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ACADÉMICOS EN LAS CREENCIAS Y EL DESEMPEÑO DE ESTUDIANTES
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ABSTRACT
STATISTICAL MODELING OF THE IMPACT OF ACADEMIC

ENVIRONMENTS ON STUDENT’S BELIEFS AND ACHIEVEMENT
IN CHILE

This PhD thesis is dedicated to the statistical modeling of the impact of academic en-
vironments on student’s beliefs and achievement in Chile. We contribute to the field of
educational effectiveness with a statistical discussion regarding how to combine multilevel
models with methods for selection bias and missing data and two empirical studies. The
statistical discussion was used to take methodological decisions in the empirical studies.
The first empirical study evaluates the impact of science courses on students’ beliefs. The
second empirical study is about school effects on students’ trajectories in mathematics and
reading scores.

In the statistical part, we analyze linear adjustment and propensity score matching to
address selection bias. Regarding the missing data problem, we considered multiple impu-
tation techniques. Each of these methods is compatible with multilevel models. However,
the problem of addressing selection bias and missing data simultaneously with hierarchi-
cal data is not resolved. We present a statistical discussion that classifies and analyzes
strategies to combine the methods.

The first empirical study regards the influence of Life and Non-life science courses in
secondary students’ epistemic and self-efficacy beliefs related to sciences. We compared
students that took summer science courses with a control group in a post and follow-up
beliefs questionnaire. We found positive effects of Life courses and courses with laboratory
work, controlling for confounding variables. The results show differences between Life and
Non-life scientific disciplines that should be explored.

The second empirical study concerns school effects on trajectories of Chilean students.
It has two aims. The first aim is to describe the characteristics of the trajectories in
mathematics and reading scores and the variation explained by primary and secondary
schools. The second aim is to measure the effect of public schools in comparison with
voucher schools on students’ trajectories in mathematics and reading scores. We used a
longitudinal national database which included measures for the same students at 4th, 8th
and 10th grade. Multilevel growth models were used to model the trajectories. We found
effects of secondary and primary schools on intercepts and slopes. In addition, we found
negative effects from public education, which became not significant after controlling for
school’ socioeconomic composition and selection practices. The results illustrate the strat-
ification between the public system and voucher system and the need to study inside each
system which schools are more efficient.

Keywords: Multilevel modeling, Propensity score matching, Multiple imputation,
Science disciplines, School effects, Students’ trajectories.
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RESUMEN
MODELACIÓN ESTADÍSTICA DEL IMPACTO DE CONTEXTOS

ACADÉMICOS EN LAS CREENCIAS Y EL DESEMPEÑO DE
ESTUDIANTES EN CHILE

Esta tesis de doctorado está dedicada a la modelación estad́ıstica del impacto de entornos
académicos en las creencias y desempeño de estudiantes en Chile. Contribuimos al campo
de la efectividad educativa con una discusión estad́ıstica y dos estudios emṕıricos. La
discusión estad́ıstica trata sobre cómo combinar modelos multinivel con métodos para
controlar el sesgo de selección y datos perdidos. Esta discusión estad́ıstica es usada para
tomar decisiones metodológicas en los estudios emṕıricos. El primer estudio emṕırico
evalúa el impacto de cursos de ciencias sobre las creencias de los estudiantes. El segundo
estudio emṕırico trata de los efectos de las escuelas en las trayectorias de puntajes en
matemáticas y lectura de estudiantes.

En la parte de estad́ıstica, se describe y analiza el uso de ajuste lineal y de la técnica de
puntajes de propensión para controlar el sesgo de selección. Respecto a los problemas de
datos perdidos, consideramos técnicas de imputación múltiple. Cada uno de estos métodos
es compatible con los modelos multinivel. Sin embargo, enfrentar problemas de sesgo de
selección y datos perdidos con datos jerárquicos es aún un problema abierto. Por esto, se
presenta una discusión que clasifica y analiza estrategias para combinar estos métodos en
presencia de datos jerárquicos.

El primer estudio emṕırico se refiere a la influencia de las disciplinas cient́ıficas que
estudian objetos vivos y objetos no vivos en las creencias epistémicas y de autoeficacia
relacionadas con las ciencias de los estudiantes de secundaria. Se compararon alumnos que
asistieron a cursos de ciencias con un grupo de control al final de los cursos y cuatro meses
después. Se encontraron efectos positivos del trabajo en laboratorio y de las disciplinas
que estudian objetos vivos. Este estudio muestra que hay diferencias entre las disciplinas
que estudian objetos vivos con las disciplinas que estudian objetos no vivos que aún deben
ser exploradas.

El segundo estudio emṕırico se refiere a los efectos de las escuelas en las trayectorias
de puntajes en matemáticas y lectura de estudiantes. El primer objetivo es describir las
caracteŕısticas de las trayectorias en matemáticas y lectura y la varianza explicada por las
escuelas primarias y secundarias. El segundo objetivo es medir el efecto de las escuelas
públicas en comparación con las escuelas particulares subvencionadas sobre las trayecto-
rias de los estudiantes en matemáticas y lectura. Se utilizó una base de datos nacional
longitudinal que incluye medidas para los mismos estudiantes en 4to básico, 8vo básico
y 2do medio. Se aplicaron modelos multinivel de crecimiento para modelar las trayecto-
rias. Los resultados obtenidos muestran que las escuelas de secundaria y primaria tienen
efectos en las medias y pendientes de las trayectorias. Además, se encontraron efectos
negativos de la educación pública, que se vuelven no significativos después de controlar
por la composición socioeconómica y prácticas de selección de las escuelas. Los resultados
ilustran la estratificación entre el sistema público y el sistema particular subvencionado y
la necesidad de estudiar dentro de cada sistema cuáles son las escuelas más eficientes.

Palabras Clave: Modelos multinivel, Apareamiento de puntajes de propensión, Im-
putación múltiple, Disciplinas cient́ıficas, Efectos de escuelas, Trayectorias de estudiantes.
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RÉSUMÉ
MODÉLISATION STATISTIQUE DE L’IMPACT DES

ENVIRONNEMENTS ACADÉMIQUES SUR LES CROYANCES ET
LA RÉUSSITE DES ÉLÈVES AU CHILI

Cette thèse de doctorat est consacrée à la modélisation statistique de l’impact des envi-
ronnements académiques sur les croyances et la réussite des élèves au Chili. Nous con-
tribuons au domaine de l’efficacité éducative avec une discussion statistique et deux études
empiriques. La discussion statistique questionne la façon de combiner les modèles multi-
niveaux avec des méthodes pour le biais de sélection et pour les données manquantes. Cette
discussion statistique sera utilisée pour prendre des décisions méthodologiques dans les
études empiriques. La première étude empirique consiste en une évaluation d’intervention
de l’impact des cours de sciences sur les croyances des étudiants. La deuxième étude em-
pirique concerne l’effet des écoles sur les trajectoires des scores de mathématiques et de
lecture des élèves.

Dans la partie statistique, nous avons décrit et analysé les méthodes d’ajustement
linéaire et d’appariement des scores de propension pour modéliser le biais de sélection.
En ce qui concerne les problèmes de données manquantes, nous avons analysé la méthode
d’imputation multiple. Chacune de ces méthodes est compatible avec les modèles multi-
niveaux. En revanche, l’utilisation combinée de ces méthodes pour des données hiérar-
chiques n’est pas résolu. Nous présentons alors une discussion statistique qui analyse et
classe des stratégies pour combiner ces méthodes.

La première étude empirique concerne l’influence des disciplines scientifiques qui s’intéressent
à des objets vivants et non-vivants sur les croyances épistémiques et le sentiment d’auto-
efficacité des étudiants de secondaire. Nous avons comparé, pour ces croyances, les étudi-
ants qui ont suivi des cours de sciences à un groupe contrôle sur deux temps de mesure, à la
fin des cours et 4 mois après. Nous avons constaté un effet positif du travail en laboratoire
et des disciplines qui s’intéressent à des objets vivants (en contrôlant les variables confon-
dues). Cette étude met en lumière des différences entre les disciplines qui s’intéressent à
des objets vivant et des objets non-vivant qui devront être explorées.

La deuxième étude empirique concerne l’effet des écoles sur les trajectoires des scores
en mathématiques et en lecture des élèves. Le premier objectif est de décrire les carac-
téristiques des trajectoires et la variance expliquée par les écoles primaires et secondaires.
Le deuxième objectif est de mesurer l’effet du type d’école, publique ou voucher (privée
avec un financement de l’état), sur les trajectoires. Nous avons utilisé une base de données
nationale longitudinale qui comprenait des mesures pour les mêmes élèves en 4ème, 8ème
et 10ème années. Des modèles de croissance multiniveaux ont été utilisés pour modéliser
les trajectoires. Nos résultats montrent que les écoles secondaires et primaires ont un effet
sur les interceptes et les pentes des trajectoires. Par ailleurs, nous avons constaté un effet
négatif de l’école publique, qui est devenu non significatif lorsque nous avons contrôlé la
composition socio-économique de l’école et ses pratiques de sélection. Ces résultats illus-
trent la stratification entre le système public et le système voucher ainsi que la nécessité
de questionner l’efficacité des écoles pour chaque système.

Mots clés: Modèles multiniveaux, Appariement des scores de propension, Imputation
multiple, Disciplines scientifiques, Effets-écoles, Trajectoires des élèves
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de datos de la Agencia de Calidad de la Educación. Agradezco a esta institución el
acceso a la información. Todos los resultados del estudio son de mi responsabilidad
y en nada comprometen a dicha institución.

Para la realización de los análisis estad́ısticos, esta tesis fue parcialmente apoyada
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Chapter 1

General Introduction

This thesis is devoted to the statistical modeling of the impact of academic envi-
ronments on student’s beliefs and achievement in Chile. Academic environment is
a very general term that can refers to classes, courses, families, schools, etc. What
they have in common, is that students nested in the same academic environment
tend to have similar characteristics. In educational sciences we are often interested
in the relation between these environments and individual outcomes. When the ob-
jective is to statistically model the effect of these environments, multilevel models
are a flexible tool which allows us to properly consider the clustered structure and to
investigate the effect of aggregated and integral cluster variables (Bressoux, 2007).
Also, multilevel models include several extensions that permits to model longitudinal
data and complex clustering structures (Bressoux, 2010).

Multilevel models allow us to answer causal questions about the effect of a treat-
ment on clustered data. Nevertheless, very often, it is not possible to do randomized
studies and we need to use observational studies. This raises selection bias problems.
Usually, confounding variables which are correlated with the treatment and with the
outcome are the source of selection bias. In this thesis, we will consider two meth-
ods to reduce selection bias: linear adjusting and propensity score matching. Both
strategies work under the hypothesis that all confounding variables are observed.
Linearly adjusting for confounding variables is a classical approach in social sci-
ences. Propensity score matching implies balancing the treated and control samples
on the confounding variables, and then comparing the outcomes across the balanced
samples. Moreover, these strategies can be used simultaneously, giving more robust
conclusions (Stuart, 2010). We choose these methods because they are very popular
in the social sciences and address the selection bias problem in different ways.
In addition, missing data is a common problem. Simple methods such complete-
case analysis and single imputation are not recommended because they can produce
biased estimates and loss of power. We deal with missing data by using multiple
imputation. This method imputes several values for each missing value. We choose
it because it is a recommended method when the missing data distribution depends
on observed values (Lang & Little, 2016; Peugh & Enders, 2004).
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Even if the methods for selection bias and missing data are compatible with multi-
level models, the problem of addressing both issues simultaneously with hierarchical
data is not resolved. This is why we present a statistical discussion regarding how
to combine multilevel modeling with selection bias and missing data problems. In
addition, we present two empirical studies from educational sciences that illustrate
the application of the statistical methods.
The first empirical study regards the influence of Life and Non-Life science courses
in secondary students’ epistemic and self-efficacy beliefs related to sciences. The aim
of the study is to measure the effect of science summer courses about life objects
(e.g. Anatomy) and about non-life objects (e.g. Mathematics) on science epistemic
and science self-efficacy beliefs.
The second empirical study concerns school effects on academic trajectories of Chilean
students and it has two aims. The first aim is to describe the characteristics of the
achievement trajectories in mathematics and reading of Chilean students and the
influences of primary and secondary schools on those trajectories. The second aim
is to measure the effect of public schools in comparison with voucher schools in
students’ trajectories in mathematics and reading test scores.

The empirical studies illustrate the use of the strategies described in the statis-
tical part. They have clustered data, selection bias and missing data. The need for
multilevel models is clear, because the research questions regard the causal effects
of academic environments, that is clustered structures. In the first study, the envi-
ronments are sciences courses and in the second study schools. In addition, in both
studies there is a considerable amount of missing data. Equally important is the
fact that both studies are observational. Thus, there is selection bias. Considering
the summer science courses the selection bias is moderate. However, for the study
regarding the comparison of voucher and public schools there is a large amount of
selection bias, produced by several selection mechanisms that operate in the Chilean
school system (e.g. family selection of schools, schools’ fees). In particular, the
empirical studies point out the need to combine the statistical methods.

The thesis is organized in three parts. In Part I, we present the statistical part
where we analyze how to combine multilevel models with linear adjusting, propen-
sity score matching and multiple imputation. It is presented before the empirical
studies because it also justifies the methodological choices made in those studies.
First, we present an introduction chapter to motivate the study of multilevel models,
linear adjustment, propensity score matching and multiple imputation. Then, we
present a chapter with the theoretical framework where we describe each method
individually. In particular, we focus in the assumptions and in the possibilities of-
fered by each method.
In the following chapter, we present the main discussion regarding how to simulta-
neously modeling selection bias and missing data in the context of multilevel data.
In order to develop this discussion, we analyzed and classify recent literature. For
multilevel and selection bias we describe how linear adjustment and propensity score
matching can be implemented. When linear adjustment for confounding variables
is used in the context of multilevel models, more issues emerge regarding the hy-
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potheses and there are more strategies to control for selection bias (Cheslock &
Rios-Aguilar, 2011; Hill, 2013). Regarding propensity score matching, several pos-
sibilities allows us to consider the clustering. These possibilities are classified and
discussed. For multiple imputation applied to multilevel data, we describe recent
results and implementation issues. Regarding the combination of multilevel models
with selection bias methods and multiple imputation we propose three strategies
and describe their advantages and disadvantages.
Finally, the last chapter summarizes the proposed strategies and highlights open
statistical problems.

In Part II of the thesis we present study the impact of life and non-life sciences
courses on secondary students’ epistemic and self-efficacy beliefs related to sciences.
We present the study as follows. In a first chapter we give the rationale of the research
and a literature review. There are two main points that motivate the study. The
first point is related to the relevance of epistemic and self-efficacy beliefs based on
its impact on achievement, motivational beliefs and learning strategies (Deng, Chen,
Tsai, & Chai, 2011; Mason, Boscolo, Tornatora, & Ronconi, 2013; Tsai, Jessie Ho,
Liang, & Lin, 2011) and that their development can be seen as an educational goal
in itself (Lederman, 2007). The second point regards the usefulness of explore the
effect of life and non-life disciplines. This discipline’ distinction has not received
attention in science education, but we think that can be valuable to understand sev-
eral processes. In the literature review we describe science epistemic and self-efficacy
beliefs and previous results regarding the influence of academic climates.
In the following chapter we present the methodology. To develop the study, we ap-
plied a beliefs questionnaire in 50 sciences courses developed by the Summer School
of the University of Chile. This institution offers summer courses to secondary stu-
dents in order to approach the students to rich learning experiences in the university.
We applied the questionnaire previous to the courses, at the end of the courses and in
a follow-up questionnaire about science epistemic and self-efficacy beliefs. The con-
trol group was defined as the group of applicants that did not enroll in the courses.
Socio-demographic and academic variables were used to adjust for selection bias.
Multilevel and linear regression were used to model contextual effects and linearly
adjust for selection bias. Multiple imputation was use to handle missing data.
Then, we present a chapter with the results. We detail the psychometric analysis
done to the beliefs questionnaire and the results of the estimated multilevel and
regression models used for the estimation of the effect of scientific disciplines, labo-
ratory work and compositional beliefs variables. Finally, we present a discussion to
interpret the results and relate them to previous research.

In Part III of the thesis we present the study regarding school effects on students’
trajectories in mathematics and reading.
In the introduction we explain why it is relevant to study student trajectories and
compare public and voucher schools in Chile. Studying trajectories improves the
estimation process because it accounts for the measurement error, allowing us to
study the shape of the change and the rate of the growth (Bressoux, 2010). Also
studying the Chilean system raises academic and political interest because it is a
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very stratified and segregated system, which has a large amount of voucher schools
(Bellei, 2008; Valenzuela, Bellei, & De los Ŕıos, 2014).
After the introduction, we present a theoretical framework where we describe school
effects and their definition, the Chilean educational context and studies that have
compared voucher and public education in Chile. This serves as a precedent for our
results and justifies methodological choices.
In the following chapter, we describe the methodology. We detail the sample, vari-
ables and the statistical models. The sample came from a national data base that
includes standardized tests scores and background student variables as well as school
level data. We analyzed mathematics and reading scores from the same students
at 4th, 8th and 10th grade. In order to model the hierarchical structure, we used
multilevel growth models and a cross-classified structure to account for student mo-
bility between schools. Linear adjusting, propensity score matching and multiple
imputation techniques were applied for adjust to selection bias and missing data.
The following chapter describes the results. First, we analyze how the variance of
the test scores is distributed between the occasion, student and school level and we
describe average students’ trajectories for different groups. Then, we compare tra-
jectories of students from the voucher system with students from the public system
using different strategies to control for selection bias.
The last chapter of Part III presents a discussion that puts together the results, con-
siders their implications for Chilean policy and proposes further lines of research.

The final chapter of the thesis is a discussion which synthesize and connects
the main of results of the three parts of the thesis. In addition, it offers research
perspectives.
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Part I

Multilevel modeling dealing with
selection bias and missing data in

educational sciences
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Chapter 2

Introduction

Research in social sciences, in particular in educational sciences, needs to address
several specific statistical issues that arise because of the type of data that is collected
and the type of research questions that are addressed. In this chapter, we will
describe statistical methods to study data that have a hierarchical or multilevel
structure in the context of research questions about causal effects where there are
selection bias and missing data.

Multilevel data are relevant in the context of educational sciences because they
arise very often and their modeling allows us to study unique research questions. For
example, questions about the effect of different courses or about school effects are
answered with data that have a hierarchical structure because students are nested in
courses and schools. In addition, multilevel data includes longitudinal data, because
repeated measures can be seen as nested in the individual, generating another level.

Regarding the modeling of the hierarchical structure of the data, multilevel linear
models allow us to study and model specific characteristics of the data. For example,
we can model how the variance is distributed across different levels and measure the
effect of variables at different levels (Bressoux, 2007). They provide flexibility to
model longitudinal data and complex clustering as in cross-classified and multiple
membership models. An example of the relevance of these models in educational
sciences is the research on school effectiveness (Reynolds et al., 2014).

In addition to the modeling of the structure, we have to focus on research ques-
tions. In this part of the thesis, we want to describe techniques to answer what is
the effect of a treatment on an outcome. In several cases, these questions cannot be
addressed with randomized studies, and have to be done with observational studies.
In this context, two methodological problems appear:

1. Selection bias

2. Missing data

Selection bias is defined as the bias produced by non random assignment of the
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treatment or non random sampling. For example, an important question is which
type of schools is more effective: private or public schools. Usually it is not possible,
neither ethical, to assign students randomly to different types of schools. But, we
cannot just compare students from different schools, because they can differ sys-
tematically on other variables, which impedes to measure the effect of the school’
type.

