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DESIGNING RESILIENT POWER NETWORKS AGAINST NATURAL HAZARDS

Resiliency of power systems is recently being explored in the literature, its main concern
is to provide reliability of the network under high impact low probability (HILP) scenario
events. The main contributions of this work are: (1) Provide a novel framework that supports
strategic decision making to maximize the resilience of the electricity grid system against
natural hazards (the first to the best of our knowledge), in particular earthquakes. (2) Provide
an alternative to economic-driven planning that can be contrast for the decision of adding
new generation capacity and new lines. (3) Present a Discrete Optimization via Simulation
(DOvS) approach that addresses problems having two-steps uncertainty. Our preliminary
computational results show that it obtains more robust solutions for this particular problem.
We use Industrial Strength COMPASS algorithm to tackle this discrete decision problem,
where the measure of resilience corresponds to the expected energy not supplied (EENS).
The EENS assessment is undertaken through a simulator that quantifies the impacts of
natural hazards on unsupplied demand and contains historical earthquake data, fragility
curves of the network components and an operational model of the electricity network (i.e.
unit commitment model). Through a case study we demonstrate the applicability of our
method, its main features, and ultimately how network planners can design more resilient
power networks against earthquakes.
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RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE MAGÍSTER EN GESTIÓN DE OPERACIONES
POR: TOMÁS IGNACIO LAGOS GONZÁLEZ
FECHA: 2017
PROF. GUÍA: FERNANDO ORDÓÑEZ PIZARRO

DESIGNING RESILIENT POWER NETWORKS AGAINST NATURAL HAZARDS

Resiliencia en sistemas de potencia se está estudiando recientemente en la literatura, su prin-
cipal preocupación es proporcionar la viabilidad de la red en caso de eventos de alto impacto
y baja probabilidad (HILP). Las principales contribuciones de este trabajo son: (1) Pro-
porcionar un marco novedoso que apoye la toma de decisiones estratégicas para maximizar
la resiliencia del sistema eléctrico contra la amenaza de desastres naturales (el primero de
acuerdo a la investigación realizada), en particular terremotos. (2) Proporcionar una al-
ternativa a la planificación impulsada por incentivos económicos, que puede ser costrastada
para decisiones de agregar nueva capacidad de generación y nuevas líneas. (3) Presentar un
enfoque de optimización discreta vía simulación (DOvS) que aborda problemas que tienen
incertidumbre en dos etapas. Los resultados computacionales preliminares muestran que se
obtienen soluciones más robustas para este problema en particular. Se utiliza el algoritmo
Industrial Strength COMPASS para abordar este problema de decisión discreto, donde la
medida de resiliencia corresponde a la energía no suministrada esperada (EENS). La evalu-
ación de la EENS se lleva a cabo a través de un simulador que cuantifica los impactos de los
desastres naturales en la demanda y que contiene datos históricos sobre terremotos, curvas
de fragilidad de los componentes de la red y un modelo operacional de la red eléctrica. A
través de un caso de estudio, se demuestra la aplicabilidad de este método, sus principales
características y, en última instancia, cómo un planificador de la red puede diseñar sistemas
de potencia más resistentes frente a terremotos.
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Chapter 1

Introduction

We refer to Critical infrastructure (CI) as the infrastructure that provides critical services to
the population. The interruption of CI would have a serious adverse effect on society, markets
and economy, as a whole, or on a large proportion of the population, and would consequently
motivate immediate reinstatement. Like all infrastructure, the CI is vulnerable to natural
hazards, such as floods, ice and windstorms, hurricanes, tsunamis, earthquakes and other
high impact and low probability events (HILP). The electric power system is particularly
important CI, as many other CI depend on it, as shown in Figure 1.1. For example the
telecommunications systems may shut down due to the lack of power supply, making the
authority less responsive to the emergencies.

In material science, resilience or resiliency is the ability of a material to absorb energy
when it is deformed elastically, and release that energy upon unloading. In the context of
power systems, as defined in [6], resilience is the capacity of an power system to tolerate
disturbances and to continue to deliver affordable energy services to consumers. Also see
[26] for a broad discussion on the definition of resilience in power systems. A resilient power
system can speedily recover from shocks and can provide alternative means for satisfying
energy service needs, in the event of extreme situations. Recent work has focused on building
a more resilient system to HILP disasters, see [26]. We provide a framework to incorporate
the idea of resiliency in the electric grid expansion planning.

Large power systems are complex dynamic entities, with increasing complexity due to the
large adoption of intermittent generation, the additional requirements of reliability, and the
need of a more resilient system to face HILP events. Hence, the development of detailed
models to mimic real power system operation is complicated, and its incorporation in op-
timization models is challenging. In fact, we need to balance the accuracy of the model
representing the operation of the power system and the flexibility to make optimal design
decisions. Thus, to consider a mathematical programming model to make optimal power
system design decisions, some simplification of the operation modeling must be made, such
as:

• reduction in the number of buses or in the number of constraints in the unit commitment
model (UC),
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Figure 1.1: lifelines dependency, obtained from [32] and [30].

• simplification of the chronological demand behavior, by aggregating longer time inter-
vals in the time period resolution of the UC [22],
• or simplification of the number scenarios over which to optimize, etc.

On the other hand, if power system operation is modeled with detail, then the resulting
model will not have properties that would allow for its optimal solution, and some heuristic
methodologies must be used to find good solutions.

We present two frameworks to improve the resilience of the electric grid system against
natural hazards. More specifically, we compare models that evaluate and maximize the re-
silience of the electric power system according to the energy not supplied (ENS), using as
decision variables the change of topology (such as building new lines, adding generation ca-
pacity, anchoring the substation to make it more resistant to damage). In the first framework,
here called the resiliency framework, we use a UC model to represent the behavior of the
operator of the system under regular conditions. Using a probability distribution to sample
a natural hazard effect, more specifically, an earthquake and damage scenario. A second UC
models what the system operator would do in an adverse situation, when it is possible to
have some unsupplied demand due to infeasibility.

The second framework we present, here called the reliability framework, uses a model that
optimizes once for every period (DC-OPF model). The model binds initial conditions on the
variables according to the state of the system given by the solution of the previous period.
These DC-OPFs follow the plan of the solution of a UC model. The UC model considered
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assumes no failures at the initial period, then some failures that were not accounted, occur.
Is possible that due to the non-accounted failures, the squence of DC-OPF models deviates
from the UC solution. Each period of the DC-OPF model yields an amount of ENS. The ENS
sum through all the periods yields the scenario output performance given by the topology of
the system. The Optimization via Simulation (OvS) heuristic treats this output as a “black
box” function (also called oracle) (see [14] for a brief introduction in OvS).

For the resiliency framework, two different approaches to solve the problem are shown (see
Figure 1.2). In one, some of the uncertainty is fixed at the beginning of the optimization
procedure. Then the approach is to solve the problem conditioned to that subset of scenar-
ios and repeats fixing the uncertainty and solving the problem many times. The method
yields theoretical bounds to the true optimum of the problem. In the second approach, each
evaluation samples a scenario leaving the expected value conditioned to all distribution of
scenarios. Both the Sample Average Approximation (SAA) and the Full Uncertainty (FU)
use the same DOvS heuristic (ISC) to optimize the performance of the simulator evaluation
function, see Figure 1.3.

The structure of this dissertation is organized top-down in the sense of the frameworks. A
literature review is done in Chapter 2 to show the position of the work with respect to current
literature and to motivate the importance of the problem. Chapter 3 shows the Discrete
Optimization via Simulation (DOvS) heuristic that is used in this work called Industrial
Strength COMPASS (Convergent Optimization via Most Promising Area Stochastic Search).
Chapter 4 presents the Unit Commitment (UC) and the DC-OPF mixed integer programs
used to model the behavior of the system operator. Chapter 5 focuses on the modeling of
the earthquake and the fragility curves used to model the damage on the system components
after the shock. The aforementioned chapters present the theoretical framework, the next
chapters describe the application. Chapter 6 presents how the framework is combined with
the evaluation functions for the ISC algorithm. Chapter 7 presents and analyses the results.
Finally the conclusions section presents a discussion and future work to consider.
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Chapter 2

Literature Review

2.1 Resilience and reliability in power systems

The economic development of countries is directly correlated with energy consumption. More
developed countries have more energy consumption than emerging economies, but the growth
has stalled for the first. In contrast, developing countries is where the investment in capacity
is higher. In Chile, due to the occurrence of earthquakes, the study of methods to improve
the resiliency of the generation/transmission/distribution system is of great importance (see
[2]). In this thesis we focus on how to improve the resiliency of power systems, and develop an
optimization via simulation algorithms and a simulation model that tests the preparedness of
the system to supply demand taking into consideration stress and high impact low probability
(HILP) situation.

Power systems reliability have always been an important subject. In [34] this concept is
defined as the probability that a system or component will perform its intended function,
under operating conditions, for a specified period of time. In power systems, [1] defines it as
the overall ability of the system to supply the demand, meet the constraints of the operation
of the system, and provide security to respond to perturbations in the electric system (such
as stochasticity of the demand and failures in the system’s components). Traditionally,
reliability only considers credible failures in the system (e.g. N − 1 criteria, that is if one of
the N components fails, the system is able to satisfy the demand). Reliability does not pursuit
protectiveness of HILP failures scenarios, as resilience does. See Table 2.1, it presents the

Reliability Resiliency
Designed for know failures cir-
cumstances

Designed for unforeseen disrup-
tive events

Failures are internal Failures are external
System cannot reconfigure to
avoid failure

System can reconfigure to con-
tinue operation

Table 2.1: Summary of main differences between reliability and resiliency, obtain from [23].
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Figure 2.1: Conceptual resilience curve associated to an event ([25])

main differences between reliability and resiliency. A more profound discussion of the concept
of resilience in the context of Power Systems is provided in [26]. From which we have the
following definition that they obtained from [6]: “Resilience is the capacity of an energy system
to tolerate disturbance and to continue to deliver affordable energy services to consumers. A
resilient energy system can speedily recover from shocks and can provide alternative means of
satisfying energy service needs in the event of changed external circumstances”. In a broader
context (any critical infraestructure), in [25], the term Resilience refers to the ability of the
system to prepare and adapt to changing conditions and withstand and recover rapidly from
disruptions, in other words, it refers to the property of being Robust, Redundant and Reliable.
Figure 2.1 from Panteli and Mancarella (2015) [25] presents a conceptual resiliency curve. In
the y-axis lies the resiliency measure and in the x-axis the measure is time. Between t0 and te
the system is prepared to withstand shocking event, at this stage the system should be robust
and resistant. Following the event, the system enters a post-event degraded state, where the
responsiveness to the emergency helps to minimize the impact of the event (R0−Rpe). Then
it enters a restorative state, in which the slope of the curve represents how fast the system
recovers to a resilient state. The following stage is the post-restoration state, characterized
by having a lower resiliency state and fully operational state. In this stage, the system has a
higher fragility and if an second shock disturbs the system it may shut it down completely.
The infrastructure may take longer to fully recover. It can get a more resilient and prepared
state after/in the infrastructure recovery stage.

We consider energy not supplied as a resiliency measure to be minimized. That is, mini-
mize the area above the curve and below the level R0, in the graph of Figure 2.1.

This thesis builds on previous work in [10] and [29], and follows the same aim. We also
use tools from many different research fields, such as resiliency of electric power systems,
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Figure 2.2: Electric power system structure, obtained from [10].

stochastic optimization, optimization via simulation and integer programming. Here we
consider a simplified power grid (and represented over a graph) in order to model it with
mixed integer linear program (MIP). The power system topology is composed by three main
components (see Figure 2.2, obtained from [10]):

• Generation: This component includes the generators, connected to the substations.
The substations represent a node in the graph.
• Transmission: The function of this component is to connect supply and demand, it is

constituted by transmission towers, and in the model represent the arcs of the network.
• Distribution: It starts at the load substation, and its function is to provide consumers

and industries the necessary energy. In the network this component is represented by
nodes that demand energy capacity.

Due to the potential failure of the components of the grid, the model considers the use of
failure generators. These fictitious generators can satisfy the energy demand at a very high
cost, and represent the unmet demand in the system. There is one such failure generator in
every demand node. This part of the model provides feasibility of the MIP at any scenario in
which part of the demand can not be supplied. The sum of all the failure generators, through
all time periods, deliver the energy not supplied in a single simulation. To represent damage
to the grid components (the percentage of failure of each component), we use fragility curves
developed by Hazus from the Federal Emergency Management Agency (FEMA) [18]. This
curves are explained in more detail in chapter 5.

We assume that the operation of the grid aims to minimize cost. The overall cost of not
supplying demand is always higher than producing it, if feasible. A full day ahead Unit
Commitment (UC) with hourly resolution models this behavior. The UC model used is the
one able in Carrión and Arroyo (2006) [4]. The model is explained in more detail in chapter
4. In [9], Mixed Integer Linear Programming was first applied to solve the unit commitment
problem. The formulation in [9] was based on the definition of three sets of binary variables
to, respectively, model the start-up, shutdown, and on/off states for every unit and every

7



time period. This mixed-integer linear formulation was extended in [3] to the one considered
here.

2.2 Optimization via Simulation Algorithms

At a higher level we propose an optimization procedure that considers the output of the
simulation as a general function with unknown structure that quantifies the resiliency. The
optimization procedure seeks the integer solution (network topology configuration) that min-
imizes this objective function resilience, the expected energy not supplied (EENS). Two
particular Optimization via Simulation (OvS) procedures are introduced:

1. Ranking and Selection-R&S. The feasible set has a finite and small number of solutions
and the decision variable may be numerical or categorical. Then all solutions may be
simulated and the best one is selected.

2. Discrete Optimization via Simulation (DOvS), considers integer feasible region subset
of Zd for the decision variables, on which it uses special searching schemes.

A general OvS formulation is the following:

min
x∈Θ

µ(x). (2.1)

Where the set Θ has a finite number of feasible solutions. Generally speaking OvS does
not require searching schemes over the feasible set, given that one solution that is not vis-
ited could be optimal. The R&S algorithms guarantees to find the best solution with a
given probability, or with the lowest opportunity cost. DOvS algorithms have implemented
searching schemes, that balances the trade-off of exploration versus exploitation, and finally
guarantee to converge to a local optimal solution as the simulation effort goes to infinity.
Nevertheless, algorithms that have good empirical performance but no convergence guaran-
tees have also been applied to solve OvS problems. Especially when simulation experiments
are computationally expensive. R&S procedures have also been used by other OvS optimiza-
tion algorithms, to improve the efficiency of the optimization process or to make a correct
decision at the end of the optimization process. Boesel, Nelson, and Kim (2003) [16] pro-
posed two R&S selection procedure, (clean-up procedures) both implemented in this work.
This procedures select the best solution among all solutions evaluated by an OvS algorithm
and provides a fixed-width confidence interval for the value of the best solution. Discrete
optimization via simulation, DOvS, finds the best solution according to the expected per-
formance of a stochastic system that is represented by a computer simulation model. DOvS
algorithms explore more promising solution sets while utilizing some form of randomization
to escape local optimal regions. This feature allows to visit all feasible solutions if the com-
putational budget to carry out simulations is large enough [15]. These methodologies move
forward from classic heuristic process because they are able to mathematically guarantee
correctness of the solution (i.e., the solution found is at least the best visited local optimum,
where a local optimum is a solution that is the best among all neighbors) and guarantee the
convergence to the global optimum, see [15]. Some important developments have been done
in this area since Yan and Mukai (1992) [8] that proposed a DOvS algorithm that delivered
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true optimal convergence guaranties. Hong and Nelson (2006) [13] proposes a Convergent
Optimization via Most Promising Area Stochastic Search (COMPASS) algorithm that is able
to converge to a local optimal solution with probability equal to one. That work enabled the
development of the Industrial Strength COMPASS (ISC) algorithm, Xu, Nelson and Hong
(2009) [15], which gives correctness guarantee. For a brief introduction to OvS research field
see Hong and Nelson (2009) [14].

We describe next the methodology by Shapiro et al (2009) [33] of Sample Average Approx-
imation (SAA). SAA for discrete optimization is introduced in [19]. The SAA assumes that it
is possible to solve to optimality the problem with a fixed set of scenarios. If the assumptions
are met, this procedure gives a confidence gap for the true optimum of the problem. Chapter
6 provides a discussion of how this assumptions are met in the experimental settings.

2.3 Sample Average Approximation Estimators

Consider the problem of minimizing the expectation of F (x, ξ):

min
x∈Θ
{f(x) = E(F (x, ξ)]}. (2.2)

Here Θ represents the set of integer feasible solutions, ξ is a random vector whose proba-
bility distribution P is supported on a set Ξ ⊂ Rd. We assume that the expectation function
f(x) is well defined and finite valued ∀x ∈ Θ.

Suppose that we have a sample of scenario realizations ξ1, ..., ξn of ξ. This leads to the
sample average approximation (SAA)

min
x∈Θ
{f̂n(x) =

1

n

n∑
j=1

F (x, ξj)} (2.3)

of the true problem 2.2. Note that each scenario occurs with probability 1/n within the
SAA function. For a particular realization of the random sample, the corresponding SAA
problem is a stochastic programming problem with respective scenarios ξ1, ..., ξn each taken
with probability 1/n.

By the Law of Large Numbers, under the condition that f̂n(x) converges point-wise almost
surely to f(x) as n → ∞ (sample is iid), we have that E[f̂n(x)] = f(x), i.e., f̂n(x) is an
unbiased estimator of f(x). We denote by ϑ∗ the optimal value of the true problem 2.2 and
by ϑn the optimal value of the SAA problem 2.3. Suppose that we are given a feasible point
x̄ ∈ Θ as a candidate for an optimal solution of the true problem. Then using the SAA it is
possible to estimate the gap

gap(x̄) = f(x̄)− ϑ∗.
associated with x̄, by solving many optimization problems like problem 2.3.

