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ABSTRACT
Method of asymptotic partial decomposition of a domain (MAPDD)
proposed and justified earlier for thin domains (rod structures, tube
structures) is generalized and justified for the multistructures, i.e. domains
consisting of a set of thin cylinders connecting some massive 3D domains.
In the present paper, the Dirichlet boundary value problem for the steady-
state Stokes equations is considered. This problem is reduced to the Stokes
equations in the massive domains coupled with the Poiseuille-type flows
within the thin cylinders at some distance from the bases (the MAPDD
approximation problem). The high-order estimates for the difference of
the exact solution to the initial problem and the solution to the MAPDD
approximation problem is proved.
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1. Introduction

The Stokes equations in thin tube structures is the simpliest linear model for the viscous flow in
pipelines or blood vessels. The method of asymptotic partial decomposition of a domain (MAPDD)
allows to reduce essentially the computer resources needed for the numerical solution of such
problems. This method combines the three-dimensional description in some neighborhoods of
bifurcations and the one-dimensional description out of these small subdomains and it prescribes
some special junction conditions at the interface between these 3D and 1D submodels (see [1–3]).
This method was generalized for the case of the non-steady Navier–Stokes equations [4]. It is justified
via a construction of an asymptotic expansion of the solution. Namely, first for the exact solution and
an asymptotic expansion an estimate is proved, then the same estimate is proved for the difference
of an asymptotic expansion and the solution of the “partially decomposed” problem, obtained by the
MAPDD, and finally, the triangle inequality establishes the estimate for the difference between the
exact solution of the original problem and the solution of the MAPDD problem.

However, this justification fails in the case when an asymptotic expansion is not constructed or
when such expansion is too bulky. In particular, it is the case of the flows in thin tube structures con-
nected with some massive domains (reservoirs) although this case may have numerous applications.
That is why in the present paper a new approach to the justification of the MAPDD is proposed.
It doesn’t need a complete asymptotic expansion and uses the theorems on the stabilization of a
solution of the Stokes equations in a semi-infinite cylinder (see [4–8]) and the a priori estimates
for the original problem. This approach is demonstrated below for the Stokes equations with the
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no-slip boundary conditions set in a domain, consisting of several massive domains connected by
a tree-like set of thin cylinders (thin tube structure). The ratio of the diameters of cylinders to
their heights is a small parameter ε. The Stokes equations in such multistructure correspond to the
variational formulation for the unknown velocity sought in the subspace of the Sobolev space H1

0 of
divergence-free vector-valued functions. The MAPDD approximates this problem by its projection
on the subspace of vector-valued functions having the Poiseuille flow shape inside the cylinders at the
distance greater than δ from the bases of the cylinders. The main theorem says that for any natural
number J and for δ = constJε| ln ε| the solution uε,δ of this projected problem is εJ – close to exact
solution uε of the original problem: ‖uε,δ − uε‖H1 = O(εJ ).

The main idea of the proof uses the exponential stabilization of a solution of the Stokes equations
in a semi-infinite cylinder with no-slip conditions at the boundary to some Poiseuille’s flow. First,
the proof is given for a simplest multistructure, consisting of two massive domains connected by a
thin cylinder. Namely, we consider the traces of the exact solution at the bases of the cylinder and
replace at the distance greater than δ the exact solution by a Poiseuille flow with the same flow rate
as at the bases. Then we prove that modified in this way exact solution still satisfies the original
problem as well as the projected MAPDD problem with small residuals in the right-hand sides. Due
to the stabilization theorems these residuals are of the order εJ if δ is of the order constJε| ln ε| and
it finalizes the proof. This approach is further generalized for the Stokes equations set in the general
multistructure consisting of several massive domains and a thin tube structure the same as in [4].
Mention that the notion of microstructure was introduced by Ciarlet [9] and an asymptotic analysis
for various partial differential equations set in these domains was developed as well in [10–13].

2. The Dirichlet’s problem for the Stokes equations set in amultistructure

Let us define a multistructure as a union of several "massive" domains and a thin tube structure
defined in [4,14,15].

