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Abstract. If time-dependent disruptions from slow-roll occur during inflation, the correlation
functions of the primordial curvature perturbation should have scale-dependent features, a
case which is marginally supported from the cosmic microwave background (CMB) data. We
offer a new approach to analyze the appearance of such features in the primordial bispectrum
that yields new consistency relations and justifies the search of oscillating patterns modulated
by orthogonal and local templates. Under the assumption of sharp features, we find that the
cubic couplings of the curvature perturbation can be expressed in terms of the bispectrum in
two specific momentum configurations, for example local and equilateral. This allows us to
derive consistency relations among different bispectrum shapes, which in principle could be
tested in future CMB surveys. Furthermore, based on the form of the consistency relations,
we construct new two-parameter templates for features that include all the known shapes.
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1 Introduction

Inflation [1–3] is the leading idea providing a satisfactory description of the evolution of the
very early universe before the standard hot big bang commences. Some of its predictions, like
homogeneity, isotropy and flatness of the observable patch of the universe, have been verified
with unprecedented precision, with the most up-to-date observational surveys pointing to a
nearly scale-invariant, Gaussian distribution of the primordial perturbations [4]. However, the
theory into which the inflationary mechanism is embedded is still elusive and there remains a
number of questions regarding inflation model building [5–8]. String theory provides such an
ultraviolet (UV) complete framework, a general characteristic of which is the presence of a
variety of fields and peculiarities which can alter the otherwise smooth dynamics of inflation.

On the observational side, the Planck mission on the cosmic microwave background
(CMB) has provided data of unprecedented precision on the CMB power spectrum [9], which
supports most inflationary predictions [10]. There seems however to exist several anomalies in
the power spectrum, including deviations from scale-invariance indicated by outliers beyond
2σ significance at several multipole ranges [11–13]. The appearance of these features has
sparked intensive efforts to study such a possible scale-dependence [14–16] which is indeed
predicted by such embeddings of inflation in UV complete frameworks — see e.g. [17, 18].

Observable features of the power spectrum can be produced in various ways: these
include for example heavy degrees of freedom, resulting in a non-trivial speed of sound [19–23],
and features in the inflaton potential [24–26], resulting in sudden variations of the slow-roll
parameters. These mechanisms provide deviations from the standard single-field canonical
slow-roll inflation. Furthermore, it is expected that such a behaviour will also affect the
bispectrum (as well as all the higher-order spectra), whose shape as a function of the three
momenta depends strongly on the class of models under consideration. For example, non-
canonical inflation leads to equilateral or orthogonal non-Gaussianity and multi-field inflation
leads to a local shape [27, 28]. This implies that joint analysis of the power spectrum and
bispectrum would lead to stronger constraints [29–37].

Indeed, a possible detection of features in the bispectrum would give us deeper insights
into the details of inflation, since on one hand it would increase the statistical significance of
these anomalies while on the other hand it would shed light on the mechanism responsible for

– 1 –



J
C
A
P
0
5
(
2
0
1
7
)
0
1
6

them. However, observational data on the primordial bispectrum are still quite poor, a fact
that highly limits the ability of observational surveys to guide theoretical searches towards the
correct answer. Hence, what can be done at this stage is to construct theoretically motivated
bispectrum templates, which can then be searched for in the data, and consistency relations
or tests of certain assumptions which can be used in sparse data sets.

In this article, we construct such consistency relations for the primordial bispectrum
in the general case where sudden deviations from slow-roll occur in the potential and/or
the kinetic parameters, like the Hubble parameter or the speed of sound of the curvature
perturbation. Therefore, if features exist in the correlation functions then we can predict
patterns that the bispectrum should follow. Furthermore, motivated from our relations, we
show that it is possible for the orthogonal and local templates to appear with an oscillatory
profile, typical of inflationary features, complementing the current use of templates modulated
by equilateral and flattened shapes [38]. Our analysis is also suitable for the case of multi-
frequency oscillating patterns in the three-point function [38].

Specifically, we derive a set of shape consistency relations, (3.6) and (3.14) in the sense
that measurements of the bispectrum at any three sets of modes with momenta (k1, k2, k3)i
for i = 1, 2, 3 should be related. We expect that such consistency tests will be of use in
prospect of the large-scale structure surveys, which are expected to provide information on
the bispectrum at multiple k-modes, greatly improving the constraints on features [39, 40].
Then, based on the qualitative form of these consistency relations, we also propose two
bispectrum templates for features that can include all the known modulating shapes such as
the equilateral, flattened, orthogonal and local ones.

The article is organised as follows: in section 2 we present the general form of the
bispectrum in the presence of deviations from usual slow-roll evolution during inflation. In
section 3 we derive the bispectrum consistency relations, while in section 4 we study the
component shapes that are involved in the consistency relations and compare them with the
already used templates. Finally, we conclude in section 5.