Consider the optimal value ϑnk of the k-th SAA problem 2.3. Note that

f̂kn(x) ≥ ϑnk,∀x ∈ X, ∀k, (2.4)
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where f̂kn(x) is the sample average of n scenarios fixed in the k-th SAA problem. One can
take expectancy to the inequality above, with respect to k:

Ek[f̂kn(x)] ≥ E[ϑ̂nk],

provided that E[f̂kn(x)] = f(x) ∀x ∈ Θ and that all is valid also for the optimal solution of
the true problem, then

ϑ∗ ≥ E[ϑ̂nk]. (2.5)
Let v̄nm = 1

m

∑m
k=1 ϑnk, which is an unbiased estimator of E[ϑnk]. Let σ̂2

nm = 1
m

[ 1
m−1

∑m
k=1(ϑ̂nk−

v̄nm)2] an estimator of variance of v̄nm.

A 100(1−α)% confidence lower bound of the expectation E[ϑ̂nk] (and hence of the optimal
value of the true problem provided condition 2.5) is

Lnm = v̂nm − tα,m−1σ̂nm.

Where tα,m−1 is the value of a t-student with a 100× α% significance and m− 1 degrees
of freedom. An approximate 100× (1− α)% upper bound estimate can be obtained from

Un′(x̄) = f̂n′(x̄) + zασ̄n′(x̄),

where x̄ is the candidate solution given, n′ is the number giving the sample average estimate
of f(x̄), and

σ̄2
n′(x̄) =

1

n′(n′ − 1)

n′∑
j=1

[F (x̄, ξj)− f̂n′(x̄)]2,

a estimate of the variance of f̂n′(x̄). The value of n′ is supposed to be very large, hence the
critical value zα is from a standard normal distribution rather than a t-student distribution.

Finally, the SAA is used to estimate an upper bound on the value of the gap of the
candidate solution x̄:

E[f̂n′(x̄)− v̄nm] = f(x̄)− E[ϑ̂n] = gap(x̄) + ϑ∗ − E[ϑ̂n] ≥ gap(x̄), (2.6)

therefore f̂n′(x̄)− v̄nm is a biased estimator of the gap(x̄). And a 100× (1−α)% confidence
upper bound for the gap(x̄) can be obtained from

f̂n′(x̄)− v̄nm + zα

√
σ̂2
nm + σ̄2

n′(x̄).

There are two types of error in using v̄nm as an estimator of ϑ∗, namely, the bias ϑ∗−E[ϑ̄n]
and variability of v̄nm measured by its variance. Both errors can be reduced by increasing
n, and the variance σ̂2

nm can be reduced also by increasing m. Note, however, that the
computational effort in computing v̄nm is proportional to m, since the corresponding SAA
problems should be solved m times, and to the computational time for solving a single SAA
problem based on a sample of size n. In cases where computational complexity of SAA
problems grows fast with increase of the sample size n, it may be more advantageous to
use a larger number of repetitions m. The bias ϑ∗ − E[ϑ̂n] does not depend on m, when the
optimization procedure is exact to obtain the optimal solution of problem 2.3. See Proposition
5.6 of [33]. If the sample is iid, then E[ϑ̂n] ≤ E[ϑ̂n+1] for any n ∈ N. It follows that the bias
ϑ∗−E[ϑ̂n] decreases monotonically with an increase of the sample size n, see Theorem 5.7 of
[33].
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Chapter 3

Industrial Strength COMPASS

The Industrial Strength COMPASS (ISC) algorithm considers the problem:

max
x∈Θ

G(x) = Eξ[F (x, ξ)]. (3.1)

Were the feasible region is integer valued (e.g. the decision of constructing a new transmission
line):

Θ =


x :∑q

i=1 aijxi ≤ bj, j = 1, .., p
0 ≤ li ≤ xi ≤ ui ≤ ∞, i = 1, ..., q
li, xi, ui ∈ Z+ ∪ {0}, i = 1, ..., q,

 (3.2)

x is the vector of decision variables, Z+ denotes the positive integers. It is assumed that the
function F (x, ξ) is unknown, but it can be estimated through realizations of F (x, ξi) via a
simulation experiment.

ISC consists on a three stage procedure. The first stage is based on Genetic Algorithms
(called Niching Genetic Algorithm-NGA). It serves as a global search engine to find good
neighborhoods of solutions (niches). This sets of solutions are defined by a niche center (a
local minimum) surrounded by neighbors with poorer performance. The second stage applies
the COMPASS algorithm to each of this local-minimal structures in order to improve locally
the solution. It starts with the center of the niche yielded by NGA, and ends when it has
found a local minimum with high confidence. The third stage, the clean-up phase, apply a
Ranking and Selection (R&S) procedure to select the best of the solutions identified in the
local phase with a certain probability. ISC guarantees that all the solutions will be visited
infinitely often (this is, if the algorithm is run infinitely many times) because of the sample
scheme of the NGA. Although it might be the case that the convergence solution is not a
global optimum. As pointed in Chapter 2, COMPASS provides correctness guaranties (to
guarantee local optimality of the solution yielded by the procedure). Each of the stages are
explained in further detail in each of the following sections.

11



3.1 NGA

Figure 3.1: Flow-chart of the NGA procedure.

The role of the NGA is to serve as a global search engine. It forms niches that have always at
the center a local optimal solution of the niche. The transition rules to the local convergence
part of the algorithm could be:

• Niche Rule: If at any time there is only one niche.
• Improvement Rule: If there is no new solutions found in TG consequent iterations.
• Dominance Rule: If the solutions within one niche dominate all other niches. See more

detail on the implementation in 7.5.8.
• Budget rule: If the number of samples is exceeded.

12



For an example of the NGA stage see Figures 3.2-3.3-3.4, the legends provide the
procedure exemplified.

Let the set Ω ⊆ Θ and

C (xi) = {x : x ∈ Θ and
||x− xi|| ≤ ||x− y||, ∀y ∈ Ω \ {xi}}

(3.3)

and A(xi) = {j : xj ∈ Ω, such that xj defines an active constraint in the set C (xi)}.
For a graphical representation of the set C (xi) just defined see Figure 3.2. A Fitness
Sharing scheme (see Appendix 7.5.2) is implemented in the algorithm. The basic idea is
that if a niche is populated with too many solutions, these solutions should be given less
chance to reproduce than they would have in an ordinary GA. Thus allowing solutions in
less populated niches to have higher probabilities of being selected to generate new solutions.
A Grouping procedure (See Algorithm 2) is done to form groups that are similar in their
fitness sharing value. For each of these groups is calculated an average probability of selection
(m(i)

j = 1
Ni

∑Ni

j=1 s
(i)
j . Where si = 1

mG
(η−2(η−1)( i−1

mG−1
))) holds as the probability of selection

of that particular individual over all current solutions. Given the selection probabilities of
each individual (see implementation in Appendix 7.5.3), Stochastic Universal Sampling
(SUS) (see implementation in Appendix 7.5.4) constructs a roulette wheel where the area for
each individual is proportional to its selection probability. Then the roulette wheel is spun
once and an individual is selected as a parent. Other individuals are selected by advancing
the pointer at a regular spacing until it wraps back to its starting point. The pointer is
advanced by a spacing of 2/mG. For each solution (xi) selected in the SUS, use a Mating
Restriction (Appendix 7.5.5) scheme to select its partner. That is, sample m individuals
from the population, and select the best one among the ones that are on the same group as
xi. If there is not such an individual, select the closest one to xi. A Crossover scheme is
applied to obtain two new solutions from xi and xj. By generating β ∼ U(0, 1), and rounding
to integers the values of x′i = βxi + (1− β)xj and x′j = βxj + (1− β)xi. In the case of binary
components of vector x, this crossover procedure produces the same sequence of gens that
each one of the parents for each child, here it is proposed to combine the components that are
one between the parents (for more detail see the function crossover in the Appendix
section 7.5.6). If some of these values are infeasible then we kept its parent value. For each
new solution apply a Mutation scheme (uniform and non-uniform, see [15] and see Appendix
7.5.7) that yields a new solution. This randomly changes the value of a coordinate of the
solution. With the new population, after evaluating their performance, there is the option of
elitism. This is replacing the lower performance ranking by the previous population head of
niches.

Algorithm 1 Niche identification on iteration k

1: Reindex the solutions in the current population so that Ĝk(x1) ≤ Ĝk(x2) ≤ .. ≤ Ĝk(xmG
).

Let I = {1, ..,mG}, L = ∅.
2: for i ∈ I do
3: if Ĝk(xi) ≤ Ĝk(xj), ∀j ∈ A(xi) then
4: L = L ∪ {i}, I = I \ A(xi).
5: I = I \ {i}.
6: return r = mini,j∈L,i 6=j

1
2
||xi − xj|| and L.

13



Figure 3.2: Here mG = 7. After simulating the candidates two niches are obtained. The
niche radius is half of the minimum between all pairs of niches. The 8-th solution in the
ranking is within the no-niche set structure. Note that the grouping procedure may obtain
groups that are quite different from the original niches.
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Figure 3.3: Selection probabilities are averaged within niches, so every solution in the same
niche has the same probability of selection. SUS builds a roulette wheel and selects mG/2
solutions to be reproduce to obtain next generation. Mates selection is done in order to select
with higher probability solutions of better performance. After obtaining the new solutions
sampled a mutation step is done.
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Figure 3.4: New solutions are evaluated and ranked. An optional elitism step can be done to
replace the worst ranked candidates by the old local minimums. If no transition rule applies,
the iteration should be repeated.
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Algorithm 2 Grouping procedure for NGA, See [15] online appendix

Require: The sample average Ĝ(xi) and the sample variance S2(xi) are updated with the
fitness sharing procedure. A minimum number of groups to be formed gm. A global
search significance αG and a global search indifference zone δG.

1: Given current population {Ĝ(xi), S
2(xi), ni}i=1,..,mG

, let n̄ = 1
mG

∑mG

i=1 ni.
2: Sort and reindex so that Ĝk(x1) ≤ Ĝk(x2) ≤ .. ≤ Ĝk(xmG

).
3: Let

S2 =
1

mG

mG∑
i=1

S2(xi)

and
R =

S√
n̄
Q1−αG

mG,
∑mG

i=1 (ni−1)

where Q1−αG

mG,
∑mG

i=1 (ni−1)
is the upper 1 − αG quantile of the sudentized range distribution

(see Miller (1981) [21]) with mG degrees of freedom and
∑mG

i=1(ni − 1) samples.
4: g = 1, i = 1.
5: while i < mG do
6: Gg = {i}, bottom = i, i = i + 1.
7: while Ĝ(xbottom)− Ĝ(xi) < R and i < mG do
8: Gg = Gg ∪ {i}, i = i + 1.
9: If the number of groups formed g < gm, let

R̂i = max
j∈Gi

Ĝ(xj)−min
j∈Gi

Ĝ(xj), i = 1, .., g

m̂i = |Gi|.

10: For any group with |R̂i| < δG, do nothing further with Gi.
11: for groups with |R̂i| ≥ δG do
12: R̂ = max R̂i, ˆ̀= argmaxi=1,..,g R̂i.
13: Set

n̂ = dQ
2S2

R̂2
e,

where
Q = Q1−αG

m̂ˆ̀,
∑

j∈Gˆ̀
(ni−1),

S2 =
1

m̂ˆ̀

∑
j∈Gˆ̀

S2
j .

14: Obtain max{n̂− nj, 0} observations for j ∈ Gˆ̀.
15: Apply fitness sharing.
16: Go to step 1 but with group ˆ̀ as the population, and update gm = gm − g + 1.

17



Figure 3.5: Flow-chart COMPASS algorithm

3.2 COMPASS

The next step in the algorithm is to converge locally for each niche. Convergent optimization
via most-promising-area stochastic search procedure starts with a population of individuals
within a niche. Denote the set Vk as all solutions visited at iteration k and let Ck = {x : x ∈
Θ and ||x− x̂k|| ≤ ||x− y||, ∀y ∈ Vk, y 6= x̂k} be the most promising area at iteration k (see
Figure 3.2).

Algorithm 3 Sampling Allocation Rule ak(x)

1: At iteration k, let ∆N = |Ak−1(x̂∗)| − 2. Let δ̂(x) = G(x)−G(x̂∗).
2: Allocate two additional replications to x̂∗.
3: Let R =

∑
x∈Ak−1(x̂∗)

S2(x)

δ̂(x)
.

4: Set ∆N(x) = S2(x)∆N

δ̂(x)R
. If ∆N(x) < 1, round down to zero, otherwise, round to the

nearest integer.

The COMPASS algorithm improves locally the solutions obtained in the NGA stage. The
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Figure 3.6: Most Promising Area (MPA) around point C, note point A does not define any
active constraint, since half-space B it is outside the MPA.

Algorithm 4 COMPASS
Require: Set k=0, find x0 ∈ Θ, set V0 = {x0}. Determine a0(x0), and take a0(x0) observa-

tions from g(x0). Calculate Ḡ0(x0) and N0(x0) = a0(x0).
1: Let k=k+1. Sample xk1, ..., xkm ∈ Ck−1 uniformly and independently. Let Vk = Vk−1 ∪
{xk1, ..., xkm}. For every x ∈ Vk take ak(x) observations and update Nk(x) and Ḡk(x).

2: Let x̂∗k = argminx∈Vk
{Ḡk(x)}, and construct Ck.

3: If Ck = {x̂∗k} go to transition rule, else go to line 1

19



Figure 3.7: For each niche head obtained in NGA, a local improvement is done. The procedure
accumulates solutions until the transition rule is met.
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Sampling Allocation Rule (SAR Algorithm 3) yields the number of evaluations dedicated to
previously visited (and already evaluated in previous iterations) solutions.

Let
N(x) = {y : y ∈ Θ, ||x− y|| ≤ 1},

given a local solution x̂∗ at iteration k of a specific niche, the Transition Rule follows the
hypothesis test:

H0 : g(x̂∗) ≤ miny∈N(x̂∗) g(y)
H1 : g(x̂∗) > miny∈N(x̂∗) g(y)

(3.4)

The type I error is set to αL and the power of the test to be at least 1 − αL if g(x̂∗) ≥
miny∈N(x̂∗) g(y) + δL, where δL is a tolerance user specified. If the solution passes the test,
COMPASS is stopped in that niche. Figure 3.7 presents an example of two iterations of the
COMPASS and Algorithm 4 presents COMPASS algorithm.

Transition rule test 3.4 is done by a procedure called comparison with standards. Two
different approaches were implemented here, see algorithms 5 and 6 for more detail. The
Generic Procedure referenced from [17] differences from the Minimum Switching Sequential
Procedure in that the second considers the cost of switching the system being evaluated. This
last feature helps, for a given solution, when there is a fixed cost on time at the initialization
of a number of evaluations. It also helps when there are marginal gains in time when a system
is evaluated many times. Both procedures where adapted to COMPASS framework. If at any
moment the local optimal solution being test is discarded to be the best among its neighbors,
the procedures stop and uses the current best solution to keep iterating COMPASS from step
1.

3.3 R&S

The objective of this step is to compare the local optimal solutions obtained in the previous
step.

Screening. Using whatever data are already available, after local stage COMPASS, form
the resulting set of solutions L. Discard any solutions that can be shown to be statistically
inferior to others. Let LC be the surviving solutions.

Selection. Acquire enough additional replications on the solutions in LC to select the
best. Let xB be the selected solution.

Estimation. With confidence level 1− αC , xB is the best, or within δC of the best. ±δC
is the confidence interval.

Algorithm 7 and 8 show clean-up procedures, both of which were implemented. The first
is the one presented in [15] online appendix. Here, they recommend to select Algorithm 7 as
the clean-up procedure (which is also call Sort and Iterative Screen in [16]). The second one
is presented in [16] as Screen-Restart and Select.
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Algorithm 5 Generic Procedure [17]
Require: Select confidence level 1 − αL, an indifference zone parameter δL. A family

(xi, Ĝ(xi), S
2(xi), ni)i∈I={1,..,k} of sampled solutions. Let first stage sample size r =

maxi∈I{ni}, c is a non-negative integer constant (c = 1 is recommended) and η is the
solution of the equation

c∑
`=1

(−1)`+1(1− 1

2
I(` = c))(1 +

2η(2c− `)`
c

)−(r−1)/2 = β

where I is the indicator function and β is set to have an overall confidence 1−αL, if the
systems are independent β = 1− (1− αL)1/k.

1: Let each system have r observations, and update the values of (xi, Ĝ(xi), S
2(xi), ni)i∈I .

Compute S2
i` the sample variance of the difference between systems i and `.

2: Let
ai` =

η(r−1)S2
i`

δi`
and λi` = δi`

2c

where

δi` =

{
δL/2 if i = 0 or ` = 0

δL otherwise
.

and

Ḡi =

{
Ĝ(xi)− δL/2 if i = 0

Ĝ(xi) otherwise
,

and
Wi` = max{0, ai` − λi`r}.

3: For each i < `, i, ` ∈ I.
4: if Ḡ(xi)− Ḡ(x`) ≤ −Wi`(r) then
5: Eliminate ` from I.
6: else
7: if Ḡ(xi)− Ḡ(x`) ≥ Wi`(r) then
8: Eliminate i from I.
9: If |I| = 1 and the index in I is the same best as in the beginning, then stop and select

the system whose index is in I. Otherwise, if the best system from the beginning was
eliminated from I, then it was not a local optimum, so stop this procedure and return to
COMPASS.