Let O1,O2, . . . ,ON be N different points in R
n, n = 2, 3, and e1, e2, . . . , eM beM closed segments

each connecting two of these points (i.e. each ej = OijOkj , where ij, kj ∈ {1, . . . ,N}, ij �= kj). All
points Oi are supposed to be the ends of some segments ej. The segments ej are called edges of the
graph. The points Oi are called nodes. Any two edges ej and ei, i �= j, can intersect only at the
common node. A node is called vertex if it is an end point of only one edge.

Denote B = ⋃M
j=1 ej the union of edges and assume that B is a connected set. The graph G is

defined as the collection of nodes and edges.
Let e be some edge, e = OiOj. Consider two Cartesian coordinate systems in R

n. The first one has
the origin in Oi and the axis Oix

(e)
1 has the direction of the ray [OiOj); the second one has the origin

in Oj and the opposite direction, i.e. Ojx̃
(e)
1 is directed over the ray [OjOi).

With every edge ej we associate a bounded domain σj ⊂ R
n−1 having a Lipschitz boundary

∂σ j, j = 1, . . . ,M. For every edge ej = e and associated σj = σ (e) we denote by B(e)
ε the cylinder

B(e)
ε =

{
x(e) ∈ R

n : x(e)
1 ∈ (0, |e|), x

(e) ′

ε
∈ σ (e)

}
,

where x(e)′ = (x(e)
2 , . . . , x(e)

n ), |e| is the length of the edge e and ε > 0 is a small parameter. Notice
that the edges ej and Cartesian coordinates of nodes and verticesOj, as well as the domains σj, do not
depend on ε.

Let ω1, . . . ,ωN be bounded independent of ε domains in R
n with Lipschitz boundaries ∂ωj;

introduce the nodal domains ω
j
ε =

{
x ∈ R

n : x − Oj

ε
∈ ωj

}
.

By a tube structure we call the following domain
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Bε =
(

M⋃
j=1

B(ej)
ε

)⋃(
N⋃
j=1

ω
j
ε

)
.

Assume that the bounded domainsG1, . . . ,Gs with Lipschitz boundaries are such that Ḡi∩Ḡj, j �=
i, each Ḡj has an intersection with the set B at some subset of the nodes: Oi, i ∈ Mj, where
Mj are subsets of {1, . . . ,N}. Denote G = ∪s

i=1Gi. Assume that the union G ∪ Bε is a bounded
domain (connected open set) with a C2-smooth boundary. Assume that the vector-valued function
f inependent of ε is defined on G (as an element of L2(G)) and extended to the whole domainG∪Bε

by zero values, so that f ∈ L2(G ∪ Bε). It vanishes out of G.
Consider the Dirichlet’s boundary value problem for the stationary Stokes equation:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ν�uε + ∇pε = f(x), x ∈ G ∪ Bε ,

divuε = 0, x ∈ G ∪ Bε ,

uε = 0, x ∈ ∂(G ∪ Bε),

(1)

Introduce the spaceH1
div0(G ∪ Bε) the space of vector valued functions

H1
div0(G ∪ Bε) = {

v ∈ H1
0(G ∪ Bε)|divv = 0

}
.

The variational formulation is: to find a vector-valued function uε ∈ H1
div0(G ∪ Bε) such that for

any test function v ∈ H1
div0(G ∪ Bε)

ν

∫
G∪Bε

∇uε(x) : ∇v(x)dx =
∫
G∪Bε

f(x) · v(x)dx. (2)

It is well known that there exists a unique solution to this problem (see [16]) and that the solution
satisfies an a priori estimate (the Poincaré-Friedrichs inequality with a constant independent of ε is
proved in a standard way by plunging G ∪ Bε into a parallelepiped independent of ε and extension
of functions by zero):

‖uε‖H1(G∪Bε)
≤ C̄‖f‖L2(G∪Bε)

, (3)

where C̄ does not depend on f . Denote Cf = C̄‖f‖L2(G∪Bε)
.

So, the norm ‖uε‖H1(G∪Bε)
is bounded by a constant independent of ε. Therefore, for any edge e

the norm ‖uε‖H1/2(B(e)
ε ∩{x(e)

1 =a}), a ∈ (0, |e|/2) is bounded by a constant Cf independent of ε.

