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Abstract The influence of sediments in the heat budget of water bodies has been reported

to be determinant in shallow lakes and wetlands, whereas it is usually neglected in larger

water bodies. In this article, we address the question of whether or not sediments should be

considered in the computation of water temperature, by defining two dimensionless

numbers that describe the thermodynamics regimes of shallow lakes and wetlands. These

dimensionless numbers rise from the analysis of the role of periodic heat exchanges at the

sediment–water interface (SWI) on the water temperature of shallow lakes and wetlands.

The analysis was based on the derivation of an analytic solution that adopts the solution for

the second Stokes problem for computing the sediment temperature, when the system is

forced by periodic (diurnal, seasonal, decadal) heat exchanges with the atmosphere. The

first dimensionless number is the ratio between the thermal inertia of the active sediments

and the thermal inertia of the water column, and quantifies the role of sediments on the heat

budget. The second dimensionless number, on the other hand, is defined as the ratio

between the timescale of changes in the external forcing and the timescale required to

reach the heat equilibrium at the SWI, and characterizes the influence of turbulence on the

water column on heat exchanges across the SWI. We complemented the analysis with field

observations conducted in shallow lakes of 5–15 cm depth, whose thermodynamics is

controlled by heat exchanges between the water column and the sediments. As the

dimensionless numbers defined here are frequency dependent, we show that one particular

process can be neglected for one specific frequency, while it cannot be neglected for other

frequencies. In the case of lakes and deep wetlands, sediments could be neglected in a

diurnal time-scale, while they should be included for seasonal or decadal time-scales. The

relevance of this frequency-dependence is that it suggests that sediments should always be

considered in long-term climatic simulations.
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1 Introduction

The mixing and vertical transport processes operating on lakes are well known [11]. In

these systems, the major features of the thermodynamics regimes are assessed by com-

puting the values of the Richardson, Wedderburn and Lake numbers, which have been used

for classifying thermodynamic regimes of these systems [12, 21, 24]. However, in the case

of shallow lakes and wetlands, it is still difficult to determine the thermodynamics regimes,

mainly because water temperature is not only modulated by heat exchanges with the

atmosphere, but also with the bottom sediments [3]. In this article, we attempt to provide

an analogous approach for classifying thermodynamics regimes that determine water

temperature in shallow lakes and wetlands, which are based on dimensionless numbers

presented and discussed in this article.

Water temperature is a key parameter that controls the dynamics of the aquatic

ecosystems, as it defines, among many other factors, primary production and respiration

rates, biochemical reactions rates; and controls vertical transports in stratified water bodies

[27]. Several factors control water temperature of water bodies, including heat exchanges

with the atmosphere and sediments, inflows and outflows, internal heating due to pene-

trative solar radiation and buoyancy. Particularly, water depth controls the thermody-

namics of water bodies as it defines the influence of thermal inertial in the heat budget [7].

For extremely shallow waters of a few centimeter depths, however, heat inertia is small

enough, such as water temperature is primarily modulated by heat exchanges with the

atmosphere as well as sediments. In this sense, de la Fuente and Niño [4] showed that heat

exchanges at the water–sediment interface are keys to understand water temperature as

they reduce the amplitude of dial oscillation in the water temperature, by capturing or

releasing heat during day and night, respectively. Heat diffusion in the sediments is

responsible for this heat reservoir role of the sediments [3]. Furthermore, de la Fuente [3]

showed that for shallow lakes, surface sediments absorb solar radiations in a thin layer

whose thickness depends on light penetration properties of the surface sediments. As a

consequence, temperature shows maximum values right below the sediment–water inter-

face (SWI), and this excess of heat either diffuses toward the water column or deeper

sediments. As the temperature is maximum near the SWI, convective conditions are also

associated, thus enhancing mechanical heat transport from the sediments to the water

column [3]. Similar dynamics has been observed in shallow rivers [10]. In contrast, for

deeper lakes, sediments temperature tend to an equilibrium value equal to the annual mean

temperature in deep areas of the lake, whereas the amplitude of the seasonal oscillation at

the water–sediment interface depends on both the size of the lake and light penetration

depth or maximum water depth, depending on which one is the smallest [6]. This is

because the sediments temperature is defined by water temperature, without any feedback

[6]. As a result, the adiabatic boundary condition is usually considered in lakes, thus

neglecting the influence of sediments in the thermodynamics of the water body [9, 22].