10: Set r = r+1 and update the values of (xi, Ĝ(xi), S
2(xi), ni)i∈I and compute S2

i` the sample
variance of the difference between systems i ∈ I and ` ∈ I. Go back to step 2.
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Algorithm 6 Minimum Switching Sequential Procedure [12]
Require: Let L be the index set of the systems being compared, k = |L| and select confidence

level 1/k < 1 − αL < 1, an indifference zone parameter δL and zeroth-stage sample size
n0 (it could be set to n0 = maxi∈L{ni}). Select λ such that 0 < λ < δL (λ = δ/4
is recommended by Paulson (1964) [27]). Let (xi, Ĝ(xi), S

2(xi), ni)i∈L be the family of
sampled solutions, and B be the best solution index in I.

1: Let each system have n0 observations, and update the values of (xi, Ĝ(xi), S
2(xi), ni)i∈L.

Compute S2
i` the sample variance of the difference between systems i and ` in L. Let

aij =
(n0 − 1)S2

ij

4(δ − λ)
{[1− (1− α)1/(k−1)]−2/(n0−1) − 1}

and
Nij = max{0, daij

λ
e − n0}.

2: For all combinations of i, j ∈ L, i 6= j, calculate first stage summary statistic

Zij(n0) = n0(Ĝ(xi)− Ĝ(xj))

and the set of systems still in play

I = {i : Zij(n0) ≥ min{0,−aij + n0λ}, i, j = 1, .., k, i 6= j}.

3: if I = {B} then
4: Stop and select the system whose index is in I.
5: else if B 6∈ I then
6: Stop the procedure and go back to COMPASS.
7: else
8: Sort the systems based on the zeroth-stage sample means Ĝ(xi) and let B and S be

the index of the best and second best system in I.
9: Let NB = maxj∈I,j 6=B NBj, be the maximum number of additional observations required

for system B to be compared against all other systems in I. Take NB additional samples
from system B. Let r = 0.

10: Take one sample from system S, and let r = r + 1. Update the value of the combined
two-stage summary statistic ZBS and let WBS = max{0, aBS − λ(n0 + r)}.

11: if ZBS(n0 + r) ≥ WBS then
12: Stop this procedure and go back to COMPASS.
13: else if ZBS(n0 + r) ≤ −WBS then
14: I = I \ {S} and update S.
15: else
16: Go to step 10.
17: if |I| = 1 then
18: Stop and select the system whose index is in I as the best.
19: else
20: Let NB = maxj∈I,j 6=B NBj and take max{0, NB − r} from system B and go to step 10.
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Algorithm 7 Sort-and-Iterative-Screen Procedure
Require: L the set of local optimal obtain from local search, constants αC and δC . ni is the

number of observations, Ĝ(xi) is the sample mean and S2(xi) is the sample variance.
1: Let

n = min
i∈L

ni

ti = t
(1−αC/2)

1
|L|−1 ,ni−1

h = h(2, (1− αC/2)
1

|L|−1 , n)

wi` = (
t2i S

2(xi)

ni

+
t2`S

2(x`)

n`
)1/2, ∀i 6= `

where h(2, (1−αC/2)
1

|L|−1 , n) is Rinott’s constant ([31]) in the special case of two solutions,
confidence level of (1−αC/2)

1
|L|−1 and n degrees of freedom (see Boesel et al. (2003) [16]).

2: Let I = {i : Ĝ(xi) ≤ Ĝ` + wi`, ∀` 6= i}.
3: ∀i ∈ I, compute nC(xi) = max{ni, dh2S2(xi)/δ

2
Ce}. Collect nc(xi)− ni more observations

and update Ĝ(xi).
4: Let B = argmini∈I Ĝ(xi). Report xB as the best solution and claim Ĝ(xB) ± δC as the

(1− αC/2)× 100% confidence interval for G(xB).

3.4 ISC Parameters

For a summary of the parameters needed to be set, see Table 3.1.
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Algorithm 8 Screen-Restart-and-Select Procedure
Require: L the set of local optimal obtain from local search, constants αC and δC . ni is the

number of observations, Ĝ(xi) is the sample mean and S2(xi) is the sample variance. Set
1−α0 = 1−α1 =

√
1− αC (although any decomposition whose product is 1−αC could

be used).
1: Let

n = min
i∈L

ni

nri = d(h(|L|, 1− αC , ni)S(xi)

δC
)2e

ti = t
(1−α0)

1
|L|−1 ,ni−1

wi` = (
t2i S

2(xi)

ni

+
t2`S

2(x`)

n`
)1/2, ∀i 6= `

2: Let H = {i : Ĝ(xi) ≤ Ĝ` + wi`, ∀` 6= i}, then

h = h(2, (1− α1)
1

|H|−1 , n)

where h(2, (1− α1)
1

|H|−1 , n) is Rinott’s constant in the special case of two solutions, con-
fidence level of (1− α1)

1
|H|−1 and n degrees of freedom.

3: Restart current sample of solutions, and take nri observations to each i ∈ H. Restart
also the values of Ĝ(xi) and S2(xi).

4: ∀i ∈ H, compute nC(xi) = max{ni, dh2S2(xi)/δ
2
Ce}. Collect nc(xi)−nri more observations

and update Ĝ(xi).
5: Let B = argmini∈H Ĝ(xi). Report xB as the best solution.
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ISC input Legend
TT N◦ of solutions discarded in sampling scheme in the

NGA. The bigger the TT the more uniform is the sam-
pling (thus randomizing better, in order to escape local
regions in this scheme).

mG Cardinality of the set of solutions in every generation of
the NGA.

n0 (NGA) N◦ of replications for initializing solutions sampled.
N0 (COMPASS) N◦ of replications for initializing solutions sampled.
TG Parameter for the tolerance in the NGA improvement

transition rule.
gm Minimum N◦ of groups to be form in the grouping pro-

cedure.
αP (NGA) Dominance transition rule parameter.
αG (NGA) Quantile parameter for the grouping procedure.
δG (NGA) Indifference zone parameter for the grouping procedure.
αL (COMPASS) Local significance for the transition rule test in COM-

PASS.
δL (COMPASS) Local indifference zone parameter for the transition rule

test in COMPASS.
αC (R&S) Clean-up significance for declaring a global optimum.
δC (R&S) Clean-up indifference zone parameter.
η (NGA) Penalization parameter (between 1 and 2) for selecting

rather good than bad solutions in the SUS procedure in
the NGA phase.

M (NGA) N◦ of mates to be sampled as presented in algorithm
mating.

Budget NGA Maximum N◦ of evaluations permitted in this phase.
km (COMPASS) N◦ of samples allowed to take in the local stage.
nonuniform Boolean that if true allows non uniform mutation in the

NGA stage.
elitism Boolean that if true allows elitism in the NGA stage.
Constraint placement Boolean that allows constraint placement in the COM-

PASS stage.
MSSP Boolean if set to true determines that COMPASS tran-

sition rule is Minimum Switching Sequential cost, else
transition rule is Generic procedure.

Sort and Iterative Screen Boolean if set to true determines that R&S clean-up pro-
cedure is done with Sort and Iterative Screen procedure,
otherwise Screen, Restart and Select procedure is done.

K Parameter that should be bigger that the N◦ of epochs
of the NGA.

be Attenuation parameter for the non-uniform mutation.

Table 3.1: ISC input parameters.
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Chapter 4

Deterministic Resilient Network Design
Problem Formulation

Here we present the MIP models used to represent the behavior of the System Operator
under stressed operation. We warn to the reader that this chapter is not aimed to describe
the mixed integer models on all their perspective of costs modeling. Cost are important
indeed, they allow to model the regular behavior of the operator during the time horizon.
This provides a state of the system when the shock arrives. After the shock, the operator
considers that the start up, the production, the shut down costs are a couple of orders
of magnitude less costly than not supplying the demand to be met. (Here the demand is
modeled as a soft constrain rather than as hard constraint.) First, two discrete time Mixed
Integer Linear Problems (MIP) are introduced, the Unit Commitment (UC) and the DC
Optimal Power Flow (DCOPF). The first model differentiates from the second in that it
decides which units are turned on in every period in the time horizon (and assume that a
reserve can provide enough protectiveness under regular conditions). The second optimizes
each period separately and receives the available units to be turned on as an input. Let us
introduce some nomenclature for the parameters (Table 4.1), the variables (Table 4.2) and
the sets (Table 4.3) of the models.

4.1 Nomenclature

The models consider an electric grid defined over a graph G = (V,E). Some nodes in the
network have generators (g ∈ G(j) ⊆ G, j ∈ V , for g ∈ G(j) let j(g) = j) and others have
demand (dtj, j ∈ V ) on every period of the time horizon (t ∈ T ). Every edge of the network
(e ∈ E) represent the transmission system, where the high tension network transport the
energy. The conductors that are supported by the towers have some capacity associated with
them (F̄ij on any direction). Every node on the grid should satisfy a power balance equation,
where the sum of the demand, minus the generation, plus all the flow that goes out of the
node, minus all the flow that comes into the node should be zero. The model also decides
which generation units are turned on. If the unit g ∈ G is turned on in the current period,
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Parameters
Ag Coefficient of the piece-wise linear production cost function of unit g.
Âi,j Admitance parameter between nodes i, j ∈ V .
ag, bg, cg Coefficients of the quadratic production cost function of unit g.
B`g Slope of the ` block of the piece-wise linear production cost function of

unit g.
C̄g Shutdown cost of unit g.
dtj Load demand in bus j in period t.
dtj(ξ) Load demand in bus j in period t under scenario ξ.
d̂j Peak demand in bus j.
DTg Minimum down time of unit g.
K`
g Cost of the interval ` of the stair-wise startup cost function of unit g.

Lg Number of periods unit g must be initially offline due to its minimum
down time constraint.

NDg Number of intervals of the stair-wise startup cost function of unit g.
NLg Number of segments of the piece-wise linear production cost function of

unit g.
Pg Minimum power output of unit g.
Qg Number of periods unit g must be initially online due to its minimum up

time constraint.
Rt Spinning reserve requirement in period t.
RDg Ramp-down limit of unit g.
RUg Ramp-up limit of unit g.
S0
g Number of periods unit g has been offline prior to the first period of the

time span (end of period 0).
SDg Shutdown ramp limit of unit g.
SUg Startup ramp limit of unit g.
T Number of periods of the time span.
T`g Upper limit of block ` of the piece-wise linear production cost function

of unit g.
ttoffj Number of periods unit g has been offline prior to the startup in period

t.
U0
g Number of periods unit g has been online prior to the first period of the

time span (end of period 0).
UTg Minimum up time of unit g.
V 0
g Initial commitment state of unit g (1 if it is online, 0 otherwise).
x = (w, y, z) Solution matrix for the topology of the system.
wij Equal to one if line from bus i to bus j is constructed, (i, j) ∈ Ec.
yj Integer number between 0 and 10 that represents a d̂jyj

10
of fixed dis-

tributed capacity installed in load bus j ∈ D.
zj Binary variable equal to one if offer bus j’s resistance to the earthquake

is increased, j ∈ O.

Table 4.1: Model parameters for MIP programs.
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Variables
δ`(g, t) Power produced in block of the piece-wise linear production cost function

of unit g in period t.
θti Reference angle bus i in period t.
cdtg Shutdown cost of unit g in period t.
cptj Production cost of unit g in period t.
cutj Startup cost of unit g in period t.
ENSti Energy not supplied in node i in time period t.
f tij Flow represented in generated capacity units from bar i to j in time

period t.
P t
g Power output of unit g in period t.
P̄g(ξ, t) Capacity of unit g given scenario realization ξ and period t.
rtg Maximum available power output of unit g in period t.
vtg Binary variable that is equal to 1 if unit g is online in period t and 0

otherwise.

Table 4.2: Model variables for MIP programs.

Sets
D Set of nodes with demand.
δ+(i) Set of edges adjacent to node i ∈ V .
E Set of edges of the grid network currently available.
Ec Set of edges that is possible to build a line.
Et(x, ξ) Set of edges of the grid network given scenario realization ξ and topology

x at period t.
G Set of indexes of the generating units.
Gt(ξ) Available units at period t in scenario ξ.
G(i) Set of indexes of generating units on node i ∈ V .
T Set of indexes of the time periods.
V Set of nodes on the grid network.
O Set of nodes with offer.
Ξ Support of scenarios for earthquake and damage realization.

Table 4.3: Model sets for MIP programs.

29



then the maximum generation increase (or decrease) it could get is determined by a slope.
Electric grids are highly complex to model, every node in the system has associated a tension
angle (θ). The difference of the angles of two nodes in the system determines the flow in the
arc between the two nodes, (this is the parameter that can be controlled by the operator of
the system). This is done by an admittance restriction. This restriction would not let any
flow to be feasible in the system (as simple flow of commodities), flow must follow decrease
in potential energy. This is the main difference between AC OPF and DC OPF, because
in reality this restriction is not linear (Kirchhoff law [20]). Approximating it using some
admittance parameter allows to simplify the model and solve it with mixed integer linear
solvers. Here the random parameters are the availability of a line (lets say E(ξ, x)) and the
capacity of the generating units (P̄g(ξ)), under scenario ξ. Some previous decision making
yielded a topology expansion plan x, from which the model gets the parameters (w, y, z) for
the model.

Using the notation above, let any solution (a plan of dispatch), then it should fulfill the
following restrictions:

(θti − θtj)Âi,j = f ti,j, ∀(i, j) ∈ Et(x, ξ), ∀t ∈ T, (4.1)

the difference of angles should follow Kichcoff’s law for every line available in the network,

− F̄i,j ≤ f ti,j ≤ F̄i,j, ∀(i, j) ∈ Et(x, ξ), ∀t ∈ T, (4.2)

every line available must meet its capacity,

∑
k∈δ+(i)

f tk +
∑
g∈G(i)

P t
g = 0, ∀i ∈ O, ∀t ∈ T, (4.3)

∑
k∈δ+(i)

f tk +
∑
g∈G(i)

P t
g = max{dti(ξ)−

yi

10
d̂i, 0}+ ENSti , ∀i ∈ D, ∀t ∈ T, (4.4)

is the power balance on every node of the network. The demand nodes my have some
distributed energy allocated, this decision modifies the parameters in the model.

θt0 = 0, vtg ∈ {0, 1}, P t
g ≥ 0, ENSti ≥ 0, ∀ g ∈ Gt(ξ), ∀t ∈ T. (4.5)

The restriction θt0 = 0 is a reference angle allocated in the node 0 in the system. Sup-
pose that P̂−1

g , v−1
g is given as an initial state for period 0. The production cost function∑

t∈T,g∈G cp
t
g is modeled using a piece-wise linear (approximating a quadratic cost function).

cptg = Agv
t
g +

NLg∑
`=1

Bell,gδ
t
`,g, ∀g ∈ Gt(ξ), ∀t ∈ T, (4.6)
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P t
g =

NLg∑
`=1

δ`(g, t) + Pg, ∀g ∈ Gt(ξ), ∀t ∈ T, (4.7)

δ1(g, t) ≤ T1,g − Pg, ∀g ∈ Gt(ξ), ∀t ∈ T, (4.8)

δ`(g, t) ≤ T`,g − T`−1,g ∀g ∈ Gt(ξ), ` ∈ {2, .., NLg}, ∀t ∈ T, (4.9)

δNLg(g, t) ≤ P̄g − TNLg−1,t, ∀g ∈ Gt(ξ), ∀t ∈ T, (4.10)

δ`(g, t) ≥ 0, ∀g ∈ Gt(ξ) , ` ∈ {1, .., NLg}, ∀t ∈ T. (4.11)

Where Ag = ag + bgPg + cgP2
g. Generation is also modeled here, it has minimum and

maximum capacity generation values per unit. The generation capacity depends on the
scenario realization of some damage on the grid. The generator can not exceed its ramp-up
and -down capacity per period.

Ptgv
t
g ≤ P t

g ≤ P̄ t
g(ξ)v

t
g, ∀g ∈ Gt(ξ), ∀t ∈ T, (4.12)

P t
g ≤ (P̂ t−1

g +RUg)v
t
g, ∀ g ∈ Gt(ξ), ∀t ∈ T, (4.13)

Pg ≥ (P̂ t−1
g −RDg)v

t
g, ∀ g ∈ Gt(ξ), ∀t ∈ T. (4.14)

4.2 DC Optimal Power Flow

The AC Optimal Power Flow (AC OPF) problem is a non-linear optimization model that
optimizes the flow dispatch in a single period of the energy in a electric grid transmission
and generation system. Given the state of the system in the previous period. The DC OPF
is a linearization (simplification to allow the model to be solved with Mixed Integer Linear
solvers) of the AC-OPF model. The DC OPF MIP is the following:

(DCOPFt) minθti ,f tij ,P t
g ,v

t
g ,ENS

t
i
{
∑

g∈Gt(ξ) cp
t
g +

∑
i∈V ζ

t
iENS

t
i }

s.t. 4.1− 4.14
(4.15)

Here the cost of the energy not supplied ζti is modeled a couple of orders of magnitude
bigger than production. The model incorporates the idea that it is more costly not supplying
energy than assuming extra generation cost.
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4.3 Unit Commitment

The goal of the unit commitment problem is to minimize the total operation cost, which is
defined as the sum of the production cost, the startup cost, and the shutdown cost. The
production cost is typically expressed as a quadratic function of the power output. While
the startup cost could be modeled as a nonlinear (exponential) [35]. The cost production
function is modeled as piece-wise linear convex function, while the start-up cost function is
modeled stair-wise. The shut-down cost of any unit is modeled as constant.