Two methods to reduce selection bias will be described and analyzed: linear ad-
justing and propensity score matching. We will describe both methods under the
Rubin framework for causal inference (Imbens & Rubin, 2015). We choose linear
adjusting because it is one of the most popular methods in social sciences. Also,
with multilevel models it is straightforward to model the multilevel structure of the
data and at the same time linearly adjusting for control variables to reduce selection
bias.
On the other hand, we also analyzed propensity score matching because it is based
on balancing the treatment and control samples, which is an alternative strategy
compatible with regression analysis because it is possible to use both techniques
simultaneously. This method allows us to do a parallel with randomized studies and
to evaluate whether the samples are comparable or not without using the outcome,
which is more scientifically sound (Rubin, 2007). In addition, propensity score anal-
ysis has become very popular. Thoemmes and Kim (2011) made a review of social
science articles that used propensity score. They found that the number of articles
using propensity score increased exponentially and that, in the articles they review,
39.5% were in educational sciences.

Regarding missing data, it refers to the problem where there is missing informa-
tion of the units in the sample in one or more variables. Missing data can cause
biased estimates and loss of statistical power. The relevance of the missing data
problem depends on the missing data mechanism and the amount of missing data.
Simple methods for treating missing data are not recommended. In addition, usually
there are several patterns of missing data in variables with different characteristics.
This is why we choose multiple imputation, which is a method recommended in
the literature for data missing at random (Lang & Little, 2016; Peugh & Enders,
2004) and, at the same time, it is very flexible to model several types of variables.
Furthermore, it can be combined with different types of analysis, in particular with
multilevel models.

Even if all the methods for selection bias and missing data are compatible with
multilevel models, the problem of addressing both issues simultaneously with hier-
archical data is not resolved. From a theoretical level, assumptions of each method
should be adapted to the multilevel case. A main point is that the presence of selec-
tion bias and missingness in multilevel data can be related to variables that vary at
different levels and that take different roles in the model, for example outcome vari-
ables, group identification variables, etc. This raises new questions and motivates
this part of the thesis, which aims at describing methods for modeling multilevel
data and answering causal questions with the presence of missing data and selection
bias. We provide a theoretical discussion about how to combine the methods. This
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discussion is also useful to understand the methodological decisions that were taken
in the empirical studies presented in part II and part III of the thesis.
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Chapter 3

Theoretical Framework:
Description of multilevel models
and methods for selection bias and
missing data

In this chapter we describe multilevel models for different types of hierarchical data,
regression analysis and propensity score analysis for overcoming selection bias and
multiple imputation for addressing missing data problems. First, we describe the
statistical notation and terminology and then we describe the statistical models.

3.1 Preliminaries and statistical notation

In this section, we describe general assumptions and the statistical notation and
terminology, which are summarized in Table 3.1.
Throughout this chapter, we will assume that we have a continuous dependent or
outcome variable, and we want to estimate the effect of a binary treatment. We
will name the treatment values active treatment and control treatment. Explanatory
variables or covariates can be of different natures (categorical, continuous, ordinal,
etc.).

The dependent or outcome variable is denoted y. We want to measure the effect
of the treatment on y. This is the observed outcome, but for the analysis related to
selection bias, it is also necessary to define the potential outcomes. The potential
outcomes are the values of the outcome in the two possible treatments. We will
denote them y1 and y0 , where y1 is the value of the outcome in the case that the
unit received the active treatment and y0 is the value of the outcome in the case the
unit received the control treatment.
The treatment assignment variable will always be denoted z, where zi = 1 if unit i
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3.1. Preliminaries and statistical notation

received the active treatment and zi = 0 if unit i received the control treatment, y
can be defined as:

yi = ziy
1
i + (1− zi)y0

i ∀ i

Also in the framework of selection bias, we distinguish in the explanatory variables
the treatment assignment variable z and the control variables or covariates denoted
by X = (x1, . . . , xk) (see Table 3.1). In this framework, we will assume that we know
a priori that the covariates X are not affected by the treatment assignment. These
covariates allow us to: explain some variation in outcomes; describe the sample and
model the assignment mechanism (Imbens & Rubin, 2015, p. 16).
For clarity, in linear models we will express the multiplication of the parameters with
the covariates as vector multiplications. For example, if the parameters of a linear
regression are ~β = (β1, . . . , βk)

t, we will use the following expression:

X~β = β1x
1 + · · ·+ βkx

k

.

For the description of models concerning missing data, we will denote Y = (Yrs)
the matrix of dimensions N × (k + 2) with all the observed data. N is the sample
size and k+ 2 is the total number of observed variables. Each row is a unit and each
column is an observed variable. Y contains the dependent variable y, the treatment
variable z and the explanatory variables X. We denote M = (Mrs) the matrix with
missing indicators, that is, Mrs = 1 if Yrs is missing and Mrs = 0 if Yrs is observed.

In the notation for multilevel models, subscripts will be used to clarify the level
at which each variable changes. For example, if we used the letter i as the index to
identify students, and j as the index to identify schools. Then, xij is the value of a
variable for student i who belongs to school j, implying that x varies at the student
level. If instead, we define xj, it implies that x varies at the school level only. The
same goes for random effects, which will be denoted with Greek letters.

For estimating multilevel models, particularly to estimate random effects at higher
levels of the data structure, it is necessary to define which unit belongs to which
cluster or group. In order to do this in the estimation process, we use identification
or grouping variables for clusters, for example school and class identifiers. These
variables are very relevant, especially for the missing data discussion in the next
chapter. Consequently, we include them in Table 3.1. In general, the effect of higher
level variables in outcomes at the first level are called contextual effects. However,
there is a terminology that will be used for higher level variables in multilevel models,
that allows to distinguish different types of contextual effects (Diez, 2002):

1. Aggregated or derived variables: Variables that are defined at higher levels, but
are calculated with variables from lower levels. Usually they can characterize
the mean level, for example in a study of student nested in science courses, an
aggregate variable could be the mean of the students grades in each course. The
effect of these variables in outcomes at the first level are called compositional
effects (Diez, 2002).
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3.2. Modeling the data structure: Multilevel models for cross-sectional and
longitudinal data

2. Integral variables: Variables that are defined at the cluster level and are a
cluster level construct. They are not aggregated variables. For example, in a
study of students nested in science courses, an integral variable could be the
type of discipline of the course (Diez, 2002).

Table 3.1: Description of the variable notation and terminology in each model.

Variable notation Variable description

Multilevel models Missing Data Selection Bias

y dependent dependent outcome
y1 dependent dependent outcome
y0 dependent dependent outcome
z explanatory explanatory z treatment
X = (x1, . . . , xk) explanatory explanatory X control or co-

variates
Y = (y, z,X) observed variables
M missing data pat-

tern in Y
ε, µ, etc. random effects
IDschool,
IDclass, etc.

grouping grouping

3.2 Modeling the data structure: Multilevel mod-

els for cross-sectional and longitudinal data

In this section, we describe multilevel models. In particular, we describe the mul-
tilevel models used and discussed in this thesis. We present the general multilevel
model, cross-classified models, multiple membership models and longitudinal mod-
els. Multilevel models are introduced as an extension of the linear regression model.
The hypotheses of regression models are stated because they are important in the
section about selection bias.

3.2.1 Multilevel models as extensions of the regression model

Multilevel models are linear models that allow us to model a dependent variable mea-
sured in units nested in groups. The typical example is students nested in classes
or schools. The base of multilevel models is the linear regression model. In fact,
multilevel models can be seen as an extension of this model and they share several
assumptions. This is why, this section starts with a very brief description of the mul-
tivariate regression model and its hypotheses. The regression model proposes linear
relations between dependent and explanatory variables. Its expression is presented
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3.2. Modeling the data structure: Multilevel models for cross-sectional and
longitudinal data

in equation (3.1), where β0 to βk are fixed coefficients that define the linear relations
and εi is the error term.

yi = β0 + β1x
1
i + · · ·+ βkx

k
i + εi

εi ∼ N(0, σ2) ∀i
(3.1)

In order to have a well specified model and to obtain unbiased and consistent esti-
mators, the following hypothesis should be attained (Bressoux, 2010, p. 101):

• H1: Linearity and additivity

E(y|X) = β0 + β1x
1
i + · · ·+ βkx

k
i (3.2)

• H2: y is continous and not bounded. X = (x1, . . . , xk) are fixed and measured
without error.

• H3: The expectancy of the error term given X is 0 for all i.

E(εi|Xi) = 0 ∀i (3.3)

• H4: Homoscedasticity of the error terms

var(εi|Xi) = σ2 (3.4)

• H5: Independence of the error terms

cov(εi, εj) = 0 ∀i 6= j (3.5)

• H6: Errors have a normal distribution

εi ∼ N (0, σ2) (3.6)

• H7: Explanatory variables are linearly independent. It is not possible to cal-
culate one as a linear combination of the others.

These hypotheses for the linear regression model permit to introduce multilevel
models, as the ones that relax the hypothesis of independence of the errors (H5)
and model the effect of groups or environments. Relaxing this hypothesis is very
important in educational settings. When the data come from students nested in
classes and schools, equation (3.5) is not plausible, because observations of students
that belong to the same school or the same class are not independent.

In Table 3.2 several models are described in the case of data with two levels (for
example students nested in schools) to illustrate the flexibility and potential of mul-
tilevel modeling. The simplest one is called the empty model where the dependent
variable is modeled with a fixed effect β0, which is the general intercept, and with
random effects εij and µj at the student and school level respectively. The empty
model is very important because it allows us to know how the variance is distributed
among the different levels. The other models in the table include random intercepts
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3.2. Modeling the data structure: Multilevel models for cross-sectional and
longitudinal data

and also random slopes.
In order to completely specify the models, the distribution of the random effects has
to be defined. Usually, it is assumed that they are normally distributed. If there are
several random effects at the same level, the assumption is that they have a joint
normal distribution.

Multilevel models are not only an adjustment to take account of the non-independence
of the observations. The possibility to model random intercepts and slopes and the
effect of explanatory variables at different levels permit to address new research
questions. In particular, multilevel models allow us to model the effect of the en-
vironments in the student level variables (Bressoux, 2007). This feature will be ex-
ploited largely in this thesis, notably in parts II and III where the research questions
are about the effect of environments in student level outcomes. The first question
regards the effect of scientific courses on epistemic and self-efficacy beliefs and the
second question is about school’ effects on student’ trajectories in mathematics and
reading scores.

Table 3.2: Multilevel models with increasing complexity.

Model Random effects
distributions

Description

yji = β0 + µj + εij εij ∼ N(0, σ2
ε)

µj ∼ N(0, σ2
µ)

Empty model

yji = β0 +β1x
1
ij+· · ·+βkxkij+uj+

εij
uj = α1xj + µj

εij ∼ N(0, σ2
ε)

µj ∼ N(0, σ2
µ)

Model with random intercepts
µj. It includes student-level
and school level explanatory
variables

yji = β0 + β1jx
1
ij + · · · + βkx

k
ij +

µj + εij
β1j = νj

εij ∼ N(0, σ2
ε)

(µj, νj)
ᵀ ∼ N(0,Σ)

Model with random slopes νj
and random intercepts µj.

yji = β0 + β1jx
1
ij + · · · + βkx

k
ij +

µj + εij
uj = α1xj + µj
β1j = α2xj + νj

εij ∼ N(0, σ2
ε)

(µj, νj)
ᵀ ∼ N(0,Σ)

Model with random slopes
νj and random intercepts µj.
It includes student-level and
school level explanatory vari-
ables for the intercepts and the
slopes.

Naturally, higher levels can appear. For example, students nested in schools which
are nested in municipalities. The models with more levels are analogous to the two-
level model. There are several other extensions to these models, which allow to relax
hypotheses and model different features of the data. In the following sections, we
are interested in describing three specific extensions:

1. Multilevel growth models

2. Cross-classified and Multiple-membership models

Multilevel growth models are important because they allow us to model longitudinal
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data. Cross-classified and multiple-membership models allow us to model complex
clustering structures that are not strictly nested. In particular, they are useful to
model student mobility in multilevel growth models of students’ trajectories (Sun &
Pan, 2014). The general multilevel model and their extensions are relevant for the
applied problems addressed in parts II and III of this thesis.

3.2.2 Multilevel growth models

Multilevel growth models permit to model observations for the same units that
vary along time or along a growing variable. These models have two important
characteristics that distinguish them from the classical multilevel model (Bressoux,
2010, pp. 359):

1. Repeated measures for a unit are modeled as nested in the unit. For example,
several measures of students’ reading scores can be modeled with a two-level
model. The first level correspond to the students’ repeated measures and the
second level correspond the students.

2. The shape of the change along time, or along the growing variable, is modeled.

This first point implies that it is not necessary to have the same quantity of measures
by person because, as in any multilevel model, the clusters can have different sizes.
Also, it is not necessary to have equally spaced measures. The model includes the
growing variable for each person, which can vary freely.
The second point is fundamental, because it implies that just modeling longitudinal
data does not imply that we have a growth model. We have to explicitly model
the shape of the growth using the growing variable. For example, in the research
question from part II of this thesis there are three repeated measures. However,
it is not growth modeling because we made separate models for the effects of the
courses in the post and follow-up measures and we used the first measure as a control
variable. The research question from part III of the thesis is an example of growth
modeling, because we want to know how are the students’ trajectories and how these
trajectories are affected by different variables.
Equation 3.7 presents a simple growth model. To illustrate, we can consider that
it is a model over student outcomes. In this equation, for each student i the model
assigns the same slope β1 and a student-specific intercept µi, which is a random
effect.

yti = β1t+ β0 + µi︸ ︷︷ ︸
Modeling linear growth

+εi + εti. (3.7)

The flexibility of multilevel growth models allows us to add random slopes for
each student, as in equation (3.8). We can model the random slopes and intercepts
with explanatory variables. This enables the study of the rate and shape of the
growth. This information informs about processes and cannot be obtained with
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cross-sectional models. In equation (3.8), we are modeling a linear relation between
y·i and t. However, having more measures allows to model more complex curves as
polynomials, piece-wise functions, etc.

yti = β1it+ β0 + µi + εi + εti

β1i = α0 + α1x
1
i + νi︸ ︷︷ ︸

Modeling the rate of the change

(3.8)

Modeling repeated measures with multilevel models poses challenges and also
provides advantages. A first challenge is the need to have comparable measures
across time (Hox, 2010, p. 79). A second challenge is that the time scale has to
be carefully chosen to produce interpretable parameters and, at the same time, to
avoid estimation problems. Regarding the advantages, a first one is the possibility
of modeling different growth curves for each individual, which is more aligned with
individual development. A second advantage is the possibility of measuring the
effect of clusters on individual development and add easily time-variant variables as
covariates (Hox, 2010, p. 98).

3.2.3 Cross-classified models and multiple-membership mod-
els

There are cases where the grouping of the units is not strictly hierarchical, and
other types of structures appear. We will describe here two of these structures:
cross-classified and multiple membership.

A typical example of cross-classified structure is students that belong to schools
and neighborhoods (see Goldstein (2011, ch. 12) and Hox (2010, ch. 9)). In this
case, there is no strict hierarchical structure because students from different neigh-
borhoods can belong to the same school and students from different schools can
belong to the same neighborhood. What is present here is a cross-classified struc-
ture, where there are two dimensions that produce clustering, but they are not
hierarchically related.
Regarding multiple-membership structures, these are structures where one unit can
belong to more than one cluster. For example, if the units are students and the
clusters are friendship groups (see (Goldstein, 2011, ch. 13)).

A very important case where cross-classified and multiple membership structures
can be used is repeated data. An example is the study about the Chilean student
trajectories in part III of this thesis. In this study, we analyze students’ trajectories in
mathematics and reading scores using measures at 4th, 8th and 10th grade. Because
students can change school, three types of clustering appear: the school in 4th grade,
the school in 8th grade and the school in 10th grade. For this example, the empty
cross-classified growth model is expressed in (3.9). It uses a similar notation as in
Hox (2010, ch. 9), where the parenthesis (jkl) represent the school indexes for the
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with cross-classified school effects

Model (a): Multilevel 
growth model

Student

School

Student 
measures

Model (c): Multilevel 
growth model with multiple 
membership school effects

Figure 3.1: Multilevel growth models

school in 4th grade, 8th grade and 10th grade respectively. The parenthesis indicates
that the units i, j and k are not necessarily nested. In particular, equation (3.9)
is an example of the modeling of school effects with a cross-classified model where
each clustering defines a different random effect.

yti(jkl) = β0 + β1i(jkl)t+ µ4th
j + µ8th

k + µ10th
l︸ ︷︷ ︸

schools effects

+εi(jkl) + εti(jkl) (3.9)

In the case of multiple membership, the approach is different. Here, we use
weights to model that a student can belong to different clusters, in this case schools.
For example, if a student attended School A in 4th grade and attended School B
between 8th and 10th grade, their weights could be 1

3
for School A, 2

3
for School

B, and 0 for the rest of schools. An example of a multiple membership model is
described in equation (3.10).

yti = β0 + β1it+

NJ∑
j=1

ωijµj︸ ︷︷ ︸
school effects

+εi + εti (3.10)

Using notation from Browne, Goldstein, and Rasbash (2001), Figure 3.1 represent
the multilevel growth model, in the case there is no cross-classification of schools
(a), in the case there is cross-classification of schools (b) and in the case of multiple
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membership (c). It is possible to define random intercepts and slopes in the same
way as with regular multilevel models. The importance of these models is that they
allow to properly account for the non-nested clustering.

3.3 Modeling selection bias: Linear regression and

Propensity Score models

3.3.1 Causal Estimation

To estimate the effect of a treatment, we need to know the difference in the value of
an outcome between the units in the case they received the active treatment and the
same units in the case they received the control treatment. That means answering
the question: What would have happened if the unit received another value of the
treatment?. In order to know this, we should see the outcome in case the unit was
in the treatment and in case the unit was in the control group, that means observe
both potential outcomes.
The problem is that a unit can only receive one treatment (the factual), so the value
of the outcome in the case she received the other treatment (the counterfactual) is
missing. This is the fundamental problem of causal inference (Rubin, 1974).
These ideas are part of the conceptual framework for causal inference developed by
Rubin (Imbens & Rubin, 2015). An important issue is that this framework is useful
if the counterfactual can be well defined (Cameron & Trivedi, 2005, pp. 34), which
implies it has well defined treatments. Imbens and Rubin (2015, pp. 4-5) discuss
the relevance of having a well defined treatment variable, where the alternative to
the active treatment has to be the control treatment. For example, if the active
treatment is taking an aspirin, the control treatment can be defined as not taking an
aspirin and the potential outcomes in both cases are well defined, so the causal effect
can be defined. In many cases, to define the possible treatments is not obvious and
the treatments and the population under study have to be characterized carefully
to be able to do causal inference.

If the active and control treatment are well defined, we can state that, since it
is impossible to observe the outcome of a unit in the control and in the treatment
group, it is necessary to assign the unit to one group, the active or the control
treatment. If the assignment mechanism is not random, it can introduce bias to
the estimation of the effect of the treatment. In this case, observed or unobserved
factors can produce systematic differences between the treatment groups. We will
consider the selection bias produced as a result of not having a randomized treatment
assignment. The term selection bias is also used for non-random sampling, but in
this section we assume that we have random sampling.

In this context, the best way to study the effect of a treatment is doing randomized
studies (Imbens & Rubin, 2015; Rubin, 1974). In these studies, the assignment to
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each possible value of the treatment is done in a random way, were we know the
probability of assignment (Imbens & Rubin, 2015, p. 40). Random assignment can
balance observed and unobserved variables, if the sample is large enough.