However, a formal analysis for determining under which circumstances heat exchanges

with the sediments can be neglected is missing. Particularly, it is not clear when the heat

diffusion at the SWI is dominated by either the sediment-side, the water-side of the SWI, or
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both. In order to assess this thermodynamics behavior, dimensionless numbers are

required.

The objective of this article is to study the role of periodic heat exchanges at the water–

sediment interface on the water temperature of shallow lakes and wetlands. This analysis is

conducted based on an analytic solution presented here for computing water and sediments

temperature, and this solution allows for identifying two dimensionless numbers that

describe the thermodynamics of shallow lakes and wetlands. The first dimensionless

number quantifies the role of sediments in the heat budget, while the second one char-

acterizes the influence of turbulence in the waterside of the SWI on heat exchanges across

the SWI. The combination of both dimensionless numbers allows determining whether or

not bottom sediments participate on the water heat budget.

This article is organized as follows. In the Methods section, we describe the governing

equations and present the analytic solution for the problem, which is formulated in terms of

a Fourier expansion of the heat flux at the air–water interface (AWI). Consequently, water

temperature is written in terms of periodic functions, and the solution of the Second

problem of Stokes can be adopted for sediment temperature. The Second problem of

Stokes solves the diffusion equation given a periodic Dirichlet boundary condition and a

Neumann (adiabatic) boundary condition in the infinite [1]. This spectral approach is

detailed starting from a simple case without a heat-reservoir function of the sediments. We

then consider the following complex cases: with a heat-reservoir function of the sediments,

and with feedback between the water temperature and heat fluxes exchanged with the

atmosphere. Finally, we list the algorithm for the full model, which includes all the

processes. In the Results section, we follow the same order described in the Methods

section, proving simple computational examples and the validation of the model against

field observations in a shallow lake. Finally, in the last section we discuss de results and

show that the analytic solution allowed for identifying two dimensionless numbers that

quantify the importance of sediments (P1), and heat transfer velocity (P2) in the water

temperature of shallow waters.

2 Methods

2.1 Governing equations

The vertically integrated heat conservation equation for a water column of height h with a

vertically homogeneous water temperature Tw is written as follows [3, 10, 16, 17],

ðqcpÞwh
oTw

ot
¼ H þ Hg ð1Þ

where ðqcpÞw is the heat capacity of the water (ðqcpÞw � 4:4� 106 J (m3 K)-1) and H

(Wm-2) is the heat flux exchanged across the air–water interface (AWI) such that H[ 0

represents the heat flux from the atmosphere to the water [2, 8]. H denotes the net heat

fluxes exchanged with the atmosphere, thus including net short wave radiation (incident

minus reflected), net long wave radiation (incident minus emitted), and the latent and

sensible turbulent heat fluxes [8, 25]. Finally, Hg is the heat flux exchange at the water–

sediment interface (SWI) such that Hg [ 0 represents the heat flux from the sediments to

the water column.
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Hg can be either computed from the sediment-side of the SWI (at z ¼ 0�) or the water-
side of the SWI. From the sediment-side, Hg can be evaluated as

Hg ¼ �js qcp
� �

s

oTs

oz

����
z¼0�

ð2Þ

where js is the thermal diffusion coefficient in the sediments (between 0.01 and 0.11

m2 day-1, [6, 20], ðqcpÞs denotes the heat capacity of the sediments (between 1.4 and

3.8 9 106 J (m3 K)-1 [6, 20], and Ts is the sediment temperature that varies in space (z)

and time. Ts is obtained from the heat diffusion equation in the sediments [20, 23], written

as

oTs

ot
¼ js

o2Ts

oz2
ð3Þ

Equation 3 is solved with heat flux and temperature continuity at the SWI, and the adia-

batic boundary condition is required at z ¼ �1:
From the water-side of the SWI (at z ¼ 0þ), Hg can be calculated as

Hg tð Þ ¼ �kt qcp
� �

w
Tw � TWSIð Þ ð4Þ

where TWSI is the temperature at the SWI and kt is the heat transfer velocity that depends on

the bottom shear velocity and/or heat convection [13, 15, 18]. Flux and temperature

continuity at the SWI implies that Hg calculated with Eq. (2) is equal to Hg calculated with

Eq. 4, where TWSI ¼ Ts z ¼ 0�ð Þ.