The unit commitment problem can be formulated as in [35]:

min
∑

t∈T,g∈Gt(ξ) cp
t
g + cutg + cdtg +

∑
i∈V,t∈T ζ

t
iENS

t
i

s.t.
(4.16)

4.1− 4.11,

cutg ≥ K`
g(v

t
g −

∑`
n=1 v

t−n
g ) ∀g ∈ G ∀t ∈ T ∀` ∈ {1, .., NDg} (4.17)

cdtj ≥ C̄g(v
t−1
g − vtg) ∀g ∈ G, t ∈ T (4.18)

cdtg, cu
t
g ≥ 0 ∀g ∈ G ∀t ∈ T (4.19)

∑
g∈G P̄

t
g ≥

∑
i∈V dti +Rt ∀t ∈ T (4.20)

Last restriction 4.20 models the reserve requirement of the operator. The generation
segment takes care of ramping up the units, or shutting down them:

P t
g ≤ P̂ t−1

g RUgv
t−1
g + SD(vtg − v̂t−1

g ) + Pg(1− vtg) ∀g ∈ G, ∀t ∈ T. (4.21)

P t
g ≤ P̄gv

t+1
g + SDg(v

t
g − vt+1

g ) ∀g ∈ G, ∀t ∈ T \ {|T |}. (4.22)

P t−1
g − P t

j ≤ RDgv
t
g + SDg(v

t−1
g − vtg) + P̄g(1− vt−1

g ) ∀g ∈ G, ∀t ∈ T. (4.23)

The minimum up-time constraints:
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∑Qg

n=1(1− vng ) = 0 ∀g ∈ G. (4.24)

∑t+UTg−1
n=t vng ≥ UTg(v

t
g − vt−1

g ) ∀g ∈ G, ∀t ∈ {Qg + 1, .., T − UTg + 1} (4.25)

∑|T |
n=t(v

n
g − vtg + vt−1

g ) ≥ 0 ∀g ∈ G, ∀t ∈ {T − UTg + 2, .., T} (4.26)

where Qg = min{|T |, (UTg − U0
g )V 0

g }. Analogously minimum down-time constraints:

∑Lg

n=1 v
n
g = 0 ∀g ∈ G. (4.27)

∑t+DTg−1
n=t (1− vng ) ≥ DTg(v

t−1
g − vtg) ∀g ∈ G, ∀t ∈ {Lg + 1, .., T −DTg + 1} (4.28)

∑|T |
n=t(1− vng + vtg − vt−1

g ) ≥ 0 ∀g ∈ G, ∀t ∈ {T −DTg + 2, .., T} (4.29)

where Lg = min{|T |, (DTg − S0
g )(1− V 0

g )}.

The zj, j ∈ O, parameter is considered in the next Chapter 5, where we introduce the
earthquake and damage distribution modeling.
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Chapter 5

Earthquakes and Fragility Curves

In this chapter we describe the models of uncertainty that represent the HILP events that
affect the power system. The uncertainty is caused by the occurrence of earthquakes and the
subsequent failure of network components according to given fragility curves. The scenario
realization of parameters that affect the model considered in Chapter 4 are:

• the intensity and positioning earthquake parameter realization (ψ),
• the damage realization on the components (δ(ψ)) modeling.

The realization of the random vector of parameters above determines ξ = (ψ, δ(ξ)), the
scenario, which yields the values of P̄ t

g(ξ), the maximum available capacity of generation of
a specific generation unit g ∈ G, and the available lines E(ξ).

5.1 Spatial Distribution and Intensity Distribution

The earthquake model provides uncertainty in its spatial-probability distribution and in
its intensity distribution. We use a simplified model for the earthquake distribution . The
important property of this distribution is that is continuous, providing the simulator infinitely
many scenarios from where to sample.

The location of the earthquake is modeled using some fixed points in the map (say `
points), then one is picked randomly and then perturbed to move around within a certain
radius, the resultant point is the epicenter sampled. Each of these ` points are associated
with different earthquakes parameters of intensities. For the experiments we consider ` = 3
(north, center and south, see Table 7.22 in the Appendix).

Algorithm 9 presents the pseudo code of the scenario parameters generation in the simu-
lation. Its features are further described in the following sub-sections. The code first samples
an epicenter and intensity value, then according to these parameters it calculates the peak
ground acceleration (PGA) in every location where there are components of the system. The
PGA allows to compute thresholds that determine the probability of system’s components to
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operate at a certain capacity level. The pseudo code returns the level of operation capacity
of generating units and a boolean parameter for every line indicating if it fail.

5.2 Fragility Curves and Components Failures

For the lines failure modeling, we assumed that they would fail following some fixed proba-
bility (reliability model). It simplifies its behavior by throwing a charged coin that yields it
operand state (true-false). In the case of substations and generators failures, their operation
capacity will follow some states that occur according a random distribution ruled by fragility
curves (resiliency model). This sates could be minor (or slight, 95% operand), moderate
(60% operand), extensive (30% operand) or complete (0% operand), the percentage of oper-
ation capacity makes sense in this framework since after a seismic event a power plant that
is composed of more than one generation unit might have just a portion of the units out of
service, the power plant will be able to work at a degraded maximum generation capacity.

As pointed out in [10], the concept of Fragility Curves has origins as a structural reliability
concept ([24], [5]). Is a useful tool for a stand-alone analysis of each component. Fragility
curves are lognormal distribution functions that describe the probability of reaching, or ex-
ceeding, structural and nonstructural damage states, given median estimates obtained from
real data of damage of hazards. For the fragility curves parameters see Appendix 7.21, every
component that can fail due to the ground acceleration has two pairs of lognormal distribu-
tion parameters for every damage state. The first pair are used when variable zj = 0 (j ∈ O,
see Table 4.1, this is when bus has regular seismic norm), the second pair are used when
zj = 1 (there is strengthened seismic norm).

The fragility curves of the component characterizes the probabilities of being in the differ-
ent states, are explained in Figure 5.1. In the x-axis the PGA is plotted, and it represents the
intensity of the earthquake at the surface of a given point in the map. The PGA parameter
is calculated from the following equation

PGA(r, h,M) =
e−2.73 log(r+1.58 exp(0.608∗M))e6.36+1.76∗M+0.00916∗h

980.665

whereM is an intensity magnitude in the Gutenberg-Richter scale, it also depends on the spe-
cific position in the map (x, y). The Hypocenter is (ex, ey, h), and r =

√
(ex− x)2 + (ey − y)2.

The result is divided in 980.665 to have the result in units of g (1g = 980.665[gals]). The
first term in the exponential above is called attenuation. The second is the magnitude at the
surface.
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Algorithm 9 Scenario Generation lfr = 5%, Rmax = 150[Km], (li, ui) = (8.0, 9.0)

Require: Fragility curves parameter for lognormal functions for the buses
((µds

b , (σ
ds
b )2)) and for the generating units ((µds

g , (σ
ds
g )2)) for every ds ∈

{complete,extensive ,moderate,minor} damage state, percentage of available (αds)
capacity for every given damage state ds for the buses and (βds) for generating units, `
points that will act as epicenter points (with coordinates (xi, yi) see Table 7.22), for each
point i ∈ {1, .., `} upper and lower bounds (li, ui) for the intensity of an earthquake, and
maximum radius Rmax.

1: Sample an epicenter mean i ∈ {1, .., n}. // First ψ is generated.
2: Sample r ∼ unif [0, Rmax] and θ ∼ unif [0, 2π] and let e = (r cos(θ), r sin(θ)) + (xi, yi).

Sample an intensity realization Ii ∼ unif [li, ui).
3: for j ∈ V do
4: Calculate PGA in the bus in node j, PGAj, use it to calculate the value of its proba-

bility of causing any damage state. Generate a random seed p ∼ unif(0, 1), the next
for statement is done in the order presented.

5: for ds ∈ {complete,extensive ,moderate,minor} do
6: Let q = φ(

log(PGAj)−mudsb
σds
b

), where φ() is the probability distribution function of a
standard normal random variable.

7: if p ≤ q then
8: Let γt1j = αds ∀t ∈ {0, .., tr − 1} and equal 1 for t ∈ {tr, .., T}.
9: Break

10: for g ∈ G do
11: Calculate PGA in the bus in node j(g), PGAj(g). Generate a random seed p ∼

unif(0, 1), the next for statement is done in the order presented.
12: for ds ∈ {complete, extensive,moderate,minor} do
13: Let q = φ(

log(PGAj(g))−mudsg
σds
g

), where φ() is the probability distribution function of a
standard normal random variable.

14: if p ≤ q then
15: Let γt2g = βds ∀t ∈ {0, .., tr − 1} and equal 1 for t ∈ {tr, .., T}.
16: Break
17: Let P̄ t

g(ξ) = P̄g min{γt1j(g), γt2g}. If some P̄ t
g(ξ) is 0 take them out of the set G to form

G(ξ)0. Let E(x, ξ)0 = E.
18: for t in T do
19: for e ∈ E do
20: Generate a random seed p ∼ unif(0, 1).
21: if p ≤ lfr then
22: E(x, ξ)t = E(x, ξ)t−1 \ {e}.
23: Add back to the set E(x, ξ)t lines that met their recovery time.
24: return ([P̄ t

g(ξ), E(x, ξ)t]g∈G,t∈T , ξ)
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Figure 5.1: Given the PGA in the x-axis, the probability of being in a certain state is the
difference between the curve and the curve below it. There is also a no-damage state, whose
probability is the difference between 1 and the curve above all the others (minor state curve).
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Chapter 6

Combined Framework

Here we present the big picture of how the settings presented in previous chapters are com-
bined, for both the reliability and the resiliency models. We use ISC for trying to find a
good feasible solution for these problems instances. In addition, two different procedures
are performed and compared. The first estimates the SAA problem 2.3 viewed in chapter 2,
fixing some of the uncertainty given by the earthquake distribution (ψ) at the beginning of
the optimization (performing many optimizations). The second procedure lets all the uncer-
tainty available (full uncertainty - FU) to be sampled in each simulation. Here, the model to
solve is:

min {µ(x)}
s.t x ∈ Ω

where the calculation of the function µ(x) and the set Ω is framework (reliability-resiliency)
specific.

6.1 Reliability Model

This model consist in the simulation process of the system operation with inner failures not
caused by external shock hazards. The simulation represents how the operator would work
under abnormal conditions, that the system should have been prepared to account for, given
some components failure rates, within a time horizon. At the beginning of the simulation
we obtain a plan by solving the UC dispatch planning model, which assumes no failure
of components. We also let the system to protect itself against some uncertainty allowing
some reserve allocated in aggregated production capacity (see restriction 4.20 of the UC
model). In the course of the operation the system’s components that fail are recovered on
the following time periods until some recovery time is meet (it could be either deterministic
or modeled as a random variable). Provided the strategic planning of the UC, a sequence
{(DC-OPF )t}t∈T of models represents each time period separately. Due to the inner failures
of the components the sequence of models may deviate from UC dispatch plan. The DC-OPF
sequence is constrained to follow the decision of which units are on and which units are off
of the UC solution. The maximum energy available from a unit when is turned on is given
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by constraint Equation 4.13. In which we let the unit provide energy the same period that
is turned on.

Algorithm 10 The Sequential Montecarlo (SMC) procedure for Reliability
Model
Require: The topology of the system x ∈ Ω.
1: Solve the UC given the topology of the system in the scope of the plan horizon T and

assuming no failures.
2: Let ENS = 0.
3: for t ∈ T do
4: Generate a failure scenario for the t-th period.
5: Solve (DC-OPF ) using model 4.15.
6: Retreat

∑
i∈V ENS

t
i and sum it to ENS term.

7: return ENS

In the reliability framework we consider the decision of building new lines:

Ω(budget) = {x ∈ {0, 1}n|
n∑

i=1

xi ≤ budget}. (6.1)

Function F (x, ξ) is described in algorithm 10. ISC is used to find optimal solution for this
problem. We do not consider the SAA framework in this optimization procedure, therefore
all the uncertainty is available to be sampled on every simulation. The only components
allowed to fail are the lines, and both original lines in the system and the ones added by the
solution fail with the same rate.

6.2 Resiliency Model

This model approximates the behavior of the system operator under initial state damage
conditions caused by an external shock. Here we do not incorporate the reliability point of
view of the previous section (this combination is left proposed for further work). A first plan
is done by a UC model, assuming no failures (nor inner, nor shocks), and letting some reserve
capacity, as in restriction 4.20. The last period constraints can be design to meet some initial
set of the state of the system, or to be the initial condition for the first period variables. A
demand period is sampled randomly, let it be trandom, in which an earthquake occurs. The
earthquake carries some damage to the grid, causing it to operate in some percentage of its
capacity. Given by the fragility curves model in Chapter 5. The optimization is performed
for the following T periods after trandom. We assume the system recovers with deterministic
recovery times, and a new plan is obtained considering the new availability. The initial
conditions are state of the system at time trandom. The output of the simulation is the sum
of the unsupplied demands through the time periods in the second UC.

The decisions allowed are to buil new lines, to add anchored seismic norm to the buses
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and/or to add distributed generation capacity to the buses. The feasible solution set is

Ω(budget) = {(w, y, z) ∈ {0, 1}p+q×Zr|
p∑

i=1

wi+

q∑
j=1

yj+
r∑

k=1

zk ≤ budget, 0 ≤ zk ≤ 10 ∀k ∈ {1, .., r}},

(6.2)
where x represent the decision of building new lines, y represent the decision of anchoring
buses (q = |V |). z is an integer number between 0 and 10 that represents a zk × 10% of
distributed generation capacity with respect to the peak demand in node k ∈ D (where
k is such that it represents a demand node D ⊆ V ). Both the full uncertainty (FU) and
the SAA evaluation function are shown in Algorithm 11, the value returned is the sum of
the ENS given by the UC model plus the ENS of the demand that cannot connect to the
system due to the shock damage in the load bars. The difference between the SAA and
the FU is in the earthquake scenario sampling (ψ). For the FU, ψ is sampled from all its
support, for each simulation one new sample of ψ is obtained. On the other hand, every
SAA evaluation requires simulating the n scenarios fixed {psi1, .., ψn} from which we obtain
the average of the system performance. This follows the same idea presented in Chapter 2.3,
the scenarios have to be sampled using the original probability distribution. In the case of
earthquakes, sampling them from the fixed n-sized population with probability 1

n
imitates the

distribution, (scenarios are independent and identically distributed). In the SAA, instead of
sampling scenarios with probability 1

n
we evaluate all of them, the simulator function yields

the average through all scenarios. This is,
∑

ξ∈{ξ1,..,ξn}
1
n
F (x, ξ) to evaluate a simulation of

the performance of x in Algorithm 11.

Algorithm 11 The Sequential Montecarlo (SMC) procedure for Resiliency
Model
Require: The topology of the system x ∈ Ω.
1: Solve the UC given the topology of the system in the scope of the plan horizon T .
2: Sample an earthquake scenario given by ψ ∈ Ψ(x) (the support of the parameters that

describe the occurrence of a certain earthquake with certain characteristics, and time
period). Then obtain the realization of the damage in the grid δ(ψ(x)).

3: Solve a UC using the new damaged and an on-recovery topology. Let [ENSti ]i∈V, t∈T be
the energy not supplied of the optimal solution (or near by optimal).

4: return ENS(x, ξ = (ψ, δ(ψ))) =
∑

i∈V,t∈T ENS
t
i + dti − dti(ξ)

6.3 Combined Aspects

One may wonder why not fixing before optimization the seeds used to sample the damage
on the grid (as we did with the earthquake distribution). In notation, we fix some set
of scenarios ξ1, .., ξn = δ1(ψ1), .., δn(ψn), and use these scenarios to build the SAA objective
function in problem 2.3. The resulting problem is a deterministic model in which we minimize
1
n

∑n
i=1 F (x, ξi) by selecting x. Note that the polyhedral function F (x, ξi) is a deterministic

MIP with an exact solution. The problem of this approach is that size of the deterministic
equivalent model (DEM) grows rapidly with the number of scenarios. Suppose the dimension
of the decision variables in problem embedded in F (x, ξi) is bounded below by an integer d.
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Therefore the DEM is bounded below by n × d. Now, as shown in next section, average
performance of the first stage decisions stabilizes in around 6,000 evaluations, which would
mean that we would have to solve a model with 6, 000 × d variables to obtain an exact
solution.

The SAA setting requires an optimization procedure that gives the true exact optimum of
problem 2.3. ISC is not able to provide this guarantee, since is heuristic. The only guaranties
that ISC is able to provide are asymptotic (in the sense of running infinitely many times the
algorithm). The SAA combined framework inherits this guaranties, therefore equation 2.4
is not granted. The results in the following section show unvalid lower bounds, that do not
guarantee to be a lower bound of the true optimum of problem 2.2.

In order to validate the results for the SAA framework, the ISC results are compared with
the results obtained using complete enumeration (CE) for a small instance.

After performing m = 10 optimizations for the SAA framework, all solutions reported as
candidates are further evaluated 6,000 times and sort increasingly in a ranking, whose first
solution in the list is selected as candidate solution x̄. In order to calculate the upper bound
of the SAA we use Equation 2.3. This candidate solution is compared with the best candidate
solution obtained by performing m optimizations in the full uncertainty framework and then
giving 6,000 evaluations for each of the solutions reported. This is done to obatin a fair
comparisson between the FU and the SAA. Throughout all the experiments involving SAA,
we use n = 20 for the number of scenarios fixed before each of the m = 10 optimizations. Is
important to note that as each evaluation of the SAA requires n simulations, the evaluation
budget assigned to a SAA experiment in the ISC framework should be proportional to 1

n
of

the budget assigned to a FU experiment (for the same instance).
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Chapter 7

Results and Analysis

Four different experiments settings are considered. Three of them were already mentioned in
the previous sections. The one not previously mentioned, aims to validate the correct imple-
mentation of the ISC. It shows how the main features of ISC allow finding good solutions.
Each evaluation is easily done in the first experiment setting, which permits to allocate a
large number of evaluations to every newly sampled solution. The other three experimental
settings are:

• the reliability framework with full uncertainty (FU) available to be sampled in each
simulation,
• the resiliency framework with full uncertainty available within the simulator,
• and the fixing-uncertainty-before-optimizing (SAA) for the Resiliency framework set-

ting.

