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Summary
Nonlinear finite element (FE) modeling has been widely used to investigate the

effects of seismic isolation on the response of bridges to earthquakes. However,

most FE models of seismic isolated bridges (SIB) have used seismic isolator models

calibrated from component test data, while the prediction accuracy of nonlinear FE

models of SIB is rarely addressed by using data recorded from instrumented bridges.

In this paper, the accuracy of a state‐of‐the‐art FE model is studied through nonlin-

ear FE model updating (FEMU) of an existing instrumented SIB, the Marga‐Marga

Bridge located in Viña del Mar, Chile. The seismic isolator models are updated in 2

phases: component‐wise and system‐wise FEMU. The isolator model parameters

obtained from 23 isolator component tests show large scatter, and poor goodness

of fit of the FE‐predicted bridge response to the 2010 Mw 8.8 Maule, Chile Earth-

quake is obtained when most of those parameter sets are used for the isolator ele-

ments of the bridge model. In contrast, good agreement is obtained between the

FE‐predicted and measured bridge response when the isolator model parameters

are calibrated using the bridge response data recorded during the mega‐earthquake.
Nonlinear FEMU is conducted by solving single‐ and multiobjective optimization

problems using high‐throughput cloud computing. The updated FE model is then

used to reconstruct response quantities not recorded during the earthquake, gaining

more insight into the effects of seismic isolation on the response of the bridge during

the strong earthquake.

KEYWORDS

2010 Maule earthquake, bridge, bridge system response prediction accuracy, nonlinear finite element model
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1 | INTRODUCTION

Highway bridges, critical components of transportation networks, have been recognized as among the most vulnerable struc-
tures to natural disasters, especially to earthquakes.1 Recent earthquakes have further shown the vulnerability of bridges and
emphasized the importance of ensuring a satisfactory seismic performance of such structures in future earthquakes.2 Conse-
quently, seismic protection systems, such as low‐damage and damage‐free resilient design strategies (eg, seismic isolation
and self‐centering systems), have become attractive and popular technologies to mitigate the damaging effects of earthquakes
on bridges and, therefore, enhance their seismic performance.3,4 In particular, seismic isolation provides a flexible horizontal
Copyright © 2017 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/eqe 2699
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interface with high internal damping, typically located between the top of the piers/abutment stem walls and the bridge super-
structure. This results in the elongation of the fundamental period of the bridge, moving it away from the range of dominant
frequencies of earthquake excitation, and the increase of the energy dissipation capacity of the bridge system. The excellent per-
formance of isolated bridges during recent earthquakes has demonstrated the effectiveness of seismic isolation and especially of
rubber bearings.5,6 However, limited investigation of seismic isolated bridge (SIB) structures has been performed using data
recorded in situ during strong earthquakes, mainly because of the scarcity of this type of data. Comprehensive comparative stud-
ies using data recorded from laboratory component tests and from instrumented SIB structures during earthquakes are even
more limited.

Nonlinear finite element (FE) modeling and response simulation has now become an important tool in seismic design, con-
dition assessment, and performance prediction of large and complex civil structures (eg, buildings and bridges) under various
loads. To validate nonlinear FE models of structures subjected to seismic excitation, experimental data recorded under realistic
conditions of the structure and dynamic excitation must be used. In this regard, shake table tests of large‐ or full‐scale building
specimens have provided unique and important data.7 However, for bridge structures, it is unfeasible to conduct large‐ or full‐
scale experiments under realistic conditions (eg, multiple‐support excitation and interaction between bridge deck and abut-
ments). The one‐fourth scale 2‐span, 3‐bent reinforced concrete (RC) bridge tested at the University of Nevada, Reno, using
a shake table array is probably the most complex seismic test program conducted on bridges.8 Although this experimental pro-
gram represents a significant effort in approaching real‐world conditions, experimental tests of bridge components and subas-
semblies do not allow to fully characterize the behavior of a whole bridge system, which includes the interactions between its
different components. Unfortunately, data recorded on bridge structures, including those with seismic isolation, during strong
earthquakes are scarce, and very limited research has been performed on comparative or correlation studies between field
recorded and FE‐predicted seismic responses of bridges (eg, previous studies9,10).

Although significant advances have been made in the field of computational structural mechanics (eg, inelastic material
constitutive models and nonlinear solution strategies), the accuracy of nonlinear FE models of large and complex real‐world
civil structures (eg, bridges) subjected to strong earthquake excitation needs to be investigated further and validated. A nonlin-
ear FE model of a structure depends on a set of highly uncertain parameters11 (eg, material parameters and boundary condi-
tions) and, consequently, needs to be calibrated to minimize the discrepancy between the FE‐predicted and measured
responses of the structure. This process is known as FE model updating (FEMU). In recent years, several methods for updating
nonlinear FE models of civil structures have been developed and mostly applied to highly (overly) simplified nonlinear struc-
tural models and numerically simulated data or experimental data from small‐scale structural specimens (eg, other studies12,13).

The nonlinear FEMU process requires many evaluations of the FE model, and sequential evaluations may therefore be com-
putationally prohibitive for large and complex civil structures. In contrast, an alternative nonlinear FEMU approach is promoted
in this paper by virtue of the cloud‐based high‐throughput distributed computing technologies (eg, previous studies14,15), which
enable a grid‐based correlation study between FE‐predicted and measured structural responses. This grid‐based correlation
approach conducts the updating of state‐of‐the‐art structural FE models of complex civil structural and/or geotechnical systems
in a significantly reduced time, especially in the case of low‐dimensional modeling parameter space.

In this paper, the acceleration response data recorded on the Marga‐Marga Bridge during the 2010 Mw 8.8 Maule, Chile
earthquake are used to update a nonlinear FE model of the bridge developed in the FE analysis software framework OpenSees,16

with a focus on isolator model parameters. This FE model includes multiple‐support seismic excitation (ie, inputs at the base of
the bridge piers different from those at the bridge ends). First, the experimental data from component tests on prototypes of the
high‐damping rubber bearings (HDRBs) of the bridge are used to estimate the parameters of the isolator model. Using these
parameter estimates for the seismic isolator model and the FE model of the bridge, the FE‐predicted response is then compared
to the measured response of the bridge to the Maule Earthquake. Next, the data recorded on the bridge are used to update the
seismic isolator parameters of the bridge model. Three primary parameters (ie, initial stiffness, yield strength, and postyield to
preyield stiffness ratio) describing the nonlinear behavior of the rubber bearings (the main source of nonlinearity in the bridge
during the Maule earthquake as verified in this study) are updated, because they are the most influential parameters on the
recorded response of the bridge.
2 | DESCRIPTION OF THE BRIDGE AND INSTRUMENTATION

2.1 | Bridge description

The Marga‐Marga Bridge (Figure 1), located in the city of Viña del Mar, is the first SIB constructed in Chile. It is a
continuous straight highway bridge, consisting of 8 spans for a total length of 383.0 m. The elevation and plan views



FIGURE 1 Photo of the Marga‐Marga Bridge in Viña del Mar, Chile [Colour figure can be viewed at wileyonlinelibrary.com]
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of the bridge are shown in Figure 2. The bridge superstructure is composed of a RC deck with constant cross section
(0.27 m thick by 18.0 m wide) supported by 4 continuous I girders made of ASTM A‐242‐81 steel.