2.2 Water temperature in shallow waters for Hg ¼ 0

In order to introduce the basis for understanding the role of periodic heat exchanges at the

SWI in natural shallow water, we first consider the simple case where Hg ¼ 0 and H is a

discrete function that can be expanded as a Fourier series of 2N þ 1 terms as

H ¼
XN

n¼�N

Hne
ixnt ð5Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
, xn ¼ 2pn=Dt 2N þ 1ð Þ is the frequency of the nth term of the Fourier

expansion, and Dt is the time step of the temporal discretization of H. The coefficients Hn

can be obtained using a fast Fourier transform (fft) of H. In particular, if Y ¼ fft Hð Þ, the nth
amplitude Hn is computed as Hn ¼ Yn= 2N þ 1ð Þ. Then, the water temperature is expanded

in a Fourier expansion of 2N þ 1 terms as

TW tð Þ ¼
XN

n¼�N

Twne
ixnt ð6Þ

where Twn are the temperature amplitudes of the expansion. These temperature amplitudes

of the expansions are constant and are the unknowns of the problem. Then, Eq. 6 is

replaced in Eq. 1, which provides
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XN

n¼�N

iXnTwne
ixnt ¼

XN

n¼�N

Hne
ixnt ð7Þ

where Xn ¼ xnhðqcpÞw. Finally, for n 6¼ 0, the solution for the temperature amplitudes is

written as

Twn ¼ �i
Hn

Xn

ð8Þ

The solution for n ¼ 0 is discussed in the subsection ‘‘Influence of Tw on H’’. Furthermore,

Eq. 8 provides a temperature scale T�
wn defined as

T�
wn ¼

Hn

Xn

ð9Þ

which represents the thermal amplitude that can be reached in the absence of sediments.

2.3 Water temperature in shallow waters for Hg 6¼ 0

For including the heat exchanged with the sediment in the previous solution, the tem-

perature at the SWI is also expanded into a Fourier series, as

TWSI ¼
XN

n¼�N

Tsne
ixnt ð10Þ

where Tsn are the SWI temperature amplitudes of the nth term of the expansion. The

temperature at the SWI is the boundary condition for the heat diffusion linear equation in

the sediments (Eq. 3). As a consequence, the sediment temperature can also be expanded in

a series of solutions such that each one of them is the solution of the well-known Stokes’

second problem, which describes the solution of the diffusion equation forced by a periodic

Dirichlet function in a semi-infinite domain [1, 20]. Considering this, the sediment tem-

perature can be written as

Ts z; tð Þ ¼
XN

n¼�N

Tsne
ixnte 1þsnið Þanz ð11Þ

where an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
absðxnÞ=2js

p
is the inverse of the length scale of heat penetration into the

sediments (see [1], and sn is the sign of n. Then, Eq. 2 can be directly evaluated for

obtaining

Hg ¼ �jsðqcpÞs
XN

n¼�N

anTsne
ixnt 1þ snið Þ ð12Þ

Similarly, for the water-side of the SWI, Eq. 4 can be written as:

Hg ¼ �ktðqcpÞw
XN

n¼�N

Twn � Tsnð Þeixnt ð13Þ
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Two cases are identified. The first case considers the turbulent transport in the water-

side of the SWI to be very efficient (i.e., kt ¼ þ1) such that TWSI ¼ Tw and Hg is

determined using Eq. 12 with Tsn ¼ Twn. As a consequence, Eq. 1 can be written as

XN

n¼�N

iXnTwne
ixnt ¼

XN

n¼�N

Hne
ixnt �

XN

n¼�N

js qcp
� �

s
anTwne

ixnt 1þ snið Þ ð14Þ

which result in Twn for n 6¼ 0 being written as

Twn ¼
Hn

iXn þ 1þ snið ÞDnð Þ ð15Þ

where Dn ¼ qcsð Þsksan. The value of Twn for n ¼ 0 is described in detail in the following

subsection. Based on this result, a first dimensionless number is identified as

P1 ¼
Dn

Xn

¼ qcsð Þs
qcp
� �

w

1

2han
ð16Þ

P1 is a dimensionless number that accounts for the influence of sediments on the heat

budget of the water column h. P1 can be understood as the ratio between the thermal

inertia of the active sediments of thickness 1/ an and the thermal inertia of the water

column of depth h (ðqcsÞwh). Accordingly to values used by Fang and Stefan [6], the ratio

ðqcsÞs=ðqcpÞw takes values between 0.32 and 0.86 for sediment composition between sandy

sediments to organic materials. With the definition of P1 and the temperature scale T�
wn,

Eq. 15 can be written as

Twn

T�
wn

¼ 1

iþ 1þ snið ÞP1ð Þ ð17Þ

An interesting limit to this case is when h ¼ 0 such as the heat flux exchanged with the

atmosphere is balanced by ground heat flux [8]. This balance provides

Twn ¼
Hn

1þ snið ÞDn

ð18Þ

where a second temperature scale can be defined as T�s
wn ¼ Hn=Dn, which is the temperature

amplitude that is obtained in the absence of a water column, thus representing amplitude of

land surface temperature.

