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The rapid development of human activities has resulted in 
increased pollution, which is a significant environmental 
hazard for invertebrates, fish and humans (Uluturhan and 
Kucukszgin 2007), especially heavy metals, which may have 
a natural or anthropogenic origin such as mining, waste-
water, industrial discharges, agricultural runoff, air pollut-
ants and deposition (Maceda-Veiga et al. 2012; Scanu et al. 
2016). Most of these metals are essential for physiological 
functions (Taylor et al. 1985) and are considered as normal 
constituents of the fluvial or marine environment (Nieboer 
and Richardson 1980). However, when significant quanti-
ties of heavy metals are accumulated and biomagnified in 
aquatic food chains, the result could have lethal or sub-lethal 
effects on the local fish populations (Xu et al. 2004). Heavy 
metals can be assimilated by fish through different path-
ways: (i) from water passing through the gills, considered 
the most direct and important route (Evans 1987), (ii) from 
food, affecting the intestine and the metabolic organs (Her-
menean et al. 2015), and finally (iii) from environmental 
contact with the skin (Amundsen et al. 1997). Further, stud-
ies have shown that gills are the main means of entry for dis-
solved substances from water, but the liver is most prone to 
accumulate heavy metals due to blood flow from gills (Cle-
ments and Rees 1997). Thus, different organs accumulate 
different amounts of metals; in this context gills and liver are 
proposed as indicators of pollution (Saltes and Bailey 1984).

As mentioned above, the metal concentration in freshwater 
systems depend on several factors, such as transport, veloc-
ity of the river (Wu et al. 2005) and human activities in the 
basin (Farag et al. 1998), furthermore, metal concentration 
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may be heterogeneous in water and sediments of the same 
area (Copaja et al. 2016a). It is important to consider that only 
a small portion of free metal ions stays dissolved in water, 
whereas most are deposited in the sediment due to hydrolysis 
and adsorption (Horowitz 1991; Bradl 2004). Between 30% 
and 98% of the total metal load of a river can be sediment-
associated (Gibbs 1973; Hua et al. 2016). This difference, 
observed in metal concentration between water and sediments 
and the presence of metals in the pore water (Tovar-Sanchez 
et al. 2006), could make a difference in the metal accumula-
tion of species inhabiting the same area, but using different 
habitat niches. Overall, limnetic species are mainly exposed 
to the metals from water, while benthic species are exposed to 
metals present in the water column, sediment and pore water.

In Chile, high content of many metals has been reported 
among rivers (Schalscha and Ahumada 1998) and among 
sample sites within rivers (Vega-Retter et al. 2014). Consid-
ering this information, in the present study we analyzed the 
metal accumulation in three tissues of the silverside Basilich-
thys microlepidotus and the catfish Trichomycterus areolatus, 
both native and endemic fish species inhabiting rivers in Cen-
tral Chile (Vila et al. 1999; Veliz et al. 2012). Initial analyses 
performed in T. areolatus reported differential metal accumu-
lation in the tissue of the individuals located up and down-
stream of a reservoir dam (Copaja et al. 2016b). Interestingly, 
the silverside and the catfish present different ecological fea-
tures, such as migration patterns (Quezada-Romegialli et al. 
2010) and habitat use. The silverside is a limnetic species, 
thus it would be affected by the water quality and soluble 
metals in column water, while the catfish is a benthic species, 
probably more affected by direct contact with the sediment 
and suspended solids and metals from interstitial water. Fur-
thermore, both species could be also affected by their food 
sources because they both feed on benthic invertebrate (Ruiz 
et al. 1993). Thus, we seek to detect a possible differential 
bioaccumulation related to the habitat use, tissues type and 
river of origin by quantifying heavy metals (Al, Cd, Cr, Cu, 
Fe, Mn, Mo, Ni, Pb, Zn) in gills, liver and muscle tissues in 
the silverside B. microlepidotus and the catfish T. areolatus 
collected from four rivers in central Chile.

Materials and Methods

Catfish and silverside were collected in four rivers from two 
basins during the winter of 2011. River names and sample 
sizes are shown in Table 1. Fish samples were obtained by 
using an electric fishing device and euthanized with tricaine 
methanosulfonate (MS222) at 250 mg L−1. The gills, liver 
and a piece of dorsal muscle from each specimen were dried 
in an oven at 40°C to a constant mass in 10 mL beakers.

