characteristic of any other part of the city is its distance to the CBD (i.e. a
radial city). Alonso (1964) was the original developer of this model, but it was refined
afterwards by Mills (1967), Muth (1969) and Makse et al. (1998). Clark (2000) shows
that some cities may have an eccentric (in a geometrical sense) CBD and still be
considered as monocentric cities. The pure version of this model, however, is obsolete.
Hamilton and Röell (1982) show, for example, that real travel time in United States is
eight times larger than the theoretical time predicted by this model in its pure radial
form. Bertaud (2004) argues that the CBD is still present in modern cities, but it does
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not appear to be enough to understand the city. Nevertheless, the monocentric model is
still used to analyze transport problems in space (e.g. Li et al. 2014).

A complement to the pure dominance represented by a CBD arises with the notion
of subcenters. The idea of a subcenter is a sector of the city that is very important to the
area that surrounds it, being also highly attractive. McMillen (2001) defines a subcenter
as any sector whose employment density is considerable higher than its neighbors
density, and that has a significative effect over the general employment density
function.1 Bertaud and Malpezzi (1999) and Clark (2000) show that the subcenters
attract trips from everywhere in the city. When a city is structured according to its
subcenters, it is defined as a polycentric city.

McMillen (2001), McMillen and Smith (2003), Garrocho and Campos (2007) and
Suárez and Delgado (2009) study several cities in United States and Mexico, finding
cities with 2 subcenters as well as cities with 46 subcenters. But not in every city the
CBD and subcenters play the same role: while in Mexico D.F. the CBD by itself
concentrates 40 % of the labor activity (Suárez and Delgado 2009), in Los Angeles,
California, this quantity is lower than 10 % (Clark 2000); in Dallas-Fort Worth, there is
a 40 % of employments that are located neither in the CBD nor in any subcenter
(Waddell and Shukla 1993). This last example shows that it may be not enough even to
consider both the CBD and the subcenters. In these cases, the city is defined as a
dispersed city. Figure 1 shows the employment density map for Mexico D.F. and for
Dallas-Fort Worth.

Although the concepts of a monocentric, polycentric and dispersed cities are
intuitively clear, classification is not trivial. Sometimes the class to which a city
belongs emerges neatly while in other cases it is under discussion. For example
Gordon and Richardson (1996) attempt to analyze Los Angeles - a city usually seen
as Bthe prototypical polycentric metropolitan region^ - as a dispersed city, while Pfister
et al. (2000) discuss if Sidney is better modeled as a polycentric city or as a dispersed
city. To help identifying the centers structure of a city Louail et al. (2014) propose an
approach based on the comparison between the maximum concentration and dispersion
of mobile phones; also, Louail et al. (2015) identify residential hotspots and work
hotspots (again using mobile phones data), and analyze the proportion of trips between
these places relative to the total.

2.2 Transport Networks in the Urban Space and their Graph Representations

The analysis of transport problems requires the representation of cities incorporating
clearly their transport networks and the passenger flows from one place to another. The
most useful tool to represent urban transport networks are the graphs, as we show in
Fig. 2. The links represent the streets and the nodes may represent their intersections
and dead ends, zones or bus stops, depending on the type of analysis pursued.
Typically, the graph will be undirected and connected. The passenger flows are usually
represented by means of an Origin–destination (OD) matrix containing the flows

1 The most usual way to identify centers and subcenters is based on the activity pattern, but it is also possible
to study the trip flows over the spatial network. For example, Zhong et al. (2014) identify the spots in the city
that are more attractive when doing a random walk using probabilities associated to the observed flows. Louail
et al. (2014) study the spatial concentration of mobile phones at different hours of the day in order to identify
the evolution of hotspots.
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between zones. It should be emphasized that these two elements will always have an
underlying city pattern, either implicit or explicit.

For the normative analysis of public transport problems, e.g. finding the most
appropriate lines structure, different approaches to define the graph can be found in
the literature. Following the reviews by Guihaire and Hao (2008) and Kepaptsoglou
and Karlaftis (2009) there is a family of papers that deal with any connected graph and
where the OD matrix is also generic. This is the approach followed by Dubois et al.

(a) México City (b) Dallas-Fort Worth

Fig. 1 Monocentric and Dispersed cities. Source: a) Suárez and Delgado (2009) and b) Waddell and Shukla
(1993)

Fig. 2 Tel Aviv (left) and its graph representation (right). Source: Benenson et al. (2013)
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(1979), Ceder and Wilson (1986), Pattnaik et al. (1998), Borndorfer et al. (2005),
Cenek (2010) and many others. Because in this case the problem is NP-Hard (Quak
2003 and Schöbel and Scholl 2006), these papers use intuitive heuristics or solve some
relaxed linear programming problems.