In the second case, TWSI 6¼ Tw, and therefore, the rate of diffusion across the thermal

boundary layer in the water should be considered for computing Hg. Similar to the previous

cases, the solution for n 6¼ 0 is written as:

Tsn ¼
K

K þ 1þ isnð ÞDn

Twn ð19Þ

and

Twn ¼ Hn iXn þ K 1� K

K þ 1þ isnð ÞDn

� �� ��1

ð20Þ

where K ¼ kt qcp
� �

w
. A second dimensionless number is defined as:
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P2 ¼
K

Xn

¼ kt

xnh
ð21Þ

which quantifies the influence of turbulent transport in the water column on Hg. P2 can be

understood as the ratio between the timescale associated to changes in the external forcing

(x�1
n ) and the timescale required to reach the heat equilibrium at the SWI (h=kt), described

by Tw ¼ Ts.

Finally, Eqs. 19 and 20 can be written in a dimensionless form as

Tsn

Twn
¼ P2

P2 þ 1þ isnð ÞP1

ð22Þ

and

Twn

T�
wn

¼ iþP2 1� P2

P2 þ 1þ isnð ÞP1

� �� ��1

ð23Þ

2.4 Influence of Tw on H

So far, we have adopted an explicit method where H is independent of computed water

temperature, which is not correct. Consequently, the implicit influence of Tw on H is

included by linearizing H in a similar way than it is done for the finite volume method

[19, 26], such that

H ¼ aH � bHTw ð24Þ

where aH is a time series and bH should be a positive constant value. With this linearization

of the source term, the time series aH is expanded into a Fourier series as

aH ¼
XN

n¼�N

Ha
ne

ixnt ð25Þ

Following this, H is written as

H ¼
XN

n¼�N

Ha
n � bHTwn

� �
eixnt ð26Þ

that after replacing in Eq. 1, provides

Twn ¼
Ha

n

Xn

iþP2 1� P2

P2 þ 1þ isnð ÞP1

� �
þ bH

� ��1

ð27Þ

for �N� n�N, including n ¼ 0, where Eq. 27 is reduced to:

Tw0 ¼
Ha

0

bH
ð28Þ

The linearization of the source term H is a standard numerical technique used in implicit

iterative schemes such as the finite volume methods [19, 26]. In the context of the spectral

formulation presented here, the linearization of H enables us to include the nonlinear

dependence of H as a function of Tw, in the context of the linear model behind the Fourier
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decomposition of the solution. Furthermore, this implicit formulation of H also enables to

include feedback between the water temperature and H. This last aspect provides a solution

for the n ¼ 0 term of the Fourier decomposition, also called the zero-frequency term of the

spectral model. This is observed in Eq. 14 where both the heat inertia and the sediment

diffusion terms are equal to 0 for n ¼ 0. Therefore, Eq. 14 has a solution for n ¼ 0 only if

the frequency independent term of the Fourier decomposition of H is zero. The physical

interpretation of this requirement is that the average net heat flux exchanged with the

atmosphere should be zero (Ho ¼ 0 of Eq. 5), and this heat balance at the AWI is allowed

to be achieved by enabling to H to self-adjust as a function of Tw. In this way, the average

incident heat flux is balanced by an average heat flux from the water to the atmosphere,

whose magnitude grows with the water temperature (long wave radiation, evaporation and/

or convection). This average heat balance is reached by linearizing H such that Eq. 14 for

n ¼ 0 is written to Ha
0 � bHTw0 ¼ 0.

2.5 Full model

The full model for computing Tw for non-idealized cases is detailed as follows. The

iterative algorithm considers the following: (1) H is a nonlinear function of Tw and is

computed by considering atmospheric boundary layer stability with the parameterizations

used in the Kansas experiments [8, 12]. (2) kt varies within the day and may also be driven

by convection [3, 5, 18]; however, a constant characteristic value of kt (k
�
t Þ is required for

the spectral model. The value of k�t required for computing K is also updated at any

iteration. Finally, (3) the iteration starts with a constant water temperature T 0ð Þ
w ¼ 10�C.