2 Bispectrum with sharp features

The cubic action for the curvature perturbation can be, after integration by parts, written
as [41]

S3 =

∫
d4xa3εm2

Pl

[
ε− η − 3(1− c2

s)

c4
s

Ṙ2R+
ε+ η + 1− c2

s − 2s

a2c2
s

R(∇R)2

+
1

H

(
1− c2

s

c4
s

− 2λ

εH2

)
Ṙ3 +

1

4a4
(∇χ)2∇2R+

ε− 4

2εa4
∇2χ∂iR∂iχ+

f(R)

εa3

δS2

δR

]
, (2.1)

up to boundary terms. Here χ is determined by the constraint ∇2χ = a2εṘ/c2
s and ε ≡

−Ḣ/H2, η ≡ ε̇/(Hε) and s ≡ ċs/(Hcs). λ is a model-dependent parameter [42, 43] and
the last term multiplied by the linear equation of motion δS2/δR can be removed by a field
redefinition [44].

In what follows we will study the case where background parameters experience tempo-
rary deviations from slow-roll. In general, there are two extreme cases that could be studied
separately: (i) features leading to bumps or oscillatory profiles in the CMB power spectrum
in certain multipoles with a characteristic width ∆k such that ∆k/k � 1 and (ii) deviations
leading to smooth changes of the overall spectrum, in the form of running, with a charac-
teristic width ∆k/k � 1. Here we will focus on the first case, and for such an effect to be
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observable in the CMB, which covers a few e-folds during inflation, such a variation should
indeed happen in a few e-folds. However, this is in no way unambiguously implied by the
current data — but it is a reasonable approximation that captures the essence of the problem.

Having stressed that, to quantify this statement, we allow any background parameter
like b = {ε, cs} satisfy

|ḃ|
H
� |b| , (2.2)

which can be more conveniently written in terms of the conformal time τ as

τ
∣∣b′∣∣� |b| . (2.3)

Such a condition drastically simplifies the form of the full cubic action (2.1) to [45]

S3 ≈
∫
dτd3xa2εm2

Pl

[
c1R′2R+ c2R(∇R)2

]
, (2.4)

which is the form that we will use. The coefficients ci contain the variations of ε and cs [46].
Thus given that their amplitudes are constrained to remain small from various observations,
their rapid variations can give rise to sharp features. Note that in [45], a reasonable but
ad-hoc relation between η and s was imposed, so that the two dimensionless coefficients c1

and c2 in (2.4), which are in principle independent parameters in the effective field theory
point of view [47], were related by a single parameter. Here we do not use any such relation
and we keep ci free.

With the leading de Sitter mode function solution for R with cs = 1,

R̂k(τ) =
iH√

4εk3mPl

(1 + ikτ)e−ikτ , (2.5)

we can follow the standard in-in formalism to compute the bispectrum as

BR(k1, k2, k3) =
(2π)4P2

R
(k1k2k3)3

2<
{∫ 0

−∞
dτ
c1

8

[
(k1k2)2(1− ik3τ) + 2 perm

]
ieiKτ

+

∫ 0

−∞

dτ

τ2
c2
k2

1 + k2
2 + k2

3

16
(1− ik1τ)(1− ik2τ)(1− ik3τ)ieiKτ

}
, (2.6)

where

PR =
H2

8π2εm2
Pl

(2.7)

is the featureless flat power spectrum and K ≡ k1 + k2 + k3. By extending ci’s oddly in
the conformal time, i.e. ci(−τ) = −ci(τ) and replacing one k in the integrands with one
derivative with respect to τ acting on eiKτ , we can rewrite (2.6) as

SR(k, x, y) =

∫ ∞
−∞

dτ
i

8

ei(1+x+y)kτ

xyk

[
−xyS1(x, y)

1 + x+ y
(c1τ)′′′ +

xyS2(x, y)

1 + x+ y
(c2τ)′′′

− F1(x, y)

1 + x+ y
c′′1 −

F2(x, y)

1 + x+ y
c′′2 +

(
1 + x2 + y2

) c′2
τ

]
, (2.8)

where we have defined the dimensionless shape function SR(k1, k2, k3) as

BR(k1, k2, k3) ≡
(2π)4P2

R
(k1k2k3)2

SR(k1, k2, k3) , (2.9)
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and the partial shapes

S1(x, y) =
x+ y + xy

(1 + x+ y)2
, S2(x, y) =

1 + x2 + y2

2(1 + x+ y)2
,

F1(x, y) =
x2 + y2 + x2y2

1 + x+ y
, F2(x, y) =

(1 + x2 + y2)(x+ y + xy)

2(1 + x+ y)
,

(2.10)

with
k1 ≡ k , k2 ≡ xk , k3 ≡ yk . (2.11)

Note that being dimensionless, we use the arguments of the shape function SR as (k1, k2, k3)
and (k, x, y) interchangeably.