Remark: Here, the definition of the norm ‖v‖H1/2(B(e)
ε ∩{x(e)

1 =a}), a ∈ (0, |e|/2) is given as

inf
u∈H1(G∪Bε),u|

B(e)
ε ∩{x(e)1 =a}=v

‖u‖H1(B(e)
ε ∩{x(e)

1 ∈(a,a+emin/2}),

where emin = min1≤j≤M |ej|.
Let δ be a small positive number much greater than ε. For any edge e = OiOj of the graph

introduce two hyperplanes orthogonal to this edge and crossing it at the distance δ from its ends.
Denote the cross sections of the cylinder B(e)

ε by these two hyperplanes, respectively, by Si,j (the
cross section at the distance δ from Oi), and Sj,i (the cross-section at the distance δ from Oj), and
denote the part of the cylinder between these two cross sections by Bdec,εij .

Define the subspace H1,δ
div0(G ∪ Bε) of the space H1

div0(G ∪ Bε) such that on every truncated
cylinder Bdec,εij its elements (vector-valued functions) coincide with the Poiseuille flows described in
local variables. Namely, if the local variables x(e) for the edge e coinside with the global ones x then
the Poiseuille flow is defined as
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VP(x) = const (vP(x′/ε), 0, . . . , 0)T ,
where vP(y) is a solution to the Dirichlet’s problem for the Poisson equation on σ (e):

−ν�vP(y) = 1, y ∈ σ (e), vP(y) = 0, y ∈ ∂σ (e) . (4)

If e has the cosines directors ke1, . . . , ken and the local variables x(e) are related to the global ones
by equation x(e) = x(e)(x) then the Poiseuille flow is

VP(x) = const (ke1vP((x(e)(x))′/ε), . . . , kenvP((x(e)(x))′/ε))T ,
x′ = (x2, . . . , xn). In the case const = 1 denote the Poiseuille flow V0

P.
The method of asymptotic partial domain decomposition (MAPDD) replaces the problem (1)

by its projection onH1,δ
div0(G ∪ Bε) :

Find uε,δ ∈ H1,δ
div0(G∪Bε), such that for any test function v ∈ H1,δ

div0(G∪Bε) the following integral
identity holds:

ν

∫
G∪Bε

∇uε,δ(x) : ∇v(x)dx =
∫
G∪Bε

f(x) · v(x)dx. (5)

Applying the Lax-Milgram argument one can prove that there exists a unique solution uε,δ of the
partially decomposed problem.

3. Estimate for the difference between the exact solution and theMAPDD solution

Theorem 1: Given natural number J there exists a constant C (independent of ε and J) such that if
δ = CJε| ln ε| then

‖uε − uε,δ‖H1(G∪Bε)
= O(εJ ) . (6)

Proof: Consider first a simplified tube structure that is the set G, consisting of two massive domains
G1 and G2 connected by a thin cylinder B(e)

ε = Bε
(0,1) = (0, 1) × σε with two smoothing domains

ω
j
ε , j = 1, 2. Here σε = {x′ ∈ R

n−1|x′/ε ∈ σ }, σ is a bounded domain with Lipschitz boundary in
R
n−1, G1 and G2 are bounded domains with Lipschitz boundary in R

n, n = 2, 3, Ḡ1 ∩ Ḡ2 = ∅. The
thin tube structure here has two vertices: O1 = (0, . . . , 0) and O2 = (1, 0, . . . , 0), B = e = {x1 ∈
(0, 1)|x2 = · · · = xn = 0}; domains ω

j
ε , j = 1, 2 are defined as in the previous section. As before,

G = G1 ∪ G2, Bε = ω1
ε ∪ B(e)

ε ∪ ω2
ε , ∂(G ∪ Bε) ∈ C2. Denote Bε

(a,b) = (a, b) × σε .
Asymptotic approximations of the solution to this problem may be constructed as in [17].

However, an asymptotic expansion contains some polynomially decaying boundary layers and this
circumstancemakes the asymptotic expansion too bulky. Moreover, it is not applicable in the general
case. So, let us justify the MAPDD approach.