Given these assumptions, for the iteration k þ 1, the algorithm is described as follows:

1. Compute H as a function of T kð Þ
w (herein after called H�); and use it to compute aH and

bH required to linearize the heat flux exchanged with the atmosphere of Eq. 24. Here,

aH and bH are obtained with a first order Taylor expansion to express H kþ1ð Þ in the

form of Eq. 24, as a function of H�; T kþ1ð Þ
w and T kð Þ

w . It is obtained that

H kþ1ð Þ ¼ H� � bH T kþ1ð Þ
w � T kð Þ

w

� 	
ð29Þ

with

bH ¼ �avg
oH

oTw

� �
� �avg

H T�
w þ e

� �
� H T�

w

� �� �

�

� �
ð30Þ

where avg �ð Þ is the average of the argument and � is a small value of the order 10�5.

Following this definition of Eq. 29 it is obtained that

aH ¼ H� þ bHT
kð Þ
w ð31Þ

Furthermore, Eq. 29 shows that if the convergence of the model is good

(T kþ1ð Þ
w � T kð Þ

w Þ, then H kþ1ð Þ � H�, which means that the forcing heat exchanges with

the atmosphere is fully dependent on the water temperature, since H� is a nonlinear

function of Tw that includes all the heat fluxes exchanged with the atmosphere. Fur-

thermore, as is shown in the results section, bH takes values between 10 and 100

Wm-2 �C-1, and the solution of Tw is not sensible to this parameter.

2. Compute Ha
n of Eq. 25 using a Fourier transform of aH . In particular, if Y ¼ fft aHð Þ,

then Ha
n ¼ Yn= 2N þ 1ð Þ.
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3. Compute Twn and Tsn using Eqs. 19 and 27.

4. Compute the water temperature for the iteration k þ 1, T kþ1ð Þ
w (Eq. 6). This can be

performed with the inverse Fourier transform (ifft) of Twn. In particular,

Tw ¼ ifft Twnð Þ 2N þ 1ð Þ. However, to increase the convergence of the solution, the

use of an under-relaxation factor, r, is recommended, so that T kþ1ð Þ
w is finally computed

as

T kþ1ð Þ
w ¼ 1� rð Þifft Twnð Þ 2N þ 1ð Þ þ rT kð Þ

w ð32Þ

r ¼ 0:7 was used in this article.

5. Update kt and K. The time series of the wind shear velocity, Tw and TWSI are used for

computing one time series of kt; however, the spectral model requires a constant value

of K. The characteristic heat transfer velocity, k�t , can be either the average kt
(k�t ¼ avg ktð ÞÞ or

1

k�t
¼ avg

1

kt

� �
ð33Þ

which enhances the influence of small values of kt on the characteristic transfer

velocity. Here avg �ð Þ denotes the average function of the argument. The influence of

this assumption is discussed in the following section.

6. Check the convergence of the solution, and return to step 1 if required. Here we used

the maximum absolute difference between T kþ1ð Þ
w and T kð Þ

w to check the convergence of

the model, and a threshold value of 10�4 �C to stop the simulation.

2.6 Field observations

Field measurements in Salar del Huasco (Fig. 1a) recorded by de la Fuente [3] were used to

validate the spectral model for computing the water temperature in shallow wetlands.

Detailed information is available for the period between the evening of the 29th of October

and noon of the 31st of October of 2012 presented by de la Fuente [3]. This information

includes water temperature and meteorological information at the point marked with a

filled white circle in Fig. 1a. We considered a water depth h ¼ 5 cm. The thermodynamic

model is detailed in de la Fuente [3], who showed that the bulk albedo for the wetland is

0.17, and the heat exchanges across the SWI and the AWI are dominated by both heat

convection during calm conditions (Fig. 1b) and wind shear stress during windy conditions

in the afternoons (Fig. 1c).

3 Results

3.1 Dimensionless numbers

To investigate the role of dimensions numbers P1 (Eq. 16) and P2 (Eq. 21) in the solution

of Tw, a simple case was analyzed where H is a monochromatic function depicted in

Fig. 2a, written as:
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H ¼ DH cosxkt ¼
DH
2

eixk t þ e�ixk t
� �

ð34Þ

Figure 2a shows the time series of H, while Fig. 2b shows the time series of Tw for the case

Hg ¼ 0, which in this case is given by (see Eq. (8) with n ¼ 	1).