Nevertheless, in educational sciences there are several cases were it is not possible
to assign randomly individuals to the treatment and control group. In these cases,
treatment effect estimation has to be done in observational studies. In this section,
we use the conceptual framework from Imbens and Rubin (2015) to describe the
statistical techniques to estimate treatment effects in observational studies, where
selection bias appears naturally.

We consider the case of an observational study, where we have a random sample
from each treatment group, where N1 is the sample size of the active treatment
group, N0 is the sample size of the control group and the total sample size is N . The
potential outcomes are y1 and y0. Our objective is to estimate the average treatment
effect (ATE) defined as:

ATE = E(y1)− E(y0)

It is important to note that the ATE is defined trough the potential outcomes, and
that the natural sample estimation that we would like to do is the difference of
means:

ÂTE1 =
1

N

N∑
i=1

y1i −
1

N

N∑
i=1

y0i

But this estimation is impossible, because for each unit i, we can only observe one
of the potential outcomes. This mean that the quantity that we can estimate is:

ÂTE2 =
1

N1

∑
zi=1

y1i −
1

N0

N∑
zi=0

y0i

If there is a random experiment, ÂTE2 is an unbiased estimator of ATE. The prob-
lem is that it can produce biased estimates if the treatment assignment mechanism
is not random. However, if there are measured pre-treatment variables X, which ac-
complish that the potential outcomes are independent of the treatment conditional
on X, we can estimate ATE (Rosenbaum & Rubin, 1983). The precise assumptions
over the pre-treatment variables are stated in equations (3.11) and (3.12). These
assumptions allow us to estimate ATE with propensity score analysis and, adding
some linearity hypothesis, with regression analysis (Rosenbaum & Rubin, 1983).

(y1, y0) ⊥ z|X (3.11)

0 < P(zi = 1|Xi) ∀i (3.12)

Assumption from equation (3.11) is called the ignorability assumption or uncoun-
foundedness. This assumption cannot be tested and we have to consider what we
know from our empirical problem to evaluate its plausibility (Wooldridge, 2010, p.
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910). Assumption from equation (3.12) implies that all the units have non-zero
probability of being in the active and in the control treatment. This assumption
is natural because it is not possible to define a potential outcome if there is no
possibility that the unit gets a defined treatment and is also referred as the need
to have common support. Equations (3.11) and (3.12) form the strong ignorability
assumption (Rosenbaum & Rubin, 1983).

Another important assumption is the stable unit treatment value assumption
(SUTVA), which says that the treatment assigned to one unit does not have influence
in the outcomes of the other units (Imbens & Rubin, 2015, p. 10). If SUTVA does
not apply, we should consider more treatments and the problem is intractable. For
example, consider that the outcome of unit 1 depends on where the unit 2 was
assigned. In this case, we should consider four potential outcomes which are all the
treatment assignment combinations for unit 1 and 2 . But this prevents us from
estimating the treatment effect, because in some sense each assignment of units is
a different treatment. In this case, the counterfactuals and potential outcomes are
not well defined.

In the following subsections, we describe how to estimate the ATE with regression
based models and propensity score analysis. If the strong ignorability assumption is
met both analyses can give an unbiased estimate of the ATE.

3.3.2 Regression Models and Selection Bias

The main idea for using linear regression for estimating treatment effects, is that
linearly adjusting of the effect of control variables in the outcome can isolate the
effect of the treatment variable. In this section, we will describe regression anal-
ysis used for treatment effect estimation in the classical regression framework and
in the potential outcomes framework. In order to make causal claims through re-
gression analysis, hypotheses have to be done over the variables. First, we need a
treatment variable z, where the potential outcomes are correctly defined and there
is an understanding of the assignment mechanism in order to control for the proper
covariates. In addition, we have to accomplish the regression hypotheses in order to
have appropriate estimations. The basic assumption for using regression analysis in
the context of observational studies, is that we can correct for selection bias adding
the pre-treatment variables to the regression equation. In the simplest case, where
there is no selection bias, the regression model to estimate the average effect of a
treatment z in an outcome y is defined as follows:

yi = β0 + β1z1 + εi (3.13)

If there is selection bias, we try to adjust for it controlling by relevant covariates,
as follows:

yi = β0 + β1z1 + ~β2Xi + εi (3.14)
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In these models the average treatment effect is β1, and the estimated average
treatment effect is β̂1, the estimated value of this coefficient. To claim that β̂1 is an
unbiased estimator of the treatment effect, there are two possibilities to argue and
define the necessary hypotheses.

In the classical regression framework, we can ask that the usual hypotheses for
linear regression be met (Bressoux, 2010, p. 101). There are two hypotheses that are
especially critical in causal effect estimation. The first one is hypothesis H3 (equation
3.3) that states E(εi|z,Xi) = 0. This hypothesis implies that cov(εi, (zi, Xi)) = 0
and this latter property is enough for having unbiased estimates in the regres-
sion coefficients (Wooldridge, 2010, p. 54). The hypothesis H3 is stronger than
cov(εi, (zi, Xi)) = 0, but is better because it assures us that cov(εi, g(zi, Xi)) = 0
with any function g. This is very useful for including nonlinear functions of Xi in
the regression (Wooldridge, 2010, p. 18) .
If a variable x is correlated with the error term ε, we say that it is endogeneous,
if it is uncorrelated, we say that it is exogeneous (Wooldridge, 2010, p. 54). The
endogeneity appears in three forms: omitted variables , measurement error and si-
multaneity (Wooldridge, 2010, p. 54,55). Usually, the most important for treatment
effect estimation are the omitted variables that are correlated with the outcome y
and the treatment assignment z, which can produce cov(εi, zi) 6= 0 and consequently
biased estimates. The second relevant hypothesis is H1 regarding linearity and addi-
tivity. In particular, this model assumes that linearly adjusting for the confounding
variables is enough. Nevertheless, this is a strong supposition because there can
be another types of relations, more complex that cannot be modeled with a linear
model.

Linear regression can also be studied from the potential outcomes framework.
In this framework, using Corollary 4.3 from Rosenbaum and Rubin (1983) we can
estimate the treatment effect using linear regression. Rosenbaum and Rubin (1983)
stated the corollary in terms of balancing scores. A balancing score is any score that
accomplish equation (3.15).

X ⊥ z|b(x) (3.15)

In particular b(X) = X is a balancing score. Therefore, we can infer that if
the strong ignorability assumption is true and the conditional expectation of the
potential outcomes is linear in X. Then, the estimator from equation (3.17) is an
unbiased estimator for the average treatment effect if the units in the study are a
random sample (Rosenbaum & Rubin, 1983).

E(yg|z = g,X) = αg + ~βgX g = 1, 0 (3.16)

ÂTE
′
= α̂1 − α̂0 + (~̂β1 − ~̂β0)

(
X̄ =

1

N

N∑
i=1

Xi

)
(3.17)

The estimator ÂTE
′

is not exactly what is generated by linear regression, but if we
add the assumption that ~β1 = ~β0, it is equivalent.
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In summary, regression analysis has as a limitation the strong hypothesis of linear-
ity. Regarding the other hypotheses, they are related because the strong ignorability
assumption and hypothesis H3 from classical regression analysis ask for the treat-
ment to not be confounded with unmeasured variables. In conclusion, it is important
to identify empirically which are the covariates that define or influence the treatment
assignment and measure them.
Nevertheless, regression analysis also presents advantages. For example, there can
be an interest in understanding the effect of the covariates and in this case estimating
~β2 from equation (3.14) is informative. In addition, extensions of the linear regres-
sion model allow to work easily with outcome variables with different distributions,
for example logistic regression and with clustered data as in multilevel models.

3.3.3 Propensity Score Analysis

Propensity score analysis is a technique that is based on balancing the samples that
received different treatments to be able to compare them. The basic idea is that
we can correct for selection if we make the different treatment groups comparable
on the pre-treatment variables or covariates. After the samples are equivalent, the
effect of the treatment can be easily estimated, comparing the outcome variable in
the balanced samples.
Usually, there are several pre-treatment variables or covariates that need to be bal-
anced in the sample, which make a challenge to use them all. This problem is
solved, because Rosenbaum and Rubin (1983) proved that if the strong ignorability
assumption is true it is enough to balance the sample on one variable: the propensity
score. The propensity score is the probability of belonging to the active treatment
conditional on the covariates, defined as P(z = 1|X).

Rosenbaum and Rubin (1983) showed that, under the strong ignorability assump-
tion, the mean difference between the samples balanced through the propensity score
was an unbiased estimate of the average treatment effect. Also that balancing the
samples through propensity score produced that treated and control groups have the
same distribution of the pre-treatment variables X.

To balance the samples of the different treatments, the first step is to estimate
the propensity score; the second step is to balance the samples to achieve the same
propensity score distribution; and then to compare the outcomes in the balanced
samples. The first step is finding a proper model for estimating the propensity score
and explicit which variables were included and why. Then, researchers have to check
that a good balance was achieved and define the region of common support, that is
where the distribution of the propensity scores for the treatment groups overlaps,
that means that have units with comparable propensity scores, and finally report
how outcomes of the balanced samples where compared (Thoemmes & Kim, 2011).
To estimate the propensity score, it is necessary to use models that explain the
probability to belong to the active treatment with pre-treatment variables. Typical
choices are logit and probit regression models (Thoemmes & Kim, 2011). Neverthe-

22



3.4. Modeling Missing Data: Multiple imputation

less, there exist other models to estimate this probability, for example Generalized
Boosted Models (GBM), which have several appealing properties such as: selecting
the variables to estimate the propensity score maximizing the achieved balance and
avoiding distributional assumptions as probit and logit (McCaffrey, Ridgeway, &
Morral, 2004), (McCaffrey et al., 2013).
To balance the samples, it is possible to do: matching, weighting, stratification and
covariate adjustment (Clark, 2015). Matching strategies imply select units in the
active treatment and control group that have the same or very similar propensity
scores. When it is the same it is exact matching and when it is similar is approxi-
mate matching (Thoemmes & Kim, 2011). There are several decisions in order to
choose the matching strategy. Thoemmes and Kim (2011) distinguish the follow-
ing factors: the number of treated units matched to one control unit, the matching
(exact or approximate) and the algorithm (optimal or greedy). In addition, it is
possible to match the propensity scores and observed covariates that are especially
relevant (Stuart, 2010).
Weighting implies giving different weights to each unit in order to have weighted
balanced samples. The weights are calculated with the propensity scores and the
typical weighting strategy is inverse probability weighting (Clark, 2015). Stratifica-
tion (or subclassification) implies the division of the sample in strata according to
the propensity score. After the division, control and treated units are compared in
each stratum.
Finally, covariate adjustment uses the propensity score as a control variable in a
regression model. This strategy is reasonably because the propensity score can be
seen as a data reduction of all the control variables. In addition, it gives unbiased es-
timates under strong ignorability assumption and linearity assumption (Rosenbaum
& Rubin, 1983, corollary 4.3). However, it is not recommended because it adds
assumptions (Thoemmes & Kim, 2011).

An important point is that propensity score can be combined with linear ad-
justment. This is a recommended procedure because it is enough that one of the
methods be properly defined to have well estimated treatment effects. Also it has
been demonstrated that combined work best (Stuart, 2010).

3.4 Modeling Missing Data: Multiple imputation

3.4.1 Missing data mechanism

Missing data is an unavoidable problem in most applied research. The simplest
methods to address this problem are complete case analysis and single imputation.
Complete case analysis implies erase the units that have missing values in one or more
variables. The advantage is that it is very easy to implement and easy to combine
with other statistical models, which can be applied without extra data management.
The main disadvantages are the loss of information and statistical power and that
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depending on the missing data mechanism, it can produce biased results (Little &
Rubin, 2002). The loss of information is especially critical in studies with several
measured variables, where it is more probably for a unit have a missing value in one
of the variables.
Another simple method is to do single imputation, that means impute the missing
value with a plausible value and then make the same data analysis that would
be done with complete data. There are several techniques to generate the single
imputations, the simplest is to impute missing values with the mean of the variable.
Single imputation strategies are not recommended because they can bias the results,
specially variance and covariance estimators. In addition, these strategies do not
account for the uncertainty of the missing values and treat the imputed values as
regular values (Allison, 2002, p. 28).

The adequate method to handle missing data depends on several factors such
as: the missing data mechanism, the amount of missing data, the type of data
and the research question. The most important factor is which is the missing data
mechanism. These mechanisms were defined by Rubin (1976). If they are not
taken into consideration there can be biased estimates. This section is strongly
based on Little and Rubin (2002, p. 11,12). In order to define the missing data
mechanisms, we use the notation from Table 3.1 and we set some extra statistical
notation. We denote Ymis and Yobs the parts of the Y matrix with missing and
observed values respectively. The vector φ is a vector of unknown parameters. To
define the missing data mechanism, the key function is the distribution of the matrix
of missing indicators M , conditional on Y and on φ: f(M |Y, φ). The missing data
mechanism is defined through this distribution (Little & Rubin, 2002, p. 11,12):

• Missing completely at random (MCAR):

f(M |Y, φ) = f(M |φ) ∀ Y, φ (3.18)

• Missing at random (MAR):

f(M |Y, φ) = f(M |Yobs, φ) ∀ Ymis, φ (3.19)

• Missing not at random (NMAR): When f(M |Y, φ) depends on Yobs and Ymis

In the case of data MCAR, the distribution of missing data does not depend on
the observed variables. This implies that in this case complete-data analysis would
not bias the results. In the case of MAR, the distribution of missing data depends
only on observed values. This gives the chance that, using these observed values,
we can solve the missing data problem. Finally, in the case of data NMAR, the
distribution of missing data depends on Ymis, which by definition is information
that is not available.
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3.4.2 Multiple imputation

The multiple imputation technique is based on imputing several values for each
missing value. Each imputed value belongs to a different complete data-set. The
rationale behind this idea is that by imputing several values, it is possible to capture
the uncertainty added by the missing data and, at the same time, it allows to use the
complete data set for the analysis. To do the multiple imputations, it is necessary
to generate random draws with the distribution of the missing values. In the case
the missing data mechanism is MAR, we can estimate these distributions with the
observed data.
If there are m imputed values or imputations for each missing value, there will be
m complete data sets. The analyses are done in each of the complete data sets and
then combined to have a unique result. This permits to avoid the problems of loss
of power and bias from complete-case analysis. Also, it avoids the bias produced by
single-estimation methods.

After multiple imputing the data, the statistic of interest θ and its standard
error are estimated in each complete data set. We denote this estimators θ̂i and
σ̂i respectively with i = 1 . . .m. Then, these m estimated values are combined
according to the Rubin rules to get a unique estimator for the estimate and its
variance, which permits to do inference. The Rubin rules for the estimation of θ and
σ are given, respectively, in (3.20) and (3.21) (Rubin, 1987, p. 76).

θ̂MI =
1

m

m∑
i=1

θ̂i (3.20)

σ̂MI =
1

m

m∑
i=1

σ̂i +

(
1 +

1

m

) m∑
i=1

(θ̂i − θ̂MI)
2 (3.21)

In the last formula, the first term is the average variance and the second term
term is the variance between imputations. With the last term, the method includes
the uncertainty produced by imputing missing values. Rubin rules also include
formulas to calculate t-statistics for doing inference regarding the parameters. They
are generic and they are not associated to a specific imputation model. Nevertheless,
in order to do inference, they should be applied to estimators which are normally or
asymptotically normally distributed (Carpenter & Kenward, 2013, p. 41).

In order to create the imputations, it is necessary to estimate the distribution of
the missing values and take m random samples of this distribution. For accomplish-
ing this, it is necessary to define an imputation model for the variables with missing
data.
If the missing data mechanism is MAR, the imputation model is a model for the
conditional density f(Ymis|Yobs). The imputation model is defined by the researcher
and it should: respect the nature of each variable, consider all relevant predictors
and capture the essential characteristics of the data. If the aim of the research is
the application of a substantive model for interest, this model with the imputation
model should be congenial, that means that the imputation model should include the
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relations from the substantive model (Carpenter & Kenward, 2013, p. 41), (Enders,
Mistler, & Keller, 2016).
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Chapter 4

Simultaneously modeling selection
bias and missing data in the
context of multilevel data

In this chapter, we present a discussion about solving selection bias problems and
missing data problems in the context of multilevel modeling. The methods for
selection bias are linear adjustment for confounding variables and propensity score
matching. Propensity score matching will be used as a pre-treatment of the data in
order to apply a multilevel model as the final analysis. The method for missing data
is multiple imputation.
Fundamental aspects to consider are how the hypotheses and the implementations
of the methods can be extended considering the multilevel structure of the data.

4.1 Selection bias and multilevel data

In this section, we discuss how to estimate causal effects when there are selection bias
problems in the context of multilevel modeling. Multilevel models can be used for
the propensity score model and to model the outcome. Arpino (2010, 84-85,112-120)
elaborates the relevance of considering the multilevel dimension in the estimation
of causal effects in three points: cluster-heterogeneity of the treatment effect, the
multilevel nature of the selection process and potential violations of the SUTVA as-
sumption. Cluster-heterogeneity refers to treatments that can have different effects
within each cluster. This can can be modeled using random slopes for the treatment
variable. The multilevel nature of the selection process is important, because it can
depend on cluster characteristics and interactions between cluster and individual
variables.
Other advantages to estimate causal effects with multilevel models are that it is pos-
sible to account for the data characteristics and adjusting for unmeasured covariates
(Feller & Gelman, 2015). Finally, when they are used for modeling the outcome,
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they allow to have treatment and outcomes varying at different levels. For example,
in the study of part III of this thesis, the outcomes are the intercepts and slopes for
each student trajectory.

Nevertheless, using multilevel models raises new challenges because it is necessary
to take more modeling decisions and check hypotheses at more levels. For example,
it is important to choose between fixed or random effects; the role of aggregate
variables is complex and hypotheses regarding the random effects distribution and
exogeneity should be met at all levels.

To organize the discussion, we classify causal effect estimation in multilevel set-
tings in two cases: intra-cluster and inter-cluster treatment assignment. Equations
(4.1) and (4.2) illustrate each case. In both equations, z denotes the treatment, y
denotes the outcome and uj are random effects or fixed effects. We used as examples
two-level multilevel models, but the ideas can be applied to models with more levels.
The intra-cluster case is when inside the cluster there are control and treated units,
which is illustrated in equation (4.1). Thoemmes and West (2011) relate this design
to multisite randomized studies, where there are treatment and control units in dif-
ferent sites, like hospitals or schools.
The inter-cluster case is when in each cluster there are only treated units or only
control units, which is illustrated in equation (4.2). In this case, we are concerned
with cluster effects. Zubizarreta and Keele (2016) relate this design to clustered-
randomized studies.

1. Intra-cluster design
yij = β0 + β1zij + uj + εij

uj = α0 + µj
(4.1)

2. Inter-cluster design
yij = β0 + uj + εij

uj = α0 + α1zj + µj
(4.2)

We will use this classification to describe how the hypotheses from linear regres-
sion that are relevant for unbiased estimation of treatment effects are extended for
the multilevel case. Finally, we will discuss how linear adjusting for confounding
variables and propensity score analysis can be implemented in these two cases.

4.1.1 Hypotheses from the selection bias methods in a mul-
tilevel context

In chapter 3, we saw that a fundamental hypothesis for having unbiased treatment
effect estimation is to have exogenous explanatory variables (hypothesis H3, equation
(3.3)). From the causal effect framework, the relevant hypothesis was the ignora-
bility assumption (equation (3.11)). In this section, we will focus more on how the
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exogeneity hypothesis is extended and achieved in multilevel models, because this
analysis is our ultimate goal.