Denote cP = ∫
σ
vP(y′)dy′.

For simplicity assume that (G ∪ Bε) ∩ {0 < x1 < 1} = Bε
(0,1) (this assumption can be easily

removed).
Consider the traces

v0(x′) = uε(0, x′), v1(x′) = uε(1, x′) .

Denote

cε =
∫
σε
v01(x

′)dx′

εn−1cP
=
∫
σε
v11(x

′)dx′

εn−1cP
(7)

the normalized flow rate of the velocity in the tube.
Evidently, the difference uε − cεV0

P has the vanishing flux:∫
σε

(uε − cεV0
P) · edx′ = 0,
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where e = (1, 0, . . . , 0).
The boundedness of the traces ‖uε‖H1/2(Bε∩{x1=i}), i = 0, 1 and the Cauchy-Schwarz inequality

yield: cε = O(ε− n−1
2 ).

Applying the triangle inequality and the mentioned boundedness of the traces we get: for i = 1, 2

‖uε − cεV0
P‖H1/2(Bε∩{x1=i}) ≤ ‖uε‖H1/2(Bε∩{x1=i}) + |cε|‖V0

P‖H1/2(σε)
= O(ε−1) (8)

because ‖V0
P‖H1/2(σε)

= O(ε
n−1
2 −1) and cε = O(ε− n−1

2 ).
Consider the boundary layer problem in 	0 = (0,∞) × σ :⎧⎪⎪⎨

⎪⎪⎩
−ν�uBL0(y) + ∇pBL0(y) = 0, y ∈ 	0,
divuBL0(y) = 0, y ∈ 	0,
uBL0(y) = 0, y ∈ ∂	0\{y1 = 0},
uBL0(y) = v0(εy′) − cεV0

P(y
′), y1 = 0.

(9)

Applying Theorem A.2 [4] we get:

‖uBL0‖W1,2
α (	0)

≤ c‖v0 − cεV0
P‖H 1

2 (σ )
, (10)

where α > 0 depends on σ only, and constant c depends on σ and ν; W1,2
α (	0) is the space of

functions of H1(	0) having the finite norm

‖v‖W1,2
α (	0)

= ‖veα|y1|‖H1(	0) .

Remark: Here the norm ‖v‖
H

1
2 (σ )

is defined as infu∈H1(	0),u|{0}×σ =v ‖u‖H1(	0). Evidently, this norm
is equivalent (with constants independent of ε) to the norm

inf
u∈H1((0,b)×σ),u|{0}×σ =v

‖u‖H1((0,b)×σ)

for any b ≥ 1.
Indeed, there exists a constantC independent of ε and b such that any function u ∈ H1((0, b)×σ)

can be extended as ũ ∈ H1((0, b + 1) × σ) such that ũy1=b+1 = 0 and ‖ũ‖H1((0,b+1)×σ) ≤
C‖u‖H1((0,b)×σ). This extension can be continued "further" on H1(	0) as equal to zero out of the
cylinder (0, b + 1) × σ . The proof of this assertion is a direct corollary of an even extension with
respect to the plane y1 = b (see [18], Chapter I) and multiplication of the extended part for all y1 > b
by a cut off function ζ(y1 − b), where

ζ(s) =
{
1, 0 ≤ |s| ≤ 1

6 ,
0, 1

3 ≤ |s|, ζ ∈ C2(R) . (11)

So,
inf

u∈H1((0,b)×σ),u|{0}×σ =v
‖u‖H1((0,b)×σ) ≤ inf

u∈H1(	0),u|{0}×σ =v
‖u‖H1(	0)

≤ C inf
u∈H1((0,b)×σ),u|{0}×σ =v

‖u‖H1((0,b)×σ).

Consider next a similar boundary layer problem in

	1 = ( − ∞, 0) × σ
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for uBL1: ⎧⎪⎪⎨
⎪⎪⎩

−ν�uBL1(y) + ∇pBL1(y) = 0, y ∈ 	1,
divuBL1(y) = 0, y ∈ 	1,
uBL1(y) = 0, y ∈ ∂	1\{y1 = 0},
uBL1(y) = v1 − cεV0

P , y1 = 0.