3 Shape consistency relations

3.1 Bispectrum in terms of two general momentum configurations

In the previous section, we have obtained the general shape function SR(k, x, y) without
any approximation for the integrands. We now make further use of the sharp feature con-
dition (2.3). It follows that for any ci, higher time derivatives dominate over lower ones
so that

(ciτ)′′′ = c′′′i τ + 3c′′i ≈ c′′′i τ , (3.1)

allowing us to keep only the c′′′i τ terms. Thus, under the sharp feature assumption, (2.8) is
simply written as

SR(k, x, y) =

∫ ∞
−∞

dτ
i

8

ei(1+x+y)kτ

k

[
− S1(x, y)

1 + x+ y
c′′′1 τ +

S2(x, y)

1 + x+ y
c′′′2 τ

]
. (3.2)

As we can see, once we are interested in a certain configuration fixed by specific x and y,
the featured bispectrum behaves according to the two model-dependent coefficients c′′′1 τ and
c′′′2 τ . This means that by fixing two triangle configurations ∆1 = (x1, y1) and ∆2 = (x2, y2)
and solving for c′′′1 τ and c′′′2 τ , the full bispectrum can be completely specified.

For this, following the method presented in [48, 49], we first invert (3.2) by multiplying
both sides by eiKτ

′
and integrating over K to obtain

4

iπ

∫ ∞
−∞

dkke−i(1+x+y)kτSR(k, x, y) ≡ S∆(τ) = − S1(x, y)

(1 + x+ y)2
c′′′1 τ +

S2(x, y)

(1 + x+ y)2
c′′′2 τ , (3.3)

which gives us the time-dependent coefficients c′′′i τ in terms of the bispectrum. Indeed, we
can write c′′′1 τ and c′′′2 τ in terms of two shapes as

c′′′1 τ = −(1 + x1 + y1)2α1S∆1(τ) + (1 + x2 + y2)2β1S∆2(τ) ,

c′′′2 τ = −(1 + x1 + y1)2α2S∆1(τ) + (1 + x2 + y2)2β2S∆2(τ) ,
(3.4)

with

α1 =
S2(x2, y2)

S1(x1, y1)S2(x2, y2)− S1(x2, y2)S2(x1, y1)
, β1 =

S2(x1, y1)

S1(x1, y1)S2(x2, y2)− S1(x2, y2)S2(x1, y1)
,

α2 =
S1(x2, y2)

S1(x1, y1)S2(x2, y2)− S1(x2, y2)S2(x1, y1)
, β2 =

S1(x1, y1)

S1(x1, y1)S2(x2, y2)− S1(x2, y2)S2(x1, y1)
.

(3.5)
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Plugging them back to (3.2) and performing the integrals, we can write a general shape
function SR(k, x, y) in terms of two specified configurations as

SR(k, x, y) =
[
α1S1(x, y)− α2S2(x, y)

]
SR

(
1 + x+ y

1 + x1 + y1
k, x1, y1

)
+
[
− β1S1(x, y) + β2S2(x, y)

]
SR

(
1 + x+ y

1 + x2 + y2
k, x2, y2

)
. (3.6)

For example, by fixing ∆1 = (1, 1) and ∆2 = (1/2, 1/2) we obtain

SR(k, x, y) =
18(x+ y + xy)− 15(1 + x2 + y2)

(1 + x+ y)2
SR

(
1 + x+ y

3
k, 1, 1

)
+
−16(x+ y + xy) + 16(1 + x2 + y2)

(1 + x+ y)2
SR

(
1 + x+ y

2
k,

1

2
,
1

2

)
, (3.7)

implying that the amplitude of the bispectrum at any point (k, x, y) should be related to the

corresponding values at
(

1+x+y
3 k, 1, 1

)
and

(
1+x+y

2 k, 1/2, 1/2
)

.