Fig. 1 a Satellite image of Salar del Huasco, and location of the meteorological stations installed in
October 2012 (filled white circle). b, c Picture of Salar del Huasco during calm and windy conditions,
respectively
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Tw ¼ �i
DH
2Xk

eixk t � e�ixkt
� �

¼ DH
Xk

sinxkt ð35Þ

Equation 35 shows that in the absence of sediments, the water temperature reaches a

maximum at a fourth of the period of forcing after the maximum H value is reached.

With respect to the influence of the first dimensionless number P1, Fig. 3 shows the

effect of including Hg in the computation of Tw for the limiting case kt ! 1. The time

series of H is shown in Fig. 3a, while Fig. 3b, c show the time series of the water

temperature and Hg for the extreme values P1 ¼ 0 (dashed line) and P1 ¼ 1 (solid line).

Figure 3d shows the maximum value of Hg as a function of P1. The limit P1 ¼ 0 rep-

resents the case when there is no heat storage in the sediments (Hg ¼ 0). This limit is

equivalent to deep water bodies or fast frequencies. On the contrary, as P1 increases, the

influence of Hg in the heat budget increases as the limit Hg ¼ H is achieved when

P1 ! 1. This limit is represented by cases with h ! 0 described by Eq. 18 or for low

frequencies of days and years. From a practical point of view, Fig. 3d suggest that for

P1J10, the water column is shallow enough such that the heat storage in the water

column can be neglected, and TWSI is obtained by solving Hg ¼ H (solid line in Fig. 3b, c).

Finally, the role of the dimensionless parameter P2 is shown in Fig. 4, where P1 ¼ 1.

The value P2 ¼ 0 represents the limit where no heat exchanges occurs across the SWI

because kt ¼ 0. Therefore, the solution is described using Eq. 35 (see the dashed lines in

Fig. 4b, c). On the contrary, when P2 ! 1, the turbulent transport in the water column is

energetic enough such that Hg is controlled by heat transport in the sediment-side of the

SWI. From a practical point of view, this limit occurs for P2J5. In the context of the

definition of P2 as the ratio between the timescale of changes in the external forcing and

the timescale required to reach the heat equilibrium at the WSI, large values of P2 mean

that the equilibrium Ts ¼ Tw is quickly reached in the context of temporal changes in H.

On the contrary, if changes in the external forcing occur faster than the timescale required

to reach the heat equilibrium at the SWI,P2 is small and values of kt turns to be relevant in

the dynamics.

Fig. 2 a Time series of the monochromatic heat flux exchanged with the atmosphere, and b time series of
the water temperature computed for the simple case Hg ¼ 0
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3.2 On the influence of kt in Hg

Meteorological data and water temperature measured in Salar del Huasco in October of

2012 were used to estimate bH . Based on these measurements, Fig. 5a shows the time

series and �oH=oTw computed using Eq. 30 and the measured Tw is plotted in Fig. 5b. It is

observed that the coefficient bH ranges between 5 and 70 Wm-2 �C-1, with an average of

bH = 21.7 Wm-2 �C-1. Because of the influence of latent and sensible turbulent heat

fluxes at the AWI, �oH=oTw is proportional to the wind shear velocity (Fig. 5c). The

dashed lines in Fig. 5a show three characteristic values of �oH=oTw that are used as bH in

the following calculus (5, 20 and 60 Wm-2 �C-1).

Figure 6a shows the observed (grey thick line) and the simulated Tw with the spectral

model for bH ¼ 20 Wm-2 �C-1, and k�t ¼ avg ktð Þ (solid black line) and k�t of Eq. 33

(dashed black line) as the characteristic heat transfer velocity. The time-series of Tw shown

in Fig. 6a was constructed in 50 iterations, and the convergence of the solutions shows that

for iteration 50, the difference between T kþ1ð Þ
w and T kð Þ

w was approximately 10�5 �C
(Fig. 7b) in both simulations with k�t ¼ avg ktð Þ (grey circles) and k�t of Eq. 33 (white

triangles). In Fig. 6b, dTw ¼ abs T kþ1ð Þ
w � T kð Þ

w

� �
. As the convergence of the model was

good, the influence of bH in the computation of Tw can be neglected for reasonable values

of this parameter. The maximum value of the absolute difference between Tw computed for

the different bH considered was approximately 10�4 �C.

Fig. 3 a Time series of the monochromatic heat flux exchanged with the atmosphere. b Time series of the
water temperature computed for the limits P1 ¼ 0 (dashed line) and P1 ¼ 1 (solid line). c Similar to (b),
for the time series of Hg. d Influence of P1 on the maximum value of Hg
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Dimensionless numbers identified based on the spectral model showed that the water

temperature is influenced by heat exchanges with the sediments; however, the heat transfer

velocity in the water-side is large enough, so that Hg is not influenced by the value of kt.