The bridge superstructure is supported by 7 piers (single‐column bents) and 2 abutments. Five intermediate piers, P#2 to P#6,
are supported on pile‐group foundations, while the other 2 piers, P#1 and P#7, and both abutments are supported on shallow foun-
dations. The pier columns have varying heights, denoted as H, measured from the top of the foundation cap to the bottom of the
pier cap beam, ranging from 21.9 m (P#1) to 30.2 m (P#6). The pier columns have a double‐cell RC box section with dimensions
of 2.0 m wide by 10.0 m deep and are oriented with their weak axis bending perpendicular to the longitudinal direction of the
bridge (see Figure 3a). Concrete with a nominal compressive strength of 25.0 MPa and reinforcing steel with a nominal yield
strength of 420.0 MPa were used for the pier columns. At the bridge ends, the superstructure is restrained in the transverse direc-
tion by stoppers with the contact steel plates greased to allow free movement in the longitudinal direction through finger joints
spanning over a gap of 0.3 m. The dimensions of the foundation caps (B×H1) are shown in Figure 3a. The foundation piles have
a circular cross section with a diameter of 1.0 m and their lengths range between 14.02 and 32.40 m (see Figure 2). All the foun-
dation piles are fully embedded in the soil, which consists of layers of silty sand overlaying gravel and spots of clay.

2.2 | Instrumentation setup and monitoring system

A seismic monitoring system consisting of 24 accelerometers was installed in the free field and on the structure (see Figures 2
and 3a) to record the earthquake ground motion and dynamic response of the bridge and to investigate the bridge behavior dur-
ing earthquakes.17 The system consists of an 18‐channel central recording system Kinemetrics Altus Mt. Whitney equipped
FIGURE 2 Plan and elevation views and instrumentation of the Marga‐Marga Bridge. NA, North abutment; SA, South abutment [Colour figure
can be viewed at wileyonlinelibrary.com]
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FIGURE 3 (a) Pier columns and instrumentation, and (b) HDRB (seismic isolator) on bridge piers. HDRB, high‐damping rubber bearing [Colour
figure can be viewed at wileyonlinelibrary.com]
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with a GPS timing system (accuracy of 5 μs). Three triaxial Kinemetrics FBA‐23 (channels 1‐9 in Figure 2) and 9 uniaxial
Kinemetrics FBA‐11 accelerometers (channels 10‐18 in Figure 2) are connected to this recording system. In addition, a
Kinemetrics Altus Etna accelerograph with one triaxial Kinemetrics FBA‐23 accelerometer (channels 19‐21 in Figure 2) is
installed in free‐field conditions in the valley and connected by a local network to the central recording system. A Kinemetrics
QDR accelerograph is located close to the South abutment (SA) (channels 22‐24 in Figure 2) in free‐field conditions but is not
synchronized with the other sensors. Channels 1 to 18 are installed on the bridge structure, ie, at the bottom and top of bridge
pier P#4, on the bridge deck over piers P#2, P#4, and P#6, at both bridge ends, and at both abutments. To summarize, the instru-
mentation of the bridge structure consists of 7 channels, 5 channels, and 6 channels, in the longitudinal, vertical, and transverse
directions of the bridge (see Figures 2 and 3a), respectively. The accelerometers are force balance acceleration sensors with a
dynamic range of 135 dB from 0.01 to 50 Hz and 145 dB from 0.01 to 20 Hz and a frequency bandwidth DC—100 Hz.
The records were sampled at 100 Hz for the sensors installed in the free field at the SA and at 200 Hz for the others.

Seismic isolation, with a total of 36 rectangular HDRBs (seismic isolators), was incorporated in the bridge when it was con-
structed in 1996. Each isolator has a total height of 0.30 m, composed of 16 steel shim plates, 17 rubber layers with a total thick-
ness of 204 mm, and two 25 mm thick end plates (Figure 3b). A group of 4 bearings, resting on the cap beam of each of the 7
piers and on the stem wall of each of the 2 abutments, connects the 4 steel girders with the pier columns and abutments, respec-
tively. The section size of the HDRBs located at the SA, pier columns (P#1‐P#7), and North abutment is 0.50 × 0.50,
0.85 × 0.55, and 0.70 × 0.50 m, respectively. More information about the mechanical properties of the seismic isolators will
be presented in Section 4.1, and detailed information about the rubber properties can be found in Boroschek et al.17
2.3 | Recorded earthquake response

On February 27, 2010, the Marga‐Marga Bridge was subjected to the Mw 8.8 Maule, Chile earthquake. The bridge was located
about 400 and 270 km from the epicenter and main asperity of the earthquake, respectively. No damage was observed on the
bridge, while damage to other civil structures was substantial (eg, other studies6,18). The monitoring system worked properly
during the earthquake; all sensors except the triaxial accelerometer located in the free field near the SA (channels 22‐24) were
triggered, and they recorded the bridge response and free‐field ground motion in the valley. The 3 components of ground
motion acceleration recorded at the free‐field station in the valley are shown in Figure 4. Peak ground accelerations of
0.35g, 0.26g, and 0.34g were recorded in the longitudinal, vertical, and transverse directions, respectively. In contrast, the peak
accelerations of the bridge deck recorded over pier P#4 were 0.18g, 0.31g, and 0.58g, in the longitudinal, vertical, and trans-
verse directions, respectively. It is noted that the raw acceleration time histories were detrended and filtered using a band‐pass
IIR Butterworth filter of order 4 with cutoff frequencies at 0.15 and 30 Hz and that the displacement time histories were
obtained through double integration of the processed acceleration time histories.

The dynamic response of the bridge recorded during the earthquake is also investigated (see Figures 5 and 6). Figure 5
shows the deformation time histories of the seismic isolators over pier P#4 as well as the deformation orbit. The isolator defor-
mation was computed from the absolute displacement time histories obtained by double integration of the recorded deck accel-
erations (ie, channels 7 and 9) and pier top accelerations (ie, channels 4 and 6) in the longitudinal and transverse directions of

http://wileyonlinelibrary.com


FIGURE 5 Deformation of the seismic isolators over pier P#4: (a) longitudinal and transverse deformation time histories, and (b) deformation orbit
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Free‐field earthquake ground acceleration time histories recorded in the valley [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Elastic pseudo‐acceleration response spectra (PSa) (ξ = 5%) for representative recorded horizontal acceleration time histories: (a)
longitudinal direction, and (b) transverse direction [Colour figure can be viewed at wileyonlinelibrary.com]
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the bridge. The peak deformation of the isolators over pier P#4 is 108.2 and 157.2 mm in the transverse and longitudinal direc-
tions, respectively (see Figure 5a). The peak resultant lateral deformation of 162.0 mm in the radial direction occurred at the
same instant as the peak deformation in the transverse direction (see Figure 5b).