3.2 Bispectrum including the squeezed configuration

Including the squeezed configuration of the bispectrum, say, xsq ≈ 1 and ysq → 0, needs
more care. This is because the sub-leading F1(x, y) and F2(x, y) terms in (2.8) are boosted
by 1/ysq and become the leading contributions to the bispectrum. Therefore, we need to
keep both the leading and sub-leading terms in the sharp feature assumption (2.3), so we
begin with

SR(k, x, y) =

∫ ∞
−∞

dτ
i

8

ei(1+x+y)kτ

k

[
−S1(x, y)

1 + x+ y
c′′′1 τ +

S2(x, y)

1 + x+ y
c′′′2 τ

− F1(x, y)

xy(1 + x+ y)
c′′1 −

F2(x, y)

xy(1 + x+ y)
c′′2

]
. (3.8)

We first apply the squeezed configuration. Then Fi terms are boosted by 1/ysq so become
dominant over Si terms. Since F1(x→ 1, y → 0) = F2(x→ 1, y → 0) = 1/2, we can write

kxsqysqSR(k, xsq, ysq) =
1

32i

∫ ∞
−∞

dτe2ikτ
(
c′′1 + c′′2

)
. (3.9)

Next, considering another configuration away from the squeezed one (x2, y2), Si terms are
dominant based on our assumption of sharp feature. That is,

SR(k, x2, y2) =

∫ ∞
−∞

dτ
i

8

ei(1+x2+y2)kτ

k

[
−S1(x2, y2)

1 + x2 + y2
c′′′1 τ +

S2(x2, y2)

1 + x2 + y2
c′′′2 τ

]
. (3.10)

Replacing τ with a derivative with respect to k acting on the exponential factor, the right
hand side of (3.10) becomes a total derivative with respect to k as

SR(k, x2, y2) =
1

8k

d

dk

∫ ∞
−∞

dτ
ei(1+x2+y2)kτ

(1 + x2 + y2)2

[
− S1(x2, y2)c′′′1 + S2(x2, y2)c′′′2

]
. (3.11)
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Multiplying both sides with k and integrating over it, we have

Σ2(k, x2, y2) ≡
∫ k

0
dqqSR(q, x2, y2) =

1

8

∫ ∞
−∞

dτ
ei(1+x2+y2)kτ

(1+x2+y2)2

[
−S1(x2, y2)c′′′1 +S2(x2, y2)c′′′2

]
=

1

8

∫ ∞
−∞

dτik
ei(1+x2+y2)kτ

1+x2+y2

[
S1(x2, y2)c′′1−S2(x2, y2)c′′2

]
,

(3.12)

where for the second equality we have integrated by parts over c′′′i to directly combine
with (3.9). Thus, we can invert (3.9) and (3.12) to obtain respectively

c′′1 + c′′2 =
32i

π
xsqysq

∫ ∞
−∞

dkke−2ikτSR(k, xsq, ysq) .

−S1(x2, y2)

(1 + x2 + y2)2
c′′1 +

S2(x2, y2)

(1 + x2 + y2)2
c′′2 =

4i

π

∫ ∞
−∞

dk

k
e−i(1+x2+y2)kτΣ2(k, x2, y2) .

(3.13)

From this algebraic system it is trivial to find the solutions for c′′1 and c′′2. By differentiating
them and then manipulating the momentum integral accordingly, we can easily find c′′′i τ .

Plugging c′′i and c′′′i τ back into (3.8) we may write the general shape function in terms
of the squeezed configuration and another one as

SR(k,x,y) =

[
−γ1S1(x,y)+γ2S2(x,y)+

γ1

2

F1(x,y)

xy
+
γ2

2

F2(x,y)

xy

]
xsqysqSR

(
1+x+y

2
k,xsq,ysq

)
+

1

2

[
−γ1S1(x,y)+γ2S2(x,y)

]
xsqysq

∂SR(p,xsq,ysq)

∂logp

∣∣∣∣
p=(1+x+y)k/2

+
γ3

(1+x+y)2

[
−F1(x,y)

xy
+
F2(x,y)

xy

]
1

k2
Σ2

(
1+x+y

1+x2+y2
k,x2,y2

)
+SR

(
1+x+y

1+x2+y2
k,x2,y2

)
, (3.14)

where

γ1 = 8S2(x2, y2) , γ2 = 8S1(x2, y2) , γ3 = 2(1 + x2 + y2)2 . (3.15)

An application of (3.14) is, for example, a relation between the bispectrum in the squeezed,
equilateral and enfolded configurations:

SR(k, 1, 1) =
61

24
xsqysqSR

(
3

2
k, xsq, ysq

)
− 1

24
xsqysq

∂SR(p, xsq, ysq)

∂ log p

∣∣∣∣
p=3k/2

+
4

9

1

k2

∫ 3k/2

0
dqqSR

(
q,

1

2
,
1

2

)
+ SR

(
3

2
k,

1

2
,
1

2

)
. (3.16)

By using the consistency relation [44]

xsqysqSR (k, xsq, ysq) =
1

4
∂log k logPR , (3.17)

– 6 –
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we can rewrite (3.16) as

SR(k, 1, 1) =
61

96
∂log k logPR

∣∣∣∣
3k/2

+
1

96
∂2

log k logPR
∣∣∣∣
3k/2

+
4

9

1

k2

∫ 3k/2

0
dqqSR

(
q,

1

2
,
1

2

)
+ SR

(
3

2
k,

1

2
,
1

2

)
. (3.18)

This relation implies that there is a minimum level of primordial non-Gaussianity controlled
by the spectral index and its running as

f eq
NL ≈ 0.7× ∂log k logPR + 0.01× ∂2

log k logPR + · · · , (3.19)

with dots representing the contributions from other points in the (x, y) plane.