A second approach is to work with some specific graphs assumed - intuitively - to be
good and simple representations of the city; this simplicity is useful to obtain results
that sometimes are exact, in contrast with those obtained with heuristics. The two basic
models that are most commonly used are the grid graph and the concentric model. The
grid is used by many authors, e.g. Newell (1979) and Daganzo (2010); in these cases,
the demand pattern is uniform. The concentric model with radial demand (not neces-
sarily symmetric) is applied by Byrne (1975) and Tirachini et al. (2010), among others.
Also concentric but with uniform spatial demand are the so-called ring-radial models
(Badia et al. 2014; Chen et al. 2015). Figure 3 shows graphs for a grid and for a
concentric model. In both cases the street design may be part of the model.

As in this paper we will depart from this second approach to construct a parametric
city model, it is useful to comment on some characteristics of these intuitive and
generic graphs. In its simplest form, all passengers in a concentric city travel only to
the center of the city, i.e. a representation of a monocentric city; a dispersed city can
also be represented by means of a uniform demand in space in a ring-radial model. On
the other hand, in a grid all the nodes are almost equivalent; their only difference is how
far each one of them is from the boundaries of the graph (same with the links). As
mentioned, the demand pattern for the grid is usually uniform, also representing a
dispersed city.

The third and last family of papers includes those models that consider microscopic
graphs involving just a few (representative) streets. Perhaps the origins of this view can
be found in Mohring (1972), whose city model was a single line. Mohring (1976) kept
this city but added complexity incorporating distances between bus stops. Kocur and
Hendrickson (1982) and Chang and Schonfeld (1991) studied more complex networks,
based on grids but with a single street or point that attracts all the passengers. Jara-Díaz
and Gschwender (2003), Jara-Díaz et al. (2012), Gschwender et al. (2016) and Jara-
Díaz et al. (2016) studied a cross-shaped network, a single line (but with unbalanced
demand), a Y-form network and an extended cross-shaped network, respectively. Some
of these papers attempt at a general but simplified representation of an urban area, and
others concentrate on specific aspects of transit design for which a few nodes and links
strategically ordered are useful. These models share an important property: transport

Fig. 3 A grid graph and a concentric city model
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problems can be solved analytically; however it is unclear whether the results can be
extrapolated. For example, in these simplified graphs there usually exist only one
feasible route linking each origin and destination; the problem of route choice is nearly
non-existent.

3 Topological Analysis

For synthesis we have urban forms that can be labeled as monocentric, multicentric or
dispersed, and networks that respond to a grid, to a concentric graph or to a specific
(stylized) toy network. How good are these networks as possible representations of a
city in a relative way? In this section we will present some ways to study the graph
representation of a city by means of numerical (thus comparable) results that can be
used to answer at least partially how good or bad are the city models presented in the
previous section, i.e. how close are their numerical indicators to the ones observed in
real cities.2

There are several ways to apply topological tools for urban studies (Erath et al.
2009). Ducruet and Beauguitte (2014) present an extended review of how network
science have been used for spatial analysis. Blumenfeld-Lieberthal (2009), for instance,
study connections between cities. Xie and Levinson (2009), study the growth of
transportation networks using different approaches including network analysis.
Reggiani et al. (2011) study the so-called Bcommuting network^ over different
German cities to identify possible hubs and obtain conclusions about the accessibility
measures in those cities. Schintler et al. (2007) develop a similar idea to find critical
nodes over a transport network and to determine how resilient these networks to
failures in those locations are.

This topological analysis considers cities as mathematical objects in order to
make some observations and to obtain some conclusions about their general
structure. We will consider the primal and dual graph representations of a city
shown in Fig. 4.

& In the primal graph, the most common one already described in the previous
section, the nodes represent the intersections between the streets and the arcs are
the streets linking them. Nodes may also represent the public transport stops or
zones.

& In the dual graph, studied in Jiang (2007) and Sun (2013) among others,
every street is a node, and two nodes are connected if those streets intersect.
This graph is particularly useful to study the connectivity characteristics of
the city.

The primal graph is useful to understand the city not only topologically but also
geometrically. It also includes explicitly the origins and destinations. The big
problem of the primal graph is that a single street is represented by many arcs,
one for each block. The dual graph corrects this situation, so it is more appropriate

2 For the links between city form and the road network and its topology, see Barthélemy and Flammini (2009).
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to understand the street structure of a city, although some ambiguity is introduced,
because it is not obvious how to define the continuation of a street.3

Over these graphs, several indicators can be calculated, some for the primal and
some for the dual. Let us describe those that are studied in the literature and that give us
relevant information for our purpose. The number of nodes is denoted by n.

& The degree of a node is the number of directly connected nodes (neighbors) it has.
The degree of the graph is the average across all nodes.

& Distance between two nodes is the length of the shortest path that links them. For each
node Xwe can find another node that maximizes the distance dX. The node associated
to the minimum dX is the center of the graph (Y). dY is the radio of the graph.