The three settings are compared with the solution of the complete enumeration (CE) of all
solutions for the budget = 1 instance, in order to validate the algorithm for the resolution of
this problem.

This chapter concludes that ISC gives more robust solutions when using a SAA method-
ology to represent the earthquake uncertainty. Then we show that the SAA lower bounds
obtained when solving the instances with ISC are unvalid, since ISC is a heuristic procedure.
The result was expected, as discussed in Section 6.3. The SAA needs guarantees for conver-
gence to the optimum of problem 2.3. These guarantees are not provided by ISC, but they
are provided by the CE approach. The results discussed here also include the CE combined
with the SAA (CE-SAA), illustrating how the ISC-SAA obtains unvalid lower bounds.

Table 7.1 presents the hardware used to run each experiment. FU stands for Full Un-
certainty allowed to be sampled in each simulation. SAA stands for the Sample Average
Approximation.
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Problem Instance Num. Exp. Machine
Optimal queue capac-
ity allocation

- 6 Samsung NP870Z5G-X01CL, In-
tel i7, 2.4 GHz processor, 8GB of
RAM

Reliability budget = 1, 3 11 Leftraru Node HP ProLiant
SL230s Gen8, two Intel Xeon
E5-2660, 20 cores, 48 GB of
RAM

Resiliency FU-SAA,
ISC-FE

budget = 1, 4, 7 71 Leftraru Node HP ProLiant
SL230s Gen8, two Intel Xeon
E5-2660, 20 cores, 48 GB of
RAM

Table 7.1: Experiments done and hardware used to run them.
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Figure 7.1: Flow diagram Queue Capacity Allocation problem

7.1 Validating ISC: The optimal queue capacity alloca-
tion

Now we present a different simulation via optimization problem, and present results that
validate the implementation of the algorithm described in Chapter 3. A three-stage flow line
(see Figure 7.1) has finite buffer storage space in front of stations 2 and 3 (the number of
spaces in the buffers are denoted by x4 and x5 respectively) and an infinite number of jobs
in front of station 1. There is a single server at each station. The service time distribution
at station i has service rate xi (assuming exponentially distributed time between attentions),
i = 1, 2, 3. If the buffer of station i is full, then station i − 1 is blocked and a finished job
cannot be released from station i−1. The total buffer space and the service rates are limited
by constraints on space and cost. The objective is to find a buffer allocation and service
rates such that the expected throughput over a 1,000 periods planning horizon is maximized.
Given an arrival rate λ = 10arrivals

period , we assume that the times between arrivals distributes
exp(λ). The deterministic constraints are x1 + x2 + x3 ≤ 20, x4 + x5 = 20, 1 ≤ xi ≤ 20
and xi ∈ Z+ for i = 1, 2, ..., 5, implying 21,660 feasible solutions of capacity allocation. The
problem is to decide which is the optimum configuration in order to maximize the Flow-Line
Throughput rate µ(x) [11]. The optimal solutions are (6, 7, 7, 12, 8) and (7, 7, 6, 8, 12) with
an expected throughput of 5776. Throughput should be estimated after the first 2000 units
have been produced (see [28]).

ISC experiment was ran 6 times, on which every run reported a single solution that
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Stage-run Solution Throughput CV N
NGA-1 [5, 7, 6, 4, 16] 4699 0.013 40

COMPASS-1 [6, 7, 7, 12, 8] 5779 0.010 955
R&S-1 [6, 7, 7, 12, 8] 5779 0.010 955
R&S-2 [7, 7, 6, 8, 12] 5779 0.010 1119
R&S-3 [6, 7, 7, 12, 8] 5777 0.010 952
R&S-4 [7, 7, 6, 8, 12] 5778 0.010 892
R&S-5 [7, 7, 6, 8, 12] 5775 0.010 1116
R&S-6 [6, 7, 7, 12, 8] 5775 0.010 766

Table 7.2: Results experiment ISC. Average solution time 8.86 minutes.

belonged to the optimal set. Table 7.2 shows the solutions reported after every step of
the ISC first run, then it shows the results of the rest of runs. The parameters used to
set the heuristic are presented in Table 7.3, note that the confidence and the indifference
zone parameters (α’s and δ’s) are set to make each transition step with high precision, this
makes the heuristic spend a higher effort on every stage, and explains why every run got
a global optimum. On every run the procedure is able to obtain a single solution without
having to use the R&S step, the main cause is that in every NGA run a single solution is
reported, thereafter this solution is improve locally (were we observe the procedure obtains
a local minimum), then, as there is only one solution there is no need for more comparisons.
This experiment is useful to validate the first two stages of the procedure, since it is able to
replicate results of [28] for a different algorithm.

7.2 14 Busbar Case Study IEEE

Table 7.4 introduces some acronyms nomenclature used in this chapter. We consider the 14
busbar case study of IEEE, see [7], see Figure 7.2 for a diagram. Every line in the system
has assigned 100[MW] of capacity and its original impedance value (the official case did not
contain buses locations, the admittance value used is arbitrary). We give locations to the
buses for the earthquakes, and these are presented in Table 7.19, euclidean distance between
coordinates are in kilometers. The peak demand and generation capacity on each node is
presented in Table 7.5. Generation capacity installed in bus 1 represents 43% of the offer and
36% of the demand is in bus 3. We consider trandom of Chapter 6 set to 0 (which is the peak
demand in the system). The probability of line failures is fixed at 5% and the restoration
times for every component are deterministic and presented in Table 7.20 in the Appendix.

7.3 Improving Power System Reliability

The experiments for this setting consider the feasible region in Equation 6.1 with budget = 1
and 3. For the problem instance in which budget = 1, a complete enumeration scheme permits
to find its global optimum (if the number of replications is large enough). The experiment
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Parameter Queue cap. alloc.
TT 2
mG 150
n0 40
N0 40
TG 3
gm 3

αP (NGA) 0.05
δG (NGA) 10.0
αG (NGA) 0.05

αL (COMPASS) 0.05
δL (COMPASS) 10.0
αC (R&S) 0.05
δC (R&S) 10.0

η 1.5
M 20

Budget NGA 20000
km 10

nonuniform True
elitism True

Constraint placement False
MSSP True

Sort and Iterative Screen True
K 20

Table 7.3: Set values for ISC parameters validation experiment.

Notation Meaning
CL Case Line(s)
NL New Line(s)
SB Seismic Bus(es)
ADC Added Distributed Capacity in bus(es)
AENS Average Performance ENS
N Number Evaluations
CV Coefficient of Variation

Table 7.4: Nomenclature used in tables’ headers.
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Figure 7.2: Base case diagram.

Bus Demand Generation
1 0 332.4
2 21.7 140
3 94.2 100
4 47.8 0
5 7.6 0
6 11.2 100
7 0 0
8 0 100
9 29.5 0
10 9 0
11 3.5 0
12 6.1 0
13 13.5 0
14 14.9 0

Table 7.5: Peak demand and generation capacity allocated on each bar.
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allows to illustrate how well the ISC performs by identifying how it finds the top ranked
solutions of the CE (Complete Enumeration). For the budget = 3 experiment, only the ISC
framework is used for optimizing, and the results are presented for a single optimization. The
reliability evaluation function is Algorithm 10.

Table 7.6 presents the parameters used to solve each instance.

Parameter budget = 1 budget = 3
mG 35 100
M 10 35

δL (COMPASS) 10[MWh] 1[MWh]
δC (R&S) 10[MWh] 1[MWh]

TT 3 3
n0 50 50
N0 50 50
TG 3 3
gm 10 10

αP (NGA) 0.05 0.05
δG (NGA) 10[MWh] 10[MWh]
αG (NGA) 0.05 0.05

αL (COMPASS) 0.05 0.05
αC (R&S) 0.05 0.05

η 1.5 1.5
Budget NGA 20000 20000

km 5 5
nonuniform False False

elitism True True
Constraint placement False False

MSSP True True
Sort and Iterative Screen True True

K 10 10

Table 7.6: Parameter Settings for Reliability setting. Note the first four parameters are
different among the instances.

7.3.1 Results

Table 7.7 present a summary of the full ranking of solutions for the budget = 1 instance. Table
7.8 presents the effort spent to solve the instance of budget = 1 and each of the solutions
obtained using ISC. For the 10 ISC’s runs, the average solution time is 3.67 minutes using
an average of 11991.9 evaluations. Table 7.9 presents the averages of this efforts and is
compared with a single run of a CE scheme. The CE evaluates 2000 times each solution and
then compares all-against-all, spending approximately eleven times more effort than the ISC
on average. For the CE to spend as much as the ISC in computational evaluation budget, it
would have to approximately give 200 evaluations to each solution, for this instance. The line
(1, 14) does not appears in the set of optimum solutions for ISC experiments, best solution
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ISC reports according to the CE is line (5,14) (top 3), however note that these solutions are
not statistically different. The ISC finds the top 10 solutions in the CE ranking in 10 different
runs of the same instance. When comparing times and number of evaluations in Table 7.9
is easy to note that ISC spends less resources than the CE. For the budget = 3 instance,
Tables 7.10 and 7.11 present the results. Most of the simulation effort is used in the local
stage (COMPASS), as in all the “large” instances in this dissertation, and every stage meets
the transition rule with solution ((3, 10),(10, 14),(12, 14)). ISC seems to find patterns that
contain 30% of solutions founded in the CE. For the budget = 3 instance the solution ENS
coefficient of variation value is 1.310.

We observe that the UC does not commit units in buses 6 and 8 to be turned on, therefore,
the sequence of DC-OPF’s have to make the dispatch by generating capacity in buses 1,2 and
3. Since the system is not prepared to face lines failures, by making bus 14 better connected
the system gains more redundancy on available paths for the flow of electricity. As the lines
fail in the sequence of periods, the north of the system gets isolated from the supply in the
south, hence adding lines that connect the generation (whose main source is bus 1) with a
central node in the demand side (bus 14) seems to be a very good solution. When the budget
to construct lines increases line (12,14) is added, clearly to use the direct source coming from
bus 1, then line (3,10) is added, again to connect directly supply and demand. Note that the
worst solution is adding line (1,8), in fact lines (2,8), (5,8), (2,6), (1,6) and (1,3) also appear
in the bottom of the ranking, these lines are redundant (very similar as not adding new lines)
because the system has enough capacity to provide energy to buses 3,6 and 8 from 1 and 2.

Rank. NL AENS CV N
1 1, 14 97.7 0.883 2000
2 6, 14 98.0 0.907 2000
3 5, 14 100.0 0.890 2000
4 10, 14 101.0 1.040 2000
5 2, 14 101.3 0.882 2000
... ... ... ... ...
70 2, 8 145.7 0.807 2000
71 () 148.1 0.817 2000
72 1, 8 149.3 0.826 2000

Table 7.7: Results of Full Enumeration for Reliability framework. () means no new lines.
Total Time: 33.7 Minutes.
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Total Time [min] Total N Solution Value N RankCE.
5.12 18045 4, 14 100.7 2288 10
4.89 15919 10, 13 98.2 884 6
8.23 25357 10, 13 99.5 2627 6
3.09 10212 5, 14 96.2 1909 3
2.22 7064 10, 13 96.1 465 6
0.76 2758 5, 14 73.0 54 3
3.00 9219 11, 14 99.8 765 8
1.37 4729 2, 14 99.3 2013 5
5.22 17375 10, 13 98.1 2000 6
2.82 9241 11, 14 102.6 2121 8

Table 7.8: Performances for instance budget = 1, ISC, reliability. () means no new lines.

Full Enumeration ISC
Time [min] 33.70 3.67
Num. Eval. 144000 11991.9

Table 7.9: Comparison between Full Enumeration and COMPASS for Reliability framework
budget = 1. ISC average results for 10 runs.

Stage NL AENS N
NGA (3, 10),(10, 14),(12, 14) 39.9 50

COMPASS (3, 10),(10, 14),(12, 14) 50.0 229906
R&S (3, 10),(10, 14),(12, 14) 50.0 229906

Table 7.10: Instance budget = 3. Solutions obtained in each stage of the ISC procedure.
NGA COMPASS R&S Total

Time[min] 2.15 45.94 0.0 48.09
Evaluations 9750 237523 0 247273

Table 7.11: Instance budget = 3. Effort spent.

7.4 Improving Power System Resiliency: FU and SAA

As in the reliability approach above, consider the feasible region 6.2. The ISC setting is
compared with the CE approach for budget = 1. For budget=4,7 results are obtained only
for ISC.

The ISC’s parameters are set with the same parameters for both full uncertainty (FU)
and SAA frameworks. As explained in section 6.3, the budget of the NGA and initial number
of evaluations in SAA are set in a proportion of n = 20 with respect to the FU. Since 20
scenarios are fixed in the SAA, therefore a single evaluation requires 20 simulations for every
solution. This technique allow to lower variance for small number of samples. For budget = 1
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Parameter budget = 4, 7 FU budget = 4, 7 SAA budget = 1 FU budget = 1 SAA
mG 130 130 35 35
n0 80 4 100 5
N0 80 4 100 5
Budget NGA 20000 1000 40000 2000
M 40 40 10 10
km 5 5 3 3
δL (COMPASS) 0.004 0.004 0.001 0.001
δC (R&S) 0.004 0.004 0.001 0.001
nonuniform True True False False
TT 2 2 2 2
TG 3 3 3 3
gm 10 10 10 10
αP (NGA) 0.1 0.1 0.1 0.1
δG (NGA) 0.001 0.001 0.001 0.001
αG (NGA) 0.1 0.1 0.1 0.1
αL (COMPASS) 0.1 0.1 0.1 0.1
αC (R&S) 0.1 0.1 0.1 0.1
η 1.5 1.5 1.5 1.5
elitism True True True True
Constraint
placement

False False False False

MSSP True True True True
Sort and Itera-
tive Screen

True True True True

K 10 10 10 10

Table 7.12: Parameter Settings for ISC experiments. First 8 parameters are different between
instances.

the full uncertainty framework ISC is done 10 times (the same amount of optimizations done
in the SAA framework), in order to give a fair comparison of the solutions reported and the
execution times between the frameworks.

Table 7.12 presents parameters used in the ISC settings for this section. Values δ are set
as a fraction of the maximum energy that can be not supplied, i.e., the sum of all demands
in the system through all periods and through all demand bars set D ⊆ V .

7.4.1 Results

Table 7.13 presents the true ranking obtained by the CE approach for the budget = 1 instance.
A summary of the results obtained for the CE-FU and the CE-SAA is presented in Table
7.14. A summary of the results in detail shown in Appendix Tables 7.23 to 7.40, that contain
solutions reported by each run, how they performed at the final SAA 6,000 evaluations, and
detail of each run time solution performance, is presented in Tables 7.15, 7.17 and 7.18.
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SAA found more robust solutions than the FU, for the same parameters and number of
runs. The results show that solutions performance have more variance in the FU than in the
SAA. Solutions obtained by both approaches are not statistically different for budget = 1, 4
instances, in the case of budget = 7 instance ISC-SAA gave better solutions, statistically
speaking. Time performance grows faster when using SAA, with respect to the instance size.
For budget = 1 performance is better with the SAA. For budget = 4 time performance is
similar in the different approaches. And for budget = 7 time performance is better for the
FU.

budget 1 Complete Enumeration (CE)

The procedure was ran a single time for the FU and ten times for the SAA. Note from
Table 7.13 that solutions are very near between each other, having approximately a 50%
of coefficient of variation. The objective function is flat between solutions and there is one
single global optimum that differentiates from the rest. For the FU optimization the “true”
ranking is presented and the “true” optimum is revealed to be adding seismic norm (SB) to
bus number 3. This bus is critical since most of the demand is allocated there.