In order to have non biased estimates, the hypothesis H3 has to be extended to
the case of multilevel models. In this case, it applies to the residual term and to all
the random effects (Cheslock & Rios-Aguilar, 2011). If there is correlation between
an explanatory variable with any random effect it will produce biased estimates. To
exemplify, we define the model from equation (4.3). This is a two level model with
a residual term εij, random intercepts µj and explanatory variables X = (x1, x2)
varying at different levels.

yij = β0 + β1x
1
ij + β2x

2
j + µj + εij (4.3)

The hypothesis H3 extended to this model as follows:

• H3: The expectancy of the error term and all the random effects given X is 0
for all i.

E(εij|Xij) = 0 ∀i (4.4)

E(µj|Xij) = 0 ∀i (4.5)

In this context, a very important cause of endogeneity is omitted variable bias
(Kim & Swoboda, 2010). Regarding how to address endogeneity problems, Arpino
(2010, 97-102) considers two types of endogeneity and describes how they can be
handled. If the endogeneity came from the correlation of a covariate with the residual
term, it is called first level endogeneity. This occurs when equation (4.4) is not true.
If the endogeneity came from correlation between covariates with the random effect,
it is called second level endogeneity. This occurs when equation (4.5) is not true. In
the following list we describe some possible solutions:

1. First level endogeneity with first level covariate: This problem is analogous
the endogeneity problem in linear regression. It can be addressed with the
same methods, for example instrumental variables or simultaneous equations.
Econometrics books describe this problem in detail (e.g. Wooldridge (2010)).

2. First level endogeneity with second level covariate: This problem can be solved
defining fixed effects at the second level instead of random effects. This will
prevent us from including second level covariates. Thus, it produces a loss of
information. However, the estimators at the first level would be correct. Kim
and Frees (2006) and Kim and Swoboda (2010) analyze this problem for cases
with several levels and propose solutions.

3. Second level endogeneity with first or second level covariate: When the random
effect is correlated with a variable that varies at the first level, Arpino (2010,
97-102) shows that including in the model the cluster average of the covariate
eliminates the correlation with the random effect. This is especially important
when the endogeneous variable is the treatment assignment variable.
Castellano, Rabe-Hesketh, and Skrondal (2014) discuss the case when also the
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cluster average of the covariate is endogenous. An example is when the effect
of good practices in schools is correlated with the mean of the students’ so-
cioeconomic status (SES). In this case, the average SES is endogenous, and
its coefficient is not the causal peer effect. Castellano et al. (2014) offers tech-
niques to give bounds to the estimates.
Also, there is the option of modeling fixed effects. In this case, there are
no random effects and there are not endogeneity problems. But again, this
option has as disadvantage that we cannot add second level variables (Han-
chane & Mostafa, 2012). If the treatment variable is at the cluster level, it
is not possible to estimate the treatment effect. There are also other options
as instrumental variables, for example the work of Manzi, San Mart́ın, and
Van Bellegem (2014).

In these analyses we did not consider random slopes, but Kim and Frees (2006)
and Kim and Swoboda (2010) consider a general case with random slopes and any
number of levels.

In educational sciences, specially in the research on school effects, having strat-
ified systems produces endogeneity problems. Hanchane and Mostafa (2012) argue
that stratified systems produce correlation between student level variables and omit-
ted school level characteristics. They compared educational systems with different
levels of stratification and found evidence for second level endogeneity in the more
segregated systems. They showed the relevance of including the school mean of the
endogenous student level variables or model school fixed effects.

These issues are complex to connect because they are developed in two different
approaches in multilevel models. On the one hand, the classical approach in educa-
tional sciences considers that random effects are very important because they allow
us to model heterogeneity between groups and consider the groups as a sample. The
problem is that the exogeneity hypothesis should be true for the random effects. On
the other hand, the econometric approach highlights much more the accomplishment
of the hypotheses to have non biased estimators. It recommends more the use of
fixed effects (Cheslock & Rios-Aguilar, 2011). Nevertheless, Hill (2013) discuss that
the modeling of fixed effects is not a panacea, and they should not be used to avoid
properly adjusting for relevant confounding variables.
Castellano et al. (2014), Hanchane and Mostafa (2012), Cheslock and Rios-Aguilar
(2011) and Hill (2013) connect both approaches and allow us to understand the
factors to consider what to decide.

Another line to address the problem of selection bias is to evaluate the ignorability
assumption. That assumption is not posed in terms of the residual term of the
random effects at different levels, but in terms of the potential outcomes. The
ignorability assumption can be assumed to be true at the individual or cluster level,
thus defining the type of analysis that has to be done. The first possibility is to
try to emulate a classical randomized experiment. In this case, the ignorability
assumption should be true at the individual level. The second option is to try to
emulate a clustered randomized study and match clusters, as in Hansen, Rosenbaum,

30



4.1. Selection bias and multilevel data

and Small (2014). This should be the case if the treatment assignment depends only
on cluster level variables.

Regarding the SUTVA assumption, the plausibility of this assumption depends
on the level of the treatment assignment. For example, Stuart (2007) argues that in
studies where the unit is the class and students in the treated classes can interact
with students in control classes there can be spillover effects, and SUTVA may be
violated. Nevertheless, in the case of interventions at the school level it is more
plausible. We will assume that the SUTVA hypothesis is plausible. For modeling
possibilities in intra-cluster treatment assignment when SUTVA is not appropriate
see (Arpino, 2010, 115-120). When the assignment is inter-cluster and the results
are interpreted at the group level, there can be interference between units inside
each cluster but not interference between clusters (Hill, 2013, pp. 203) .

4.1.2 Modeling multilevel data and selection bias

In this section we discuss the estimation of causal effects controlling for selection
bias trough linear adjustment for confounding variables, implementing propensity
score matching and using both techniques simultaneously.

Linear controlling

Addressing selection bias in the case of linearly adjusting for confounding variables
is straightforward trough multilevel models because it is easy to add the treatment
variable and the control variables at the corresponding level. Equations (4.6) and
(4.7) represent examples of linear controlling for the intra-cluster and inter-cluster
case. X is the matrix with the control variables at the individual level and X ′ is
the matrix with the control variables at the cluster level. The treatment assignment
variable is z and y denotes the outcome.

1. Intra-cluster design

yij = β0 + β1jzij +Xij
~β2 + uj + εij

uj = α0 +X ′
j ~α1 + µj

(4.6)

2. Inter-cluster design

yij = β0 +Xij
~β1 + uj + εij

uj = α0 + α1zj +X ′
j ~α2 + µj

(4.7)

In order to estimate causal effects of the treatment, the major challenge is to
determine if the exogeneity hypothesis is plausible (equations (4.4) and (4.4)). Of
course, this depends on each specific research problem and related variables, but it
is important to consider all the possible sources of endogeneity: within each level
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and between levels. These analyses can determine if it necessary to integrate the
cluster mean of first level variables and the definition of fixed or random effects.

In the case of intra-cluster treatment assignment, it is possible to define µj as
random effects and control by cluster-level variables or as fixed effects. In equation
(4.6), we defined random effects and we controlled by cluster level variables .
In the case of inter-cluster treatment assignment, it is not possible to define fixed
effects at the cluster level because it would be impossible to identify the effect of the
treatment variable. In this case, cluster level covariates X ′ should eliminate all the
source of endogeneity.
There can be complex designs where the strategies can be combined, for example
in studies with students nested in schools which are nested in municipalities. If the
treatment is at the school level, the study corresponds to an inter-cluster design
regarding the school clustering, but to a intra-cluster design regarding the munici-
pality. To use all the advantages of multilevel models we could define random effects
at the school level and fixed effects at the municipality level.

Propensity score matching

In the case of propensity score matching, it is necessary to analyze intra-cluster and
inter-cluster treatment assignments separately. For doing propensity score matching,
the first step is to estimate the propensity score; the second step is to balance the
samples to achieve the same propensity score distribution; and then to compare the
outcomes in the balanced samples. In each of these steps it is necessary to determine
how to take into account the multilevel structure.
Matching techniques are not designed to model the causal effect and it is necessary to
define a model for the outcome (Stuart, 2010) . We consider that always a multilevel
model is the final analysis for the outcome. In addition, we restrict to the case where
one treated unit is matched to one control unit (1:1 matching). In this case, it is
straightforward to use a multilevel model for the outcome model in the matched
data. Other matching possibilities may imply the use of weights and they are more
complex to combine with multilevel models.

With respect to intra-cluster treatment assignment, first it is necessary to define
the propensity score model. In this case, the probability to being assigned to the
active treatment can be modeled in several ways. A first decision is using only indi-
vidual level covariates or include also cluster level covariates. A second decision is
choosing between ignoring the clustering, random effects or fixed effects.
Arpino and Mealli (2011) considered the situation when there is an unobserved
cluster-level variable that influences the treatment assignment. They found that the
fixed effect models performed very well, better than the random effect model that
did not include the unobserved variable. Nevertheless, they did not use a multilevel
model for the outcome. Thoemmes and West (2011) and Leite et al. (2015) found
that including the multilevel dimension in the propensity score was important, es-
pecially when the intra-class correlation is large. Nevertheless, if all the variables

32



4.1. Selection bias and multilevel data

relevant to treatment assignment were considered, they did not found important
differences in bias reductions according to the specification of the propensity score.
These can be explained because they also used a multilevel model for the outcome.
This protected them from errors in the multilevel specification of the propensity
score (Leite et al., 2015). Another aspect to consider is if the selection process is
different in each cluster. This can be included in the propensity score model using
random slopes (Leite et al., 2015).
Regarding the matching process, there are several issues to consider. Thoemmes and
West (2011) defined two cases that we depict in Figures 4.1a and 4.1b and describe
in the following paragraphs.
Case 1 is where the cluster level is a fundamental aspect of the design. There can be
variations on the treatment implementation and interference between units in the
same cluster. In this case, the idea is to emulate a multisite randomized trial. The
selection model can vary in each cluster.
Case 2 is when the clustering is a characteristic of the data, but is not the main
aspect of the study. The treatment is implemented without variation.
The distinction between the two cases is relevant for choosing a matching strat-
egy. In Case 1, it is necessary that balance is achieved in each cluster, and it implies
matching units inside each cluster. Therefore, this strategy provides an exact match-
ing for the observed and unobserved cluster variables. In addition, it is necessary to
have enough sample sizes of treated and control units and common support in each
cluster.
In Case 2, the clustering is a feature of the study, but it approximates a random-
ized experiment when the assignment is regardless cluster-membership. Here the
matching is done between treated and control individuals that can belong to differ-
ent clusters, nevertheless level 1 and level 2 variables have to be considered.
The final step is to estimate the treatment effect comparing the outcome in the
matched samples trough a multilevel model, for example as in equation (4.1). This
is a good option because it protects from non include the multilevel aspect in the
propensity score model. Also, this is a more robust strategy because selection bias
can be addressed through matching and linear adjustment.

In the case that the treatment assignment is inter-cluster, first it is necessary to
decide how the treatment assignment should be modeled. We depict the possible
strategies in Figure 4.2. A first option is to do the matching at the individual level
including in the propensity score model only individual level covariates, which cor-
respond to Figure 4.2a. A second option is to match individuals including in the
propensity score model individual and cluster level covariates as in Figure 4.2b. A
third option is to do the propensity score model and the matching at the cluster level
as in Hansen et al. (2014). Here, a parallelism is done with a clustered-randomized
study. In this case only cluster level variables can be considered. This strategy
is depicted in Figure 4.2c. The fourth and final option is to match clusters and
individuals, which allows to measure the treatment effect in comparable individual
units matched in comparable clusters. Examples of this case are the study from
Zubizarreta and Keele (2016)1 and Wang (2015). This strategy is represented in

1They did not use propensity score matching, but cardinality matching which maximizes the
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(a) Case 1 intra-cluster (Thoemmes &
West, 2011)

(b) Case 2 intra-cluster (Thoemmes &
West, 2011)

Figure 4.1: Strategies for matching clustered data in the case of intra-cluster assignment.
Figure (a) is when the clustering is extremely relevant and the selection process can differ
across clusters. Figure (b) is when the the clustering is a feature of the design, but is not
necessary to match within clusters.

Figure 4.2d.
In a randomized study, it is clear if the design matched clusters or individuals. Nev-
ertheless, in an observational study it is not obvious. Not always the treatment
assignment can be related to a clustered randomized study. Figure 4.2a correspond
to cases where the treatment assignment is clearly individual and the treatment
implementation is clustered. For matching the individuals, we only need a regular
propensity score model with individual level variables. For modeling the outcome, a
multilevel model is necessary. The study from Bellio and Gori (2003) is an example
of this strategy.
Figure 4.2c correspond to cases when it is clear that the treatment assignment is
between clusters. For example, Hansen et al. (2014) studied the effect of massive
floods in children health. They matched flooded and non flooded villages because
being in a flooded village was not an individual decision and the treatment assign-
ment was at the cluster level.
Finally, there are cases were it is less clear and treatment assignment can depend on
individual and cluster level variables. They are depicted in Figures 4.2b and 4.2d.
Studies comparing public and voucher schools in Chile are a good illustration of the
problem. There is family selection for the school and school selection of the students,
which implies that the treatment assignment is at the individual level and can de-
pend on individual and cluster level variables. This could lead to match students,
schools or both. For example, Zubizarreta and Keele (2016) matched individuals
and schools. Their strategy allows to study comparable students that attended to
comparable schools, but produced a very large sample reduction at the student and
school level.
Another example is the study in Part III of this thesis. In this study, propensity score
matching was done according to strategy from Figure 4.2a. However, we included
cluster level variables in the multilevel model. We choose this strategy because the
clustering was cross-classified and too complex to match schools. We decided to
model individual variables in the propensity score, in order to compare students

number of individuals and clusters matched.
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(a) Case 1 inter-cluster (b) Case 2 inter-cluster

(c) Case 3 inter-cluster (d) Case 4 inter-cluster

Figure 4.2: Strategies for matching clustered data in the case of inter-cluster assignment.
Figure (a) is when the treatment assignment depends on individual variables. Figure
(b) is when the treatment assignment depends on individual and cluster variables that
are integrated in the propensity score model, but only individuals are matched. Figure
(c) is when the treatment assignment depends only on cluster variables and there is the
need to match clusters. Finally, Figure (d) is when the treatment assignment depends on
individual and cluster variables and individuals and clusters are matched.

with similar background characteristics, but control for the school level covariates in
the multilevel outcome model. This strategy allowed us to compare models with and
without school level variables. The school level variables were socioeconomic school
composition and selection practices. The interest of this comparison is estimating
the effect of the school context and practice (type A effects) and the effect of only
the school practice (type B) of public and voucher schools (Raudenbush & Willms,
1995).
For any of the strategies depicted in Figure 4.2, the use of a multilevel model for the
outcomes is fundamental and can be an important help to overcome specification
errors in the propensity score model.

4.1.3 Discussion regarding the modeling of multilevel data
and selection bias

Linear adjustment and propensity score matching focus the researcher on different
aspects of the data. On the one hand, linear adjustment in multilevel models offers
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advantages because there are several strategies to avoid endogeneity problems and
we can think how the variables can interact at different levels. On the other hand,
propensity score matching prompt us to focus on the selection process. For example,
in intra-cluster designs considering if the selection process is different inside each
cluster and in inter-cluster designs considering if it is at the individual level, cluster
level or both. Also, a main interest of propensity score matching is the evaluation
of common support that increase internal validity of the conclusions.
Nevertheless, propensity score matching is not a method for modeling the outcome
(Stuart, 2010). The combination of propensity score matching with multilevel models
is a better strategy for properly taking into account the multilevel structure and for
adjusting for selection bias with matching and linear adjustment.

Treatment effect estimation with multilevel data can imply a wide variety of
research designs, type of treatment assignments, number of levels analyzed, etc. We
organized the literature and it recommendations using the intra-cluster and inter-
cluster treatment assignment classification.

4.2 Multiple imputation and multilevel data

The imputation techniques should preserve the characteristics of the data that are
relevant for the analysis model. This means that the multiple imputation model and
the analysis model should be congenial (Carpenter & Kenward, 2013). Also, if units
within clusters are more similar between them, this should be captured by the im-
putation model (Carpenter & Kenward, 2013, pp. 205). If there are random slopes,
contextual effects, several levels and complex nesting structures as cross-classified
or multiple-membership models, ideally the imputation model should include them.
Also, it should respect the nature of the variables and consider their role in the main
model. In addition, the missing data mechanism can depend on variables at differ-
ent levels (Enders et al., 2016). Simulation studies show that ignoring the multilevel
structure can lead to biased estimates, especially in random effects parameters (En-
ders et al., 2016; Lüdtke, Robitzsch, & Grund, 2017; Van Buuren, 2011). Another
aspect is that missing data at the cluster level can produce loss of all the units in a
cluster if it is not imputed, which may imply a major loss of information (Van Bu-
uren, 2011)

The use of multiple imputation with multilevel data has received several recent
developments. In this section, we discuss implementation issues, which are very
relevant for the applied researcher. The main hypothesis of multiple imputation is
the MAR assumption. It is stated in terms of the distribution f of the missing data.
The main issue is how to allow the models to consider the multilevel nature of the
data in the modeling of this distribution. This brings us to the implementation of
the multiple imputation model.
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There are three main techniques to do imputation of multilevel variables: joint
modeling, chained equations and fixed effects (Enders et al., 2016). In joint model-
ing the joint distribution of the variables is modeled (Goldstein, 2011, pp. 304-313).
In chained equations the distribution of each variable conditional on the others is
modeled. Finally, in fixed effects the idea is to use a single level model with dummy
variables for the clusters.
Enders et al. (2016) compared single level imputation, joint modeling for multilevel
imputation, chained equations for multilevel imputation and fixed effects. They
found that joint modeling and chained equations work well for two-level random
intercept models, but none of the methods can account for all the possible com-
plexities. Using theory and simulation studies, they showed that joint modeling
performed better for contextual effects and not well for random slopes. Also that
chained equations performed well for random slopes but not for contextual effects.
Also that joint-modeling allows to model categorical multilevel variables and chained
equations do not.
Regarding fixed effects, adding the multilevel structure in the imputation models
through fixed effects is better than ignore it or use complete case analysis (Enders
et al., 2016; Van Buuren, 2011). However, it can produce biased estimates, specially
for the random effects parameters (Drechsler, 2015). In addition, fixed effects in
the imputation model can produce bias in the fixed part if there is a high amount
of missing data and low intra-class correlations (Drechsler, 2015). In conclusion, if
there is interest in estimating random effect parameters, using fixed effects in the
imputation model can be detrimental.

A specific aspect is the role of identification variables and it has not received
much attention in the literature. In multilevel models, it is necessary to identify
for each unit the cluster membership with an identification variable. There are
no strategies to impute this value when is missing (Van Buuren, 2011). It is very
complex to determine the distribution of an identification variable and become with
a reasonable imputed value. This is a very important problem that can arise in
longitudinal studies for example. In the case of the study of the part III of this
thesis, 53% of the sample was lost because of this issue.