& The cluster coefficient for a single node is the number of connections between each
pair of neighbors divided by the total possible connections. The cluster coefficient
of the graph is the average across all nodes.

& The face coefficient is defined for the primal graph, which is always planar.4 It is the
ratio between the number of faces and the theoretical bound 2n−5 (Diestel 2000).
Thus, a null value means that the graph is acyclic,5 while a value equal to 1 implies
that it is impossible to add any arc without losing the planarity.

& On the dual graph the grid coefficient for a node (i.e., for a street) is the ratio
between the number of cycles of length 4 in which the node is present including a
second neighbor (i.e., a node at distance 2), and the total possible cycles of length 4
if all the node’s neighbors were connected with all its second neighbors. The grid
coefficient is the average across all nodes (1 for the grid).

In order to describe and compare different implicit or explicit city models we will use
this quite exhaustive set of relevant indicators which, as a whole, reveal important aspects
of the city structure. The degree of the primal graph is indicative of the complexity of the
intersections within the city. In the dual graph the degree of a node (street) reflects the
number of intersections of that particular street. Therefore, the distribution of the degree of

3 In order to decide if two consecutive blocks are part of the same street, Porta et al. (2006b) and Lin and Ban
(2013) show that a robust alternative is to define an angle close to 0° as the maximum acceptable difference
between them.
4 A graph is planar if it can be drawn in the plane without intersections between the arcs. In these graphs a
Bface^ is an area surrounded by the arcs. A classic result shows that if n is the number of nodes and f the
number of faces, then f will never be bigger than 2n-5 (Diestel 2000).
5 A cycle in a graph is a path that starts and ends in the same node, without repeating any edge. A graph is
called acyclic if it does not have cycles.

Fig. 4 A city zone with its primal and dual representation. Source: Lin and Ban (2013)
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the nodes (streets) in the dual graph is related with the streets’ hierarchy; the larger the
fraction of streets with degree above the average, the less hierarchical is the street system;
we will call this fraction streets’ homogeneity. The radio of the dual graph has quite an
interesting interpretation: it is associated with the number of turns needed to go from any
street to another; a small value is known as the Bsmall world property ,̂ i.e. only a few
turns are needed to go from any origin to any destination. Here the hierarchical concept
emerges again as the small world property reflects the existence of long avenues running
throughout the city. The cluster coefficient for a given street is high if the streets that share
an intersection with it also share intersections among them; this coefficient will be low if
parallel streets dominate the city, and will be large if many streets converge into the
intersections. This is useful for the comparison against the grid (a pure parallel systemwith
zero cluster coefficient) and against the monocentric model (where all the streets intersect
at the CBD, with coefficient one). One has to be careful with the cluster value, as
simplified representations of cities imply some degree of spatial aggregation of zones
and streets, which diminishes its value because many of the internal connections are lost.
The face coefficient increases with the number of cycles in the street system, e.g. adding
diagonals in a grid or rings in a radial system; it is closely related with the degree of the
primal, as both indicators increase with the ratio of arcs over nodes. Finally, the grid
coefficient is designed specifically to compare a particular graph against the grid only. The
second column of Table 1 shows ranges for these indicators for more than 200 real cities
obtained from different sources.6

Columns 3 to 7 in Table 1 contain the topological indices for the most used general
networks in transport studies, a theoretical grid sized a×b, the concentric model in two
versions (monocentric and ring-radial), and for the two mentioned microscopic models:
the Y-shaped network, where two streets converge into one avenue, and the extended
cross, where local links converge to or depart from two avenues that cross at the center.
For the concentric models we considered one central node and n radial streets; m rings
are included in the ring-radial model. To obtain the numerical results, we considered
that 4≤a,b,n,m≤12.

Before commenting these results, it is worth saying that one of the most important
conclusions for the real cities is the extremely hierarchical character of their street
structure. Jiang (2007), Masucci et al. (2009) and Sun (2013) obtain the same result
when they analyze the distribution of the degree of the nodes in the dual graph,
something that cannot be read from the indices above. They realize that a few nodes
have a very high degree. That means that a few streets, the large avenues, concentrate
most of the intersections. We will name that set of streets the Bprimary road network^.
Figueiredo and Amorim (2007) propose that this primary network defines the road
network in general, linking different clusters or neighborhoods. These conclusions are
reinforced by the fact that the Bsmall world property^ is verified in most of the cities
dual graphs (Jiang 2007; Figueiredo and Amorim 2007 and Courtat et al. 2011). The
existence of this Bprimary road network^ is an important characteristic that should be
present in a graph that intends to represent a city model built to analyze transport

6 Buhl et al. (2006), Hu et al. (2008) and Chan et al. (2011) study the average degree for several cities; Buhl et
al. (2006) study the face coefficient; the average degree in the dual graph is studied by Jiang (2007), while the
grid coefficient is studied by Figueiredo and Amorim (2007). The cluster coefficient is studied by Porta et al.
(2006a, 2006b).
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problems. This provokes a conflict with the most important characteristic of the grid,
which is its homogeneity. As we explained, in the grid all the streets are almost
equivalent, so it is not possible to define a primary road network. This limitation could
be fixed up by assigning different capacities or other traffic characteristics, but in any
case it would mean a problem because all the streets will present the same connectivity.