Interestingly, in [50], it was argued that there is a non-zero minimum level of equilateral
type non-Gaussianity for single field slow-roll inflation given by an amplitude of

f eq
NL ∼ 0.1× ∂log k logPR . (3.20)

This result was derived using the transformation to local inertial coordinates focusing on
how late-time observers measure the primordial bispectrum and thus the connection with
our finding is not that straightforward. However, our net result is of similar spirit as that
of [50], in saying that the lower value of primordial non-Gaussianity is controlled by the
spectral index.

The shape consistency relations (3.6) and (3.14) are the main results of this section:
since these relations are derived based on the assumption of sharp features, which in general
favours higher derivative terms compared to lower ones, they represent tests of such an
assumption, i.e. they provide a consistency check of sharp features in the bispectrum. This
implies that if rapid time variations of the background quantities, such as the speed of sound
or the slow-roll parameters, did indeed take place during inflation and features are generated,
then the corresponding bispectrum evaluated for any three triplets of modes should obey (3.6)
and (3.14).

3.3 Example: Starobinsky model

In order to test the validity of our shape consistency relations, we use the Starobinsky
model [24]. It is a simple inflation model with a linear potential that experiences a sud-
den kink in the slope. The potential can be written as

V (φ) = V0

{
1− [A+ θ(φ− φ0)∆A] (φ− φ0)

}
, (3.21)

so that the slope changes at φ = φ0 from A to A + ∆A with the value of the potential
V (φ0) = V0. For simplicity, we assume that the fractional change in the slope is very small,
∆A/A � 1 and the de Sitter approximation holds everywhere. Then the departure from
otherwise smooth slow-roll evolution is coming from η as [51]

η ≈ −2
∆A

A
δ(log τ0 − log τ) , (3.22)

– 7 –
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Figure 1. (Left panel) equilateral (x = y = 1) and (right panel) folded (x = y = 1/2) shape func-
tions for the Starobinsky model, constructed in terms of two configurations (x1, y1) = (4/3, 5/3) and
(x2, y2) = (3/2, 7/4). We show the full analytic results (3.23) as solid lines and our shape consistency
relation (3.6) as dotted lines. We have set the fractional change of the slope as ∆A/A = 0.1.

where τ0 is the conformal time at which φ = φ0. Then, with cs = 1, we have c1 = −η and
c2 = η for (2.4), and it is straightforward to compute the shape function SR as

SR(κ, x, y) =
∆A

A

[
y

2x
κ
{
− sin[(1 + x+ y)κ] + yκ cos[(1 + x+ y)κ]

}
+ 2 perm

+
1 + x2 + y2

4xy

1

κ

{ [
1− (x+ y + xy)κ2

]
sin[(1 + x+ y)κ]

+
[
−(1 + x+ y)κ+ xyκ3

]
cos[(1 + x+ y)κ]

}]
, (3.23)

where κ ≡ k/k0 = −kτ0.

In figure 1, with ∆A/A = 0.1, we apply two configurations (x1, y1) = (4/3, 5/3) and
(x2, y2) = (3/2, 7/4) to (3.6) to reproduce other shapes. In the left and right panels, we
reproduce respectively the equilateral (x = y = 1) and folded (x = y = 1/2) configurations
by (3.6) and compare with the analytic result (3.23). As can be seen, our shape consistency
relation (3.6) shows excellent agreement. In figure 2, for which we set ∆A/A = 0.1, we show
the results including the squeezed shape. We use the squeezed and equilateral shapes to
reproduce the folded one by using (3.14). Again, our shape consistency relation (3.14) agrees
nicely with the full analytic result.

4 Templates for featured bispectrum

In this section, motivated by the form of the shape consistency relations, we propose two
generic 2-parameter templates that could capture the featured bispectrum stemming from
the time variation of both the speed of sound cs and the slow-roll parameter ε. By thinking

of SR

(
1+x+y

1+xi+yi
k, xi, yi

)
in (3.6) and (3.14) as trigonometric functions, typical of inflationary

models yielding oscillatory spectra [29, 30, 38], we may consider (3.6) and (3.14) as an
expansion of the bispectrum shape in a basis and focus on the component shapes. In addition,
by adopting such a view and identifying ω(1 + xi + yi)

−1 → ωi, it is clear that there could

– 8 –
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Figure 2. Folded shape function constructed by those in the squeezed and equilateral configurations
using (3.14). We show the full analytic result (3.23) as a solid line and our shape consistency relation
as a dotted line. We have set ∆A/A = 0.1.

be more than one frequency at play in the oscillating SR(ω, k, φ) functions. Such a multi-
frequency distribution of features is supported by the current Planck data [38].