The first conclusion was obtained by examining the value of Twn as a function of P1, as

shown in Fig. 7a. According to this plot, larger complex amplitudes are associated with

P1 � 1. According to Fig. 3d, P1 � 1 indicates that heat exchanges with the sediments

constitute approximately 60% of the heat exchanges with the atmosphere. To prove the

second conclusion (the value of kt is large enough such that Hg is controlled by the

sediment-side of the SWI), two simulations were carried out with k�t given by Eq. 33 (grey

line in Fig. 7b) and k�t ¼ avg ktð Þ (dashed line in Fig. 7b). The simulated water temperature

is not sensitive to the value of k�t , and the reason for this response is that larger complex

amplitudes (Twn) are associated with values of P2 [ 2 (see Fig. 7c). According to Fig. 4d,

this range of P2 is associated with Hg larger than 88% of the value that is obtained when

considering k�t ¼ þ1 (Fig. 3). Furthermore, the independence of water temperature on the

value of kt is more relevant for larger periods associated to small values of xk, which has

associated larger values of P2 ¼ kt=xkh.

Finally, to quantify the error associated to the linearization of H, required to reach a

solution for the zero-frequency terms of the spectral decomposition, Fig. 8 shows in grey

color the time series of H computed for bH ¼ 20 Wm-2 �C-1 and the final water tem-

perature denoted as Tkþ1
w after 50 iterations (grey area). Furthermore, Fig. 8 plots the time

Fig. 4 a Time series of the monochromatic heat flux exchanged with the atmosphere. b Time series of the
water temperature computed for P1 ¼ 1 and the limits P2 ¼ 0 (dashed line) and P2 ¼ 1 (solid line). c
Similar to (b), for the time series of Hg. d Influence of P2 on the maximum value of Hg. e Similar to (d), for
the temperature amplitude
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Fig. 5 a Computed time series
of �oH=oTw(solid line) and the
values of bH = 5, 20 and 60
Wm-2 �C-1 used for the
simulation (dashed line).
b Measured time series of the
water temperature in Salar del
Huasco in October 2012.
c Measured time series of the
wind shear velocity in Salar del
Huasco in October 2012

Fig. 6 a Comparison between the observed water temperature (grey thick line) and simulated water
temperature and the spectral model with bH = 20 Wm-2 �C-1; and k�t ¼ avg ktð Þ (black solid line) and k�t
computed using Eq. (33) (dashed). Black solid and dashed lines are overlapped. b Evolution of the error of
the spectral model as a function of the number of iterations
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Fig. 7 a Absolute value of the temperature amplitude Twn as a function of P1 for simulation with k�t ¼
avg ktð Þ (black line) and k�t computed using Eq. (33) (grey line). b Time series of kt (solid black line),

k�t ¼ avg ktð Þ (dashed line), and k�t computed using Eq. (26) (grey line). c Absolute value of the temperature

amplitude Twn as a function of P2 for simulation with k�t ¼ avg ktð Þ (black line) and k�t computed using

Eq. (33) (grey line)
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Fig. 8 Time series of H computed with the simulated Tw after 50 iterations and bH ¼ 20 Wm-2 K-1 (grey

area), and the corresponding time series of aH (dashed line), �bHT
kþ1
w (dotted line) and

H kþ1ð Þ ¼ aH � bHT
kþ1
w (solid line)
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series of aH ; �bHT
kþ1
w and the linearized heat flux exchanged with the atmosphere

H kþ1ð Þ ¼ aH � bHT
kþ1
w . The time series of H kþ1ð Þ estimated by linearizing H matches very

well with the fully nonlinear time series of H computed with Tkþ1
w , and square root

difference between both time series is equal to 0.002 Wm-2. This result is not sensitive on

the value of bH . As a consequence, to linearize H provides a solution for the zero-

frequency temperature, and the resulting time series of H fully captures the nonlinear

dependence of H on the water temperature.

4 Discussion

In this article we have derived an analytic solution for the water temperature in shallow

systems forced by periodic (diurnal, seasonal, decadal) heat exchanges with the atmo-

sphere. This analytic solution allowed for identifying two dimensionless numbers that

quantify the importance of sediments (P1) and heat transfer velocity (P2) in the water

temperature of shallow waters.