Table 1 provides interesting information. Although it should be read with care it is
clear that the indices suggest that none of these models is particularly satisfactory. The
monocentric model exhibits small values for the radio and high values for the cluster
coefficient, showing that collecting nodes indeed reduces the complexity of the net-
work. Furthermore,

& Real cities do not exhibit a grid coefficient close to 1; grid indices perform quite
badly in general, which is caused by its homogeneity, i.e. the absence of centers and
subcenters and the equal role played by all its streets.

& The pure monocentric model also has a bad topological behavior and has been
shown as obsolete to represent the activity pattern of real cities. The ring-radial
improves on the topological indices but is not superior to either the grid or the cross.

& Although the Y-shaped network and the extended cross perform as bad as the
others, they were not intended to be complete representations of a city. Nevertheless
it is interesting to verify how this gets reflected by the topological indicators.

4 The Proposed Model

To propose a model that incorporates the elements discussed in the previous sections,
we would like to represent three fundamental features:

& flexibility to represent a monocentric, polycentric or dispersed city,
& the main qualitative conclusions from the topological analysis regarding the struc-

ture of the city surrounding its primary road network, and

Table 1 Topological indicators for real cities and some graph representations

Index (graph) Real 
cities

Grid Monocentric Ring-radial Y Cross

Degree (primal) 2-3.5 ~4 1.6-1.85 ~4 1.5 1.85

Degree (dual) <10 4-12 4-12 5.1-17 2 2.6

Streets homogeneity (dual) 0.2-0.4 0.25-0.5 1 0.25-0.75 1 0.2

Radio (dual) 9-20 2 1 1 1 3

Cluster coefficient (dual) 0.06-0.25 0 1 0.84-0.95 1 0.87

Face coefficient (primal) 0.01-0.25 0.33-0.5 0 0.3-0.44 0 0

Grid coefficient (dual) <0.3 1 undefined undefined undefined 0

Note that the dual of the monocentric model is a graph composed by n nodes directly connected (a complete
Kn graph); then all nodes have the same degree n-1.
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& balance between the complexity of urban interactions with the simplicity of ele-
ments like zones and links; symmetry will play a role here.

What we want to achieve is a spatial setting that permits facing transit design from a
normative viewpoint, incorporating different transport phenomena and making it pos-
sible to face the challenges analytically. The great diversity of cities suggests from the
beginning that many of the mentioned features should be represented through different
parameters. Let us describe the proposed graph and the demand pattern.

The graph is defined by a CBD and n surrounding zones, each one represented by a
subcenter and a peripheral node such that the graph has 2n+1 nodes. Each subcenter is
connected to the CBD, to its own periphery and to its neighbor subcenters. The distance
from any subcenter to the geometrical center C of the city is L. The CBD is not
necessarily in C; it is located on an imaginary segment connecting C and a subcenter 0
(because of symmetry, it is irrelevant which subcenter), at a distance ηL such that if
η=0, the CBD is in the center of the city. The resulting graph is shown in Fig. 5.

Using the cosine theorem, the distance from the subcenter q (i.e., a subcenter that is

q zones away from the subcenter 0) to the CBD is Lq ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2−2ηcos 2πqn

q
. The

distance between a periphery and its subcenter is gL. The cosine theorem also tells us

that the distance between consecutive subcenters is rnL, where rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−2cos 2πn

q
:

Therefore, the main spatial parameters are η,L,g and n. The first one measures the
degree of eccentricity of the CBD, the second and the third one define the spatial
relevance of the CBD and the subcenters, while the last one may be used to represent
spatial dispersion. The primary road network is composed by the streets that connect
each subcenter with the CBD. The streets connecting the subcenters themselves also
play a relevant role. The fact that every zone is structured around its subcenter may
suggest that we are considering a polycentric city, but as we will show later, this
analysis will depend on some other parameters that control the demand pattern.

The demand pattern has to consider the CBD as a natural attractor of trips, but not
the only one. So we will assume that a fraction α<1 of all the trips generated in each
periphery will go to the CBD. The subcenters also attract trips but not exclusively from
its surrounding zones - represented in this model by its periphery-, so a portion β of the

Fig. 5 The urban form with n = 5.
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trips generated in a periphery will go to its own subcenter; the rest (γ) will go to the
other (foreign) subcenters such that α+β+γ=1. For simplicity, each of the foreign
subcenters will be assumed to attract the same amount of trips. This could be easily
relaxed, but it is also useful to reinforce the parametric intention of the model as α
represents the tendency to a monocentric model, β to a polycentric model and γ to a
dispersed model, as shown below.7 We will denote the total patronage by Y.