To the best of our knowledge, there is no statistical software that can handle
all possible aspects of multilevel data as several levels, cross-classified and multiple-
membership structures, categorical variables, actualization of aggregated variables
with lower level variables. Most of the available software packages to estimate mul-
tilevel imputation models allows maximum two level models. In the case of having
three levels because the data is longitudinal, organizing the data in wide-format can
avoid a level. Nevertheless, there are several cases where it is necessary to model
three levels or more. For example, in a study with repeated measures of students
which are nested in classes nested in schools.
Some technical literature gives advice regarding how to implement multilevel im-
putation for cross-classified structures. And also states that extend their proposed
model for data with several levels is easy (for example Carpenter and Kenward (2013,
pp. 225-226)). Nevertheless, for the applied researcher it can be cumbersome to code
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his own methods. There is the need of automated software to deal with this.

In summary, the imputation model should integrate the multilevel structure of the
data with all its complexity. Research in educational sciences is shifting to studying
more longitudinal data, there is access to bigger and more complex databases. We
hope that soon all the possibilities in the software will be developed in order to
preserve the exact nature of the data. In the meantime, we need studies to evaluate
the loss of not properly model some aspects of the data.

4.3 Selection bias, multiple imputation and mul-

tilevel data

In the previous section we described strategies to model multilevel data and selec-
tion bias produced for non-random treatment assignment with linear adjustment
and propensity score analysis. We described some relevant aspects to evaluate the
endogeneity hypothesis and the treatment assignment considering the clustered na-
ture of the data. In addition, we described implementation issues of how to use
multiple imputation with multilevel data.

For selection bias models, the exogeneity and the ignorability assumptions are
done over complete data. If there is missing data, it is important to understand if
these assumptions are still valid and how they can be modeled. The condition for
doing valid treatment effect estimations over imputed data is stated in the following
equation, named latent ignorability (Frangakis & Rubin, 1999; Hill, 2004; Mattei,
2009)

P(Z = 1|X,M, y1, y0) = P(Z = 1|X) (4.8)

Equation (4.8) implies that the treatment assignment depends on X which has
observed and not observed values. The important thing is that having this hypothesis
and a correct multiple imputation model permits to estimate the treatment effect
on the imputed data. Thus far, we need to know the models for the assignment
mechanism and the missing data mechanism.

Equation (4.8) is general enough to work in the case of multilevel data, but special
attention should be given to the multilevel multiple imputation model. It should
preserve the relations between the covariates and the treatment variables. If the
missing data mechanism interacts differently with the treatments, the imputation
model should include interactions with the treatment variable. For example, if in
the treated groups non response is related to a covariate and in the control group
it does not, an interaction between the covariate and the treatment variable should
be included. The same occurs with the clustering. If the treatment assignment
is different for each cluster, the multilevel imputation models should preserve the
structure of random intercepts and slopes. Is important to note that the imputation
model should include the outcome variable, the treatment variable and the covariates
relevant for the MAR assumption. In a study regarding how to combine propensity
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score weighting and multiple imputation Leyrat et al. (2017) found more bias if in
the imputation model the outcome is not included.

From a practical point of view, there are several possibilities to mix the analyses to
adjust for selection bias, missing data and the clustered structure of the data. Here,
we propose starting with multiple imputation, because that allows to do the rest of
the analyses using complete data-analysis. We consider that in all the strategies a
multilevel model for the outcome is the final objective. The strategies are depicted
in Figure 4.3.

Strategy 1 is simply doing multiple imputation and then estimate a multilevel
model for the outcome, where we linearly control by confounding variables. This
strategy does not include propensity score analysis. It is important because, in some
cases, propensity score matching can be unfeasible or too complex. For example,
when the sample sizes are very unequal and there are not several matches. Also, if
there are several treatments, it is very simple to add a treatment variable that has
more than two values (Hill, 2013).

Strategies 2 and 3 consider how to combine multiple imputation and propensity
score analysis. We defined them considering the work of Hill (2004) and Mitra and
Reiter (2012). These strategies replicate the within and across approach defined by
Mitra and Reiter (2012).
Strategy 2 correspond to the within approach. It implies to do m multiple imputa-
tions. Then, in each completed data set, estimate the propensity score and match
the treatment and the control group. This will lead to m matched data sets, which
can have different sample sizes and units. Finally, estimate the treatment effect in
each matched set and pool the m estimated treatment effects.
Strategy 3 correspond to the across approach. It implies to do m multiple imputa-
tions. Then, in each completed data set estimate the propensity score and pool the
propensity scores through the m imputations. Then, match the pooled propensity
scores. This will lead to one set of matched units. Selecting the matched units in
each imputed data set produce m matched data sets, which have the same sample
size and the same units. Finally, estimate the treatment effect in each matched set
and pool the m estimated treatment effects.

The advantage of Strategy 2 is that it allows to use observed covariates with
missing data. For example, if the matching is done with the propensity score but
exact matching is need in a covariate. In general, any strategy that implies work
with observed covariates can be implemented. Having this possibility is appealing
because using covariates can approximate a blocked randomized study. When we
only match propensity scores, we approximate a completely randomized study that
is less efficient than a blocked randomized study (King & Nielsen, 2016).
One disadvantage is that it can be a burden to the researcher to do the matching m
times, specially if balance has to be evaluated in each imputed data. The researcher
should choose between use the same model for each imputed data set or different
models. The other disadvantage is that the m matched data sets can be of different
sizes and include different units. If the treatment effect is going to be estimated with
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a mean difference, there should not be further problems. But, if we used multilevel
models, there are parameters that depend a lot on the sample size, for example the
deviance. These parameters are not comparable between the different imputed data
sets.

The advantages of the third strategy are several. First, there is only one propen-
sity score by unit and the matching is done once. Also the balance can be evaluated
in pooled estimates of standardized mean differences. Pooled estimates of mean dif-
ferences are less dependent on individual imputations and should be more reliable
and produce better modeling decisions. Finally, for larger samples it is more compu-
tationally efficient because the matching is done only once (Leyrat et al., 2017). A
disadvantage is that if we want to do exact matching in a covariate that has missing
data it is not possible because it changes in each imputed data set. A possibility
could be using single imputation in that covariate (Stuart, 2010). This would allow
to do one matching using the pooled propensity score and the covariate.

Regarding the efficiency in decreasing the bias, in the study from Mitra and Reiter
(2012) the within approach produced less bias reductions than the across approach.
The difference in bias reduction was more important when the treatment assignment
depended on variables with missing data. In Mitra and Reiter (2012), they did not
include the outcome in the multiple imputation model. This was done because
sample balancing should be done without using the outcome when using propensity
score analysis. Nevertheless, in multiple imputation is recommended that all the
variables that are related to the missing mechanism should be included. Recently
Penning de Vries and Groenwold (2016) replicated the results of Mitra and Reiter
(2012) including the outcome in the imputation model and found advantages for the
bias reduction in the within approach. Also, advantages for the within approach
were founded by Leyrat et al. (2017) in a study that combined propensity score
weighting and multiple imputation.
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Figure 4.3: Statistical strategies to address selection bias and missing data using
multilevel models
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Chapter 5

Summary and future research

In educational research there are very complex examples of clustered data, selection
bias and missing data. Multilevel models became more complex and it appears
the need of cross-classified and multiple membership structures. In this part of the
thesis we described how to use multilevel models having problems of selection bias
and missing data. For selection bias we considered linear adjustment at several levels
and propensity score matching, were the final outcome model is multilevel.

Regarding modeling multilevel data and selection bias, first we precise the dis-
tinction between intra-cluster treatment assignment and inter-cluster treatment as-
signment. This distinction is fundamental to start a strategy to control for selection
bias. In our analysis, we considered that always the model for the outcome is a
multilevel model. Therefore, the major aspect that we described was how the hy-
pothesis of exogeneity is extended. We also describe how to deal with endogeneity
problems using cluster means of individual level variables or fixed effects. Further-
more, we also discuss how to analyze the treatment assignment and the relevance of
the clustering to make a modeling strategy for the propensity score.
In a randomized experiment it is clear whether the treatment assignment was done
at the individual level or at the cluster level. In an observational study it is not
obvious and the researcher has to understand at which level should do the match-
ing. We described (Thoemmes & West, 2011) distinction for intra-cluster treatment
assignment and extended it for the inter-cluster treatment assignment. This can be
useful for applied researchers.
On the one hand, modeling the outcome with multilevel models and using linear
adjusting for selection bias implies that several hypotheses should be met. The most
relevant for the estimation of the treatment effect is to check the exogeneity hypoth-
esis at different levels and think in the interactions between levels. On the other
hand, propensity score matching make us reflecting about the assignment mecha-
nism and can also include the multilevel structure of the data. Use them combined
is a stronger strategy.
Also, multilevel models allow us to control by unobserved cluster characteristics
trough the definition of fixed effects in the propensity score and the outcome model.
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There are studies that can have an intra-cluster and inter-cluster treatment assign-
ment. In this case these ideas can be combined. For example, an intervention at the
classroom level. Considering the school clustering, the intervention is intra-cluster.
In this case we should think if the treatment assignment is the same at each school
and we can model school fixed effects. From the classroom level, it is inter-cluster
and it is necessary to think if students or classes should be matched. To develop
a full picture, additional studies are needed that illuminate which are the best de-
cisions regarding the better matching strategy (as depicted in Figures 4.1 and 4.2)
when we are also using linear adjusting for individual and cluster-level variables in
the multilevel model for the outcome. When modeling individual outcomes only,
combine matching and linear adjusting is a better strategy (Stuart, 2010). From
this point of view, in the inter-cluster case using matching and linear adjusting for
the cluster level is a better strategy also. Nevertheless, there appear issues of sample
size, because usually at the cluster level the samples are significantly smaller than at
the individual level. Also matching at the cluster level can produce a loss of infor-
mation regarding the heterogeneity of the treatment implementation. Finally, the
decision can depend on the type of effect that we want to measure, for example in
school effects we may need to distinguish between type A and type B school effects
(Raudenbush & Willms, 1995).
In summary, other issues should be studied regarding how to define the best strategy,
for example sample sizes (total sample size, number of cluster, cluster sizes) and the
type of treatment effect that we want to estimate.

Regarding multiple imputation and multilevel data, we described latest results
and developments. Several simulation studies show that it is important to include the
multilevel aspect in the imputation models. Software packages have not developed
all the possibilities for the modeling. However, we think that soon this will be done in
order to have congeniality between the outcome models and the imputation model.

Regarding combining multiple imputation, propensity score matching and multi-
level models, we described three possible strategies.
Strategy 1 only considers multilevel models and multiple imputation. It is useful
when propensity score matching is not feasible because of a small control group or
several treatments. When matching is not recommended, propensity score weighting
can be a good option, nevertheless we did not analyze this in the thesis. Regarding
dealing with propensity score weighting and multilevel models we refer to Li, Za-
slavsky, and Landrum (2013) and Leite et al. (2015). Regarding mixing propensity
score weighting and multiple imputation a reference is Leyrat et al. (2017).
Strategies 2 and 3 include the combination of multiple imputation with propensity
score matching. Strategy 2 has as advantages that, according to simulation results,
it produces better bias reduction (Penning de Vries & Groenwold, 2016). Also it is
possible to use the covariates to improve the matching. Nevertheless, it is a burden
for the researcher.
Strategy 3 has several advantages. One advantage is that it has a simpler implemen-
tation than Strategy 2. Also, Strategy 3 produces imputed data sets with the same
units and sample sizes. Finally, balance can be evaluated in pooled standardized
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differences, which should be less sensitive to individual imputations. The problem is
that, according to simulation results, this strategy produce less bias reduction than
the within approach and we cannot integrate the value of a covariate for the match-
ing process. However, there are possible solutions to these issues. A possibility to
achieve the same bias reduction is using simultaneously propensity score and linear
adjustment. In addition, we can use single imputation to include in the matching
process observed covariates with missing data.

We analyzed the possibility of including covariates on the matching process con-
sidering recent critics to propensity score matching. These critics propose that
propensity score matching could increase imbalance, inefficiency, model dependence,
and bias. The reason is that propensity score matching tries to reproduce a com-
pletely randomized experiment which is less efficient than a fully blocked randomized
experiment (King & Nielsen, 2016).
We think that using single imputation in the matching procedure could help to use
Strategy 3 and try to reproduce a fully blocked randomized experiment. This should
not harm because one of the mayor problems of single imputations is bias in vari-
ances, which in general are not used for the matching. Then, we would select the
matched units in each multiple imputed data set and estimate the multilevel models.
Nevertheless, this issue needs further study.

Regarding future research, it is not clear how to decide whether matching individ-
uals, clusters or both in observational studies. In particular, this should be explored
in two cases: when only matching is used and when matching is combined with a
multilevel model for the outcome. It is important to determine which factors are
more relevant and we need more methodological advice to understand this.
For example, to compare public and voucher schools in Chile, there is freedom for
the families to choose schools and freedom for vouchers schools to choose students.
The assignment mechanism is very complex, and it make sense to match students
and also schools or at least control by school level variables. In this way, propensity
score matching and linear adjustment provide a protection to possible bad defined
models.
Also the strategies delineated in Figure 4.3 could use another type of propensity score
adjustment such as weighting or stratification. Again, there are practical questions
that appear regarding the combination of propensity score and multiple imputation.
If propensity score weighting is used, Do the weights should be pooled? If we use
stratification, The stratification should be done in the propensity score for each im-
puted data set or over the pooled propensity scores? Regarding propensity score
weighting Leyrat et al. (2017) showed that Strategy 2 leaded to the best estimates
in terms of bias reduction. But we think that more research is needed regarding this
issue.

Complexities of mixing models came from the different origins and theoretical
frameworks that make difficult to understand the different languages. For exam-
ple Cheslock and Rios-Aguilar (2011) illustrate differences from multilevel models
from the usual framework in educational sciences and the econometric theory. Also,
propensity score analysis tries to emulate randomized experiments with observational
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data, and it use the literature of randomized experiment and design of experiments.
There are examples that connect the different approaches (e.g. Cheslock and Rios-
Aguilar (2011) and Castellano et al. (2014)). However, we need more studies that
connect the literature of multilevel models, which are used extensively in education,
with the literature on econometrics and treatment effect estimation.

45



Part II

The influence of Life and Non-Life
sciences courses on secondary

students’ epistemic and
self-efficacy beliefs related to

sciences
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Chapter 6

Introduction and Literature
Review

6.1 Introduction

Studies with secondary students have shown that more sophisticated science epis-
temic beliefs are related with better achievements, better motivational beliefs and
better learning strategies (Deng et al., 2011; Mason et al., 2013; Tsai et al., 2011).
In addition, having proper scientific epistemic beliefs is a science education goal in
itself (Lederman, 2007, pp. 832). The picture is similar with science self-efficacy,
with studies showing that these beliefs are one of the most important predictors of
science achievement and the choice of scientific careers (Britner & Pajares, 2006;
Larose, Ratelle, Guay, Senécal, & Harvey, 2006). Thus, it is important to know
which kind of academic climate can produce more availing scientific epistemic and
self-efficacy beliefs.
In this study, three characteristics of the academic climate will be studied: the type
of scientific discipline; scientific instruction with and without laboratory work and
the compositional effects of beliefs and achievement.

Biglan (1973) found three dimensions that distinguish disciplines. The first di-
mension distinguish disciplines that have a single paradigm, which were labeled
hard, or disciplines that include several paradigms, which were labeled soft. The
second dimension distinguish the applied and pure disciplines. The third dimension
distinguish between disciplines that study living objects or life disciplines and disci-
plines that study non living objects or non-life disciplines. We think that this later
distinction is relevant for science education. For example, in the study of Leslie,
Cimpian, Meyer, and Freeland (2015), they found a relation between the percentage
of women and the perception of that innate talent is fundamental for succeed in the
discipline. They did not distinguish between life and non-life disciplines. However,
in their results regarding scientific disciplines, it can be seen that life disciplines
tend to have lower perceptions of the need of innate talent and a larger percentage
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6.1. Introduction

of women than the non-life disciplines. We think that the distinction between life
and non-life scientific disciplines can enlighten some processes and we measure its
effect on science epistemic and self-efficacy beliefs.

Regarding the effect of the type of discipline, studies about general epistemic be-
liefs have established that students from soft domains are more sophisticated than
students from hard domains (Muis, Bendixen, & Haerle, 2006). This has been ex-
plained with the nature of hard disciplines that can be characterized as having a
single paradigm, having greater consensus regarding the questions, the content and
the methods (Biglan, 1973).
The same argument can be used in scientific epistemic beliefs, and would predict that
students from scientific disciplines, which are classified as hard disciplines, should be
more näıve than the ones from non-science disciplines in their beliefs about sciences.
But, an incongruity arises because we also expect that the exposition to scientific
disciplines should change beliefs about the nature of science to more sophisticated
views, because having more educational experiences produces more sophisticated
epistemic beliefs (Hofer & Pintrich, 1997) and should give a better understanding
about the nature of science. Conflicting empirical results illustrate this incongruity.
For instance, it has been found that in some scientific epistemic beliefs dimensions,
students from science majors were more näıve than students from non-science majors
and vice versa (Chai, Deng, Wong, & Qian, 2010; Liu & Tsai, 2008). To enlighten
this discordance, it is necessary to understand the characteristics of the scientific
disciplines that are being delivered to the students. However, studies analyzing the
effect of different scientific disciplines in science epistemic beliefs are scarce and they
also show some conflicting results. Also, it is not clear if the differences between dis-
ciplines are an effect of the exposition to the disciplines or an effect of self-selection,
for example if more näıve students choose scientific domains (Trautwein & Lüdtke,
2008).

Therefore, in this study, the effects of science summer courses about scientific dis-
ciplines with different characteristics (life objects and non-life objects) were tested,
a control group was defined and control variables were measured in order to adjust
for self-selection.
Another significant aspect of science instruction and scientific knowledge develop-
ment is laboratory work, where we tested if the effect of the scientific disciplines
can be explained by the use of laboratory work. This is also a contribution to the
discussion regarding if the use of laboratory work can change scientific epistemic
beliefs (Deng et al., 2011) and motivational variables (Itzek-Greulich et al., 2017).
The last goal of this study is analyze if there are peer effects. Theoretical models
propose that the beliefs of the students’ peers influence epistemic beliefs (Feucht,
2010). Nevertheless, this hypothesis has not been tested with quantitative studies
measuring compositional effects. In the case of science self-efficacy beliefs, we will
test if the splashdown effect differ by scientific discipline. This concept, defined by
Stake and Mares (2005), states that after assisting to a challenging science course
with high ability peers, the self-confidence tends to decrease or do not change at
the end of the courses. But when the same student comes back to his/her school,
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6.2. Literature Review

he or she reevaluates his or her capacities in comparison with regular peers and its
confidence increases.

In summary, the research questions are:

1. What is the impact of courses of different science domains (Life - Non-life) on
high school students’ science epistemic and science self-efficacy beliefs at the
end of the courses and some months later controlling for self-selection bias?

2. How this impact is explained by using instruction with laboratory work?

3. Are there compositional effects of the science courses on high school student’s
scientific epistemic and self efficacy beliefs?