Figure 6 shows the 5% damped elastic pseudo‐acceleration response spectra of representative recorded horizontal acceler-
ations. Soil‐structure interaction (SSI) effects can be observed by comparing the elastic pseudo‐acceleration response spectra of
the horizontal ground motions recorded at the free field in the valley to those recorded at the base of pier P#4. For each hori-
zontal component, the spectral ordinates at the free field (channels 19 and 21) and at the base of pier P#4 (channels 1 and 3) are
similar for periods longer than 0.7 second, but noticeable differences are observed in the period range below 0.7 second. In this
paper, the ground acceleration recorded at the base of pier P#4 is used as seismic input excitation for all the piers, ie, rigid base
condition is assumed at the base of all piers. Thus, SSI effects are accounted for, except for the rotations at the base of the piers.
The effects of the seismic isolation are also clearly observed by comparing the elastic pseudo‐acceleration response spectra in
the longitudinal and transverse directions at the top of pier P#4 (channels 4 and 6, respectively) to those at the deck over pier

http://wileyonlinelibrary.com
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P#4 (ie, channels 7 and 9, respectively). The reduction of most of the spectral ordinates at short periods, due to the seismic
isolation induced elongation of the predominant vibration periods of the bridge, demonstrates the proper behavior and sig-
nificant role of the isolation system during the earthquake. Such isolation effects can also be observed from the comparison
of amplitudes of the estimated transfer functions between the acceleration time histories recorded on the bridge (deck and
pier top) and the ground motions recorded at the base of pier P#4.19
3 | FE MODEL, COMPUTING PLATFORM, AND PREDICTION ERROR

3.1 | FE model

Analytical computational models are often used for response prediction and performance assessment of large and complex
civil structures. Herein, a detailed three‐dimensional (3‐D) nonlinear FE model of the Marga‐Marga Bridge is developed
in OpenSees to simulate the bridge response to the 2010 Maule earthquake. The bridge superstructure was designed as a
capacity protected component to behave quasi‐linear elastically. Therefore, the 4 steel girders and the RC deck, assumed
to behave monolithically, are modeled using 18 linear elastic beam‐column elements per span, with composite steel‐concrete
section properties calculated from the geometric dimensions specified in the blueprints of the bridge and using an elastic
modulus of 210 GPa for the steel girders and 23.5 GPa for the concrete deck. A series of fictitious rigid beam‐column ele-
ments (exceedingly stiff) are used to model the (assumed) rigid offsets between the centroidal axes of the steel girders and
that of the RC deck (see Figure 7a).

Each bridge pier column is modeled using 5 or 6 (depending on the height) displacement‐based nonlinear fiber‐sec-
tion beam‐column elements with 7 Gauss‐Lobatto integration points along the length of each element. The pier cross
sections are discretized into fibers, and uniaxial realistic material constitutive models are assigned to each of the con-
crete and steel fibers of each pier cross section. The OpenSees concrete01 material model and concrete02 material
model are used for the unconfined concrete cover layer and the confined concrete core, respectively. The OpenSees
steel02 material model is used to model the reinforcing steel (ie, longitudinal reinforcing bars). The pier cap beam is
modeled using quasi‐rigid beam‐column elements to represent the part over the pier top and 2 nonlinear beam‐column
elements to represent each of the cantilever parts (see Figure 7a). A suite of rigid beams, modeled by linear elastic
beam‐column elements with exceedingly stiff (quasi‐rigid) properties, are used to represent various geometric offsets
in the model.

Each HDRB seismic isolator is modeled using an elastomeric bearing element, referred to as the Elastomeric Bearing
(Plasticity) Element, in OpenSees. This is a plasticity‐based (rate‐independent) phenomenological model to describe the
coupled bidirectional shear force‐deformation response of seismic isolators. Nonlinear hardening effects can also be captured
by the model through the parameters α and μ (see Figure 7b).

The inertial (mass) properties of the bridge structure are calculated based on the mass density of the structural materials and
the volume of structural components and are lumped at the nodes of the FE model. Only the 3 translational mass components
are considered. The mass‐ and initial stiffness–proportional Rayleigh damping model with a critical damping ratio of 2%
assigned at the first transverse and longitudinal modes of the bridge is used to represent the sources of energy dissipation
FIGURE 7 Schematic view of the FE model for the bridge: (a) a single span, and (b) the lateral force‐deformation response behavior used to model
the seismic isolators. FE, finite element; RC, reinforced concrete [Colour figure can be viewed at wileyonlinelibrary.com]
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beyond the energy dissipated through inelastic actions of the materials and seismic isolators. To avoid the introduction of arti-
ficial viscous damping in the isolation system, the bearing elements are specified to not contribute to the Rayleigh damping
model defined for the overall bridge structure.

The FE model of the bridge considered in this paper does not explicitly model the abutments because the motions at the
bridge ends (channels 11, 12, 17, and 18) were recorded and are imposed as part of the seismic input for seismic response sim-
ulation. Furthermore, the ground motion recorded at the base of pier P#4 (channels 1 to 3) is assumed as the input excitation at
the base of all piers, ie, rigid base condition is assumed at the base of all piers. The vertical base excitation is assumed to be
uniform over the entire bridge system, ie, the vertical acceleration recorded at the base of pier P#4 (channel 2) is also used
as the vertical excitation at the bridge ends. Therefore, multiple‐support excitation is used for the seismic response simulation
of the bridge, yet neglecting the rotational base excitations due to SSI.

3.2 | Cloud‐based high‐throughput distributed computing

In nonlinear FEMU, optimization aims to minimize the discrepancy between the measured and FE‐predicted responses. In this
paper, a sophisticated optimization method (ie, sequential quadratic programming) is used first for the calibration of isolator
models based on component test data. Additionally, a grid‐based optimization approach is used for both the component‐level
and system‐level FEMU problems, which are treated as high‐throughput problems like those related to sensitivity analysis or
Monte Carlo simulation using computationally intensive models. This type of problems involves a large number of parameter
sets (to cover the feasible domain of the parameters) and thus a large number of independent simulation jobs to be run. With the
ever‐growing computing power and the cloud computing resources available through workflow management systems such as
HTCondor and GlidinWMS,20 brute‐force optimization is a feasible approach for FEMU problems, since many independent
jobs can run concurrently in a cluster of processors on the cloud. Therefore, brute‐force optimization making use of high‐
throughput cloud computing offers an attractive alternative to other optimization methods (eg, gradient‐based and pattern search
optimization algorithms), which cannot make full use of available computing resources to evaluate a large number of functions
(models) simultaneously. In this study, the computational work was performed using the computational resources of the Open
Science Grid cluster at the University of California, San Diego, accessed via workflow management system GlideinWMS.