The subcenters will also generate trips. Let us define ~α and ~γ as the portion of the
trips generated on the subcenter that go to the CBD and to the other subcenters,
respectively, such that ~αþ ~γ ¼ 1. To preserve the idea that α represents monocentrism

and γ dispersion, we will impose ~α
α ¼ ~γ

γ (implying ~α ¼ α
1−β ; ~γ ¼ γ

1−β), leaving only two

free parameters for the demand pattern so far.
Regarding trip origins, the peripheries will be the most important trip generators but

not the only ones – as explained above –, because in that case we would have no nodes
being origin and destination simultaneously, and the streets connecting the periphery
with the subcenter would have less traffic than those connecting the subcenters with the
CBD (defined as the primary road network). So we will assume that a fraction a of the
trips will be generated in the peripheries and a fraction b=1−a in the subcenters with
b<a usually. Although there are no subcenters with different levels of attraction and
generation, the most important features are considered in the model, as shown below.
The demand pattern is represented in Fig. 6. Tables 2 and 3 summarize the OD matrix
and the model parameters respectively.

The mathematical relations among parameters are summarized in Table 4. This
helps showing the relation between the values of α, β and γ and the type of city
behind them as represented in Fig. 7, where the monocentric, polycentric and
dispersed cities are shown to be particular cases of this parametric description
(note that only the trips emerging from a specific zone are shown). In these figures
we impose η= 0.

The model as presented reflects the fundamental features introduced at the
beginning of this section, including symmetry. These, however, might prevent
the representation of some cities that exhibit important irregularities. This can be
faced by introducing appropriate parameters in the model in order to allow a more
precise representation of some cities, sacrificing regularity and simplicity. The
most important assumption that could be relaxed is the equal role played by the
zones and the respective subcenters, which has geometric and travel demand
dimensions. This can be done by defining new parameters Gi, θi≥ 0, such that
∑iθi= 1. GiL represents the distance between the subcenter i and the geometrical
center of the city; to preserve the shape of each zone, the distance from the
periphery to the subcenter will be gGiL in this case. Regarding travel demand,
we only modify the trip generation, so we preserve the relationship between α,β
and γ with the center structure shown in Fig. 7. The portion of trips generated at
the zone i will be θiY instead of 1

n Y . The city shape that includes these changes is
shown in Fig. 8 using G= (0.7, 1.0, 1.4, 1.0, 1.1) starting with the Bsouthern^ zone
and moving counterclockwise; the O-D matrix is shown in Table 5.

7 With these definitions, the value of α for Mexico D.F. is 0.4 and less than 0.1 for Los Angeles, and the value
of γ for Dallas-Fort Worth is 0.4 (see Fig. 1).
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This expanded version of the model provides enough flexibility to represent
very different types of cities, by simply changing the values of the parameters. For
instance, a port city typically has its CBD close to the sea (zone 0), i.e., close to
the boundary of the city. This case can be represented with η close to 1, and G0

close to zero.
The model proposed responds to the analysis presented in section 2. It is

flexible enough to allow and represent different urban forms; it has a natural
concentric look, (but it allows an eccentric CBD); and it has a primary road
network that determines the city. As we criticized other models precisely because
of its weak topological indicators, i.e. very different from those of the real cities,
let us calculate and discuss the topological characteristics of the new model, as
discussed in section 3.

The fraction of nodes of the dual graph whose degree is higher than the average
deserves a particular analysis, because it also shows how relevant is the primary
road network. It is easy to realize that the arcs that we defined as the primary road
network, i.e. those that connect the CBD with a subcenter, have a degree of n+ 2.
The arcs connecting subcenters have a degree of 6, while the arcs connecting a
periphery with its subcenter have a degree of 3. This means that the average

Fig. 6 The demand pattern of the city model

Table 2 OD matrix corresponding to the demand pattern of the city model

O/D CBD Subcenter i Subcenter j(≠i) P i Pj Total

Periphery i aα
n Y aβ

n Y aγ
n n−1ð ÞY 0 0 a

n Y

Subcenter i b~α
n Y 0 b~γ

n n−1ð ÞY 0 0 b
n Y

Total a~αþ b~γð ÞY aβþaγþb~γð ÞY
n

aβþaγþb~γð ÞY
n 0 0 Y
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degree in the dual graph is 11þnð Þ
3 . So if n≤ 7, the portion of nodes having a degree

higher than the average will be 2/3 (the streets connecting the CBD with the
subcenters and the arcs connecting subcenters); if n> 7 it will be 1/3. The first
quantity is too high for the values found in the literature, while the latter is within
the observed range. In any case, note that if we made a Bzoom^ in the peripheries
more streets with small degree would appear, improving the results for this model.
This reinforces the idea that the primary road network is formed by the streets
with the highest degree, i.e., those that connect the CBD with its subcenters,
precisely the streets that define the core of the urban structure. The ranges of the
indicators for the more than 200 real cities and for this model are summarized in
Table 6, assuming 4≤ n≤ 12.