(12)

As before we get
‖uBL1‖W1,2

α (	1)
≤ c‖v1 − cεV0

P‖H 1
2 (σ )

, (13)

(as aboveW1,2
α (	1) is the space of functions of H1(	1) having the finite norm

‖v‖W1,2
α (	1)

= ‖veα|y1|‖H1(	1)) .

Taking into account the factor ε− n−1
2 appearing after the change y = x/ε in the norm L2 of a

function and the factor ε1− n−1
2 in the norm L2 of its gradient we get the inequality ‖vi−cεV0

P‖H 1
2 (σ )

≤
ε− n−1

2 ‖vi − cεV0
P‖H 1

2 ({0}×σε)
≤ c̄ε−1− n−1

2 where c̄ is a constant independent of ε (here we used
inequality (8)).

Define an auxiliary function, approximation to the solution in Bε
(0,1):

uaε = cεV0
P

(
x′

ε

)
+ uBL0

(x
ε

)
ζ
(x1

δ

)
+ uBL1

(
x1 − 1

ε
,
x′

ε

)
ζ

(
x1 − 1

δ

)
(14)

where δ = CJε| ln (ε)|, and CJ is independent of ε and will be chosen in such a way that

Fi, δ
6ε

≤ cc̄εJ+2 (15)

where
Fi,R = ‖uBLi(y)‖H1(	i,R),

and
	i,R = 	i ∩ {|y1| > R}.

Note that

eα
δ
6ε Fi, δ

6ε
≤ ‖eα|y1|uBLi(y)‖H1(	i, δ

6ε
) ≤ ‖eα|y1|uBLi(y)‖H1(	i),

while due to estimates (10) and (13) the last norm is evaluated by cc̄ε−1− n−1
2 :

‖eα|y1|uBLi(y)‖H1(	i) ≤ cc̄ε−1− n−1
2 .

Then for δ = CJε| ln (ε)| we get

eαCJ | ln (ε)|/6Fi, δ
6ε

≤ cc̄ε−1− n−1
2 ,

i.e.

Fi, δ
6ε

≤ cc̄eαCJ ln (ε)/6−1− n−1
2 .

Let us take CJ ≥ 6(J + 3 + n−1
2 )/α, then

Fi, δ
6ε

≤ cc̄εJ+2

and so, making the change x = εy, we get
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‖uBL0
(x

ε

)
ζ
(x1

δ

)
+ uBL1

(
x1 − 1

ε
,
x′

ε

)
ζ

(
x1 − 1

δ

)
‖
H1
(
Bε

(δ/6,1−δ/6)

) ≤ c̄1εJ+2+ n−1
2 −1 = O

(
εJ+1) .

Here c̄1 is independent of ε and J .
Note that for any y1 > 0, the integral over a cross section of the first component of uBL0 is equal

to zero:
∫
σ
uBL0,1(y)dy′ = 0 because this integral is independent of y1 and uBL0 ∈ W1,2

α (	0). So,∫
Bε

(δ/6,δ/3)

div
(
uBL0

(x
ε

)
ζ
(x1

δ

))
dx = 1

δ

∫
Bε

(δ/6,δ/3)

uBL0,1
(x

ε

)
ζ ′ (x1

δ

)
dx = 0.

Applying the estimates of [19] for thin structures (Lemma 3.1, the change of variables y′ = x′/ε, y1 =
x1/δ and the change of functionW′ = ε−1w′,W1 = δ−1w1 as in the proof of Lemma 3.6) we prove
that there exists w ∈ H1

0(B
ε
(δ/6,δ/3)) such that

divw = −div
(
uBL0

(x
ε

)
ζ
(x1

δ

))
i.e.

divw = −1
δ
uBL0,1

(x
ε

)
ζ ′ (x1

δ

)
and

‖w‖
H1
(
Bε

(δ/6,δ/3)

) = O
(
εJ
)
.