Dried tissues (0.5 g) were digested in a high-resolution 
microwave (Marsx press) (EPA method 3015) with 10 mL 

of 65% suprapur HNO3 (Merck), the digestion conditions 
were: potency 1600 watts; (65%); time 15 min; temperature 
200°C; duration 15 min; cooling 15 min. The digested sam-
ples were diluted ten times in 100 mL vials with deionized 
water Milli-Q (Millipore-simplicity) and stored in polyeth-
ylene plastic containers for analysis. Samples were analyzed 
using an atomic absorption spectrophotometer (AAS) (Shi-
madzu Spectrophotometer 6800, ASC-6100 auto sampler and 
graphite furnace gfa-ex7). Detection limits (mg L−1) were: 
Al = 0.472; Cd = 0.016; Cr = 0.071; Cu = 0.0006; Fe = 0.509; 
Mn = 0.374; Mo = 0.0009; Ni = 0.056; Pb = 0.065; Zn = 0.076. 
Cu and Mo were analyzed using graphite furnace atomization 
and the other metals were analyzed using flame atomization. 
The reagents were of analytical grade. Glassware was soaked 
in 10% nitric acid and later rinsed with MilliQ grade water 
prior to use to avoid metal contamination. The quality of 
results was compared with reference material (Dolt-4: dogfish 
liver certified reference material for trace metals). Analytical 
results of the quality control samples indicated a satisfactory 
performance of heavy metal detection within the range of cer-
tified values (90%–110%) (Appendix Table 3).

To determine possible effects and interactions among the 
fish species, tissue and river (the independent variables) on 
the metal bioaccumulation (the dependent variables), a per-
mutation MANOVA was performed using the vegan library 
implemented in R software (R Core Team 2017). Con-
sidering the significant level, permutation ANOVAs were 
performed for each metal independently. Finally, pairwise 
permutation analyses based on the difference of means were 
coded in R software to obtain the significance for pairs of 
comparisons when the factor contained more than two levels 
(e.g. tissue and river).

Results and Discussion

Mean and standard deviation per treatment are shown in 
Appendix Table 4. Cd and Ni were not detected or were 
below the detection limit, thus our results contain informa-
tion on eight metals (Al, Cr, Cu, Fe, Mn, Mo, Pb, Zn). The 
permutation MANOVA showed statistical differences in the 
three main factors fish, river and tissue; the interaction of 
the factors showed no statistical significance (Table 2). In 
order to simplify the results and their discussion, we explain 

Table 1   Sampling sites and sample size per site

River Basin River Coordinates N° catfish N° silverside

Limari Recoleta 30°28′S; 71°06′W 5 8
Cogoti 31°00′S; 71°05′W 6 8
Paloma 30°44′S; 71°00′W 7 7

Choapa Corrales 31°54′S; 70°54′W 7 6
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statistical significance by groups of metals demonstrating the 
same pattern of variation, namely: (i) fish effect (differences 
between fish species), (ii) river effect (with variation across 
rivers), (iii) tissue effect (differences among tissues).

The permutation ANOVAs performed for the fish factor, 
independently for each metal, showed statistically higher 
concentrations of Cr, Cu, Mo and Zn in the catfish compared 
with the silverside (p < 0.001, Fig. 1). Other studies also 
found more metal concentration in benthic fish compared 
to pelagic fish; for example, Pb, Cd, Ni and Cr were found 
in high concentration in the benthic Neogobius gorlap com-
pared to the pelagic Rutilus rutilus caspicus (Alipour et al. 
2013), Cd and Cr were higher in Triglia cuculus (benthic) 
than in Sardina pilchardus (pelagic) (Canli and Atli 2003) 
and Cd, Cu, Zn, Pb and Fe were higher in Mullus barbatus 
(benthic) than in Sparus aurata (pelagic) (Kargin 1996), 
among others. This result suggests that sediment contributes 
to metal accumulation; a consistent finding with the idea that 
sediment is the most important reservoir of metals (Filguei-
ras et al. 2004). Previous studies have reported that metal 
concentrations in bottom sediments can be 1–3 orders of 
magnitude greater than in the overlying surface water (Bubb 
and Lester 1994; Copaja et al. 2016b). Our results are con-
sistent with the findings of Copaja et al. (2016b), wherein 
catfish showed a higher metal concentration than silverside 
in the Rapel and Cachapoal rivers. This finding contributes 
to the hypothesis that the higher levels of bioaccumulation 
in catfish are due to its benthic habitat.

The permutation ANOVAs performed for the tissue fac-
tor, independently for each metal, showed statistically higher 
concentrations of Al, Cr, Fe and Mn in the liver and gills than 
in muscle in both fish species and in all rivers (Fig. 2). Other 
authors observed more metal in gills and liver compared to 
the muscle in the catfishes Heteropneustes fossilis (Bharti and 
Banerjee 2011), Silurus glanis (Squadrone et al. 2013), Clarias 
gariepinus (Tuncsoy et al. 2016) and the silversides Atherina 
lagunae (Ayed et al. 2013), Odontesthes bonariensis (Vazquez 
et al. 2015) and B. microlepidotus (Copaja et al. 2016b).