As we can see, the comparison makes our model superior to the grid, to both
concentric models and to the specific graphs studied in previous sections. Almost in
every topological dimension the indicators of the proposed description are better than
all the previous models, even in those dimensions where our model is out of the range
of actual values. Let us analyze this further.

The average degree is within the observed range both for the primal and dual graphs
of our model. The face coefficient is slightly higher than the maximum observed, but is

Table 3 Summary of the parameters present in the model

Parameter Definition Interpretation

n Number of zones Reduces importance of each subcenter

Y Total patronage Magnitude of the system

L Distance from any subcenter to the geometrical
center C of the city

Size of the city

g Distance periphery-subcenter/ distance subcenter-CBD Spatial concentration of the city

η Portion of displacement of the CBD from the center
of the city in an axis CBD-subcenter

Eccentricity of the CBD

α Trips proportion from periphery that go to the CBD Large value for monocentric city

β Trips proportion from periphery to own subcenter Large value for polycentric city

γ Trips proportion from periphery to foreign subcenters Large value for dispersed city

~α Trips proportion from subcenter to the CBD Correction of α for the trips generated
at the subcenters

~γ Trips proportion from subcenter to other subcenters Correction of γ for the trips generated
at the subcenters

a Trips proportion that depart from the periphery Dispersion on trip generation

b Trips proportion that depart from a subcenter Concentration on trip generation

Table 4 Summary of the mathe-
matical relations between the
parameters

Associated concept Equation(s)

Trip generation a + b = 1

Trip attraction from the periphery α + β + γ = 1

Trip attraction from the subcenters ~αþ ~γ ¼ 1

Relations between trip attractions ~α ¼ α
1−β ; ~γ ¼ γ

1−β
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undoubtedly superior to the coefficients of the grid (0.5) and the monocentric city (0).
The cluster coefficient is also higher – although closer than in the other networks –, but
this is an expected result, because representing zones as nodes implies collecting many
nodes, increasing artificially the number of connections and thus, the cluster coefficient.
Something analogous happens with the radio, the only indicator in which one of the
other networks is as good as the new proposed model. As we stated earlier, real cities
have a very hierarchical road structure, unlike the grid. On the other extreme, the
problem with the monocentric model is its extreme simplicity. The clearest example is
that the primary road structure in this case corresponds to the whole city!

In summary, we can say that the topological properties of the proposed model fit
those of the real cities, with the exception of those indicators where collecting nodes
affects the measure directly. In any case, the results are much better than those obtained
with the grid, the monocentric model, the Y or the extended cross. The proposed zonal
structure defines the network and the urban hierarchy that determines the parametric
representation of the travel demand structure. In this way the proposed city model

(a) Monocentric (b) Polycentric (c) Dispersed 

Fig. 7 Parametric representation of city types.

Fig. 8 The urban form with asymmetry
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verifies the most important characteristics described at the beginning of this section and
it is a clear improvement compared with the previous models.

5 Three Examples

Let us see how three actual cities can be represented by this model, a useful
exercise to illustrate to which degree the model captures the main elements of a
city, keeping in mind that it is aimed at analyzing transit design from a normative
viewpoint, which requires to locate the subcenters and to calculate the relative
importance of their trip generation and attraction. As intended, a number of
simplifications and interpretations will be needed to define the subcenters and
both residential and work zones. We will use data available from previous papers
that were developed with different purposes. This means that some approxima-
tions will be needed to adapt some data, but this is enough to show the potential of
this model. Each of the examples will illustrate different types of cities. In Fig. 9
we show the maps of the three cities chosen (different scales): Santiago, Chile,
Bordeaux, France and Los Angeles, USA. Dark zones in Santiago represent
commercial importance; commercial malls are also shown.

Santiago is the capital and largest city of Chile (6 million people approximately). We
will consider 34 municipalities, including Santiago Centro, the historical CBD of the
city, as Ortiz and Escolano (2005) do. Each node in our model will represent one or
more municipalities. In what follows - in order to construct an aggregate description of
the city - we will use geographical elements as well as aggregate knowledge about trips
attraction and generation.