In each of the ten optimizations the SAA the results of CE yield the same solution, but
with different values (see table 7.14). The results of SAA setting are presented in Table 7.15.
Our experiments results present similar rankings between the different optimizations done in
the SAA for this instance, this suggests that with 20 scenarios fixed at the beginning we are
representing well enough the earthquake uncertainty for budget = 1.

budget 1 ISC

For this instance FU and SAA are compared by giving both approaches the same amount
of optimizations (10 optimizations). For these instance, ISC works better with the SAA
framework, it get less percentage of wrong answers (considering bus 3, the correct answer),
as presented in Tables 7.23 and 7.24 in the appendix. The SAA framework improves ISC
time results, for this instance, apparently by stabilizing the uncertainty and lowering the
variation of the performance. The SAA allows to the algorithm to identify easier the better
solutions, when enough representative scenarios are sampled in every optimization. In the
case of instance budget = 1 SAA used less computational simulation effort than the FU to
terminate ISC. The average solution time and the number of evaluations of the runs are
presented in Tables 7.17 and 7.18 for the FU and the SAA. The lower bound obtained is
shown to be unvalid by Table 7.15. As expected since the CE is able to provide the global
optimum for each of the SAA optimizations. The bounds of the solutions obtained by FU
(and SAA) are presented in Table 7.25 (and 7.26), in the Appendix. The results lead to the
conclusion that, individually comparing solutions, neither of both approaches yield better
solutions. The bounds overlap for both of the bests solutions of the approaches.
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Rank. NL SB ADC AENS N CV 5%Q 95%Q
1 3 245.9 2000 0.504 241.3 250.5
2 9 260.5 2000 0.537 255.4 265.6
3 4 260.8 2000 0.498 256 265.6
4 8, 13 264.6 2000 0.51 259.6 269.6
5 9,10.0% 264.6 2000 0.514 259.6 269.6
6 5, 14 264.7 2000 0.511 259.7 269.7
7 14 265 2000 0.541 259.7 270.3
8 2 265.9 2000 0.515 260.9 270.9
9 1, 14 266.3 2000 0.505 261.4 271.2
10 5, 10 266.4 2000 0.514 261.4 271.4
11 7, 14 266.5 2000 0.51 261.5 271.5
12 2, 13 267.3 2000 0.506 262.3 272.3
13 5, 9 267.4 2000 0.51 262.4 272.4
14 3, 12 267.5 2000 0.504 262.5 272.5
15 4,10.0% 267.7 2000 0.509 262.7 272.7
16 11 267.8 2000 0.525 262.6 273
17 6 268.5 2000 0.52 263.4 273.6
... ... ... ... ... ... ... ... ...
95 1, 8 278 2000 0.518 272.7 283.3
96 8, 11 278.5 2000 0.525 273.1 283.9
97 2, 11 280.4 2000 0.505 275.2 285.6

Table 7.13: Full Enumeration for FU framework

Framework SB Time [min] AENS CV N
FU 3 72.6 245.9 0.503 2000

SAA 1 3 76.7 265.9 0.066 100
SAA 2 3 73.8 263.6 0.073 100
SAA 3 3 72.9 248.8 0.067 100
SAA 4 3 79.6 199.9 0.065 100
SAA 5 3 73.8 233.3 0.067 100
SAA 6 3 73.9 240.2 0.069 100
SAA 7 3 72.4 257.9 0.081 100
SAA 8 3 72.2 233.4 0.082 100
SAA 9 3 71.1 236.8 0.067 100
SAA 10 3 73.5 267.4 0.079 100

Table 7.14: Results of FU and SAA for the Full Enumeration of all solutions solving scheme.
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Method NL SB ADC AENS N LB UB
CE-FU-b1 3 245.9 2000 - -
CE-SAA-b1 3 244.2 2000 230.1 250.7
ISC-FU-b1 3 247.0 6000 - -
ISC-SAA-b1 3 245.3 6000 265.5∗ 248.5
ISC-FU-b4 ((5, 9)) 3, 4, 6 224.6 6000 - -
ISC-SAA-b4 ((6, 10)) 2, 3, 9 225.5 6000 225.4∗ 228.4
ISC-FU-b7 2, 3, 4, 9 (2, 10.0%), (4, 10.0%) 202.5 6000 - -
ISC-SAA-b7 3, 4, 9 (2, 30.0%), (4, 10.0%) 194.3 6000 189.0∗ 196.5

Table 7.15: Results of SAA and FU for ISC for all instances and for CE in instance budget = 1,
this table summarizes the results of Appendix 7.23 to 7.40. Values with * are unvalid lower
bounds.

It is no that big surprise that reinforcing bus 3 is an optimal decision. As noticed in
table 7.5 it has 36% of the demand of the system, therefore if the bus fails, then the in-
frastructure of the distribution part of the system can only supply a level of the demand
(leaving the rest unsupplied, see Algorithm 11). Note that bus 3 almost supplies itself, so by
strengthening that bus the resiliency of 36% of the demand of the system increases directly.
The more connected components in the system are buses 2, 4, 5, 6, 9, (see Table 7.16), now
note that all the decisions involving strengthening these buses are almost indistinguishable
similar (see Table 7.13). Our results indicate also that we cannot conclude that reinforcing
demand distribution against seismic events is better than adding 10% distributed generation,
as confidence intervals in Table 7.13 overlap. Almost every new line addition, shown in Table
7.13, sees to connect generation with demand directly, one has to be careful here, since the
failures of lines are not incorporated in this framework, if we take the reliability aspect into
account, the new lines solutions reported may not be as good. On other hand many of the
solutions considering seismic buses and distributed generation capacity probably will remain
invariant to consider lines failures, because some of them help to decrease ENS directly.

For the budget=4 instance, Table 7.29 (resp. 7.30), in the Appendix, presents the results
in detail of 10 optimizations done for FU-inside the simulator (resp. SAA). In these instance
the results of the ISC-FU and the ISC-SAA are very similar, though it can be shown that
the ISC-SAA is still able to provide better percentage of “correct answer” (note the ranking
in Table 7.13). On other hand, Tables 7.17 and 7.18 show very similar time and evaluation
performance results, for budget = 4. Again, as in the budget = 1 case, lower bound is
proven to be unvalid, see 7.15, since the optimal solution candidate of the SAA yield lower
statistical bound, therefore it could be the case, the performance of that solution to be below
the SAA lower bound. Finally, when comparing solutions individually from each approach,
note that both yield solutions that are not different statistically speaking, this solutions are
both local optimal. Solution of the FU seems to prefer better connecting demand in bus
9 to the system rather than strengthening it as in SAA solution, and prefers to strength
bus 6 instead to connect it more to the rest of the system as in SAA solution. The results
for the budget = 4 are different from the ones obtained for the budget = 7 instance. The
time performance using SAA is worse than the one obtained using FU (see Tables 7.17 and
7.18), still, the quality of results are shown to be more correct in the SAA case and different
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Bus Number connections
1 2
2 4
3 2
4 5
5 4
6 4
7 3
8 1
9 4
10 2
11 2
12 2
13 3
14 2

Table 7.16: Number of lines adjacent to each bus.

Instance T. NGA T. COMPASS T. R&S Total T.
ISC-FU-b1 3.3 47.1 6.3 56.7
ISC-SAA-b1 2.7 9.4 0.6 12.7
ISC-FU-b4 10.0 17.4 0.2 27.7
ISC-SAA-b4 7.9 16.1 0.0 24.0
ISC-FU-b7 9.0 57.5 0.1 66.7
ISC-SAA-b7 8.9 74.0 0.0 83.0

Table 7.17: Solution time of FU optimizations for all instances

Instance N. NGA N. COMPASS N. R&S Total N
ISC-FU-b1 7650 115134.6 16503.7 139288.3
ISC-SAA-b1 1115.9 76.2 0 1192.1
ISC-FU-b4 22088 28082.6 486.9 50657.5
ISC-SAA-b4 869.6 1483.7 0 2353.3
ISC-FU-b7 19448 80611.7 246.7 100306.4
ISC-SAA-b7 902.8 5423.7 0 6326.5

Table 7.18: Evaluation performance of FU optimizations for all instances
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statistically speaking. As shown in Tables 7.37 and 7.38, the first four solutions of the SAA
are better than the best solution of the FU.

The patterns in buses selected to be strengthened seems to be repeated from the other
instances when budget is increased, even for the ADG buses selected ISC seems to be selecting
critical buses in the system. Note, however, that although best solutions for budget = 7
instance do not contain new lines, line (6,10), that appears in table 7.15 for the budget = 4
instance was reported by the procedure in Table 7.38 in the Appendix, for budget = 7. Line
(6,10) could be a good line to add in this setting because it provides an alternate path from
the south to the north of the system, since failure of bus 9 decreases capacity that pass
through that bus, and then to the north of the system by bus 9 side. Although one should
take into account that the conclusions obtained for lines may be incorrect due to the lack
of information of the buses location (that should be related to the lines impedance), this
will not be a problem if we consider the Chilean SING-SIC system, where full information is
available.

7.4.2 Analysis

For these settings, results allow to conclude that fixing uncertainty gives more robust solu-
tions, though it does not yield good confidence intervals. Particularly, when fixing uncertainty
it is necessary to face a trade-off that depends on the instance complexity (remember that
solution time increases faster with instance size for ISC-SAA in this problem). The question
that arises is, what are the different features between the instances that explains why SAA
helps in one setting and not in the other. One of this differences is the amount of com-
putational budget used in the local stage for budget = 1, 4 instances. For the budget = 7
instance, SAA does not help improve solution time performance in the any stage. Therefore
we conclude that it is not always truth that the combined framework helps the heuristic in
terms of solution time. The results obtained show that solutions obtained with ISC-SAA are
more robust that the ones obtained with ISC-FU, this effect is more pronounced in larger
instances. Note that the lower bound obtained for the budget = 1 instance using ISC in
comparison with the FE for the SAA, says something about the performance to obtain good
solutions of the heuristic (of course this is consequence of a strictly positive gap on some runs
of the ISC-SAA). Solutions analysis allows to conclude which are the critical components of
the system and which are its weaknesses, for example, in the 14 bus-bar case study, buses
2, 3, 4, 5, 6 and 9 act as important hubs in the system and the segmentation of supply and
demand together with the fact that generation is cheaper in the south of the system makes
the system less reliable to inner failures.

Note that the results of the reliability and resiliency frameworks are not comparable,
since the source of failures is of different nature. Resilience, although, should also consider
reliability, this may lead to different results regarding the construction of new lines in the
system.
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Conclusions

Perhaps, one of the most important result is that ISC and ISC-SAA are able to provide
solutions for the problem of reliability and resiliency in reasonable time. For both frame-
works proposed there are some instances that seem to work well empirically, in the proposed
optimization frameworks. Even for instances where the objective function is flat and with a
low effect from different solutions. The structural behavior of the problem is an important
feature to be analyzed. In a real case study, for example the Chilean SING-SIC, detection
of this behavior (flat average effect) may lead to revisit the variables in consideration (for
example we may add the decision of increasing capacity of some lines or some generating
buses).

On other hand it seems that the problem behaves like assumed when applying the ISC
heuristic, this is, good performance solutions have good performance neighbors, which allows
the COMPASS stage of the algorithm to improve locally the solutions yielded by NGA
stage. The SAA helps the ISC framework by lowering the uncertainty. We propose to test a
combination of the heuristic local stage with the SAA, by only including it in the local stage.
Under the proposed framework one can not calculate the lower bounds of the SAA to estimate
a theoretical gap for the solution, since at this point the heuristic produces local optimums,
guarantied to be worse or equal to global optimum. The SAA lower bound showed to be
biased in some instances experiments, though this bound can have some utility depending
on the instance and the problem. Time performance show to decrease faster on the instance
for the SAA framework.

One of the models discussed here, approximates the behavior of the system operator under
damaged initial conditions. It does not incorporates the reliability point of view of the model
discussed in Chapter 6. The combination of both allows to add detail to the operating
behavior under simulation. This combination is left proposed for further work. Note that
the results of the reliability and resiliency frameworks are not comparable, since the source
of failures is of different nature. Resilience, although, should also consider reliability, this
may lead to different results regarding the construction of new lines in the system.
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Appendix

7.5 Some of the code implementation

7.5.1 Revised Mix-D (RMD)

1 import random
2
3 de f sample (R, n , x0 ,T) :
4 t=0
5 t t=0
6 xx=
7 f o r i in range (0 , l en ( x0 ) ) :
8 xx . append ( x0 ( i ) )
9 xxx=

10 whi le (True ) :
11 t+=1
12 I = random . rand int (0 , l en ( x0 )−1)
13 b=ca l c u l a t e l b ub j ( xx ,R, I )
14 whi l e b (0 ) == b (1) :
15 I = ( I+1)%len ( x0 )
16 b=ca l c u l a t e l b ub j ( xx ,R, I )
17 try :
18 xx ( I ) =1.0 ∗ random . rand int (b (0 ) ,b (1 ) )
19 i f ( t == T) :
20 xxx . append ( )
21 f o r em in range (0 , l en ( xx ) ) :
22 xxx ( t t ) . append ( xx (em) )
23 t t+=1
24 i f ( t t==n) : break
25 t=0
26 return xxx
27
28 de f c a l c u l a t e l b ub j ( xx ,R, j ) :
29 ub="a"
30 lb=None
31 f o r r in range (0 , l en (R) ) :
32 i f (R( r ) ( j ) < 0 and lb < (1 . 0/R( r ) ( j ) ) ∗(R( r ) ( l en (R( r ) )−1) − sumprod (R( r

) ( 0 : ( l en (R( r ) )−1) ) , xx ) + R( r ) ( j ) ∗xx ( j ) ) ) :
33 lb = math . c e i l ( ( 1 . 0 /R( r ) ( j ) ) ∗(R( r ) ( l en (R( r ) )−1)− sumprod (R( r ) ( 0 : (

l en (R( r ) )−1) ) , xx ) + R( r ) ( j ) ∗xx ( j ) ) )
34 e l i f (R( r ) ( j ) > 0 and ub > (1 . 0/R( r ) ( j ) ) ∗(R( r ) ( l en (R( r ) )−1)− sumprod (R(

r ) ( 0 : ( l en (R( r ) )−1) ) , xx ) + R( r ) ( j ) ∗xx ( j ) ) ) :
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35 ub = math . f l o o r ( ( 1 . 0 /R( r ) ( j ) ) ∗(R( r ) ( l en (R( r ) )−1)− sumprod (R( r ) ( 0 : (
l en (R( r ) )−1) ) , xx ) + R( r ) ( j ) ∗xx ( j ) ) )

36 return ( lb , ub )

7.5.2 Fitness Sharing

1 import math
2
3 de f f s (XX,G, S , n , lnn ,AC) :
4 SS =
5 f o r i in range (0 , l en (XX) ) :
6 SS . append ( ( S( i ) − (math . pow(G( i ) , 2 ) /n( i ) ) ) /(n( i )−1) )
7 f s = range (0 , l en (XX) )
8 f sS = range (0 , l en (XX) )
9 r r =r ( lnn (0 ) ,XX)

10 f o r i in lnn (0 ) :
11 i f G( i ) >= 0 :
12 f s ( i ) = G( i ) ∗ ( l en (AC( i ) )+1) / n( i )
13 f sS ( i ) = SS( i ) ∗ ( l en (AC( i ) )+1)
14 f o r j in AC( i ) :
15 f s ( j ) = G( j ) ∗ ( l en (AC( i ) )+1) /n( j )
16 f sS ( j ) = SS( j ) ∗ ( l en (AC( i ) )+1)
17 e l s e :
18 f s ( i ) = G( i ) / (n( i ) ∗ ( l en (AC( i ) )+1) )
19 f sS ( i ) = SS( i ) / ( l en (AC( i ) )+1)
20 f o r j in AC( i ) :
21 f s ( j ) = G( j ) /(n( j ) ∗ ( l en (AC( i ) )+1) )
22 f sS ( j ) = SS( j ) / ( l en (AC( i ) )+1)
23 f o r i in lnn (1 ) :
24 m=0
25 f o r x in XX:
26 d i j =
27 f o r k in range (0 , l en (x ) ) :
28 d i j . append (XX( i ) ( k ) − x (k ) )
29 Dij = sumprod ( d i j , d i j )
30 i f Di j < r r :
31 m+= 1− ( Di j / r r )
32 i f f s ( i ) >= 0 :
33 f s ( i ) = G( i ) ∗ m
34 f sS ( i ) = SS( i ) ∗ m
35 e l s e :
36 f s ( i ) = G( i ) / m
37 f sS ( i ) = SS( i ) / m
38 return ( f s , f sS )
39
40
41 de f r (L ,XX) :
42 r="a"
43 f o r i in L :
44 f o r j in L :
45 i f i != j :
46 d =
47 f o r k in range (0 , l en (XX( i ) ) ) :
48 d . append (XX( i ) ( k )−XX( j ) ( k ) )
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49 d i j = math . s q r t ( sumprod (d , d) )
50 i f r > d i j :
51 r=d i j
52 re turn r
53
54 de f sumprod (X,Y) :
55 Z=0.0
56 f o r i in range (0 , l en (X) ) :
57 Z+= X( i ) ∗Y( i )
58 return Z

7.5.3 Get Selection Probabilities

1
2 de f g s e lp rob (mG, eta ,Gg) :
3 #where eta i s a constant between 1 and 2
4 s=
5 m=
6 order =
7 f o r i in range (0 ,mG) :
8 s . append ( ( eta − 2 . 0∗ ( eta−1)∗( i /(mG−1.0) ) ) /mG)
9 f o r g in range (0 , l en (Gg) ) :

10 M=0
11 f o r j in range (0 , l en (Gg( g ) ) ) :
12 M+= s (Gg( g ) ( j ) )
13 f o r j in range (0 , l en (Gg( g ) ) ) :
14 m. append (M/ len (Gg( g ) ) )
15 order . append (Gg( g ) ( j ) )
16 qu i ck so r t2 ( order , 0 , l en ( order ) −1 ,(m) ,1 )
17 return m
18
19
20 de f p a r t i t i o n 2 (A, l e f t , r i ght ,M, minimize ) :
21 i=l e f t
22 j=r i gh t
23 r= random . rand int ( l e f t , r i g h t )
24 p ivot=A( r ) ∗minimize
25 whi l e i <= j :
26 whi l e A( i ) ∗minimize < pivot :
27 i+=1
28 whi l e A( j ) ∗minimize > pivot :
29 j−=1
30 i f i<=j :
31 aux = A( i )
32 A( i ) = A( j )
33 A( j ) = aux
34 f o r k in range (0 , l en (M) ) :
35 auxk = M(k ) ( i )
36 M(k ) ( i ) = M(k ) ( j )
37 M(k ) ( j ) = auxk
38 i+=1
39 j−=1
40 return i
41
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42 de f qu i ck so r t2 (A, l e f t , r i ght ,M=,minimize=1) :
43 index=pa r t i t i o n 2 (A, l e f t , r i ght ,M, minimize )
44 i f l e f t < index−1 :
45 qu i ck so r t2 (A, l e f t , index−1,M, minimize )
46 i f index < r i gh t :
47 qu i ck so r t2 (A, index , r i ght ,M, minimize )