Hence, we suggest the following two modulating templates:

Sαβ(x, y) =
(x+ y + xy)α− (1 + x2 + y2)β

(1 + x+ y)2
, (4.1)

Sγ(x, y) = γ1

[
−S1(x, y) +

F1(x, y)

2xy

]
+ γ2

[
S2(x, y) +

F2(x, y)

2xy

]
, (4.2)

with the Si and Fi functions defined in (2.10) and the numerical coefficients α, β, γ1 and γ2

in (3.5) and (3.15). Note that although there are more than one shape functions involved
in (3.6) and (3.14), they are quite degenerate leading to similar results for a wide range of
parameters α, β, γ1 and γ2.

Depending on the triangle configurations chosen as a basis, the coefficients α, β and γ1,
γ2 take specific values. In order to demonstrate the generality of the proposed modulating
template (4.1), we choose two representative sets of two triangles:

(∆1|∆2)i = (1, 2|2, 3)1 and

(
3

2
,
7

4

∣∣∣∣2, 7

3

)
2

, (4.3)

where, as in the previous section, we have specified the triangles by their lengths ∆i = (xi, yi),
with the remaining side being fixed to 1. These lead to the following doublets (α1, α2)i
or (β1, β2)i:

(α1, α2)1 = (56, 44) , (α1, α2)2 = (41, 35) , (β1, β2)2 = (39, 37) . (4.4)

For the template (4.2) it is sufficient to consider the triangle ∆ = (2, 3), leading to

(γ1, γ2) =

(
14

9
,
22

9

)
, (4.5)
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since the other choices lead to similar shapes. Plugging these values in (4.1) and (4.2), we
obtain the following shapes:

S1α =
56(x+ y + xy)− 44(1 + x2 + y2)

(1 + x+ y)2
,

S2α =
41(x+ y + xy)− 35(1 + x2 + y2)

(1 + x+ y)2
,

S2β =
−39(x+ y + xy) + 37(1 + x2 + y2)

(1 + x+ y)2
,

Sγ =
−28(x+ y + xy) + 22(1 + x2 + y2)

18(1 + x+ y)2

+
11(x+ y + xy)(1 + x2 + y2) + 14(x2 + y2 + x2y2)

18xy(1 + x+ y)
,

(4.6)

which are plotted in figure 3. Note that these specific choices of triangles do not mean loss of
generality. There should be an infinite number of triangles which lead to degenerate results.
Here we only intend to demonstrate the realisation of the standard templates with specific
examples.

In order to quantitatively compare these shapes with the equilateral [52], enfolded [53],
orthogonal [54] and local templates [55], which are given respectively by

Seq = − k2
3

k1k2
− (2 perm) +

k2

k1
+ (5 perm)− 2

= −1 + x3 + y3

xy
+
x+ y + x2 + y2 + x2y + xy2

xy
− 2 ,

Senf =
1 + x3 + y3

xy
− x+ y + x2 + y2 + x2y + xy2

xy
+ 3 ,

Sortho = −3
1 + x3 + y3

xy
+ 3

x+ y + x2 + y2 + x2y + xy2

xy
− 8 ,

Sloc =
1 + x3 + y3

3xy
,

(4.7)

we employ the cosine estimator [56, 57]. We define the weighted inner product of two shapes
S1(x, y) and S2(x, y) as

S1 ? S2 ≡
∫
dxdy

S1(x, y)S2(x, y)

1 + x+ y
, (4.8)

with the integration region running over 0 < x < 1 and 1 − x < y < 1, and from this we
define the cosine between these shapes as

cos (S1, S2) ≡ S1 ? S2√
S1 ? S1

√
S2 ? S2

. (4.9)

The cosines between the standard templates and the shapes (4.6) are presented in table 1,
where we can see that these templates do indeed overlap with the standard ones. We find
that the orthogonal template, predicted by the effective field theory of inflation appears as a

– 10 –
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Figure 3. The shapes (4.6) stemming from the general templates Sαβ and Sγ for the representative
sets of triangles given in the main text. The zero plane is also plotted. Note that the intersection
with the zero plane is critical in deciding if their overlap is larger with the equilateral, orthogonal or
flat templates: see table 1.

possible candidate modulating the oscillatory bispectrum. For example, while the shape S2β

can be efficiently probed by the enfolded template, the shape S2α is closer to the orthogonal
one and Sγ has a clear local form.