6.2 Literature Review

6.2.1 Science Epistemic and Self-Efficacy Beliefs

Beliefs about science or scientific epistemic beliefs have been studied in two main
lines of research. The first line of research came from the literature of personal
epistemology and follows the work started by Perry Jr (1999) in the seventies about
the development of beliefs about knowledge and knowing. The work of Perry opened
a line of research on epistemic beliefs that has been evolving, starting with very
large qualitative studies looking for developmental trends to quantitative studies
that considered different dimensions of epistemic beliefs (Hofer & Pintrich, 1997).
The quantitative and multidimensional research in epistemic beliefs started with
the seminal work done by Schommer (1990). Hofer and Pintrich (1997) postulated
that the main areas of epistemic beliefs are beliefs about the nature of knowledge
and beliefs about the nature of knowing, excluding beliefs about learning or ability.
In its theoretical framework, an example of a proposed dimension is certainty of
knowledge, were a näıve point of view is the belief that knowledge is static and does
not change and a sophisticated point of view is that knowledge evolves. Another
example is source of knowledge, a dimension about the role of the authority and
the self as owners of the truth. In this dimension, the näıve extreme would be
believe that knowledge came always from authorities and outside the self and a more
sophisticated extreme is that knowledge can origin from the self and through reason
(Hofer & Pintrich, 1997). These dimensions have been evolved with empirical results
(e.g. Hofer (2000)) and the development of new questionnaires. Until the year 2000
most of the research in epistemic beliefs focused primarily in general epistemic beliefs,
during those years started the interest in domain-specific epistemic beliefs, which
is a natural continuation because disciplines have different epistemic assumptions
and characteristics (Muis et al., 2006). In this context, the research about science
epistemic beliefs usually implies an adaptation of the dimensions of general epistemic
belief in relation to sciences. For example, Hofer (2000) developed an epistemic
beliefs questionnaire adaptable to different domains. Other example is the work of
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6.2. Literature Review

Conley, Pintrich, Vekiri, and Harrison (2004) who developed questionnaire specific
for science but based in the theoretical framework of Hofer and Pintrich (1997).
The second line of research regarding beliefs about science is framed in the Visions of
the Nature of Science (VNOS). This line of research is specific to science education.
Lederman (2007), in his review about the topic, proposed several characteristics
of the nature of science matching the usual dimensions proposed in the personal
epistemology literature (for example, scientific knowledge is tentative and subject
to change). But VNOS considers other characteristics as, for example, conceiving
science as socially and culturally embedded. In this study we will consider studies
from both lines of research, but with emphasis on the personal epistemology line
regarding science epistemic beliefs.

This study also focuses in the effect of science courses in science self-efficacy be-
liefs. These beliefs are about the perceived capacity to succeed and learn in sciences
(Britner & Pajares, 2006) and they are key variables to understand the success in
learning and school achievement (Schunk & Pajares, 2009). In particular Science
self-efficacy beliefs are very important because they are related with science achieve-
ment and the choice of a scientific career (Britner & Pajares, 2006). Usually, science
self-efficacy is one of the most important predictors of achievement.
The relation between science self-efficacy and epistemic beliefs has primarily been
tested with cross-sectional studies, for example (Chen & Pajares, 2010; Kizilgunes,
Tekkaya, & Sungur, 2009; Mason et al., 2013; Tsai et al., 2011). All the proposed
models said that epistemic beliefs influence science self-efficacy beliefs (and not the
reverse relation). The mechanism to explain these relations are different, for ex-
ample Buehl (2003) propose that epistemic beliefs influences the perceptions that
people have about a task. Consequently, influence the perceptions that people has
about their ability to accomplish the task, their motivation and the reasons to do
it. In particular for self-efficacy beliefs, in order to evaluate our capacity regarding a
subject domain, the visions that we have about a domain should influence this eval-
uation (Buehl, 2003). Nevertheless, it is not evident if that imply that we should
expect a positive relation (were more sophisticated epistemic beliefs are related with
more science self-efficacy) and which dimensions of epistemic beliefs should be re-
lated to self-efficacy beliefs. The empirical results are in general supporting that
more sophisticated epistemic beliefs are related with higher self-efficacy beliefs.

6.2.2 Science epistemic beliefs, self-efficacy beliefs and change:
Influence of academic climates

In this subsection we describe the effect of different academic climates on student
scientific epistemic and self-efficacy beliefs.

Studies about the contextual effect of different disciplines

Few studies have investigated the effect of different scientific disciplines in science
epistemic beliefs. We describe all the articles about the subject that we found.
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6.2. Literature Review

Chai et al. (2010) and Liu and Tsai (2008) found that students from science majors
were more näıve in some of VNOS dimensions than students from non-science ma-
jors. The interpretation is that science major students are more exposed to epistemic
climates where knowledge is objective and universal. These studies have compared
scientific and non-scientific domains. Regarding the effect of different scientific disci-
plines in science epistemic beliefs, we only found three research articles. In the first
one, Miller, Montplaisir, Offerdahl, Cheng, and Ketterling (2010) compared VNOS
dimensions before and after two different science courses, however students from one
course were non-science majors, and from the other were science majors. So, it is
not clear if differences are the effect of course subjects or the major. In the second
article, Thoermer and Sodian (2002) compared VNOS dimensions between under-
graduate and graduate students in Physics, Biology and Chemistry. They found
an effect of the discipline, were the most sophisticated students came from physics.
They provide as a possible interpretation that in physics the change of theories is
more manifest and the relation between experiments and theory is more evident.
The last study we found is by Garćıa and Mateos (2013), who studied a sample
of university professors from Biology, Chemistry, Mathematics and Physics. They
found that professors had advanced beliefs about the nature of science, but Physics
professors tended to have more näıve beliefs, in opposition to Thoermer and Sodian
(2002) results described above. It should be noted however that the instruments
they use are very different.

Regarding science self-efficacy beliefs, the discussion has been more focused on
the specificity of self-efficacy for different disciplines than on the effects of different
disciplines on self-efficacy (e.g. Bong (2001); Schunk and Pajares (2009)). However,
some studies have found differences in self-efficacy between disciplines. For example,
Larose et al. (2006) classified a sample of students from three college programs
(general science, technological related to Physics, technological related to Biology)
according to their science self-efficacy trajectories (increasing, decreasing and stable).
In the increasing group, there were proportionally more students from the Biology
technological program than in the other groups (Larose et al., 2006).

Looking at the research that has been done, it is not clear how the exposure to
different scientific domains change scientific epistemic and self-efficacy beliefs and
it is not clear if the effect came only from self-selection or from the influence of
disciplines. Another aspect that has not been researched is if the change last or not.

Studies about the contextual effect of laboratory work and peer effects

Regarding the effect of laboratory work on scientific epistemic beliefs, there are
many studies from the VNOS framework. Some of these studies compare the effect
of explicit teaching of VNOS, the effect of experimental work, inquiry based learning
and the effect of teaching history of science (Lederman, 2007). As a summary from
the reviews by Lederman (2007) and Deng et al. (2011), explicit VNOS instruction
with laboratory work is more efficacious, but implicit VNOS instruction through
practical laboratory work did also produce changes. Research from personal epis-
temology has been more focused on comparing traditional and constructivist types
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of instruction. Muis and Duffy (2013) showed that more constructivist instruction
produces more sophisticated beliefs. They interpreted this result as a process of
enculturation that is facilitated by teacher and student interactions. In fact, theo-
retically, we expect that learners’ epistemic beliefs influences between them (Feucht,
2010; Muis & Duffy, 2013). Regarding the effect of peers on self-efficacy beliefs,
there are studies describing the “big-pound small-fish effect”, that is how the peers’
capacities can influence the self-efficacy beliefs (Marsh, 1987). There is evidence of
this effect on science self-efficacy in the work by Stake and Mares (2005).

6.2.3 Science university courses for high school students

In this study, we consider courses belonging to the Summer School of the University
of Chile. This institution offers summer courses to secondary and primary students,
lasting between one and three weeks. In Chile, the school year runs from March to
December and summer vacations are during January and February. The summer
school courses take place during January in Santiago.

The courses belong to the following knowledge domains: Physics, Mathematics,
Engineering Sciences, Biology, Chemistry, Biomedical Sciences, Social Sciences, Hu-
manities, Visual Arts and Artistic Expression. To enter the program, students’ appli-
cations are selected by school grades. The courses are paid but they are not expensive
and there are scholarships available. In this study, only science related courses were
considered, totaling 49. These courses can be classified regarding whether their ob-
jects of study are alive (N=29) or non-alive (N=20). For simplicity of language, we
will name them Life courses and Non-life courses respectively. In the Non-life courses
the subjects are Mathematics (N=10); theoretical and experimental Physics (N=7);
Engineering (applied Computer Science, Electronics or Physic, N=7); Chemistry
(N=2); Astronomy (N=2) and Geology (N=1). In the Life courses the subjects are
Human Health (from Microbiology to Specific Organ Systems and their Diseases,
N=12); Biochemistry and Biotechnology (N=4); Biology (N=2) and the study of
Ecosystems or Animals (N=2).

The courses are done with a university approach in a university environment,
where teachers have academic experience and they are experts in their areas. There
is a focus on “learning by doing”. For example, all science courses have practical
activities together with theoretical classes. In the Life courses, practical activities
usually mean laboratory work, while in the Non-life objects this depends on the
subject. For example, in Mathematics the practical activity is problem solving
sessions, in Chemistry courses it is laboratory work and in Engineering courses it is
building artifacts (for example robots).

These courses are different from the usual science courses in Chilean schools,
which are very traditional, with little student interaction and little scientific inquiry
(Cofré et al., 2010). Some subjects are completely different from high school subjects,
as Geology for example, or have a very different approach than the school one,
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as Mathematics. Regarding the practical laboratory work, the approach is more
professional and specialized than in the school. For example, the health-related
courses run laboratory work at the Faculty of Medicine Laboratories. The courses
are challenging and they differ from real university courses in the length and the
consequences that grades have for students. Finally, the student’s peers in Summer
School are different from peers in school because the students in the Summer School
choose to study during the summer, they are motivated and diverse.

The classification of course disciplines in Life and Non-life was done considering
the work of (Biglan, 1973). There the author found three empirical dimensions to
classify disciplines: Hard - Soft, Pure - Applied and Life - Non life. The classifi-
cation hard-soft has been used in studies of personal epistemology (e.g. (Muis et
al., 2006)), but for this study it was not pertinent because all science courses are
classified as hard. The classification pure-applied was suitable, but in many courses
this classification was very ambiguous. Finally, the third dimension Life - Non-life
was pertinent because it was feasible to classify the courses and it allows to do an
interesting distinction of disciplines. Also using this well defined classification of
science disciplines would allow the present study to be replicable.
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Chapter 7

Methodology

7.1 Sample

The study sample is composed of N=994 students that applied for a science course
in the Summer School. However, not all students answered the questionnaire in
the pre, post and follow-measure. The sample sizes for each measurement time are
detailed in Table 7.1. The applicants could take two paths: enroll to a science course
and be part of the treatment group (N=782) or do not enroll and be part of the
control group (N=212). This control group is composed by two kinds of students:
selected students that finally did not take the courses and not selected students.
Being not selected depends on student grades and on available places in courses.
Thus, there are not selected students with similar grades in very demanded courses.
The students in the sample are mostly secondary students. The percentages of
students in 8th, 9th, 10th, 11th and 12th grade are 6.4%, 16.2%, 29.9%, 37.4% and
10.1%, respectively. Regarding gender, 58.0% of them were girls. These students
can be considered as motivated since all of them are willing to spend part of their
summer vacations taking a course in the university. They school grades are above
the national grade point average.

Table 7.1: Sample sizes for each measurement time.

Group

Measurement
time

Life Non Life Control Total

Pre 216 297 182 695
Post 322 385 66 773
Follow-up 116 157 41 314
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7.2. Variables: Measures of Sciences Epistemic Beliefs and Self-efficacy beliefs

7.2 Variables: Measures of Sciences Epistemic Be-

liefs and Self-efficacy beliefs

The sciences epistemic beliefs questionnaire used in this study was developed by Con-
ley et al. (2004). It has 26 items measuring the following dimensions: Development,
Justification, Certainty and Source. Development has 6 items that measure beliefs
about the developing nature of science, a sample item is “Ideas in sciences sometimes
change”. We notice that in some studies this dimension is also called certainty (e.g.
Hofer (2000)). Justification has 9 items and measure beliefs about how individuals
justify knowledge in science, specifically regarding the use of experiments, a sample
item is “A good way to know if something is true is to do an experiment”. Certainty
has 6 items and measure the belief that in science there exists a unique answer, a
sample item is “All questions in science have one right answer”. Finally, Source has 5
items and measures the beliefs that truth in science come from external authorities,
a sample item is “Only scientists know for sure what is true in science”.
This questionnaire was validated by Conley et al. (2004) and by Tsai et al. (2011),
in samples of primary and secondary students respectively, showing good psycho-
metric properties. The original English questionnaire was translated to Spanish and
presented to colleagues for meaning appropriateness of each item. The science self-
efficacy beliefs questionnaire has 6 items adapted from the mathematics self-efficacy
scale used by Tuohilampi et al. (2015), a sample item is “I am sure that I can learn
sciences”. These items were randomly ordered in the questionnaire. The items of
both questionnaires have a Likert scale from 1 (Strongly disagree) to 5 (Strongly
agree). The items in English and in Spanish and the final questionnaire can be
found in appendix A.1.

7.3 Procedure

Record variables and the pre-beliefs questionnaire were measured in October 2014,
during the student application period. After the courses finished, the beliefs ques-
tionnaire was applied two times: a post-measure just after the courses ended in
January 2015 and a follow-up measure applied between April and May 2015. The
application protocol for the beliefs questionnaire is detailed in Table 7.2.
We asked for consent to use the questionnaire data and records from the application
form to students older than 18 and to the parents of students younger than 18.
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Table 7.2: Application calendar and procedure for the treatment group and the
control group.

Group Pre Post Follow-up

Experimental Voluntary online
questionnaire at
the end of the
application form

Paper and pencil
questionnaire ap-
plied just at the
end of the courses

Voluntary online
questionnaire
sent to students’
e-mails

Control Voluntary online
questionnaire at
the end of the
application form

Voluntary online
questionnaire
sent to students’
e-mails

Voluntary online
questionnaire
sent to students’
e-mails

Measurement time October 2014 January 2015 April - May 2015

7.4 Data Analysis

In order to address the multilevel data structure and to adjust for selection bias
we used multilevel linear regression models and linear regression models. Outcome,
control and treatment variables are described in Table 7.4. Using list-wise deletion
implied a too large loss of information (Table 7.3) because there was an important
percentage of missing data in the outcome variables (see Table 7.4). Therefore, we
chose to do multiple imputation which is a recommended method for data missing at
random (Peugh & Enders, 2004). Multiple imputation of the database with all the
sample implied too much added noise (Table 7.3), so we decided to use the approach
proposed by (Von Hippel, 2007) of multiple imputation of the data base with all the
population and then deletion of observations where the outcome is missing. This
decision was a good compromise to use all the available information and avoid an
excess of noise (Table 7.3).

Table 7.3: Sample sizes and drawbacks for the missing data strategies.

List-wise deletion Multiple Imputation Multiple Imputation and
then deletion

Post N=168 N=994 N=773
Follow-up N=168 N=994 N=314
Strategy
drawbacks

Loss of power for loosing
observations. Biased es-
timates because data is
not missing completely at
random (Peugh & En-
ders, 2004).

Loss of power for added
noise in imputed out-
come variables. (in post
there are 221 individu-
als with imputed out-
come variables, and in
Follow 680).

The analyses were performed with software R (R Core Team, 2016). Reliability
estimation and confirmatory factor analysis were done with the packages Psych (Rev-
elle, 2016) and lavaan (Rosseel, 2012), respectively. Multiple imputation was done
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7.4. Data Analysis

with package Mice (Buuren & Groothuis-Oudshoorn, 2011) and (Zhao & Schafer,
2016) and multilevel modeling was done with package Nlme (Pinheiro, Bates, De-
bRoy, Sarkar, & R Core Team, 2017).

Table 7.4: Description of variables and percentages of response.

Variable Role % Miss-
ing

Description

grades control 0 GPA for 2013 and first semester of 2014.
level control 0 School level (between 8th and 12th).
gender control 0 1 if student is a boy.
Mother education control 24 Mother education in 5 levels: incomplete secondary edu-

cation (12-), complete secondary education (12), incom-
plete tertiary education (12+), complete tertiary educa-
tion (12++), complete tertiary education with graduate
education (12+++).

Self-efficacy pre control 25 Self-efficacy in science 2-3 months before the courses.
Development pre control 26 Development 2-3 months before the courses.
Justification pre control 26 Justification 2-3 months before the courses.
Certainty and
Source pre

control 26 Certainty and Source 2-3 months before the courses.

Self-efficacy post outcome 20 Self-efficacy in science at the end of the courses.
Development post outcome 20 Development at the end of the courses.
Justification post outcome 21 Justification at the end of the courses.
Certainty and
Source post

outcome 21 Certainty and Source at the end of the courses.

Self-efficacy follow outcome 67 Self-efficacy in science 3-4 months after the courses.
Development follow outcome 67 Development 3-4 months after the courses.
Justification follow outcome 67 Justification 3-4 months after the courses.
Certainty and
Source follow

numeric 67 Certainty and Source 3-4 months after the courses.

Discipline treatment 0 Course discipline in 3 levels: Control group, Life course
and Non-life course

Lab treatment 0 1 if the student course had Laboratory work. For students
in the control group the value is 0.

ABC treatment 0 Average belief climate, where a higher value in this vari-
able means that the average of the students in the class
have higher school grades, science self-efficacy, develop-
ment and justification beliefs in the pre-questionnaire.
For students in the control group the value is 0.
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Chapter 8

Results

8.1 Psychometric analysis

8.1.1 Confirmatory Factor analysis and reliability estima-
tion of student beliefs

In order to validate the questionnaire, in each measurement time we estimated a
confirmatory factor analysis for categorical ordered variables to verify the measure-
ment structure. We looked for a model that fits for the three times measures. First
we tried the theoretical measurement model with five correlated factors (science
Self-efficacy, Certainty, Source, Development and Justification). This model was not
satisfactory because the Certainty and Source dimensions had a very high correlation
in the pre, post and follow-up measure (0.97, 0.93 and 0.95 respectively). Therefore,
we fit a model with 4 factors, where Certainty and Source items were loaded in the
same factor (Certainty and source). This model fits acceptably in the three mea-
surement times (see Table 8.1) and it was established as the measurement model.
The Cronbach’s alphas for the dimensions defined by the measurement model range
between 0.73-0.89 for the pre measures, between 0.70-0.86 for the post measures,
and between 0.87-0.96 for the follow-up measures.

Table 8.1: Robust fit indexes for the measurement model with four correlated fac-
tors (f1: Science Self-efficacy, f2: Certainty and source, f3: Development and f4:
Justification).

Time N χ2 d.f. χ2

d.f.
CFI RMSEA SRMR

Pre 695 1431.182 458 3.12 0.94 0.055 0.073
Post 773 1728.755 458 3.77 0.92 0.060 0.077
Follow-up 314 1756.898 458 3.84 0.94 0.095 0.122
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8.1.2 Compositional variables to describe class climate

To model compositional effects, for each course we estimated course-level aggregated
variables as the mean of the class. In these variables, we assigned the value 0 to the
control group. These variables were highly correlated and produced collinearity prob-
lems, so we summarized them with a principal component analysis. The scree-plot
and eigenvalues larger than one suggested extracting two components (the loading
matrix is presented in Table 8.2). Component 1 is called average beliefs climate
(ABC) and it is calculated primarily with the course aggregated variables: science
self-efficacy, development and justification. Component 2 is primarily the aggregated
variable Certainty and source. In the multilevel regression models we used as ag-
gregated variables Component 1 and 2 instead of the aggregated original variables,
eliminating collinearity problems. However, we did not include Component 2 in the
final models because it was not significant in any of them.

Table 8.2: Principal component analysis for the aggregated beliefs variables. The
analysis was done over N=49 courses.