7.5.4 Stochastic Universal Sampling (SUS)

1 de f sus (m) :
2 rn=random . random
3 prob =
4 s e l =
5 f o r i in range ( 0 , ( l en (m)+1)/2) :
6 i f rn + i ∗2 .0/ l en (m) <= 1 :
7 prob . append ( rn + i ∗2 .0/ l en (m) )
8 e l s e :
9 prob . append ( rn + i ∗2 .0/ l en (m) − 1)

10 prob . s o r t
11 P=0
12 i=0
13 q = prob . pop (0 )
14 f o r p in m:
15 P+=p
16 i f P>q :
17 s e l . append ( i )
18 i f l en ( prob )==0: break
19 q=prob . pop (0 )
20 i+=1
21 return s e l

7.5.5 Mating Scheme

1 de f mating ( s e l , ac , xx ,m, lnn ) :
2 mate =
3 f o r s in s e l :
4 #1 . Uniformly randomly sample m i nd i v i d u a l s from the populat ion .
5 sample=
6 f o r n in range (0 ,m) :
7 sample . append ( random . rand int (0 , l en ( xx )−1) )
8 sample . s o r t
9 #2 . From those i nd i v i dua l s , s e l e c t the best one that i s with in

10 #the same niche group as x i . I f the re i s no such an
11 #ind iv idua l , s e l e c t the one that i s c l o s e s t to x i .
12 bol=True
13 whi l e bo l :
14 l a s t=sample (0 )
15 f o r j in range (1 , l en ( sample ) ) :
16 i f l a s t == sample ( j ) :
17 sample ( j )=random . rand int (0 , l en ( xx )−1)
18 sample . s o r t
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19 bol=True
20 break
21 l a s t = sample ( j )
22 bol = Fal se
23 i f s in lnn (0 ) :
24 group = ac ( s )
25 e l i f s in lnn (1 ) :
26 group = lnn (1 )
27 e l s e :
28 f o r l o c a l in lnn (0 ) :
29 i f s in ac ( l o c a l ) :
30 group = ac ( l o c a l )
31 f o r S in sample :
32 i f S in group and s !=S :
33 mate . append (S)
34 bol = True
35 break
36 i f not bol :
37 d=" i n f "
38 f o r S in sample :
39 h =
40 f o r j in range (0 , l en ( xx ( s ) ) ) :
41 h . append ( xx ( s ) ( j )−xx (S) ( j ) )
42 f=sumprod (h , h)
43 i f d > f and s !=S :
44 d=f
45 mate . append (S)
46 return mate

7.5.6 Crossover

1 import numpy as np
2
3 de f c r o s s ov e r ( xx , s e l , mate , r , types ) :
4 barx=np . array ( xx )
5 barr=np . array ( r )
6 X=
7 t=
8 i f l en ( types )==1:
9 e re=

10 f o r i in range ( l en ( xx ) ) :
11 e r e . append ( )
12 f o r j in range ( l en ( r ) ) :
13 e r e ( l en ( e r e )−1) . append ( 0 . 0 )
14 i f types (0 ) (0 ) :
15 re turn c r o s s ove rb in (np . array ( xx ) , s e l , mate , np . array ( r ) , np . array ( e r e

) )
16 e l s e :
17 re turn c r o s s o v e r i n t (np . array ( xx ) , s e l , mate , np . array ( r ) , np . array ( e re

) )
18
19 f o r p in types :
20 t . append ( )
21 f o r q in p :
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22 t ( l en ( t )−1) . append (q )
23 f o r i in range ( l en ( s e l ) ) :
24 X. append ( ( 0 . 0 ) ∗ l en ( xx (0 ) ) )
25 X. append ( ( 0 . 0 ) ∗ l en ( xx (0 ) ) )
26 # f o r x i in x :
27 # X( l en (X)−1) . append ( x i )
28 whi l e t !=:
29 T=t . pop ( random . randint (0 , l en ( t )−1) )
30 xX= barx ( : ,T(1 ) :T(2 ) )
31 rR= barr ( : ,T(1 ) :T(2 ) )
32 i f T(1 )==0:
33 Xx=barx ( : ,T(2 ) : )
34 Rr=barr ( : ,T(2 ) : )
35 e l s e :
36 i f T(2)==len ( xx (0 ) ) :
37 Xx=barx ( : , :T(1 ) )
38 e l s e :
39 Xx=np . concatenate ( ( barx ( : , :T(1 ) ) , barx ( : ,T(2 ) : ) ) , ax i s =1)
40 Rr=np . concatenate ( ( barr ( : , :T(1 ) ) , barr ( : ,T(2 ) : ) ) , ax i s=1 )
41 e re= np . t ranspose (Rr ( : , : ( l en (Rr (0 ) )−1) ) . dot ( np . t ranspose (Xx) ) )
42 i f T(0 ) :
43 new=cro s s ov e rb in (xX, s e l , mate , np . concatenate ( ( rR , Rr ( : , ( l en (np .

t ranspose (Rr) )−1) : ) ) , ax i s =1) , e r e )
44 e l s e :
45 new=c r o s s o v e r i n t (xX, s e l , mate , np . concatenate ( ( rR , Rr ( : , ( l en (np .

t ranspose (Rr) )−1) : ) ) , ax i s =1) , e r e )
46 # f o r i in range ( l en (new) ) :
47 # k=f
48 # f o r j in range ( l en (new( i ) ) ) :
49 # X( i ) ( k )new( i ) ( j )
50 f o r i in range ( l en ( s e l ) ) :
51 f o r j in range (T(1) ,T(2) ) :
52 X(2∗ i ) ( j )=new(2∗ i ) ( j−T(1) )
53 X(2∗ i +1) ( j )=new(2∗ i +1) ( j−T(1) )
54 f o r i in range ( l en ( s e l ) ) :
55 i f not f e a s i b i l i t y (X(2∗ i ) , r ) :
56 X(2∗ i ) = xx ( s e l ( i ) )
57 i f not f e a s i b i l i t y (X(2∗ i +1) , r ) :
58 X(2∗ i +1) = xx (mate ( i ) )
59 re turn X
60
61
62
63 #Michalewicz (1996) de s c r ibed s e v e r a l c r o s s ov e r ope ra to r s f o r GAs that

opt imize
64 #rea l−valued v a r i a b l e s . Our exper iments suggested that the a r i t hme t i c a l opera−
65 #tor works bes t . Given two parents x i and x j , the a r i t hme t i c a l c r o s s ov e r

operator
66 #produces two o f f s p r i n g x i and x j by gene ra t ing a number beta from uniform

(0 , 1 )
67 #d i s t r i bu t i o n , and l e t t i n g x i = beta x i + (1 − beta )x j , and
68 #x j = (1 − beta )x i + beta x j . S ince t h i s i s an in t ege r−ordered
69 #opt imiza t i on problem , we need to round x i , x j to i n t e g e r s .
70 de f c r o s s o v e r i n t ( xx , s e l , mate , r , e r e ) :
71 X =
72 f o r i in range ( l en ( s e l ) ) :
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73 beta = random . random
74 x1 =
75 x2 =
76 f o r j in range (0 , l en ( xx ( s e l ( i ) ) ) ) :
77 x1 . append ( round ( xx ( s e l ( i ) ) ( j ) ∗beta + xx (mate ( i ) ) ( j )∗(1−beta ) ) )
78 x2 . append ( round ( xx ( s e l ( i ) ) ( j )∗(1−beta ) + xx (mate ( i ) ) ( j ) ∗beta ) )
79 i f not f e a s i b i l i t y ( x1 , np . concatenate ( ( r ( : , 0 : ( l en (np . t ranspose ( r ) )

−1) ) , r ( : , ( l en (np . t ranspose ( r ) )−1) : l en (np . t ranspose ( r ) ) ) − np .
t ranspose ( e r e ( s e l ( i ) : ( s e l ( i )+1) ) ) ) , ax i s =1) ) :

80 x1 = xx ( s e l ( i ) )
81 i f not f e a s i b i l i t y ( x2 , np . concatenate ( ( r ( : , 0 : ( l en (np . t ranspose ( r ) )

−1) ) , r ( : , ( l en (np . t ranspose ( r ) )−1) : l en (np . t ranspose ( r ) ) ) − np .
t ranspose ( e r e ( s e l ( i ) : ( s e l ( i )+1) ) ) ) , ax i s =1) ) :

82 x2 = xx (mate ( i ) )
83 X. append ( x1 )
84 X. append ( x2 )
85 return X
86
87
88 de f c r o s s ove rb in (xx , s e l , mate , r , e r e ) :
89 X=
90 f o r i in range (0 , l en ( s e l ) ) :
91 beta = random . random
92 x1 =
93 x2 =
94 sumx=
95 i f beta >= 0 . 5 :
96 t1= True
97 e l s e :
98 t1= False
99 f1= False

100 f o r j in range (0 , l en ( xx ( s e l ( i ) ) ) ) :
101 sumx . append ( xx ( s e l ( i ) ) ( j ) + xx (mate ( i ) ) ( j ) )
102 f o r sx in sumx :
103 i f sx==0:
104 x1 . append ( 0 . 0 )
105 x2 . append ( 0 . 0 )
106 e l i f sx==2:
107 x1 . append ( 1 . 0 )
108 x2 . append ( 1 . 0 )
109 e l s e :
110 i f t1 :
111 x1 . append ( 1 . 0 )
112 x2 . append ( 0 . 0 )
113 t1=False
114 e l s e :
115 x1 . append ( 0 . 0 )
116 x2 . append ( 1 . 0 )
117 t1=True
118 i f f 1 :
119 beta = random . random
120 i f beta >= 0 . 5 :
121 t1= True
122 e l s e :
123 t1= False
124 f1=False
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125 e l s e :
126 f1=True
127 i f not f e a s i b i l i t y ( x1 , np . concatenate ( ( r ( : , : ( l en (np . t ranspose ( r ) )−1) )

, r ( : , ( l en (np . t ranspose ( r ) )−1) : ) − np . t ranspose ( e r e ( s e l ( i ) : ( s e l ( i )
+1) ) ) ) , ax i s =1) ) :

128 x1 = xx ( s e l ( i ) )
129 i f not f e a s i b i l i t y ( x2 , np . concatenate ( ( r ( : , : ( l en (np . t ranspose ( r ) )−1) )

, r ( : , ( l en (np . t ranspose ( r ) )−1) : ) − np . t ranspose ( e r e ( s e l ( i ) : ( s e l ( i )
+1) ) ) ) , ax i s =1) ) :

130 x2 = xx (mate ( i ) )
131 X. append ( x1 )
132 X. append ( x2 )
133 re turn X
134
135 de f f e a s i b i l i t y (x , r ) :
136 f o r R in r :
137 i f sumprod (R( 0 : ( l en (R)−1) ) , x ) > R( l en (R)−1) :
138 re turn Fal se
139 re turn True

7.5.7 Mutation

1
2 de f nonuniformmutation (C,R,K, bb , be ) :
3 f o r x in C:
4 I=random . rand int (0 , l en (x )−1)
5 lbub=ca l c u l a t e l b ub j (x ,R, I )
6 i f random . random <= 0 . 5 :
7 d e l t a k r i x= ( lbub (1 )−x ( I ) ) ∗random . random∗max( ( 0 . 0 0 5 ) ,math . pow(max

( ( 0 . 0 , 1 . 0 − (bb∗1 .0/K) ) ) , be ) ) (0 )
8 x ( I )+= round ( d e l t a k r i x )
9 e l s e :

10 d e l t a k r i x= (x ( I )−lbub (0 ) ) ∗random . random∗max( ( 0 . 0 0 5 ) ,math . pow(max
( ( 0 . 0 , 1 . 0 − (bb∗1 .0/K) ) ) , be ) ) (0 )

11 x ( I )−= round ( d e l t a k r i x )
12 return C
13
14 de f mutation ( nonuniform ,C,R,K, bb , be , x ) :
15 i f nonuniform :
16 mutation=nonuniformmutation (C,R,K, bb , be )
17 e l s e :
18 f o r x in C:
19 mutation . append ( sample (R, 1 , x , 1 ) (0 ) )

7.5.8 Dominance

1
2
3 de f dominance ( lnn ,AC,G, S , n , alpha , minimize ) :
4 beta= math . pow(1−alpha , 1 . 0 / ( l en ( lnn (0 ) ) ) )
5 H=
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6 n i=
7 SSEi=
8 GG=
9 v i=

10 f o r i in range (0 , l en ( lnn (0 ) ) ) :
11 n i . append (n( lnn (0 ) ( i ) ) )
12 SSEi . append (S( lnn (0 ) ( i ) ) − (math . pow(G( lnn (0 ) ( i ) ) , 2 ) /n( lnn (0 ) ( i ) ) ) )
13 GG. append (G( lnn (0 ) ( i ) ) )
14 v i . append (n( lnn (0 ) ( i ) )−1)
15 f o r j in AC( lnn (0 ) ( i ) ) :
16 n i ( i )+=n( j )
17 SSEi ( i )+=S( j ) − (math . pow(G( j ) , 2 ) /n( j ) )
18 GG( i )+=G( j )
19 v i ( i )+=n( j )−1
20 f o r i in range (0 , l en ( lnn (0 ) ) ) :
21 bol=True
22 f o r j in range (0 , l en ( lnn (0 ) ) ) :
23 i f i != j :
24 t i 2=math . pow( c a l c u l a t e t s t ud en t ( beta , v i ( i ) ) , 2 )
25 t j 2=math . pow( c a l c u l a t e t s t ud en t ( beta , v i ( j ) ) , 2 )
26 wi j= math . s q r t ( ( t i 2 ∗SSEi ( i ) /( v i ( i ) ∗n( i ) ) )+( t j 2 ∗SSEi ( j ) /( v i ( j ) ∗

n( j ) ) ) )
27
28 i f minimize∗GG( i ) / n i ( i ) > minimize∗GG( j ) / n i ( j ) + wi j :
29 bol=Fal se
30 break
31 i f bo l :
32 H. append ( lnn (0 ) ( i ) )
33 re turn H
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bus x y
1 280 18
2 255 25
3 220 25
4 244 74
5 270 67
6 275 310
7 240 220
8 212 228
9 244 318
10 250 309
11 264 306
12 280 405
13 275 420
14 230 470

Table 7.19: Buses locations

Parameter Value
Rt∑
i∈V dt

i
0.05

Transmission Lines Failure rate 0.05
Restoration times Generation units 10

Restoration times Substations 5
Restoration times Lines 8

Table 7.20: Simulation Parameters.

Damage state µd
1s σd

1s µd
2s σd

2s
1 0.10 0.60 0.15 0.60
2 0.20 0.50 0.25 0.50
3 0.30 0.40 0.35 0.40
4 0.50 0.40 0.70 0.40

Table 7.21: Fragility curve parameters, 2 is strengthened (note that µ is shifted to the left).
Here every generation unit and bus in the network share the same fragility curve parameters.

Location x y z
North 250 50 50
Center 250 300 50
South 250 440 50

Table 7.22: Earthquakes centers locations.
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7.6 Case Parameters: 14 bus IEEE Case Study

7.7 Resiliency results

7.7.1 Budget 1

NL SB ADG AENS N CV
((3, 12)) 269.046 9623 0.513

3 246.619 7629 0.499
((8, 12)) 269.644 7454 0.514

((13,10.0%)) 270.096 6732 0.521
((8, 13)) 270.361 7291 0.515
((1, 4)) 271.285 5819 0.518

272.567 7752 0.512
((7, 11)) 274.355 6899 0.520

3 248.052 8366 0.508
((3, 14)) 268.594 8573 0.503
((5, 12)) 268.621 10950 0.514
((2, 14)) 270.159 8449 0.512
((5, 11)) 273.006 8750 0.511
((9, 11)) 274.387 8450 0.516
((4, 11)) 274.558 8974 0.514
((10, 14)) 276.122 7581 0.518

((5,10.0%)) 276.735 8766 0.514
((3, 14)) 269.662 8286 0.506

4 257.388 6542 0.513
((5, 13)) 270.716 6454 0.508
((7, 13)) 275.062 6031 0.514

9 258.542 9056 0.531
((2, 12)) 271.876 7809 0.514
((7, 11)) 272.667 9435 0.517
((3, 5)) 273.462 7355 0.519

((2,10.0%)) 261.985 5490 0.496
((4, 13)) 271.402 7779 0.519

11 271.475 7260 0.521
2 271.598 7055 0.511
3 247.582 8485 0.500

Table 7.23: Results of ten optimizations of FU-ISC budget = 1
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NL SB ADG AENS N CV
((3, 13)) 276.902 207 0.006

((5,10.0%)) 284.195 228 0.008
3 253.337 233 0.005
9 298.730 413 0.004
3 271.046 427 0.003
3 269.959 102 0.013
9 264.249 201 0.006

((3,10.0%)) 265.580 245 0.005
((2, 12)) 269.735 162 0.007

3 232.764 70 0.018
((2,10.0%)) 265.286 252 0.005
((8,10.0%)) 266.005 211 0.006

((6, 10)) 271.775 158 0.008

Table 7.24: Results of ten optimizations of SAA-ISC budget = 1

7.7.2 Budget 4

NL SB ADG AENS N CV
((4, 12), (6, 8)) 3, 9 231.552 16 0.084
((1, 4)) 4, 9 ((2,10.0%)) 232.004 20 0.050
((6, 10)) 3, 6 ((1,10.0%)) 234.501 16 0.034

6, 9 ((12,20.0%)) 228.758 16 0.065
((1, 14), (5, 10)) 3, 4 224.260 24 0.051

3, 9, 13 ((5,10.0%)) 225.272 20 0.053
((3, 12), (8, 10)) 3, 9 215.295 28 0.048
((5, 13)) 3, 9 ((11,10.0%)) 196.599 17 0.045
((2, 14)) 3, 6 ((12,10.0%)) 208.567 24 0.076
((1, 6), (5, 11)) 3 ((2,10.0%)) 211.200 22 0.052