Thus, taking into account the oscillating trigonometric functions, we may write general
templates for the featured bispectrum as

Sres-αβ(k, x, y) = Sαβ(x, y) sin
{
C log[(1 + x+ y)k] + φ

}
,

Sfeat-αβ(k, x, y) = Sαβ(x, y) sin
[
(1 + x+ y)ωk + φ

]
,

Sres-γ(k, x, y) = Sγ(x, y) sin
{
C log[(1 + x+ y)k] + φ

}
,

Sfeat-γ(k, x, y) = Sγ(x, y) sin
[
(1 + x+ y)ωk + φ

]
,

(4.10)

where the labels “res” and “feat” have been adopted from [38], corresponding to the cases of
resonant [58] or generalized feature models [29, 30], and the modulating shapes Sαβ and Sγ

– 11 –
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cos(Si, Sj) Seq Senf Sortho Sloc

S1α 0.77 0.02 0.52 −0.09

S2α 0.33 −0.49 0.80 −0.37

S2β 0.28 0.88 −0.81 0.55

Sγ 0.39 0.56 −0.36 0.99

Table 1. The values of the cosine estimator cos(Si, Sj) defined in (4.9) between the standard templates
used by Planck and the shapes (4.6).

are given by our general templates (4.1) and (4.2) respectively. Note that these templates
are suggested along the lines of those used by Planck in search for features modulated by
equilateral and flattened shapes. We may well add for example a damping envelope such as
ωk/ sinh(ωk), in order to capture the fact that features are localised in k-space.

5 Concluding remarks

A variety of models inspired by UV complete theories can predict deviations from standard
slow-roll inflation, leading to an oscillatory behaviour of the CMB spectrum, a signature
which is marginally supported by the current observational data.

Exploiting the quasi de Sitter phase during inflation and the fact that any observable
scale-dependence in the data should stem from a sharp feature in the background parameters,
we have derived a model-independent set of shape consistency relations for such inflationary
features in the bispectrum. Specifically, we have shown that if temporary deviations from
standard slow-roll did happen during inflation, then measurements of the bispectrum for any
three triplets of modes with momenta (k1, k2, k3)i for i = 1, 2, 3 should be related via (3.6)
and (3.14).

Motivated by the form of the consistency relations, we have also produced generic two-
parameter templates that include the equilateral, flattened, orthogonal and local ones, albeit
with non-zero overlap. This specifically implies that the orthogonal and local templates can
also appear as modulating shapes of the oscillatory bispectrum resulting from this class of
models and a search for these profiles could improve constraints on features. The form of the
consistency relations also allows for templates with more than one frequency at play in the
oscillatory functions in accordance to the multi-frequency distribution suggested by Planck.

An interesting generalisation of our result in this direction is to keep all terms in the
Lagrangian and also all time derivatives of the coefficients ci, which represent collectively
background inflationary parameters. Although the result is quite complicated to be used
in the form of a consistency relation, it is exactly this complexity that gives us freedom to
produce several possibly new bispectrum templates. Finally, let us stress that our method
could be used even in the case that features are not confirmed in order to produce possible
new shapes of non-Gaussianity.
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[32] A. Achúcarro, V. Atal, B. Hu, P. Ortiz and J. Torrado, Inflation with moderately sharp features
in the speed of sound: Generalized slow roll and in-in formalism for power spectrum and
bispectrum, Phys. Rev. D 90 (2014) 023511 [arXiv:1404.7522] [INSPIRE].

[33] J.R. Fergusson, H.F. Gruetjen, E.P.S. Shellard and M. Liguori, Combining power spectrum and
bispectrum measurements to detect oscillatory features, Phys. Rev. D 91 (2015) 023502
[arXiv:1410.5114] [INSPIRE].

[34] J.R. Fergusson, H.F. Gruetjen, E.P.S. Shellard and B. Wallisch, Polyspectra searches for sharp
oscillatory features in cosmic microwave sky data, Phys. Rev. D 91 (2015) 123506
[arXiv:1412.6152] [INSPIRE].

[35] P.D. Meerburg, M. Münchmeyer and B. Wandelt, Joint resonant CMB power spectrum and
bispectrum estimation, Phys. Rev. D 93 (2016) 043536 [arXiv:1510.01756] [INSPIRE].

[36] S. Appleby, J.-O. Gong, D.K. Hazra, A. Shafieloo and S. Sypsas, Direct search for features in
the primordial bispectrum, Phys. Lett. B 760 (2016) 297 [arXiv:1512.08977] [INSPIRE].