Course-level variables Component 1 (ABC) Component 2

Aggregated self-efficacy pre 0.84 -0.04
Aggregated justification pre 0.92 0.12
Aggregated development pre 0.77 -0.24
Aggregated certainty and source pre 0.11 0.98
% of Variance 53.61 25.90

8.2 Descriptive analysis

In Table 8.3, means and standard deviations of beliefs variables for each group (Life,
Non-Life and Control) show that in the pre-beliefs questionnaire, students from Life
courses have higher self-efficacy and more sophisticated beliefs than the Non-Life
and the control group students. This is evidence of a self-selection effect. In the
post and follow measures there is the same pattern.

59



8.2. Descriptive analysis

T
ab

le
8.

3:
M

ea
n
s

an
d

st
an

d
ar

d
d
ev

ia
ti

on
s

of
st

u
d
en

ts
b

el
ie

fs
in

L
if

e
co

u
rs

es
,

N
on

-l
if

e
co

u
rs

es
an

d
in

th
e

co
n
tr

ol
gr

ou
p

fo
r

ea
ch

m
ea

su
re

m
en

t
ti

m
e.

P
re

P
os

t
F

ol
lo

w
-u

p

V
ar

ia
b
le

L
if

e
N

on
L

if
e

C
on

tr
ol

L
if

e
N

on
L

if
e

C
on

tr
ol

L
if

e
N

on
L

if
e

C
on

tr
ol

S
ci

en
ce

S
el

fe
ffi

ca
cy

4,
58

(0
,4

7)
4,

44
(0

,5
9)

4,
55

(0
,5

2)
4,

51
(0

,4
5)

4,
4

(0
,5

1)
4,

41
(0

,7
6)

4,
55

(0
,6

2)
4,

28
(0

,9
9)

4,
14

(1
,2

4)
D

ev
el

op
m

en
t

4,
33

(0
,4

5)
4,

28
(0

,5
2)

4,
28

(0
,4

9)
4,

41
(0

,4
)

4,
35

(0
,4

6)
4,

34
(0

,6
5)

4,
36

(0
,6

1)
4,

16
(0

,9
5)

4,
03

(1
,1

7)
J
u
st

ifi
ca

ti
on

4,
56

(0
,4

)
4,

5
(0

,5
)

4,
56

(0
,4

5)
4,

59
(0

,3
2)

4,
5

(0
,3

9)
4,

53
(0

,6
4)

4,
52

(0
,5

6)
4,

27
(0

,9
5)

4,
15

(1
,2

1)
C

er
ta

in
ty

an
d

S
ou

rc
e

2,
67

(0
,6

3)
2,

69
(0

,6
5)

2,
75

(0
,6

3)
2,

61
(0

,6
)

2,
65

(0
,6

5)
2,

58
(0

,6
4)

2,
41

(0
,6

1)
2,

35
(0

,6
3)

2,
35

(0
,8

2)

N
21

6
29

7
18

2
32

2
38

5
66

11
6

15
7

41

60



8.3. Modeling course effects

8.3 Modeling course effects

In order to assess if students belonging to a same course are more similar between
them after the courses, we calculated the intra-class correlations for each belief in
the pre, post and follow-up measure (Figure 8.1). The results show that for all the
variables and time measures the intra-class correlations are very low (the biggest was
4.79%). However, the intra-class correlations in the post measure are systematically
higher than in the pre-measure for all the variables, and decreased for the follow-up
measure, except for Certainty and Source.

Self−efficacy Development Justification Certainty and Source

pre post follow pre post follow pre post follow pre post follow

0

2

4

6

Time of measure

IC
C

 %

time

pre

post

follow

Figure 8.1: The intra-class correlations were estimated only with enrolled students.
The sample sizes for the pre, post and follow-up measurement were N=513, N=707
and N=273 respectively.

8.4 Effect of academic climate at the end of the

courses

In order to determine the effect of the different courses on science epistemic and
self-efficacy beliefs at the end of the courses, we estimated the models from Table
8.4 for each post belief dimension. The models M2 and M3 allow us to estimate the
effect of treatment variables on the outcomes variables controlling for selection bias
through the inclusion of control variables. The variables representing the different
treatments or climates are all at the course level. Results of the modeling of the post-
beliefs as outcome variables are presented in Table 8.5. First, it can be seen from
the comparison between model M1 with the models M2 and M3 that all the course
level variance is explained (Table 8.5). Second, regarding the effect of the treatment
variables on self-efficacy there is a significant and positive effect of assisting to a
course with Laboratory Work. There are no significant effects of the discipline nor
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8.4. Effect of academic climate at the end of the courses

of the compositional variable ABC. In Development there are no significant effect of
any course level variable. In Justification, with the model M3, we found significant
and positive effects from being in a course with Laboratory Work. In Certainty
and Source none of the treatment variables have a significant effect. As a summary,
being in a Life or Non-life course did not produced significant effects, in any of
the post beliefs variables. Laboratory work had significant effects in self-efficacy and
justification post. There are no significant compositional effects from the aggregated
variable ABC.

Finally, regarding the effect of the confounding variables, for each belief the most
influential control variable is the same belief measured before the courses. There is
an unexpected negative effect of previous Justification on post Self-efficacy. Being a
boy has a significant positive effect on Self-efficacy post and in Certainty and Source
post. Grades have negative significant effects on Certainty and Source post. Mother
education is not significant for any variable.

Table 8.4: Estimated multilevel regression models where yij is the outcome variable
for student i belonging to course j (the control group is modeled as a course); x1

ij to
xkij are k control variables; Lifej, NonLifej,ABACj,Labj are course-level treatment
variables and uj and µij are random effects.

Model Equations Description

M1 yij = β + µj + εij Empty model
M2 yij = β+β1x

1
ij + · · ·+βkx

k
ij +Lifej +NonLifej +

ABCj + µj + εij

Model with all control
and treatment variables,
except type of instruction
(laboratory)

M3 yij = β+β1x
1
ij + · · ·+βkx

k
ij +Lifej +NonLifej +

ABCj + Labj + µj + εij

Model with all the con-
trol and treatment vari-
ables
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8.5 Effect of academic climates some months after

the courses

To measure the effect of the treatment variables on the beliefs some months after the
courses (follow-up) we used the same model specifications used in the post beliefs
(see Table 8.4). However, we fitted linear regression models instead of multilevel
models because the intra-class correlations for the follow-up measure were close to
zero. The results are presented in Table 8.6. Regarding the effect of the treatment
variables: on Self-efficacy there are significant effects of assisting to a Life course,
that remains after include the effect of laboratory work; on Justification, we found
significant and positive effects from being in a Life course, nevertheless when we add
the variable Laboratory Work, the effect becomes non significant. In Certainty and
Source, both disciplines have a significant effect on follow-up. In the case of Life
sciences, it become non-significant after include the Laboratory Work variable.

As a summary, there were significant effects of assisting to a Life course on follow-
up Self-efficacy, Justification and Certainty and Source. For Justification and Cer-
tainty and Source, the effects become non-significant when we add the Laboratory
Work variable, but they remain of an important effect size. Being in a Non-Life
course produces significant effects on Certainty and Source. Laboratory Work did
not produce significant effects on any of the beliefs variables at this time measure.

There are not significant compositional effects from the average beliefs variable
ABC. Regarding the effect of control variables, as before, for each belief the most
influential control variable was the same belief measured before the courses. In
comparison with the models done over post beliefs, the coefficients are smaller. In
addition, for the academic and socio-demographic variables, we see that being a boy
have a significant positive effect on follow-up Self-efficacy and Development. Grades
have significant effects on Development. Mother education was not significant for
any variable.
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Chapter 9

Discussion and Conclusions

Regarding the impact of Life and Non-Life courses in science Self-efficacy beliefs,
we see that there is no effect of the discipline in the post measure, but there is a
positive effect of Life courses in the follow-up measure. This implies that in Life
courses there was a splash down effect (Stake & Mares, 2005). However, in Non-life
courses this effect is not present. Studies about the splashdown effect do not allow
us to explain why Non-life courses did not produce a follow-up effect on Self-efficacy,
but our results coincide with Larose et al. (2006) findings, where in the group of
students with increasing science self-efficacy trajectories there were proportionally
more students from the Biology technological program than in the other programs.
One possible explanation is that attending a course about a Non-Life object does
not increase science Self-efficacy but increases more specific self-efficacy measures, for
example mathematics Self-efficacy or engineering Self-efficacy. Another possibility
is that in mathematics, physics and similar exact sciences, to learn a content or skill
it is very important to have mastered the previous knowledge. This may produce
that recovering from a misconception or lack of understanding is harder, and for a
student it is easier to get lost. This could explain why Non-Life courses did not
change science Self-efficacy beliefs. A last hypothesis comes from the fact that in
Non-Life courses there is a tendency to assign lower grades than in Life courses,
specially in Mathematics courses (we analyzed the mean of the grades assigned in
each course). This could produce negative mastery experiences, which are one of
the most relevant sources of science Self-efficacy (Britner & Pajares, 2006).
The effect of laboratory experience on science Self-efficacy was significant only at
the post measure. A possible interpretation of this is that experiments provide
meaningful vicarious experiences and different types of assessment procedures where
it is easier for a student to have a mastery experience. The effect was not present in
follow-up Self-efficacy. This is in line with results from Itzek-Greulich et al. (2017)
who found that Science Center Outreach Labs (SCOLs) had significant effects on
self-competence in a post-test, but not in follow-up, 6 weeks after intervention.

Regarding the effect of Life and Non-life courses on epistemic beliefs, results show
that the courses about Life objects have significant positive effects on Justification
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at follow-up. The effects became non significant when we added Laboratory Work.
Only for post Justification, Laboratory Work has a significant and positive effect.
In Justification, to see effects only from Life courses and from courses having Labora-
tory Work is reasonable, because in Life sciences the role of experiments to generate
knowledge is more explicit than, for example, in mathematics or theoretical physics,
where the argumentation is more important. In fact, in the majority of Life courses,
there was Laboratory Work while in the Non-life courses, only about half of them had
Laboratory Work. These courses were not designed to change epistemic beliefs. The
fact that the simple exposition to Life sciences and laboratory experiences changed
Justification is an important finding, more if we consider that in the case of Life
courses this change remains several months after the intervention. These effects can
be interpreted as socialization (Trautwein & Lüdtke, 2008) or enculturation effects
(Muis & Duffy, 2013) because we controlled for the selection bias.
We expected effects on Development also, but we only found such effects in Life
courses at the 0.1 alpha level. Maybe the courses were too short, or it is necessary
to have explicit discussions about the changing nature of science in order to see a
significant effect on this variable.
The dimension of Certainty and Source, with items stating that there is a right
answer in science and that the scientific authorities are the source of the truth, in-
creased in the follow-up measure for both disciplines. We think that this result can
be explained because basic scientific courses in schools and universities do not ques-
tion these beliefs explicitly, and probably only in advanced courses or post-graduate
programs there is a possibility of reflecting about these beliefs.

In summary, through the testing of the effect of Life and Non-life courses and
Laboratory work, this study sheds light on the question of whether science courses
could produce more sophisticated science epistemic beliefs. We found that Non-life
courses produce less sophisticated beliefs in Certainty and Source. However, the
ones with laboratory activities produce more sophisticated beliefs on Justification.
In Non-life subjects, an epistemic sophistication could be seen in other epistemic
dimensions. For example, the social value of science could be more evident in en-
gineering courses or the logical connection of arguments as a source of knowledge
should be a relevant dimension in mathematics courses.
In addition, we looked for evidence of peer effects from two sources: the evolution
of the intra-class correlation along the three time measures and the effect of the
aggregated variables. The intra-class correlations showed that students were more
similar in their beliefs at the end of the courses in all beliefs variables. Nevertheless,
the intra-class correlations are null in the follow up measure. Regarding the effect
of the aggregated variable ABC, for all the models it was non significant. Also the
size of the effects of the aggregated variable were very small in comparison to the
effect of the type of discipline and Laboratory Work.

This Summer School Program study, devised to see the effect of academic cli-
mates, is a great methodological opportunity because it provided the possibility of
estimating intra-class correlation and compositional effects. The main limitation
of this study is that, even though we control for several variables, there can be
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uncontrolled selection bias. Another limitation is that there is response bias and
informed consent bias, specially in the data obtained trough questionnaires sent to
the mail of the students. In addition, the questionnaire was not completely suitable
for the Chilean population, because Certainty and Source items loaded in the same
factor. This could have been an effect of the instrument adaptation or an effect of
the culture or group of students (Buehl, 2008). Future work should describe the
experience of belonging to a Life or Non-life course and of having Laboratory Work
with qualitative techniques. Also this study could be replicated measuring epistemic
dimensions more specific to Non-Life courses.
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Part III

School effects in academic
trajectories of Chilean students
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Chapter 10

Introduction and Literature
Review

10.1 Introduction

The research on school effects has received increased interest worldwide. This can be
seen in the development of the field School Effectiveness, which focus is to identify
the factors within schools and the educational system which can affect students
academic and social development (Reynolds et al., 2014). The analysis of school
effects can be useful to allocate resources and programs and to understand how the
educational systems work. This is useful information to make decisions about the
design of the systems.

In the Chilean context, there is a special interest regarding the effect of schools
managed by private entities in comparison to schools managed by public entities.
The Chilean educational system can be seen as an extreme case of the application
of market oriented policies (Bellei, 2008; Valenzuela et al., 2014). It has a mixed
structure, where a big portion of the schools is directed by private entities. There
are three types of schools. The first type are public schools, which are managed and
funded by the state. The second type are voucher schools which are the ones funded
by the state but managed by privates like entrepreneurs and foundations. Finally,
the third type are private schools which are managed and funded by privates (Bellei,
2008). Only 44.8% of the schools are public schools, 49.7% of schools are voucher
schools, and 5% are private schools (Ministerio de Educación, 2014) . In comparison
with participant countries in PISA 2009 this is a very high percentage of schools
managed by private entities (OECD, 2012).
Also, there is a clear trend where the number of students and schools in public
education are decreasing and in private subsidized education are increasing (Paredes
& Pinto, 2009).

Market oriented system reforms are supported with the popular idea that pri-
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10.1. Introduction

vate schools are more effective than public schools (Bellei, 2008). Several studies
comparing private and public education have been made with Chilean data. They
present mixed conclusions and use different methodological strategies, which make
it hard to bring conclusions (Bellei, 2008). The most important limitation in all of
these studies is selection bias (Bellei, 2008). In fact, to ascertain that there are really
school effects it is necessary to control by several factors such as: socio-economical
and academic segregation, peer effects, selection of students by schools and selection
of school by families (Bellei, 2008).

Selection bias is a general problem regarding the identification of school effects,
because students are not assigned randomly to their schools (Raudenbush & Willms,
1995). Therefore, there are many methodological issues to solve. A typical strategy
to address this problem is controlling by confounding variables, which can be done
using different statistical methods, for example regression analysis or propensity
score analysis.
Nevertheless, there is another important issue to address the identification of school
effects, that is studying students’ trajectories. To the best of our knowledge, the
only study that has compared students’ trajectories from voucher and public schools
is the thesis from (Ortega Ferrand, 2015). After controlling for students and school
variables, she found that students from voucher and public schools make the same
progress during primary, which is a finding that cannot be done modeling only final
achievement measures (Ortega Ferrand, 2015, pp. 202).
In fact, studying trajectories improves the estimation process because it accounts
for the measurement error, allows us to study the shape of the change and the rate
of the growth (Bressoux, 2010). Guldemond and Bosker (2009) stated that studying
trajectories increased the likelihood of detecting school effects because it is a more
reliable measure of student progress. In the field of school effectiveness there is a call
to do more research regarding trajectories of the same students over time because it
is possible to understand the processes and characteristics producing stability and
change in schools (Reynolds et al., 2014).
In summary, it is important to know about the characteristics of student trajectories,
this is an information about progress, much richer than having only one data point.

The research presented in this part of the thesis aims to model long term tra-
jectories in mathematics and reading scores from 4th to 10th grade. The sample
is formed by Chilean students that attended public and voucher schools. We focus
on students in public and voucher schools because those schools are the base of the
system (they correspond to approximately 95% of all Chilean schools), are part of
policy and academic debates and represent a more homogeneous population. The
first goal is to describe the characteristics of achievement trajectories of Chilean
students for different groups. The second goal is to compare the effect of attending
voucher and public schools in students’ trajectories in four steps: without control-
ling by confounding variables, controlling using linear adjustment, controlling using
propensity score matching and controlling using both methods simultaneously. This
extends the study of Ortega Ferrand (2015) using a different time span that includes
secondary education, considering a census-based sample and focusing specifically in
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10.2. Context and Literature Review

the selection bias problem between voucher and public schools.

In summary, the research objectives are:

1. The first objective is descriptive and it consider two specific objectives. The
first specific objective is to determine what are the school effects on students’
trajectories in mathematics and reading scores. The second specific objective
is to characterize these trajectories comparing trajectories of different groups
of students.

2. The second objective is to determine what is the effect of public schools in
comparison with voucher schools on the students’ trajectories in mathemat-
ics and reading scores. In particular we want to explore how the estimated
effects change controlling for confounding variables using linear adjustment,
propensity score matching and both methods simultaneously.

10.2 Context and Literature Review

10.2.1 School effects in students long-term achievement tra-
jectories

School effects is a subject which has received a lot of attention because it may help
to find strategies for the improvement of schools and educational systems. The main
foci in this area are efficiency and equity (Bressoux, 2008). In general terms, school
effects would be the contribution that a school gives to a student all other things
being equal (Bressoux, 2008).
Considering the variance explained in achievement outcomes, school effects usually
are small. In fact, Bressoux (2008) reports studies that estimate that, on aver-
age, school effects explain 8% and 13% of the variance of students’ acquisitions and
Guldemond and Bosker (2009) say that they explain about 10% to 30% of the vari-
ance. Nevertheless, this variance can differ heavily between countries. For example,
in France the variance explained by schools is small, because schools are similar
and principals do not have so much freedom in decision-making in comparison, for
example, with Anglo-Saxons systems where the variance is higher (Bressoux, 2008).
In the case of Chile, the variance explained by schools in mathematics and reading
achievement is very high (see for example Manzi et al. (2014)). Some reasons to
explain the huge variance of school effects in Chile are the high level of socioeco-
nomic segregation between schools (Valenzuela et al., 2014) and the high freedom
that school principals from private and vouchers schools have to make decisions in
human and financial resources, curriculum, student policy and improvement (Wein-
stein & Muñoz, 2014).

Usually, the studies in school effects make use of multilevel models with the
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structure of equation (10.1) (Longford, 2012).

yij = β0 +Xij
~β + uj︸︷︷︸

school effect

+εij, (10.1)

In this equation, yij is a measure of achievement of student i in school j, usually
measured at the end of the school year. This achievement is explained with control
variables X = (x1, . . . , xk) and the school effect uj. The school effect can be modeled
as a fixed or random effect. The goal in these studies is to identify school effects
uj controlling by confounders variables, as previous achievement and socioeconomic
status, which are included in the vector Xij. This is possible if the model is well
specified and all the statistical assumptions hold, nevertheless researchers agree that
these conditions are never completely met (Everson, 2017). When uj is modeled as
a random effect in equation (10.1), then it is possible to model the school effects
with school level variables X ′ = (x′1, . . . , x′) as in equation (10.2).

uj = X ′
j~α + µj (10.2)

In these models, the school effects are modeled over one measure of the variable y.
Previous measures of y can be included as covariates in X. For example, when y
is a reading-test score taken at the end of the year, it is possible to include in the
control variables X a measure of the same reading test taken at the beginning of the
year.
In these studies, students are the level one and schools are the level two or three,
depending if the model considers class effects or not. It is important to note that
equation (10.1) is a basic example, usually the studies deepen different aspects of
the modeling according to methodological issues or to different research questions.
There are several studies about school effects with Chilean data, for example Muñoz-
Chereau and Thomas (2016) and Troncoso, Pampaka, and Olsen (2016) analyzed
the importance of including class and municipalities random effects in the models.
Another example is Manzi et al. (2014) that estimated value-added models with a
focus in the endogeneity problem and how to correct it.