3.3 | Goodness‐of‐fit metrics for bridge response time histories

Two goodness‐of‐fit (GOF) metrics are defined to quantify the prediction error, ie, the discrepancy between the recorded and
FE‐predicted response time histories of the bridge. The first GOF metric is the root‐mean‐square error (RMSE) of the difference

between the time series ri; recorded
k and ri; predicted

k , as defined in Equation 1. Here, r denotes the type of response of interest (eg,
displacement), the superscript i indicates the specific response record (eg, acceleration response measured at a channel), the
subscript k designates the time step or discrete time tk at which the response is measured or predicted, and Nt is the total number
of data samples considered within a time window (eg, 40‐100 seconds). The second GOF metric is the relative RMSE
(RRMSE), which is a normalized version of the RMSE, as defined in Equation 2. In this case, the GOF metric is normalized
by the root‐mean‐square of the corresponding recorded response. Note that both GOF metrics are equivalent when the FE
model is tuned to have a good fit for only one response record of interest. When multiple response records are considered
for the FEMU, the RRMSE metric automatically accounts (ie, normalizes) for the different magnitudes of the various response
records considered in a multiobjective optimization problem (ie, the RRMSE metric attributes the same weight to response
records of different magnitudes).

RMSE ri
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Nt∑Nt

k¼1 ri; recorded
k −ri; predicted

k

� �2
r

(1)

RRMSE ri
� �

%½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Nt∑Nt

k¼1 ri; recorded
k −ri; predicted

k

� �2
� �s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Nt∑Nt

k¼1 ri; recorded
k

� �2
� �s

×100 (2)

4 | TWO ‐PHASE FEMU

Due to the high computational cost for simulating the complete bridge response for the long‐duration earthquake excitation con-
sidered here, tuning a large number of model parameters (eg, parameters associated to the isolator model, the boundary condi-
tions at the abutments, concrete/steel materials, and the damping model) simultaneously is a very challenging task. More
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importantly, considering an excessive number of parameters may induce overfitting and, consequently, incorrect estimation of
dominant sensitive parameters (curse of dimensionality). To focus the estimation on the model parameters of the seismic iso-
lators, a 2‐phase FEMU process is conducted on the bridge system excluding the abutments (ie, without explicit modeling of
the abutments) by imposing the recorded motions at the bridge ends. This allows this study to focus on the isolators on top
of the pier columns. Note that the rotational behavior (about a vertical axis) of the bridge at the bridge ends is assumed to be
restrained by the abutments and the torsional stiffness provided by the seismic isolator bearings.

The seismic isolator model is first calibrated with experimental data collected from component tests conducted on proto-
types of the HDRBs installed in the bridge.17 This calibration is performed by minimizing the mean square error between
the component test data and the numerical model using a gradient‐based optimization tool, OpenSees‐SNOPT,21 as well as a
grid‐based brute‐force optimization approach (ie, through a parametric analysis). This optimization problem is referred to herein
as phase I FEMU. The updated seismic isolator model will then be used in the bridge model to evaluate the GOF between the
measured and FE‐predicted bridge responses. Phase I will help define a feasible domain in the seismic isolator parameter space
that will be very useful during Phase II when the measured response of the bridge during the 2010 Maule earthquake will be
used to update the estimate of the seismic isolator parameters of the nonlinear FE model of the bridge.
4.1 | Phase I: isolator model calibration based on component test data

In this section, the experimental data available from 23 tests, conducted under different loading protocols on the 0.85 × 0.55 m
isolator specimens,17 are used to estimate the model parameters of the seismic isolators on top of the bridge piers. Note that the
seismic isolators on abutment stemwalls are not included in the FE model since recorded bridge end motions are imposed. In this
phase of component‐wise FEMU for the seismic isolator, a single degree of freedom model is defined in OpenSees using an elas-
tomeric bearing element and subjected to the displacement loading histories from the loading protocols. For each set of experi-
mental data, nonlinear least square optimization is performed to minimize the discrepancy between the FE‐predicted and
recorded lateral force histories, Fmodel(di;θ) and Fexp(di), respectively. The optimization problem is mathematically formulated as

min
θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

# of data points

i¼1
Fmodel di; θð Þ−Fexp dið Þ	 
2s( )

subjected to θ l ≤ θ≤ θ u (3)

where di is the lateral deformation of the isolator specimen at discrete time ti during the loading history and θ represents the iso-
lator model parameter vector. The lower and upper bounds of θ, denoted as θl and θ u, respectively, are specified later for various
optimization problems. The seismic isolator model used (see Figure 7b) is governed by 5 parameters, ie, θ= [Fy, Ke, b, α, μ],
in which Fy is the yield strength, Ke is the initial stiffness, b is the postyield to preyield stiffness ratio, and α and μ are parameters
characterizing the shape of the nonlinear hardening branch of the force‐deformation curve.

Nonlinear hardening is most likely to occur when a HDRB is subjected to large lateral deformations. Therefore, the seismic
isolator specimen that reached the largest shear strain (106% or 216 mm of lateral deformation) during the component tests (eg,
VD20C3) is first analyzed to detect possible nonlinear hardening effects. Two optimization problems, one including and the
other excluding parameters α and μ, are formulated and solved. In the first optimization problem, the model parameter vector
θ= [Fy, Ke, b, α, μ] with lower bound θ l = [4.5 × 10−3 kN, 1.0 × 10−4 kN/mm, 0.0, −2.0, 0.0] and upper bound
θ u = [1.0 × 1020 kN, 1.0 × 1020 kN/mm, 1.0, 2.0, 3.0] is considered. The second optimization problem considers the model
parameter vector θ= [Fy, Ke, b], and the nonlinear hardening term is eliminated by setting α = 0 and μ = 1.0 (see Figure 7
b). OpenSees‐SNOPT, which resorts to a sequential quadratic programming algorithm for solving nonlinear optimization prob-
lems, is used for both optimization problems. The optimization results are shown in Figure 8 for the cases with and without
nonlinear hardening. The optimization algorithm drives the initial isolator model parameters (defining the starting model),
which fit the experimental results poorly, towards the optimized isolator model parameters (defining the optimum model),
which fit the experimental results very well. It is observed from Figure 8 that the inclusion of the nonlinear strain hardening
parameters α and μ barely improves the fit with the experimental data. Thus, it is concluded that a simplified version of the elas-
tomeric bearing model, with linear hardening only, is appropriate to simulate the behavior of the seismic isolators during the
component tests (maximum lateral deformation of 216 mm) for the isolator prototypes and during the 2010 Maule earthquake
(maximum lateral deformation of about 162 mm, see Figure 5b) for the Marga‐Marga Bridge. This leads to a relatively low‐
dimensional parameter space, thus all the model parameter estimation problems later in this paper are to determine the optimal

isolator model parameter vector θ�¼ F�
y ; K�

e ; b�
h i

.