For each municipality we know how many workers and students (W-S) live
there, and how many people work or study there. Besides, in some cases we know

Table 5 OD matrix for the demand pattern of the city model with asymmetries

O/D CBD ubcenter i Subcenter j(≠i) P i Pj Total

Periphery i aαθiY aβθiY
aγθi
n−1ð ÞY 0 0 aθiY

Subcenter i b~αθiY 0 b~γθi
n−1ð ÞY 0 0 bθiY

Total aαþ b~αð ÞY aβθi þ aγþb~γð Þ 1−θið Þ
n−1

h i
Y aβθ j þ aγþb~γð Þ 1−θ jð Þ

n−1

� �
Y 0 0 Y

Table 6 Topological indicators
for the city model and real cities

Index (graph) Real cities This model

Average degree (primal) 2–3.5 ~3

Average degree (dual) <10 5–7.7

Streets’ homogeneity (dual) 0.2–0.4 0.33 or 0.67

Radio (dual) 9–20 3

Cluster coefficient (dual) 0.06–0.25 0.33–0.63

Face coefficient (primal) 0.01–0.25 0.27–0.31
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their most important destinations. Most of the municipalities have at least 20 % of
their W-S trips with their origins and destinations within their territory. These trips
are not going to be represented in our model. Even though this is not a negligible
amount of trips, the consequences for the transport problems are constrained to a
local scale. With this assumption, the total patronage Y is 2,565,622. We will
consider an extended CBD, including not only Santiago Centro, but also the
neighboring Providencia, the second most attractive destination; we will put
η= 0. There are nine municipalities outside the CBD that concentrate more than
2.5 % of the W-S trips attraction each. Two pairs of municipalities are simulta-
neously neighbors and similar (Las Condes-Vitacura and La Florida-Puente Alto),
so we merged them into two zones which makes n= 7: West, South-West, South,
South-East, East, North-East and North-West. For each zone, some of its munic-
ipalities surround the CBD and others are peripheral. We will consider as the
subcenter the most attractive municipality out of those surrounding the CBD.

In order to check for symmetry we normalized the population of every zone and
obtained that the standard deviation of the vector containing the population of
each zone is 0.04. If we only consider the subcenters, the standard deviation

(a) Santiago (b) Bordeaux

(c) Los Angeles

Fig. 9 Maps of the three cities. Source: a) Ortiz andEscolano (2005); b)GoogleMaps; c)Giuliano andSmall (1991)
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increases to 0.086. For some municipalities we have a more disaggregated version
of the distribution of the trips generated there. Considering only those municipal-
ities that have both Santiago and Providencia as main attractors and considering
their average, we find that α ¼ 0:25; eα ¼ 0:32; implying β= 0.22. The value of b
is directly calculated after the population of the subcenters obtaining b= 0.22.

If we calculate the distance from the center of each subcenter to the government
palace (located in the center of the CBD), we find that the average distance is
L= 10 km. In each subcenter, we calculate the distance from the municipalities
that are not the subcenter, to the subcenter. The average in this case is 8.5 km, so
g= 0.85.

Although Bordeaux has been understood as a polycentric city (Aguilera and Mignot
2003), this does not prevent the model to be useful, as we may add an auxiliary node as
the CBD. Doing so, it exhibits three suburban subcenters (Aguilera and Mignot 2003)
and it does not have any outlying subcenters, so it is a very good city to test our model.
Its population is about 250.000. In this city 70 % of the people live in the subcenters,
thus b=0.7.We also know that 49% of the total jobs are located in these subcenters, and
82 % of the peripheral jobs. So we have that β þ γ ¼ 0:82; a β þ γð Þ þ b~γ ¼ 0:49.
From this we get α=0.72,β=0.18,γ=0.1.

Let us calculate the spatial parameters. First, we will put η=0. We know that the
average distance traveled by the people that live in the subcenters is 8.3 km. Assuming
that all passengers take the shortest route, average distance may be calculated as

~αLþ ~γ
ffiffiffi
3

p
L, implying L=6.6. The average distance for those living in the rest of the

city (in our model, the peripheries) is 15.6 km, and a similar calculation concludes that
g=1.2.

Los Angeles is usually considered a quite dispersed city (Gordon and
Richardson 1996). By the time Giuliano and Small (1991) reported its analysis,
the total working population was approximately 4.5 million people. According to
the authors, it had 31 subcenters, but 4 of them composed what they called the
Bcore^ (because of their proximity to the CBD), so we are going to consider these
4 inner subcenters and 3 outer subcenters (Riverside, San Bernardino and Oxnard)
in order to show the use of the parameters Gi and θi. We will assume homogeneity
between the inner zones and the outer zones.

The CBD only attracts 3.3 % of the trips. Although we do not have the
distribution between local and external workers for each zone, we do know that
68 % of the jobs are not located in any subcenter, which reflects the high degree of
dispersion of Los Angeles; accordingly, we will put α = 0.033 and γ = 0.68.
Moreover, only 9 % of the inhabitants live in the subcenters, so b= 0.09. But
the outer subcenters concentrate much less: 0.12 %, so θo= 0.0004, θi= 0.249,

Table 7 Parameters describing Santiago, Bordeaux and Los Angeles

Parameter α β γ a b Y (trips) L (km) g n

Santiago 0.25 0.22 0.53 0.78 0.22 2,565,622 10 0.85 7

Bordeaux 0.18 0.72 0.1 0.3 0.7 250,000 6.6 1.2 3

Los Angeles 0.0033 0.287 0.68 0.91 0.09 4,500,000 11.65 0.79 7
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where subscripts Bo^ and Bi^ stand for outer and inner, respectively. The average
distance from the inner subcenters to the CBD is L = 11.65 km. The outer
subcenters are located at an average distance of 62.3 km, so Go= 5.35. The rest
of the high concentration places (the other subcenters reported in the paper) are
located at an average distance of 20.88 km, so g= 1.79.