Considering the detoxifying function of the liver, this 
organ tends to accumulate metals which bind those elements 

to specific polypeptides called metallothionein (Hamilton 
and Mehrle 1986); for this reason, this organ has been iden-
tified as the best environmental indicator of water pollution 
and chronic exposure to heavy metals (Agah et al. 2009). 
Gills of fishes have several functions, such as exchange of 
gases, ion transport, excretion of ammonia and urea (Law-
rence and Hemingway 2003), in direct interaction with water 
and pollutants. These functions, together with the high level 
of pollutants found in this organ, have led to the gills to 
often be considered an indicator of aquatic metal concen-
tration, especially at the beginning of exposure (Dural et al. 
2007). Authors relate the low concentration of metals in fish 
muscle to the affinity of the contractile proteins of muscle 
with calcium (Schiaffino and Reggiani 1996), an important 
characteristic of the general rule of organometallic chemistry 
(Palaniappan and Karthikeyan 2009).

Table 2   Results of the 
permutation MANOVA

*Represent statistical significance (p < 0.05)

Source of variation Df Pillai Approx F num df den df p value

Fish 1 0.244 5.275 8 131 < 0.001*
River 3 0.452 2.945 24 399 < 0.001*
Tissue 2 0.313 3.077 16 264 < 0.001*
Fish × River 3 0.171 1.003 24 399 0.460
Fish × Tissue 2 0.175 1.580 16 264 0.074
River × Tissue 6 0.309 0.923 48 816 0.624
Fish × River × Tissue 6 0.351 1.058 48 816 0.371
Residual 138

Fig. 1   Boxplot of the permutation ANOVA showing statistical differ-
ences in the fish factor. a Chrome, b Copper, c Molybdenum and d 
Zinc. Lettered bars denote statistical differences (p < 0.05)
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The permutation ANOVAs performed for the river factor, 
independently for each metal, showed statistical differences 
in Cr, Mn and Pb among rivers (Fig. 3). In this analysis, both 
fish present the highest concentrations in Cogotí and La Pal-
oma rivers and the lowest values in Recoleta river. Similar 
variation among rivers was described for Cr in fish inhabit-
ing rivers in Norway and Russia (Amundsen et al. 1997), Mn 
in fish species inhabiting Saudi Arabian drainages (Mahboob 
et al. 2014) and Pb concentration obtained from fishes col-
lected in a Chinese River (Cheung et al. 2008). This evi-
dence pointed out that the concentration of some metals in 
organ tissue is likely dependent on local availability.

Finally, the measured metals showed different con-
centrations in tissues, fish and rivers following some 
interesting patterns. From our data and the conclusions 
obtained from other studies, we observed three clear pat-
terns related with metal accumulation: (i) the presence of 
higher concentration of metals in the catfish compared 
to the silverside suggest the habitat use as a determinant 
in metal uptake; (ii) the high concentration of metals in 
gill and liver suggests a predisposition of these organs 
with these elements, due to their direct interaction in the 
case of the gills and role the liver to bind pollutants to 
its metallothionein, compared to the low concentration 
of metals in muscle probably due to the high presence of 
Calcium that reduces the relationship of this organ with 
metals,, and (iii) the amount of metal fish accumulate 
could be greatly influenced by the local availability in 
the environment related to the dynamics of these systems.
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Appendix

See Tables 3 and 4.

Fig. 2   Boxplot of the permutation ANOVA showing statistical differ-
ences in organ factor. a Al, b Cr, c Fe and d Mn in the tissues (gill, 
liver and muscle) analyzed for both fish species and all rivers. Let-
tered bars denote statistical differences (p < 0.05) Fig. 3   Boxplot of the permutation ANOVAs showing statistical dif-

ferences in the river factor. a Chrome, b Manganese, c Lead. Lettered 
bars denote statistical differences (p< 0.05)

Table 3   Metal concentration (mg kg−1) of the Dolt-4 reference mate-
rial

This table contain the mean and standard deviation (SD) of Cd, Fe 
and Zn concentration measured by the National Research Council 
of Canada (NRC) and our measurement (three times) in an Atomic 
Absorption Spectrophotometer (AAS)

Metal Dolt-4 measured by 
the NRC (mg kg−1)

Dolt-4 measured in 
our ASS (mg kg−1)

Recovery (%)

Cd 24.3 (SD = 0.8) 27.3 (SD = 1.31) 112
Fe 1833 (SD = 75) 1657.8 (SD = 41.86) 90
Zn 116 (SD = 6.0) 119.1 (SD = 3.52) 103
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