FIGURE 8 Calibration of isolator model parameters using component test data VD20C3 to explore the nonlinear hardening branch [Colour figure
can be viewed at wileyonlinelibrary.com]
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For each component test, an elastomeric bearing model with parameter vector θ= [Fy, Ke, b] is updated by fitting the
model to the experimentally determined force‐deformation hysteretic response. The optimization problems formulated with
the design variable vector θ= [Fy, Ke, b] are solved using both OpenSees‐SNOPT and the grid‐based brute‐force approach.
When using OpenSees‐SNOPT, different starting points (θ0) can be considered since this gradient‐based algorithm can lead
to local minima, thus 2 different starting points (ie, θ01¼ 45:0kN; 10:5kN=mm; 0:19½ � and θ02¼ 30:0kN; 2:8kN=mm; 0:50½ �
) are used. For the grid‐based optimization approach, a parameter search space is defined by Fy∈ [5.0, 100.0] kN, Ke∈ [5.55,
30.55] kN/mm, b∈ [0.15, 0.80] based on the optimal parameter sets obtained using OpenSees‐SNOPT, and a grid of
12×12×10 uniform mesh is used. The 3 sets of optimal solutions are plotted in Figure 9, which illustrates the local optimality
issue, ie, possible deviations of the optimum results obtained using the gradient‐based optimization tool OpenSees‐SNOPT
from those obtained using the grid‐based brute‐force approach.

Figure 9a shows the optimal isolator model parameters for the 23 tests conducted on 0.85 × 0.55 m isolator prototypes. For
the objective function quantifying the discrepancy between the FE‐predicted and experimental lateral force history, a gradient‐
based approach can easily be trapped into a local minimum, which highly depends on the starting point. This is clearly evi-
denced by the fact that only a few optimum solutions from the gradient‐based approach are close to those from the grid‐based
brute‐force approach. The optimal isolator model parameters obtained from the 23 data sets exhibit a large scatter (Figure 9a),
partly because of differences in the loading protocols (eg, maximum deformation and loading speed). However, the least‐square
fitted postyield stiffness bKe, plotted in Figure 9b against the maximum experimental shear strain, shows little scatter between
θ*, θ�1, and θ�2 for most cases, especially those with large‐yield excursions (ie, shear strain ≥50%). Note that the postyield stiff-
ness bKe is a very important parameter that needs to be well calibrated.

To further compare the optimum isolator model parameters obtained through gradient‐based optimization (with both
starting points) and the grid‐based brute‐force approach, the color‐coded objective function (see Equation 3) for an
FIGURE 9 Optimal isolator model parameter sets obtained from the component test data: (a) all parameter sets, and (b) postyield stiffness bKe

versus maximum experimental shear strain [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 10 Color‐coded objective function to be minimized for the isolator component test V22015: (a) 4‐D plot, and (b) volumetric slice plot
[Colour figure can be viewed at wileyonlinelibrary.com]
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isolator component test (eg, V22015) is shown in Figure 10. Figure 10a provides a comprehensive view of the topology
of the objective function, which shows that the value of the objective function (as the fourth dimension indicated by
color) varies widely over the 3‐D parameter search space. Figure 10b shows a volumetric slice plot of the 4‐D plot, pro-
viding an inside view of the objective function as well as the location of the optimum design points for the gradient‐based
approach with 2 starting points (θ�1 and θ�2) and for the grid‐based brute‐force approach (θ*). The optimum design point θ�2
is found to be a local minimum located relatively far from the global minimum θ*, while θ�1 approximately coincides with
θ*. In view of the local optimality issues encountered for calibration of the isolator model, grid‐based brute‐force optimi-
zation proves to be a more appropriate and robust approach than gradient‐based optimization, especially when cloud‐
based high‐throughput computing can be used for optimization problems with a low dimension.

The optimal isolator model parameters obtained from the grid‐based brute‐force approach are used in the bridge model to
simulate its response to the 2010 Maule earthquake. It is noted that in the bridge model, the seismic isolators located between
the piers and the bridge superstructure are of uniform size (0.85×0.55 m). Because of the bridge configuration, a similar level
of deformation in the longitudinal direction is expected for all the isolators, while different levels of deformation are anticipated
in the transverse direction. However, it is impractical to have an isolator model with maximum deformation‐dependent param-
eters, ie, using different isolator models for the various seismic isolators installed in the bridge. Thus, the isolator model with a
unique set of model parameters is used for all elastomeric isolators over the pier columns in the bridge, an assumption com-
monly used in research and engineering practice.

The accuracy of the isolator model parameters calibrated from the isolator component test data is evaluated in terms of
GOF metrics defined in Equation 2 for the bridge response to the 2010 Maule earthquake. Table 1 reports the RRMSE
between the measured responses and the corresponding FE‐predicted responses based on the bridge model using the opti-
mum isolator model parameters (θ*), which are obtained from the individual component test data and the brute‐force
approach. These response quantities are the absolute displacement response time history at the top of pier P#4 in the lon-

gitudinal and transverse directions, ULong:
P #4 and UTransv:

P #4 ; the absolute displacement response of the bridge deck over pier P#4

in the longitudinal and transverse directions, ULong:
Deck over P #4 and UTransv:

Deck over P #4 ; and the absolute displacement of the
bridge deck over pier P#2 in the transverse direction, UTransv:

Deck over P #2. It is observed that the optimal isolator model param-

eter set obtained from component test VDL19C provides the best fit of the longitudinal displacement response ULong:
P #4

among all 23 component tests; whereas the optimal model parameter set obtained from component test VE140 results
in the best fit of the transverse displacement responses UTransv:

P #4 , UTransv:
Deck over P #4 , and UTransv:

Deck over P #2 . However, none of
the optimum model parameter sets obtained from the individual component test data provide the best fit of the displace-
ment responses in both the longitudinal and transverse directions. The optimal isolator model parameter set that best fits
the bridge response in the longitudinal (transverse) direction is obtained from component test VDL19C (VE140) with peak
deformation of 173 mm (175 mm), which is larger than the peak longitudinal (transverse) deformation of the elastomeric
isolator on top of pier P#4 during the 2010 Maule earthquake, ie, 108.2 mm (157.2 mm). It is observed that the measured
responses of the bridge are predicted better when using optimum isolator model parameters obtained from component tests
with large maximum deformations, but this does not guarantee the best FE prediction of the bridge response, because of
the large variability observed in the optimal isolator model parameter sets (see Figure 9) as well as in the corresponding
RRMSEs (see Table 1). This calls for the calibration of the isolator model using the recorded response of the bridge to the
2010 Maule earthquake.
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TABLE 1 RRMSE between measured response and FE‐predicted response based on the bridge model using optimum isolator model parameter sets
(θ*) obtained from individual component test data and grid‐based brute‐force approach

Component
Test ID

Peak
Deformation, mm

RRMSE, %

ULong:
P #4 (Ch. 4) UTransv:

P #4 (Ch. 6) UTransv:
Deck over P #4 (Ch. 9) ULong:

Deck over P #4 (Ch. 7) UTransv:
Deck over P #2 (Ch. 13)