[37] S. Mooij, G.A. Palma, G. Panotopoulos and A. Soto, Consistency relations for sharp
inflationary non-Gaussian features, JCAP 09 (2016) 004 [arXiv:1604.03533] [INSPIRE].

– 14 –

http://dx.doi.org/10.1103/PhysRevD.81.043502
https://arxiv.org/abs/0910.1853
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.1853
http://dx.doi.org/10.1103/PhysRevD.84.043502
https://arxiv.org/abs/1005.3848
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3848
http://dx.doi.org/10.1088/1475-7516/2011/01/030
https://arxiv.org/abs/1010.3693
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.3693
http://dx.doi.org/10.1007/JHEP05(2012)066
https://arxiv.org/abs/1201.6342
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.6342
http://dx.doi.org/10.1142/S0218271815300232
https://arxiv.org/abs/1505.01834
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.01834
http://inspirehep.net/search?p=find+J+%22JETPLett.,55,489%22
http://dx.doi.org/10.1103/PhysRevD.64.123514
https://arxiv.org/abs/astro-ph/0102236
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0102236
http://dx.doi.org/10.1088/1475-7516/2005/07/015
https://arxiv.org/abs/astro-ph/0504383
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0504383
http://dx.doi.org/10.1155/2010/638979
http://dx.doi.org/10.1155/2010/638979
https://arxiv.org/abs/1002.1416
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1416
http://dx.doi.org/10.1155/2010/724525
http://dx.doi.org/10.1155/2010/724525
https://arxiv.org/abs/1002.3110
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.3110
http://dx.doi.org/10.1088/1475-7516/2007/06/023
http://dx.doi.org/10.1088/1475-7516/2007/06/023
https://arxiv.org/abs/astro-ph/0611645
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0611645
http://dx.doi.org/10.1088/1475-7516/2008/04/010
https://arxiv.org/abs/0801.3295
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.3295
http://dx.doi.org/10.1103/PhysRevD.89.103006
http://dx.doi.org/10.1103/PhysRevD.89.103006
https://arxiv.org/abs/1311.2552
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2552
http://dx.doi.org/10.1103/PhysRevD.90.023511
https://arxiv.org/abs/1404.7522
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7522
http://dx.doi.org/10.1103/PhysRevD.91.023502
https://arxiv.org/abs/1410.5114
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.5114
http://dx.doi.org/10.1103/PhysRevD.91.123506
https://arxiv.org/abs/1412.6152
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6152
http://dx.doi.org/10.1103/PhysRevD.93.043536
https://arxiv.org/abs/1510.01756
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.01756
http://dx.doi.org/10.1016/j.physletb.2016.07.004
https://arxiv.org/abs/1512.08977
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.08977
http://dx.doi.org/10.1088/1475-7516/2016/09/004
https://arxiv.org/abs/1604.03533
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.03533


J
C
A
P
0
5
(
2
0
1
7
)
0
1
6

[38] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial
non-Gaussianity, Astron. Astrophys. 594 (2016) A17 [arXiv:1502.01592] [INSPIRE].

[39] X. Chen, C. Dvorkin, Z. Huang, M.H. Namjoo and L. Verde, The Future of Primordial Features
with Large-Scale Structure Surveys, JCAP 11 (2016) 014 [arXiv:1605.09365] [INSPIRE].

[40] M. Ballardini, F. Finelli, C. Fedeli and L. Moscardini, Probing primordial features with future
galaxy surveys, JCAP 10 (2016) 041 [arXiv:1606.03747] [INSPIRE].

[41] C. Burrage, R.H. Ribeiro and D. Seery, Large slow-roll corrections to the bispectrum of
noncanonical inflation, JCAP 07 (2011) 032 [arXiv:1103.4126] [INSPIRE].

[42] D. Seery and J.E. Lidsey, Primordial non-Gaussianities in single field inflation, JCAP 06
(2005) 003 [astro-ph/0503692] [INSPIRE].

[43] X. Chen, M.-x. Huang, S. Kachru and G. Shiu, Observational signatures and non-Gaussianities
of general single field inflation, JCAP 01 (2007) 002 [hep-th/0605045] [INSPIRE].

[44] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary
models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

[45] S. Mooij, G.A. Palma, G. Panotopoulos and A. Soto, Consistency relations for sharp features
in the primordial spectra, JCAP 10 (2015) 062 [Erratum JCAP 02 (2016) E01]
[arXiv:1507.08481] [INSPIRE].

[46] G.A. Palma, Untangling features in the primordial spectra, JCAP 04 (2015) 035
[arXiv:1412.5615] [INSPIRE].

[47] C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field
Theory of Inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].
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