Indeed, for a domain independent of ε and δ, cylinder B1(1/6,1/3) we get: there exists a vector-valued
functionW ∈ H1

0(B
1
(1/6,1/3)) such that

divW(y) = ĥ(y),

where
ĥ(y) = −1

δ
uBL0,1

(
δ

ε
y1, y′

)
ζ ′(y1)

and
‖W(y)‖H1(B1

(1/6,1/3))
≤ C‖ĥ‖L2(B1

(1/6,1/3))
.

Then taking into account the change of variables, we get:

divw(x) = ĥ(x1/δ, x′/ε)

and for ε, δ < 1,

‖∇w‖L2(Bε
(δ/6,δ/3))

≤
√

εn−1δ‖∇W‖L2(B1
(1/6,1/3))

≤ C
√

εn−1δ‖ĥ(y)‖L2(B1
(1/6,1/3))

≤ C‖ĥ(x1/δ, x′/ε)‖L2(Bε
(δ/6,δ/3))

.

Applying finally the Poincaré-Friedrichs inequality, we get

‖w‖
H1
(
Bε

(δ/6,δ/3)

) ≤ c
δ
εJ+2 = O

(
εJ
)
.
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The same function w is constructed in the domain Bε
(1−δ/3,1−δ/6) and satisfies the following

conditions:

divw = −div
(
uBL1

(
x1 − 1

ε
,
x′

ε

)
ζ

(
x1 − 1

δ

))
and

‖w‖
H1
(
Bε(

1−δ/3,1−δ/6
)
) = O

(
εJ
)
.

Consider u(J)
ε = uaε + w. Evidently the difference u(J)

ε − uε satisfies the Stokes equations in the
cylinder Bε

(0,1) with no-slip condition on the boundary with a residual of orderO(εJ ) in the following
sense:

for any test function v ∈ H1
div0(B

ε
(0,1))

ν

∫
Bε

(0,1)

∇
(
u(J)

ε (x) − uε

)
: ∇v(x)dx = −ν

∫
Bε

(0,1)

∇rε(x) : ∇v(x)dx (16)

where

rε = w + uBL0
(x

ε

) (
ζ
(x1

δ

)
− 1

)
+ uBL1

(
x1 − 1

ε
,
x′

ε

)(
ζ

(
x1 − 1

δ

)
− 1

)
and

‖∇rε‖L2(Bε
(0,1)

) = O
(
εJ
)
.

So, applying the a priori estimate, we get: the following inequality holds:

‖uε − u(J)
ε ‖H1(Bε

(0,1))
= O

(
εJ
)

. (17)

Then u(J)
ε = uaε + w extended as uε out of the cylinder Bε

(0,1) satisfies the estimate

‖uε − u(J)
ε ‖H1(G∪Bε)

= O
(
εJ
)

(18)

and the Stokes equations with a residual of order O(εJ ) in Equation (2) in the following sense:
for any test function v ∈ H1

div0(G ∪ Bε)

ν

∫
G∪Bε

∇u(J)
ε (x) : ∇v(x)dx =

∫
G∪Bε

f(x) · v(x)dx − ν

∫
G∪Bε

∇rε(x) : ∇v(x)dx (19)

where

‖∇rε‖L2(G∪Bε)
= O

(
εJ
)
.

Consider now the projection of problem (1) on the subspace H1,δ
div0(G ∪ Bε). By the

Lax-Milgram theorem there exists a unique solution uε,δ to this projection and u(J)
ε belongs to

the spaceH1,δ
div0(G∪Bε) and satisfies as before (see (19)) its variational formulation with a residual of

order O(εJ ). Then applying an a priori estimate we get:

‖u(J)
ε − uε,δ‖H1(G∪Bε)

= O(εJ ). (20)

Estimates (18), (20), imply (6).
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In the general case the proof is similar: the traces of uε on x1 = 0 and x1 = 1 for every edge e are
replaced by the traces x(e)

1 = aε and x(e)
1 = |e|−aε, where a is such that all cross-sections of a cylinder

B(e)
ε between x(e)

1 = aε and x(e)
1 = |e| − aε do not contain points of other cylinders nor points of

smoothing domains ω
j
ε . The construction of an approximate solution u(J)

ε and the derivation of the
estimates (18), (20) are provided for every cylinder B(e)

ε and then for the whole domain G ∪ B(e)
ε we

get (6).[20]
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