V22011 44.5 56.29 26.97 134.00 6.27 114.74

V22012 43 46.86 18.05 81.51 6.07 74.07

V22013 82 42.95 18.93 98.41 6.02 85.59

V22014 82 40.72 15.92 67.76 5.99 64.25

V22015 105 37.51 16.24 77.59 6.00 70.74

V22016 106 37.70 14.76 53.73 6.01 54.95

V22017 118 38.11 16.78 86.09 6.52 78.18

V22018 121 35.77 14.69 55.74 5.99 55.98

V22019 162 31.18 15.57 75.48 6.03 68.35

V220110A 165 35.47 14.26 46.31 6.04 50.28

V220110B 164 35.47 14.26 46.31 6.04 50.28

V220111 175 34.58 14.21 45.87 6.05 50.10

V220112 172 34.67 14.45 52.67 5.99 53.87

V220113 164 29.90 16.12 86.69 6.06 75.47

V220114 82 37.51 16.24 77.59 6.00 70.74

VD12C3 132 300.25 21.03 214.29 7.31 177.26

VD20C3 216 32.08 14.10 48.00 6.02 50.92

VD4C3 46 52.81 29.00 157.15 6.00 130.26

VD8C3 84 42.87 19.29 102.77 6.03 88.71

VF20C 88 43.08 19.66 106.68 6.04 91.56

VDL19C 173 29.05 15.38 76.00 6.02 68.06

VE140 175 34.84 13.20 40.78 6.12 46.54

VE304 175 34.58 14.21 45.87 6.05 50.10

Abbreviations: FE, finite element; RRMSE, relative root‐mean‐square error.
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4.2 | Phase II: isolator model calibration based on recorded seismic bridge response data

In this section, a bridge system model with the abutments excluded (by imposing motions at the bridge ends as recorded), as
defined in Section 3.1, is used to estimate the isolator model parameters. The bridge displacement responses (obtained through
double integration of the recorded acceleration responses) at the bridge superstructure and at the top of pier columns P#4 and
P#2, in both the longitudinal and transverse directions, are used to estimate the isolator model parameters (ie, Ke, Fy, and b).
Optimization problems considering single or multiple objective function(s) are formulated and solved using the grid‐based
brute‐force approach by taking advantage of cloud‐based high‐throughput distributed computing capabilities. The 3‐D search
domain for the 3 isolator parameters is the same as that used for the isolator model calibration based on the component tests.
This grid‐based optimization task requires to run 1440 jobs of seismic response simulation of the bridge subjected to the
2010 Maule earthquake with a long duration (ie, 130 seconds). If performed on a desktop computer, this computational opti-
mization task would require approximately 2.0 years, since each seismic response simulation consumes 13.0 hours of compu-
tational time on a local desktop computer (Intel Core i7 CPU, 2.80 GHz, 8.0 GB RAM). However, it took less than 24 hours
(wall clock time) to complete all these jobs using high‐throughput computing on the platform defined earlier, since approxi-
mately 800 jobs were run simultaneously.

In the optimization problem, various recorded bridge response quantities (eg,ULong:
P #4 ,U

Long:
Deck over P #4,U

Transv:
P #4 ,UTransv:

Deck over P #4,
and UTransv:

Deck over P #2) can be used in defining the GOF as the objective function to seek for the optimum values of the seismic
isolator model parameters. The GOF metrics RMSEi and RRMSEi (see Equations 1 and 2), with response index i = 1, 2, 3,



2710 LI ET AL.
4, and 5 forULong:
P #4 ,U

Long:
Deck over P #4,U

Transv:
P #4 ,UTransv:

Deck over P #4, andU
Transv:
Deck over P #2, respectively, will be used in the objective func-

tion(s) of the single‐objective and multiobjective optimization problems formulated for nonlinear FEMU in this section.
To classify and compare different objective functions, the concepts of conflicting (or competing) objectives (ie, objectives

compete with each other and thus attain their minima at different design points in the parameter space), consistent objectives (ie,
objectives share common trends and attain their minima at approximately the same design point in the parameter space), and
neutral objectives (ie, objectives tend to be flat and do not vary significantly over the parameter space) are used. Comparison
between different objective functions will be useful during the decision‐making process for selecting objectives to be used in the
formulation of multiobjective optimization problems. In this paper, single‐objective and multiple‐objective optimization setups
are used for nonlinear FEMU of the bridge.
4.3 | Single‐objective optimization for nonlinear FEMU

The RRMSE values for the response quantities ULong:
P #4 , U

Transv:
P #4 , and UTransv:

Deck over P #4 are plotted as color coded (as the fourth
dimension) in the 3‐D design parameter space in Figures 11 to 13, respectively. These 4‐D plots contain information regarding
the 3‐D parameter space (3‐D grid of design points) spanned by the yield strength (Fy), elastic stiffness (Ke), and postyield to
preyield stiffness ratio (b) parameters, as well as the color‐coded RRMSE value calculated at each grid point. In each of the Fig-
ures 11 to 13, a volumetric slice plot is also presented for an inside view of the corresponding 4‐D plot. Figure 11 shows the 4‐D
plot of the color‐coded RRMSE1 for U

Long:
P #4 . The RRMSE is greatly reduced from a maximum of about 2400% to a minimum of

20.4% while varying the isolator model parameters in the search domain. In contrast, RRMSE2 for U
Long:
Deck over P #4, which is not

presented here but can be found in Li et al,19 varies little with respect to the isolator model parameters. This is because the
recorded horizontal motions at the bridge ends are imposed in the model and the longitudinal displacement of the bridge deck
is negligibly affected by the seismic isolator properties due to the high axial stiffness of the bridge superstructure. Therefore,

RRMSE2 forU
Long:
Deck over P #4 falls in the category of neutral objectives, sinceULong:

Deck over P #4 is not sensitive to the isolator model
parameters of the FE model. Figures 12 to 13 show RRMSE3 for UTransv:

P #4 and RRMSE4 for UTransv:
Deck over P #4, respectively, as a

function of the isolator model parameters. Significant variation in the RRMSE over the isolator model parameter space is
observed for both objectives, which emphasizes the importance of the proper selection of isolator model parameter values in
the nonlinear FE model of the bridge to achieve reasonably accurate simulations of the recorded response quantities. Similarly,
the color‐coded pattern (or topology) of the 4‐D plot of RRMSE5 for UTransv:

Deck over P #2 agrees very well with that in Figure 13,
indicating that the objectives for UTransv:

Deck over P #4 and UTransv:
Deck over P #2 are consistent.19 However, they are conflicting with the

objectives shown in Figures 11 to 12. Using the above 5 GOF metrics (RRMSEi) as objective functions, 5 single‐objective opti-
mization problems are formulated as

min RRMSEi Fy; Ke; b
� �

i ¼ 1; …; or 5 response indexð Þ
subject to 5:0≤ Fy ≤ 100:0; 5:55≤ Ke ≤ 30:55; 0:15≤ b≤ 0:80:

(4)

The single‐objective optimization problems defined in Equation 4 are solved using the grid‐based brute‐force approach,
which consists of evaluating the objective function at the nodes of a grid defined over the parameter space and then linearly
FIGURE 11 Color‐coded RRMSE between simulated and recorded response ULong:
P #4 in terms of the three isolator model parameters: (a) 4‐D plot,

and (b) volumetric slice plot [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 13 Color‐coded RRMSE between simulated and recorded response forUTransv:
Deck over P #4 in terms of the 3 isolator model parameters: (a) 4‐D

plot, and (b) volumetric slice plot [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Color‐coded RRMSE between simulated and recorded response for UTransv:
P #4 in terms of the three isolator model parameters: (a) 4‐D

plot, and (b) volumetric slice plot [Colour figure can be viewed at wileyonlinelibrary.com]
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interpolating the objective function values in between. The optimal set of isolator model parameters obtained for each single
objective function considered is marked by a white pentagram on the volumetric slice plot (in Figures 11–13).