The dimensionless number P1 quantifies the importance of sediments, and Fig. 3 shows

that the influence of Hg on water temperature increases with P1. Larger values of P1 are

achieved for low frequencies. This result is concordant with that of Fang and Stefan [6],

who showed that the initial condition for the temperature of deep sediments (approximately

10 m) is required for computing the water temperature in long-term simulations spanning

two decades. In the context of the spectral model, no initial condition was required, and

this is because the model computes the temperature amplitudes of the expansion rather than

the temperature at one particular time step.

The limitations of this spectral approach are related to the fact that kt, js, qcp
� �

s
and

qcp
� �

w
should be constants. Although this assumption can be reasonable for molecular

properties js, qcp
� �

s
and qcp

� �
w
, assuming that a constant kt can be used to reproduce heat

exchanges between the water and sediment requires further justification (see Fig. 7). This

justification was made based on the second dimensionless number, P2, which was defined

based on the formulation of the spectral model. This dimensionless number was defined to

quantify the influence of kt on Hg in such a way that if P2 ¼ kt=xkh[ 5, kt is large

enough, so that Hg is conditioned by the heat diffusion in the sediment and not by turbulent

diffusion in the water column. By definition, P2 is inversely proportional to the frequency,

which allow us to conclude that the value of kt is important only for high frequencies that

explains changes in water temperature in the hourly time-scale. In fact, the results pre-

sented in Fig. 7 show that the value of kt is not relevant for the dominant waves that

characterize the diurnal cycles (xn ¼ 2p=12 hr and 2p=24 hr). However, it is important to

notice that P2 decreases as h increases; thus, the value of kt should be important in deeper

water bodies.

The dimensionless numbers defined here are frequency dependent, and the question

whether a process is relevant or not depends on the particular frequency that is studied. For

example, the importance of heat fluxes exchanged with the sediments is expected to occur

for large values of P1, which occurs in shallow lakes at small frequencies. Consequently,

sediments can be neglected in one particular time-scale (diurnal time-scale), while they

should be included for other frequencies (seasonal or decadal time-scales). The relevance

of this frequency-dependence is that it suggests that sediments should be considered in
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climatic simulations [14], although they can perfectly be neglected in the diurnal or sea-

sonal time-scales.

Furthermore, the use of the solution for computing water temperature in extremely

shallow lakes of the Altiplano region of South America, confirm previous studies that

showed that heat exchange between the water and the sediments plays an important role in

the heat budget of water column [3, 4]. However, we were also able to show that for the

dominant periods of 12 and 24 h, this heat flux is not determined by the heat transfer

velocity kt. With respect to the application to shallow lakes of the Altiplano, de la Fuente

[3] also showed that for the measurements used in this article, 53% of the short wave solar

radiation is absorbed in the water column and 29% of the downward shortwave solar

radiation is absorbed in the top layer of the sediments, thus explaining overheated con-

ditions below the SWI. However, the spectral model presented here is not able to differ-

entiate between heat absorbed in the water column and heat absorbed in the sediments, and

simply considered that 83% of the downward solar radiation is absorbed in the water

column (i.e., albedo of 0.17). However, as de la Fuente [3] also pointed out, to not

differentiate between these two pathways for absorption of shortwave solar radiation

produces a small error in the simulated water temperature.

5 Conclusion

The thermodynamics regimes in lakes are well described by dimensionless numbers;

however, in the case of shallow lakes and wetlands, it is still difficult to determine the

thermodynamics regimes, mainly because water temperature is not only modulated by heat

exchanges with the atmosphere, but also with the bottom sediments. In this contribution,

we provided an analogous methodology based on two dimensionless numbers, for clas-

sifying the thermodynamics regimes that determine water temperature in shallow lakes and

wetlands.

The first dimensionless number, P1; was defined in Eq. 16, and accounts for the

influence of sediments on the heat budget of the water column h. P1 is understood as the

ratio between the thermal inertia of the active sediments and the thermal inertia of the

water column of depth h. The active sediments in the thermodynamic context are located

near the SWI, and their temperature varies accordingly to changes in the water tempera-

ture. The thickness of this active layer depends on the frequency of the forcing such that a

seasonal cycle has a thicker active layer than diurnal cycle.

The second dimensionless number, P2, was defined in Eq. 21, and quantifies the

influence of turbulent transport in the water column on Hg. P2 is proportional to the heat

transfer velocity, and Fig. 4 showed that turbulent transport across the SWI is important

only when it is weak (P2.2) with respect to diffusion in the sediment-side of the SWI.
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