Table 7 summarizes the values of the parameters for Santiago, Bordeaux and Los
Angeles. They show synthetically that Santiago is a city with some degree of
monocentricity but not fully concentrated at the CBD, that Bordeaux is a clear
polycentric city and that Los Angeles is a dispersed city. Figure 10 shows the graphs
that represent the parametric model of the three cities. As the methodologies used to
describe each of these cities are different, the comparison among them has to be taken
with care.

(a) Santiago (b) Bordeaux

(c) Los Angeles

Fig. 10 Graphs for the parametric model.
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6 Synthesis and Conclusions

Urban transport systems analysis requires some explicit or implicit representation of the
city that includes its network, activity pattern and flows pattern. When dealing with
transit design, detailed descriptions of cities are too complex to allow an analytical
formulation that leads to exact results, so heuristics have been used. Alternatively,
optimal design of transit systems at a strategic level has been done based on descrip-
tions that follow criteria of regularity and simplicity, as the concentric and quadricular
(grid) shapes. Besides, different types of small networks have been used to face and
solve ad-hoc transit design problems. In this paper we have offered a synthesis of
different ways to describe a city’s urban form analytically and we have used topological
indicators to be able to compare across the different representations and against real
cities. After discarding on these grounds the usual representations we proposed a
flexible description based on parameters such that the public transport system can be
studied normatively. This has been done by paying attention to the underlying network,
the zones involved and the spatial pattern of transport demand.

We aimed at a city model that combines the following virtues:

& To be useful for the normative design of transit systems
& To be simple enough as to allow analytic developments
& To be complex enough to represent different urban phenomena
& To be based on research over real cities.

After reviewing different forms of analyzing and classifying cities, with a focus on
the idea of dominant zones, we concluded that the classical notion of CBD is not
enough to represent modern cities; recognizing the existence of monocentric cities,
polycentric cities and dispersed cities was a key element in this discussion as dominant
zones explain an important portion of the generation and attraction of trips.
Furthermore, the topological analysis helped us conclude that the cities have a very
hierarchical street structure, with the existence of a few avenues that determine the
structure of the whole city. The need to represent simultaneously a structure of centers
and a hierarchy of streets implies a departure from the grid-like representations - where
links and nodes are of equal importance - towards a generalized radial structure.

We propose a city model with a CBD and n zones, each one composed by a
subcenter and a periphery. The peripheries only generate trips, the CBD only attracts
and the subcenters do both. Different parameters define the level of generation and
attraction of these different nodes, such that different roles of the centers can be
represented. The CBD can be in the center of the city (a symmetric model) but an
eccentric CBD can be represented as well.

The topological indicators for the proposed city model show a good behavior, in the
sense of being close to those of real cities. The only exception comes from some
indicators that are affected directly by the fusion of different micro nodes into a
representative one. Our model captures urban characteristics that are relevant for the
normative analysis of transit, better than the grid, the monocentric model and other
stylized networks used in the literature. We propose this model as a good compromise
between simplicity - to allow analytical work towards optimality - and adequate
representation of the most important features of real modern cities. In an extension of
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the model that sacrifices regularity and simplicity, we also provide flexibility to include
the possible presence of a hierarchy within subcenters, as well as different distances
among them and the CBD. However, there are some other specific phenomena that are
not yet incorporated, as a larger number of trips between closer zones, the disaggrega-
tion of the nodes in the periphery to incorporate also a local analysis or the possibility
of network change and growth (Xie and Levinson 2009).

With this city model many questions related to the structural transport systems of
cities may be studied in depth, such as the search for the optimal transit lines structures
and the comparative assessment of the heuristics’ performance. We are presently
working on these topics. To get an idea of the next steps, note that many types of line
structures can be defined and tested over this model; as examples we can mention direct
lines (from every periphery to every zone), hub & spoke (locating the hub at the CBD
or different hubs at each subcenter), or feeder-trunk with connections at the subcenters.
Within these structures different types of routes can be envisioned, either through the
CBD or touring the subcenters. This last point is important as this model is complex
enough to allow passengers to have more than one feasible route, making passenger’s
choice an interesting component. For each lines structure so defined, the optimal
frequencies and bus sizes for each line can be found, i.e. those that minimize the sum
of users and operators costs; the best line structure will be the one with the overall
minimum. Evidently, the optimal design will depend on the value of the parameters in
the model city, such that conclusions on lines structures (as well as frequencies and bus
sizes) can be linked to the type of city and the structure of demand.
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