The bridge responses simulated using the FE model with those sets of optimum isolator model parameters are presented
later, after isolator model parameter estimation through multiobjective optimization is presented. The optimum sets of isolator
model parameters obtained from the different single objective functions and denoted by the white pentagrams in Figures 11–13
do not coincide, implying the need for a trade‐off between different response quantities. Thus, to achieve a good overall fit for
all recorded response quantities, a multiobjective optimization is required.
4.4 | Multiobjective optimization for nonlinear FEMU

In this section, multiobjective optimization is used to seek an overall good fit between FE‐predicted and measured response for
multiple response quantities from various channels. In general, the goodness of a solution in a multiobjective optimization prob-
lem is determined by the dominance criterion, and one approach is to search for the nondominated solution set, referred to as the
Pareto optimal set, in which none of the objective functions can be improved in value without degrading some of the other
objective values.22 Instead of focusing on the Pareto set, which would be a Pareto surface in a 3‐D parameter space, an optimal
set of isolator model parameters is obtained using the weighted sum method.22 Weighted sum method defines an overall GOF
metric as the square root of a weighted sum of squared single‐objective functions with user‐supplied weighting factors. Two
different overall GOF metrics are considered here, one defined as the square root of the weighted average of RRMSEs, see Equa-
tion 5a, and the other defined as the square root of the weighted average of RMSEs, see Equation 5b.

FObjR ¼ RRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i¼m

i¼1
γi RRMSEið Þ2

r
; FObjA ¼ RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i¼m

i¼1
γi RMSEið Þ2

r
(5a,b)

The weighting factors γi in the overall GOF metrics defined above are taken as binary (ie, to take the value 0 or 1) and are
effectively used as flags to distinguish conflicting, consistent, and neutral objectives. In terms of the 3 types of objectives
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defined above, the RRMSEs forULong:
P #4 ,U

Transv:
P #4 , andUTransv:

Deck over P #4 (ie, RRMSE1, RRMSE3, and RRMSE4) are identified as con-

flicting objectives, denoted as FObj1 ULong:
P #4

� �
, FObj2 UTransv:

P #4

� �
, and FObj3 UTransv:

Deck over P #4

� �
, respectively, and thus γ1= γ3= γ4=1. If an

objective (eg, RRMSE5) is consistent with an objective already selected (eg, RRMSE4) or is neutral (eg, RRMSE2), then its
weighting factor is set to 0 (ie, γ2= γ5=0), since they contribute little additional information for the multiobjective optimization
problem to be solved.

Figure 14a shows the tri‐objective optimization plot for nonlinear FEMU of the bridge with sampled data from FE response
simulation and interpolation (of the individual GOF metrics inside the grid over the 3‐D parameter space), when the RRMSE is
used as the GOF metric for each considered response time history. The Pareto optimal front in the 3‐D parameter space can be
observed as the cluster of points that are not dominated by any member of the parameter space. To show more clearly the com-
peting (antagonistic) effect between 2 objectives, Figure 14b presents a bi‐objective plot, which is the projection of the tri‐objec-
tive plot in Figure 14a along the FObj2 UTransv:

P #4

� �
axis. The minimum of each objective function (single‐objective GOF metric), as

well as the minimum of the weighted average objective function (multiobjective overall GOF metric), are marked in Figure 14.
The optimum sets of isolator model parameters obtained from single‐objective and multiobjective optimization are reported in
Table 2.

The accuracy of each optimal set of isolator model parameters is evaluated in terms of the GOF (ie, RRMSE) of each FE‐
predicted response time history obtained based on the bridge model using those optimal isolator model parameters. The
RRMSEs of the FE‐predicted responses relative to the corresponding recorded responses (ie, channels 4, 6, 7, 9 and 13) are
reported in Table 2. When the overall GOF metric defined as the square root of the weighted average of RRMSEs is used as

objective function (ie, FObjR ¼ RRMSE), the optimum solution obtained coincides with that for FObj2 , see Figure 14. Therefore,
the set of isolator model parameters that best fits the recorded response UTransv:

P #4 also yields accuracy in fitting the recorded
FIGURE 14 Optimization plots for nonlinear FEMU of the bridge: (a) tri‐objective, and (b) bi‐objective (projection of the tri‐objective plot along
the FObj2 axes) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Optimum isolator model parameters obtained from single‐objective and multiobjective nonlinear FEMU formulations and corresponding
GOF metrics

Obj. fn.

Optimal Isolator Model Parameters RRMSE, %

Fy (kN) Ke (kN/mm) b (−) bKe (kN/mm)
ULong:

P #4

(Ch. 4)
UTransv:

P #4

(Ch. 6)
UTransv:

Deck over P #4

(Ch. 9)
ULong:

Deck over P #4

(Ch. 7)
UTransv:

Deck over P #2

(Ch. 13)

FObj1
57.3 5.55 0.39 2.16 20.42 15.84 96.43 6.13 82.78

FObj2
69.9 13.05 0.19 2.48 35.10 13.16 42.12 6.27 47.47

FObj3
90.5 10.97 0.24 2.63 43.73 13.88 36.68 6.24 45.73

FObjR
69.9 13.05 0.19 2.48 35.10 13.16 42.12 6.27 47.47

FObjA
90.5 10.97 0.24 2.63 43.73 13.88 36.68 6.24 45.73

Abbreviations: FEMU, finite element model updating; GOF, goodness of fit; RRMSE, relative root‐mean‐square error.
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responses ULong:
P #4 and UTransv:

Deck over P #4 . In contrast, when the overall GOF metric defined as the square root of the weighted

average of RMSEs is used as the objective function (ie, FObjA ¼ RMSE), the response quantity with the largest amplitude
(ie, UTransv:

Deck over P #4 ) has dominant effect on the optimum solution. Therefore, the optimum isolator model parameters
obtained in this case coincide with the optimum solution achieved by minimizing RMSE or RRMSE of UTransv:

Deck over P #4.
Figure 15 compares the recorded and FE‐predicted response time histories obtained using the optimum isolator model

parameters determined from single‐objective and multiobjective optimization.