3 ((2,20.0%),
(10,10.0%))

235.798 12 0.065

((6, 10)) 2, 3, 9 237.010 16 0.109
3, 13, 14 ((8,10.0%)) 241.452 24 0.033

((8, 13), (12, 14)) 3 267.388 15 0.130
((6, 8)) 4, 6 ((8,10.0%)) 235.361 24 0.057

Table 7.30: Results of ten optimizations of SAA-ISC, budget = 4 instance

7.7.3 Budget 7
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NL SB ADG AENS N Std.Dev 5%Q 95%Q
3, 246.969 6000 123.614 243.842 250.097
3, 247.083 6000 121.889 243.999 250.168
3, 249.277 6000 124.955 246.115 252.438
4, 257.928 6000 133.170 254.558 261.297
9, 258.645 6000 142.004 255.051 262.238

(2,10.0%) 262.062 6000 130.792 258.753 265.372
(3,14) 265.843 6000 134.338 262.443 269.242
(8,12) 269.048 6000 136.615 265.591 272.505
(2,12) 269.330 6000 136.903 265.866 272.794
(3,12) 269.535 6000 137.458 266.057 273.013
(5,13) 269.970 6000 136.315 266.521 273.419
(2,14) 270.176 6000 138.492 266.672 273.681
(3,14) 270.739 6000 136.897 267.275 274.203

2, 270.794 6000 138.065 267.301 274.288
(5,11) 271.540 6000 139.869 268.001 275.079
(7,13) 271.603 6000 137.371 268.127 275.079
(3,5) 272.084 6000 140.017 268.541 275.627
(10,14) 272.248 6000 141.910 268.657 275.839
(5,12) 272.370 6000 138.660 268.861 275.878

(13,10.0%) 272.953 6000 143.218 269.329 276.577
(7,11) 273.060 6000 139.097 269.540 276.579

11, 273.109 6000 142.129 269.513 276.706
(4,11) 273.111 6000 141.017 269.543 276.679

273.233 6000 139.217 269.711 276.756
(9,11) 273.465 6000 138.987 269.949 276.982
(7,11) 273.481 6000 141.387 269.903 277.059
(1,4) 273.680 6000 142.844 270.066 277.294
(8,13) 274.991 6000 142.538 271.384 278.598

(5,10.0%) 275.880 6000 142.792 272.267 279.493
(4,13) 276.103 6000 140.284 272.554 279.653

Table 7.25: Ranking of solutions of 10 FU ISC budget = 1 instance optimizations, and
statistical confidence interval for each solution.
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NL SB ADG AENS N Std.Dev 5%Q 95%Q
3, 245.343 6000 123.645 242.215 248.472
3, 247.431 6000 123.429 244.308 250.555
3, 248.517 6000 124.344 245.371 251.663
3, 250.631 6000 124.238 247.487 253.774
9, 258.560 6000 139.841 255.021 262.098
9, 259.121 6000 139.706 255.586 262.656

(2,10.0%) 263.395 6000 129.590 260.116 266.674
(3,13) 267.221 6000 135.358 263.796 270.646

(3,10.0%) 267.943 6000 137.456 264.464 271.421
(8,10.0%) 268.294 6000 139.221 264.771 271.817

(6,10) 272.083 6000 140.053 268.539 275.627
(5,10.0%) 272.680 6000 142.496 269.075 276.286

(2,12) 273.612 6000 139.271 270.088 277.136

Table 7.26: Ranking of solutions of 10 SAA ISC budget = 1 instance optimizations, and
statistical confidence interval for each solution.
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NL SB ADG AENS N CV
((3, 9)) 4, 9 236.848 376 0.535
((7, 11), (8, 14)) 4 243.513 396 0.507
((5, 14), (8, 14),
(11, 13))

4 247.328 443 0.532

6 ((3,10.0%)
,(12,10.0%)
,(14,10.0%))

247.963 448 0.528

((4, 13)) ((3,10.0%),
(12,10.0%),
(14,10.0%))

256.409 463 0.519

((1, 9), (1, 10),
(2, 8))

12 257.792 457 0.544

((12, 14)) 4, 9 ((2,10.0%)) 212.989 249 0.510
((5, 9)) 3, 4, 6 223.395 275 0.507
((2, 14), (5, 10)) 3 235.953 185 0.453
((6, 7), (9, 11)) 9, 12 244.450 283 0.501
((2, 6), (8, 13)) 3 ((11,10.0%)) 226.496 269 0.490
((1, 13), (2, 7)) 3 238.265 369 0.487
((8, 11)) 3, 12 ((4,10.0%)) 238.692 408 0.480
((3, 5), (4, 13)) 3 240.962 230 0.442
((2, 13), (7, 10)) 2, 3 224.448 622 0.491
((10, 13)) 2, 3, 9 212.494 391 0.508
((1, 10), (2, 10)) 3, 9 224.420 286 0.508
((1, 11), (4, 11)) 3, 6 230.083 311 0.542
((6, 9), (6, 10),
(9, 13))

3 233.143 369 0.503

((1, 3), (11, 14)) 2, 3 235.742 315 0.502
((11, 12)) 3, 12 246.456 429 0.540
((1, 10), (3, 5),
(3, 14))

10 249.675 193 0.498

((4, 8), (8, 11),
(10, 14), (11,
12))

276.103 277 0.534

1, 3, 10 236.133 80 0.491
((3, 8), (3, 13),
(8, 11), (10, 12))

239.947 88 0.500

Table 7.29: Results of ten optimizations of FU-ISC, budget = 4 instance
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NL SB ADG AENS N Std.Dev 5%Q 95%Q
(5,9) 3, 4,

6,
224.559 6000 112.832 221.704 227.414

(10,13) 2, 3,
9,

227.319 6000 116.853 224.362 230.276

(1,10) (2,10) 3, 9, 230.434 6000 120.070 227.396 233.472

(12,14) 4, 9, (2,10.0%) 233.405 6000 118.873 230.397 236.412

(2,13) (7,10) 2, 3, 235.404 6000 114.093 232.517 238.291

(1,3) (11,14) 2, 3, 237.382 6000 117.983 234.397 240.368

(1,11) (4,11) 3, 6, 241.383 6000 122.713 238.278 244.488

(2,6) (8,13) 3, (11,10.0%) 243.353 6000 120.700 240.299 246.407

(3,5) (4,13) 3, 243.508 6000 120.090 240.469 246.547

(8,11) 3, 12, (4,10.0%) 243.654 6000 122.569 240.553 246.755

(3,9) 4, 9, 244.559 6000 128.110 241.318 247.801

(11,12) 3, 12, 244.674 6000 125.757 241.492 247.856

(1,13) (2,7) 3, 244.989 6000 118.713 241.986 247.993

(2,14) (5,10) 3, 245.413 6000 121.833 242.330 248.495

1, 3,
10,

245.635 6000 123.495 242.510 248.760

(6,9) (6,10)
(9,13)

3, 246.205 6000 120.305 243.160 249.249

(5,14) (8,14)
(11,13)

4, 253.192 6000 127.926 249.956 256.429

(7,11) (8,14) 4, 254.050 6000 130.478 250.749 257.352

(6,7) (9,11) 9, 12, 257.387 6000 140.634 253.828 260.945

6, (3,10.0%)
(12,10.0%)
(14,10.0%)

257.907 6000 132.959 254.543 261.271

(4,13) (3,10.0%)
(12,10.0%)
(14,10.0%)

263.972 6000 135.160 260.552 267.392

(3,8) (3,13)
(8,11)
(10,12)

264.219 6000 135.756 260.784 267.654

(1,10) (3,5)
(3,14)

10, 267.149 6000 136.460 263.697 270.602

(4,8) (8,11)
(10,14)
(11,12)

271.288 6000 139.097 267.769 274.808

(1,9) (1,10)
(2,8)

12, 273.511 6000 140.558 269.954 277.068

Table 7.31: Ranking of solutions of 10 FU ISC budget = 4 instance optimizations, and
statistical confidence interval for each solution.
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NL SB ADG AENS N Std.Dev 5%Q 95%Q
(6,10) 2, 3, 9, 225.460 6000 115.763 222.531 228.389

3, 9, 13, (5,10.0%) 225.883 6000 122.401 222.786 228.981

(1,14)
(5,10)

3, 4, 227.497 6000 110.513 224.701 230.294

(5,13) 3, 9, (11,10.0%) 229.575 6000 117.726 226.596 232.554

(4,12)
(6,8)

3, 9, 230.241 6000 117.654 227.264 233.218

3, (2,20.0%)
(10,10.0%)

231.201 6000 105.760 228.525 233.877

(2,14) 3, 6, (12,10.0%) 234.193 6000 119.322 231.174 237.212

(3,12)
(8,10)

3, 9, 234.326 6000 117.331 231.357 237.295

3, 13, 14, (8,10.0%) 235.158 6000 125.756 231.976 238.340

(1,4) 4, 9, (2,10.0%) 235.708 6000 119.580 232.682 238.733

(1,6)
(5,11)

3, (2,10.0%) 235.993 6000 114.909 233.085 238.900

(6,10) 3, 6, (1,10.0%) 237.155 6000 119.687 234.127 240.184

(6,8) 4, 6, (8,10.0%) 243.732 6000 128.502 240.480 246.983

(8,13)
(12,14)

3, 246.464 6000 121.472 243.391 249.538

6, 9, (12,20.0%) 248.379 6000 137.268 244.906 251.852

Table 7.32: Ranking of solutions of 10 SAA ISC budget = 4 instance optimizations, and
statistical confidence interval for each solution.
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NL SB ADG AENS N CV
((2, 12), (5, 13),
(7, 12), (11, 13))

3, 6 217.098 145 0.470

((2, 9), (8, 10),
(8, 12), (11, 13))

2, 3, 5 229.797 157 0.506

((1, 11), (2, 14)) 3, 4, 10, 11, 13 192.151 152 0.514
((1, 10), (7, 14)) 3, 4 ((2,10.0%),

(9,20.0%))
196.243 146 0.458

((10, 12)) 2, 3, 5, 6, 9 ((2,10.0%)) 209.426 192 0.544
((1, 11), (1, 14)) 2, 3, 4, 9 ((8,10.0%)) 200.106 283 0.515
((2, 14), (7, 13),
(8, 10))

3, 9, 14 ((2,10.0%)) 202.310 206 0.433

((8, 13), (9, 13)) 3, 4, 5, 14 ((3,10.0%)) 205.096 275 0.531
((10, 12)) 3, 4, 9, 12, 13 ((8,10.0%)) 205.363 332 0.522
((5, 13)) 2, 3, 11 ((2,10.0%),

(4,10.0%))
211.812 260 0.475

((4, 6)) 4, 9, 10, 12 ((2,10.0%)) 214.022 289 0.500
3, 4, 5, 10 ((1,10.0%),

(3,10.0%))
200.821 205 0.463

((1, 11), (4, 12)) 3, 9, 10, 13, 14 203.240 262 0.517
((2, 13)) 3, 12 ((2,10.0%),

(4,20.0%),
(14,10.0%))

206.045 259 0.436

((1, 4), (8, 9),
(12, 14))

3, 4, 9, 10 209.445 285 0.508

((4, 10), (4, 14),
(10, 13))

3, 9, 13 ((8,10.0%)) 215.987 357 0.550

((2, 11)) 4, 9, 13 ((4,10.0%),
(6,10.0%))

221.835 412 0.554

((3, 9)) 3, 9 ((2,10.0%),
(4,20.0%))

194.338 204 0.489

2, 3, 4, 9 ((2,10.0%),
(4,10.0%))

187.794 187 0.440

((3, 10)) 3, 4, 9, 13 ((1,20.0%)) 193.301 285 0.536
((1, 8), (3, 13),
(6, 8))

3, 9, 12 216.537 185 0.501

Table 7.35: Results of ten optimizations of FU-ISC, budget = 7 instance
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NL SB ADG AENS N CV
((2, 12)) 3, 4, 9, 14 ((2,10.0%),

(4,10.0%))
155.184 28 0.069

((7, 14)) 3, 4, 6, 9 ((2,20.0%)) 156.353 36 0.068
((1, 12)) 3, 4, 6, 10 ((2,10.0%),

(4,10.0%))
219.462 36 0.066

((1, 14)) 2, 3, 4 ((4,10.0%),
(9,20.0%))

237.338 28 0.071

4, 6, 9, 11 ((2,20.0%),
(5,10.0%))

197.501 24 0.074

((6, 10)) 3, 4, 6, 9, 10 ((3,10.0%)) 195.651 36 0.082
3, 4, 9, 14 ((2,20.0%),

(14,10.0%))
198.553 28 0.087

((9, 13)) 3, 6, 9 ((2,20.0%),
(4,10.0%))

212.595 118 0.064

3, 4, 14 ((1,10.0%),
(3,10.0%),
(4,10.0%),(13,10.0%))

213.081 52 0.068

((2, 9), (4, 14)) 3, 4, 9, 14 ((3,10.0%)) 187.547 28 0.068
3, 4, 9 ((2,30.0%),

(4,10.0%))
182.354 24 0.064

((10, 14)) 3, 4, 9, 14 ((2,20.0%)) 172.507 50 0.066

Table 7.36: Results of ten optimizations of SAA-ISC, budget = 7 instance
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NL SB ADG AENS N Std.Dev 5%Q 95%Q
2, 3, 4,
9,

(2,10.0%)
(4,10.0%)

202.530 6000 98.223 200.045 205.015

(1,11) (1,14) 2, 3, 4,
9,

(8,10.0%) 202.798 6000 104.563 200.152 205.444

(10,12) 3, 4, 9,
12, 13,

(8,10.0%) 203.465 6000 110.043 200.681 206.250

(3,10) 3, 4, 9,
13,

(1,20.0%) 208.517 6000 109.106 205.757 211.278

(10,12) 2, 3, 5,
6, 9,

(2,10.0%) 209.193 6000 103.027 206.586 211.799

(1,4) (8,9)
(12,14)

3, 4, 9,
10,

215.184 6000 110.616 212.385 217.983

3, 4, 5,
10,

(1,10.0%)
(3,10.0%)

215.861 6000 106.237 213.173 218.549

(8,13) (9,13) 3, 4, 5,
14,

(3,10.0%) 217.028 6000 107.097 214.318 219.738

(2,14) (7,13)
(8,10)

3, 9,
14,

(2,10.0%) 217.402 6000 109.455 214.632 220.171

(1,11) (2,14) 3, 4,
10, 11,
13,

217.416 6000 111.172 214.603 220.229

(1,10) (7,14) 3, 4, (2,10.0%)
(9,20.0%)

217.494 6000 104.333 214.854 220.134

(1,11) (4,12) 3, 9,
10, 13,
14,

218.613 6000 121.551 215.538 221.689

(3,9) 3, 9, (2,10.0%)
(4,20.0%)

221.824 6000 106.628 219.126 224.522

(4,10) (4,14)
(10,13)

3, 9,
13,

(8,10.0%) 223.052 6000 119.477 220.029 226.075

(5,13) 2, 3,
11,

(2,10.0%)
(4,10.0%)

227.164 6000 108.204 224.426 229.902

(1,8) (3,13)
(6,8)

3, 9,
12,

227.960 6000 116.008 225.025 230.896

(4,6) 4, 9,
10, 12,

(2,10.0%) 230.146 6000 120.952 227.086 233.206

(2,13) 3, 12, (2,10.0%)
(4,20.0%)
(14,10.0%)

232.312 6000 111.689 229.486 235.139

(2,9) (8,10)
(8,12) (11,13)

2, 3, 5, 236.031 6000 114.922 233.123 238.939

(2,11) 4, 9,
13,

(4,10.0%)
(6,10.0%)

237.998 6000 127.878 234.762 241.233

(2,12) (5,13)
(7,12) (11,13)

3, 6, 238.203 6000 118.843 235.196 241.210

Table 7.37: Ranking of solutions of 10 FU ISC budget = 7 instance optimizations, and
statistical confidence interval for each solution.
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NL SB ADG AENS N Std.Dev 5%Q 95%Q
3, 4,
9,

(2,30.0%)
(4,10.0%)

194.316 6000 87.451 192.104 196.529

(7,14) 3, 4,
6, 9,

(2,20.0%) 194.627 6000 90.613 192.334 196.920

(10,14) 3, 4,
9, 14,

(2,20.0%) 194.875 6000 94.731 192.478 197.272

3, 4,
9, 14,

(2,20.0%)
(14,10.0%)

197.329 6000 96.170 194.896 199.762

(2,12) 3, 4,
9, 14,

(2,10.0%)
(4,10.0%)

201.704 6000 102.057 199.122 204.287

(2,9) (4,14) 3, 4,
9, 14,

(3,10.0%) 205.013 6000 104.786 202.362 207.664

(6,10) 3, 4,
6, 9,
10,

(3,10.0%) 206.072 6000 107.328 203.357 208.788

4, 6,
9, 11,

(2,20.0%)
(5,10.0%)

209.655 6000 105.372 206.989 212.321

(9,13) 3, 6,
9,

(2,20.0%)
(4,10.0%)

210.177 6000 102.208 207.591 212.763

(1,12) 3, 4,
6, 10,

(2,10.0%)
(4,10.0%)

210.539 6000 101.635 207.967 213.110

(1,14) 2, 3,
4,

(4,10.0%)
(9,20.0%)

215.264 6000 103.148 212.654 217.874

3, 4,
14,

(1,10.0%)
(3,10.0%)
(4,10.0%)
(13,10.0%)

218.165 6000 109.675 215.390 220.940

Table 7.38: Ranking of solutions of 10 SAA ISC budget = 7 instance optimizations, and
statistical confidence interval for each solution.
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