Figure 15a shows the comparison for the bridge responseULong:
P #4 . It is observed that the best fit of the recorded time history is

achieved using the optimal set of isolator model parameters obtained from the single‐objective optimization for FObj1 (ULong:
P #4 ),

reaching a RRMSE of 20.42%. When the optimal sets of isolator model parameters obtained from single‐objective optimization

using FObj2 and FObj3 are used, the RRMSE forULong:
P #4 increases to 35.10% and 43.73%, respectively. The simulated responses based

on the FE models with the optimal sets of isolator model parameters obtained using the multiobjective functions FObjR ¼ RRMSE

and FObjA ¼ RMSE yield RRMSEs for ULong:
P #4 of 35.10% and 43.73%, respectively. Figure 15b,c compare the FE‐predicted and

recorded responses ULong:
Deck over P #4 and UTransv:

P #4 , respectively. A near‐perfect experimental‐analytical correlation is observed for

ULong:
Deck over P #4 for the different optimal sets of isolator model parameters, because the recorded motions at the bridge ends are

imposed as boundary conditions in the FE model and the longitudinal displacement of the bridge deck is easily fitted due to
the high axial stiffness of the bridge deck. Figures 15d,e compare the FE‐predicted and recorded responses UTransv:

Deck over P #4

andUTransv:
Deck over P #2, respectively. A reasonably good experimental‐analytical correlation is obtained for these response quantities

with the FE model using the optimal sets of isolator model parameters derived from the objective functions FObjR (or FObj2 ) andFObjA

(orFObj3 ), see Table 2. Overall, when all the recorded response quantities in the longitudinal and transverse directions of the bridge

are considered, the optimum sets of isolator model parameters obtained by minimizing FObjR (or FObj2 ) and FObjA (or FObj3 ) are
observed to both provide the best fit to the recorded bridge response.

Figure 16 compares the optimum sets of isolator model parameters obtained from component test data (in phase I) and from
recorded bridge response data during the earthquake (in phase II) and the corresponding GOF metric RRMSE between the
recorded and FE‐predicted response time histories. Most of the isolator models with parameters fitted from component test data,
an approach widely used in engineering practice, fail to provide accurate simulation of the bridge response, see Table 1. In
FIGURE 15 Comparison between FE‐predicted and recorded responses: (a) ULong:
P #4 , (b) U

Long:
Deck over P #4, (c) U

Transv:
P #4 , (d) UTransv:

Deck over P #4, and (e)
UTransv:

Deck over P #2. FE, finite element [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 16 Comparison of phase I (using component test data) and phase II (using recorded bridge response data) results for isolator model
calibration: (a) optimum sets of isolator model parameters, and (b) GOF metric defined as RRMSE . GOF, goodness of fit [Colour figure can be
viewed at wileyonlinelibrary.com]
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contrast, relatively accurate FE predictions of the bridge response to the Maule earthquake are obtained when using optimal sets of iso-
lator model parameters derived from single‐objective and multiobjective optimization and the data recorded on the bridge, see Table 2.

5 | BRIDGE SEISMIC RESPONSE RECONSTRUCTION USING THE UPDATED
FE MODEL

The bridge nonlinear FE model updated using a set of optimal isolator model parameters can now be used to reconstruct
the seismic response of the SIB during the Maule earthquake, including the recorded and more importantly unrecorded
response quantities. This provides significant insight into the effects of seismic isolation on the bridge seismic response
FIGURE 17 Predicted unrecorded response quantities for the 2010 Maule earthquake: (a) peak base shear forces in pier columns, (b) moment‐
curvature response at the base of pier columns, (c) peak deformations of seismic isolators, and (d) force‐deformation response of seismic isolators
[Colour figure can be viewed at wileyonlinelibrary.com]
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behavior. Here, the bridge FE model with the optimal set of isolator model parameters obtained using the multiobjective

function FObjR ¼ RRMSE is used to reconstruct the seismic response of the Marga‐Marga Bridge to the 2010 Maule earth-
quake. Figure 17a,c show the peak base shear forces in the pier columns and peak deformations of the seismic isolators,
respectively, in both the longitudinal and transverse directions. Figure 17b presents the moment‐curvature response at the
base of all 7 pier columns, while Figure 17d shows the force‐deformation response of the seismic isolators seated on the
pier columns. It is observed that the 7 pier columns remain quasi‐elastic under this strong earthquake and the nonlinear
behavior is concentrated in the seismic isolators. These bridge seismic response reconstruction results show that seismic
isolation was very effective in mitigating and even preventing damage in the structural components of the Marga‐Marga
Bridge during the 2010 Maule earthquake.
6 | CONCLUSIONS

This paper focuses on nonlinear FEMU to investigate the accuracy of FE seismic response simulation of the Marga‐Marga
Bridge, the first seismic isolated highway bridge in Chile. The parameters of the seismic isolator model used in the nonlinear
FE model of the bridge are updated (or calibrated) in 2 phases: first, based on seismic isolator component test data and second,
based on the bridge response data recorded during the 2010 (Mw 8.8) Maule, Chile Earthquake.

A detailed 3‐D nonlinear FE model of the bridge is developed in OpenSees for seismic response simulation. The
seismic isolator model parameters are first identified through calibration with test data on seismic isolators identical
to the ones in the bridge. The sets of isolator model parameters estimated from the isolator component tests exhibit a
large scatter, and poor prediction/reconstruction of the bridge response to the Maule Earthquake is obtained when
using the FE model with isolator parameters obtained from most of the component test data. The seismic isolator
model parameters are then updated (or calibrated) using the response of the bridge recorded during the earthquake.
For this purpose, single‐objective and multiobjective optimization problems are formulated and solved using a grid‐
based brute‐force optimization approach, which makes use of cloud‐based high‐throughput distributed computing
technologies. The recorded and FE‐predicted responses of the bridge are in good agreement when the optimal seismic
isolator model parameters are obtained by minimizing an overall GOF metric. The FE model of the bridge updated
with the set of optimal isolator model parameters is then used to reconstruct (predict) the bridge response during
the earthquake, including both recorded and unrecorded response quantities. The results show that seismic isolation
was effective in protecting the Marga‐Marga Bridge against structural damage during the strong 2010 Maule earth-
quake. It is worth mentioning that no perfect solution exists for the nonlinear FEMU problem, due to aleatory uncer-
tainties (eg, local and spatial random variabilities of material properties) and epistemic uncertainties (eg, errors/
uncertainties associated with the damping model, material hysteretic models for concrete and steel, seismic isolator
model, and assumptions made for the seismic input), as well as the measurement noise in the recorded data. An even
better fit of the bridge recorded responses could be achieved by performing the nonlinear FEMU in a higher dimen-
sional parameter space (including other FE model parameters such as damping) and in a probabilistic framework to
account consistently for the various sources of randomness and uncertainty. It is also worth noting that the estimated
isolator model parameters are not guaranteed to be optimal for predicting the response of the Marga‐Marga Bridge to
another earthquake. Thus, further nonlinear FEMU and validation is required to increase the confidence in the esti-
mated parameters, for example, using the recorded bridge response data during aftershocks of the 2010 Maule
earthquake.
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