In contrast, few studies measure school effects in student progress and more re-
search is needed in this area (Reynolds et al., 2014) . In this case, repeated measures
of the outcome variable y are modeled as outcomes, and the modeling of change has
to be explicitly described. In addition, a new level is added to the model, because
repeated measures are considered as nested in the student. For example, in equation
(10.3), the change is modeled as a linear function of time. This is different to the
case of equation (10.1) that can use longitudinal data, but only the final measure is
modeled and the other previous measures are used as covariates.

ytij = β0 + εij + β1ijt︸ ︷︷ ︸
Modelling the change

+Xtij
~β +

school effect︷︸︸︷
µj +εtij (10.3)

Guldemond and Bosker (2009) propose that multilevel growth models can better
distinguish school effects because having several measures allow us to account better
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for the measurement error. Also, these models allows us to question about the school
effect on the shape and the rate of the growth and control for time changing variables
(Bressoux, 2010).

Nevertheless, modeling school effects in students’ trajectories poses several re-
search issues that influence the measured school effects. For instance, if there are
more than three measures by person, it is possible to model different types of non-
linear curves. Also, the time scale influences the type of school effect that is esti-
mated and the research question that is finally answered (Anumendem, De Fraine,
Onghena, & Van Damme, 2013).

Another very important issue is considering students’ mobility between schools.
Modeling school effects on student progress across one school year is easier because
students usually do not change school in the middle of the year. However, if we
measure progress across several years the possibility of changing school has to be
addressed. This possibility can be modeled using three strategies:

1. Select only students that did not change school

2. Multilevel growth model with cross-classified school effects

3. Multilevel growth model with multiple membership school effects

The first strategy implies selecting only students that did not change schools and use
a strictly hierarchical structure. The second strategy is to model a cross-classified
structure, where for each year there is a different school clustering or a multiple-
membership structure, where we consider that one student can belong to more than
one school. To illustrate the difference between the strategy with cross-classified
school effects and multiple membership models, we consider the present study where
we have data for 4th, 8th and 10th grade. In this design, it is very plausible to have
student changing schools. In fact, if we consider the students that have data for the
three years, 75.2 % of them changed school at least once. The model for the first
strategy is represented in equation (10.4). Its advantage is that it is simple, but can
produce an important sample loss, an example is Guldemond and Bosker (2009).

ytij = β0 + β1ijt+ µj︸︷︷︸
school effects

+εij + εtij (10.4)

The second strategy implies modeling school effects with a cross-classified structure.
In this case, we distinguish the effect of the same school in 4th, 8th and 10th grade
(see equation (10.5)). It is like they are three different schools. This makes sense
because the schools change, and it is important to see the effect of the school in
different grades. Also, it allows us to model any time changing variable at the
school level more easily, because for each year there is a specific random intercept
at the school level which can be explained by the variables measured that year. An
example of variables at the school level that change are compositional variables.

yti(jkl) = β0 + β1i(jkl)t+ µ4th
j + µ8th

k + µ10th
l︸ ︷︷ ︸

school effects

+εi(jkl) + εti(jkl) (10.5)
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The third strategy considers the use of multiple membership models. In these mod-
els, for each student different weights are defined. The weights represent the multiple
membership pattern. For example, if a student has been one year in School X and
two years in School Y their weights would be 1

3
for School Y, 2

3
for School X and 0

for the rest of the schools. An example of a multiple membership model is described
in equation (10.6). In this model, a student can receive the effect of different schools
but there is only one estimated effect for each school. This can be very useful be-
cause it is simpler and considers the school as a stable institution. Nevertheless,
there is a loss of precision because the model cannot distinguish the temporal order
of the schools, for example these two schools combinations cannot be distinguished:

• 4th grade in School X, 8th grade in School X and 10th grade in School Y

• 4th grade in School Y, 8th grade in School X and 10th grade in School X

But being in School Y in 4th grade can be different than being in School Y in
10th grade. In fact, Goldstein and Sammons (1997) and Vanwynsberghe, Vanlaar,
Van Damme, and De Fraine (2017) found that the variance at the primary school
level was substantially different than the variance at the secondary school level in
outcomes measured during secondary education. In both studies cross-classified
models were used.

yti = β0 + β1it+

NJ∑
j=1

ωijµj︸ ︷︷ ︸
school effects

+εi + εti (10.6)

In Chile, at the best of our knowledge, the only study that measures school effects
on student trajectories is the PhD thesis of Ortega Ferrand (2015). In this study,
the author modeled student, teacher and school random effects in student progress,
using an accelerated longitudinal design. She used a cross-classified multiple mem-
bership structure to model teachers and students random effects. She combined
several sources of information and used data that expanded from 3rd grade to 8th
grade, and found that a quadratic growth curve better explained the achievement
trajectories in mathematics and language. Her findings replicate some trends from
the literature: schools and teacher effects where higher and more sizable than in
regular multilevel models; teacher effects where bigger than school effects and school
effects in emerging economies are bigger than in post-industrialized countries. She
found school compositional effects from achievement variables and SES variables.
Nevertheless, these effects where only found in achievement status, not in growth.
Also school effects varied across student groups (Ortega Ferrand, 2015, 185-187).
The scarceness of longitudinal studies done over student trajectories in Chile is un-
derstandable, because longitudinal studies are very expensive and more complicated
to run. Moreover, most of the Chilean studies about school effects are done with
data from the national assessment system SIMCE and the possibility of having three
SIMCE measures of the same students appeared for the first time in 2013.
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10.2.2 Chilean school system

In this subsection, we describe the foundations of the current Chilean school sys-
tem and the principal social and political changes that have occurred in education
until the year 2013. The data analyzed in this study is from students that in 2007
were in 4th grade. This implies that they entered the school system in 2003. Our
last measure corresponds to the same students in 10th grade during the year 2013.
Therefore, the goal is to understand the system and the specific dynamics that were
present between 2003 and 2013.

In order to understand the Chilean context, first it is necessary to define the
different types of schools that composed the system during this period:

• Public schools: Schools that are managed and funded by the state.

• Voucher schools: Schools that are managed by private entities, but receive
funding from the state in form of a voucher for each student. They can be
self-declared for profit or not for profit, this is a choice of the school owner. In
these schools we can distinguish two types:

– No family-fee: The schools that do not charge families with a fee. In this
group there are schools that are only financed with the vouchers from the
state and others have extra funding, for example from religious or charity
associations.

– Family fee: Schools that, in addition to the public funding, charge families
with a fee.

• Private schools: Schools that are managed and funded by private entities.

The Chilean school system can be described as an example of profound and intense
application of neoliberal ideas (Bellei, 2008). The reforms that originated this system
started with a law promulgated in 1980, during dictatorship. This law passed the
direction of public schools from the Ministry of Education to the municipalities,
with the aim of decentralize the system, and created voucher schools (Corvalán &
Garćıa-Huidobro, 2016). The basic idea behind this law was that voucher schools
would receive a defined amount of money for each student that actually attends the
school. This would produce that private entities could expand the number of schools
and the competition for students would produce better educational quality and let
the better schools grow and the worst schools perish (Corvalán & Garćıa-Huidobro,
2016). In this context, two components of the system have to be mentioned. The
first one is that families can choose schools. This is a fundamental element for
having schools competing for students. The second one is that private and voucher
schools are allowed to select their students and public schools do not have the right
to choose, unless they have less places than applicants (Contreras, Sepúlveda, &
Bustos, 2010). This is a difference with other countries which have an important
sector of private education but do not allow private schools to choose, for example
Sweden, Netherlands and Belgium (Contreras et al., 2010).
All these components made the Chilean system special in comparison with other
countries, because few countries had implemented in such a large scale and for many
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years a system so drastically based on neoliberal policies (Bellei & Cabalin, 2013).

In the following paragraphs we describe the main laws and reforms that defined
the specific dynamics of the system within the period under study. After the creation
of the voucher system and the end of the dictatorship in 1990, authorities looked for
national reconciliation and tried to normalize the functioning of public institutions
(Bellei & Vanni, 2015). In this sense, the democratic parties provided regulation
and tried to improve the system instead of replace it.
One important change that received the system was in 1994 when voucher schools
where allowed to charge a fee to families (Corvalán & Garćıa-Huidobro, 2016). This
created price discrimination and promoted the development of private education
(Bellei & Vanni, 2015).
Another very important development occurred in 1988 when census-based national
assessments were implemented. The system is called SIMCE1 and implements tests
aligned with the school curriculum. These assessments have been applied every year
(Meckes & Carrasco, 2010). The subjects evaluated more frequently are mathe-
matics, language, sciences and social sciences. Nevertheless, measures about other
subjects and regarding other variables have been gradually implemented.
The results of the tests at the school level have been disseminated for school prin-
cipals and teachers, families, general public and researchers since 1995 (Meckes &
Carrasco, 2010). The SIMCE system was conceived as a tool for schools, so no in-
formation at the student level is reported (Meckes & Carrasco, 2010). In addition, it
is seen as a tool for families to choose schools. The use of SIMCE scores has been a
controversial subject. On the one hand, it has been very useful for developing diag-
noses of the system, design and evaluate public policies, target resources and define
teacher incentives. On the other hand, it has also promoted selection practices from
schools.

In addition to the establishment of voucher schools and the SIMCE evaluation
system, it is important to consider the reforms and improvement programs that have
been installed in Chile. Bellei and Vanni (2015) characterize different periods. They
propose that between 1990 and 1995 there was a period of educational improvement
programs which included several and diverse programs which aimed to change in-
ternal schools practices and teachers’ work. They conclude that there is evidence of
their impact on the schools functioning but their impact in student outcomes is not
clear.
Then, the period 1996-2005 is the reform to educational quality and equity which
describes a major educational reform that considers four major aspects: expansion
and strengthening of the school-improvement programs from the past periods; sev-
eral measures to support teachers; a curriculum reform and, finally, a radical increase
in school time. This period also was characterized by an increase of the public in-
vestment in education, in part to funding the reform.
Several aspects of the reform to educational quality and equity had impact, but the
results in the SIMCE of 2000 and the poor results in international tests produced a
vision of failure which leaded to a period between 2000 and 2005 of impact crisis and

1Sistema de Información y Medición de la Calidad de la Educación.
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the reorientation of educational reform. There was a perception that the reform was
ineffective and students’ results were stagnated. It appeared a loss of confidence in
the school system as a whole and a sense of impotence from the government. New
attempts were made to guarantee the continuity of the educational reform, adjust-
ing its initial characteristics to be more effective. In this moment, the focus was to
increase the results in standardized tests (Bellei & Vanni, 2015).
In this context of a negative view regarding the quality of education, there appeared
in 2006 and in 2011 two huge social movements leaded, respectively, by high school
students and university students that changed the public education agenda (Bellei
& Cabalin, 2013; Bellei, Cabalin, & Orellana, 2014). The movement from 2011 is
considered as the most important social movement in Chile after dictatorship (Bellei
et al., 2014). These movements raised a demand for free education, the defense of
public education, the reject of for-profit educational institutions and the rejection of
schools’ selection practices (Bellei et al., 2014). This leaded to the period between
the year 2006 and 2013 defined by Bellei and Vanni (2015) as The New Architecture
of Chilean education. In this period, it was recognized that only market dynamics
cannot regulate the system to achieve quality and equity. This implied considering
not only educational quality as a main issue but also equity and questioning the
functioning of the system. This moved the political agenda and several laws and
institutions where created. One of the most important is SEP law, which acronym
means Preferential School Subsidy that was established in 2008. Its goal is to give
extra funding for schools having students with disadvantaged socioeconomic condi-
tions. SEP law defines priority students according to several socioeconomic criteria
and gives 60% more funding for each priority student (Raczynski, Muñoz, Wein-
stein, & Pascual, 2016). Schools having a high percentage of priority students get
an extra amount of funding. This law is for voucher and public schools and the extra
funding is managed by the school administrator (Raczynski et al., 2016). In order
to access to the funding, a school has to commit with several responsibilities as: do
not select students, have a plan of school improvement and report to the government
and the community the implementation of the improvement plan (Raczynski et al.,
2016). The implementation of this law has been done progressively and it was not
completely enacted in the year 2013. In fact, Valenzuela, Villarroel, and Villalobos
(2013) report that even though the law has a good basis and probably is the most
important reform of the last decade, the results in academic achievements have been
heterogeneous and there should be some new policies to complement it.
In addition, in the year 2011, new institutions to monitoring the educational qual-
ity and regulate the management of resources were created. On the one hand, the
Agency for the Quality of Education ACE2 was created as the institution to ensure
the quality of education in Chile. Its duty is to evaluate learning and educational
institutions. This includes evaluating schools. The evaluations have consequences
because if a school has sustained bad results it is intervened. In particular, the ACE
manages the application, analysis and dissemination of the SIMCE results and the
international assessments. On the other hand, it was also created the Superinten-
dence of Education3. This institution monitors the use of resources from the schools.

2Agencia de Calidad de la Educación
3Superintendencia de Educación.
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They have to inspect that the resources are used according to the law.

It is important to note that many of the reforms have improved the system. This
can be seen in the increasing scores in the PISA tests. Nevertheless, there are three
important characteristics of the Chilean system related to equity that should be
considered. First, the number of students in public schools is decreasing steadily.
Second, there is a huge amount of school socioeconomic segregation. Third, there is
high stratification between students from private, voucher and public schools, where
the students from public schools have the less advantageous conditions.
The contraction of public education has been reported in several research works
(e.g. Paredes and Pinto (2009) and Bellei and Cabalin (2013)). To have an idea of
what happened in the period considered in this study, the total number of public,
voucher and private schools for the years 2004 to 2013 is presented in Figure 10.1.
The number of voucher schools has been growing steadily and the number of public
schools decreasing.
Regarding the segregation of the school system, the work of Valenzuela et al. (2014)
with PISA data, shows that Chile is the country with the highest socioeconomic
school segregation from the countries analyzed. Valenzuela et al. (2014) name as
key factors to understand this segregation that vouchers school can charge fees to
families and that schools can select their students.
The third main characteristic is the stratification between public, voucher and pri-
vate schools. The fact is that students from public schools have much more disad-
vantageous socioeconomic conditions than students from voucher or private schools.
This has been reported in several research works (e.g. Bellei (2008)) and we report
some of the differences for the sample used in this study. In Table 10.1, it is possible
to see the immense difference in socioeconomic conditions and in attendance to pre-
school education between students from public, voucher and private schools. We can
see that students from voucher schools have parents with 2 more years of education
in average and that the income is 50% larger. The access to computer and internet
shows a very marked increasing trend across the years, probably reflecting that the
cost of technology has been reduced. But again, students from voucher schools have
more access to computers, internet and books. The differences remain the same in
the three levels considered.

To summarize, the aim of this section was to understand the Chilean school sys-
tem between the years 2003 and 2013. We can say that in those years the voucher
system was stabilized and expanded and several programs to improve education
where installed.
A turning point was in 2006 and 2011 where social movements started a social aware-
ness about how highly stratified and segregated the school system is and the estab-
lishment of laws to decrease inequality and augment quality. The most important
law enacted during these years was the SEP law. However, the implementation of
this law has been slow and with some challenges to produce all the intended changes
(Valenzuela et al., 2013). In fact, the years between 2006 and 2013 were identified by
Bellei and Vanni (2015) as the period of The New Architecture of Chilean education.
As a conclusion, probably the years 2003 and 2013 represent a period where the
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Figure 10.1: Number of public, voucher and private schools from 2004 to 2013

stratification and socio-economic segregation was in a peak with an inflection point
from 2006 where several laws and reforms focused on improve the equity and quality
of the system. With respect to the research question, we can hypothesize that the
selection bias between public and private schools during 2003 an 2013 was very high
because the enactment of the laws and reforms is slow.

10.2.3 Comparisons between voucher and public schools in
Chile

In Chile, rough comparisons of student achievement show systematically that public
schools have lower results than voucher schools. However, these differences cannot
be attributed to the efficiency of each type of school, because of the huge disparity in
student background characteristics (e.g. Table 10.1). Questions about the efficiency
of voucher and private schools have been the focus of several studies and policy de-
bates, mainly because it affects decisions regarding the allocation of resources.
Although, the studies about the effect of public and private education that have
been done in Chile show mixed results regarding which type of school leads to bet-
ter learning gains. Bellei, in his review, found that even studies using the same data
set can have different conclusions (Bellei, 2008). In the studies that he reviewed,
he identified several issues regarding the methodology to compare public and pri-
vate schools. He concluded that the most important problem is the high selection
bias between these two types of educational alternatives and identified the following
confounding factors:
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• Different socio-economic composition, this can have an effect at the student
level, and also a composite effect at the class, school, or local authority level.
In addition, it is important to distinguish between structural or economical
variables and cultural or social variables.

• Different academic compositional, this can have an effect at the student level,
and also a composite effect at the class or school level.

• School’ selection from the part of the families.

• Students’ selection from the part of the schools.

Several studies have deepened in each of these factors. Regarding socioeconomic
and academic school composition, usually all the studies use socioeconomic variables
at the student level as control variables. There are some studies that have deepen the
analysis using aggregated variables and which have a focus on peer effects. For ex-
ample, McEwan (2003) identified peer effects with Chilean data, where the strongest
effect was from the class average of mother education, a socioeconomic variable.
Regarding school selection, there are variables that can be used to approximate the
amount of school selection. For instance, the SIMCE assessment applies a question-
naire to students’ parents or guardians and ask about which were the requirements
to enter the school. Contreras et al. (2010) used this information and data regard-
ing the geographical variability of schools to control for school selection of students.
Their findings show that the voucher-public gap is very reduced after controlling by
selection variables and they argue that an important part of the gap is related to
voucher schools selecting good students, and not to the efficiency of voucher schools.
This is in line with the findings from Bellei (2008).
Regarding families selecting schools, studies show that aspects that families consider
in order to select schools are: distance from the house, quality of the schools and
the social composition of the schools. Elacqua, Schneider, and Buckley (2006) stud-
ied the process surveying a random sample of parents from first grade students in
the Metropolitan Region of Santiago. They asked which schools they would choose
for their children and their criteria to select these schools. Then the authors col-
lected objective indicators of each school and compared what the parents declare as
important (stated preferences) with the real characteristics of the schools (revealed
preferences). The surveyed parents reported that the academic characteristics were
important to select schools. Nevertheless, they chose schools that differed in aca-
demic quality but were similar in socioeconomic dimensions. The authors summarize
with the following quote “as parents choose schools in Chile, class - not the class-
room - may matter more” (Elacqua et al., 2006, p. 578). In addition, the distance
to the school is an important variable for school selection. This is supported with
studies which survey the families and also with studies that analyze real decisions
data (Chumacero, Gómez, & Paredes, 2011).

The studies described previously show the relevance and complexity of the con-
founding factors highlighted by Bellei (2008). In fact, the literature support that
universal vouchers, voucher-school fees, school’s selection of students and family’s
selection of schools increase segregation and stratification (Hanchane & Mostafa,
2012; OECD, 2012; Valenzuela et al., 2014). This implies that in Chile, it is more
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difficult to assert that public and voucher schools are comparable and that robust
estimation strategies should be used in order to attempt to compare both types of
schools. These strategies should consider the selection bias problem and the multi-
level nature of the variables that came from the students nested in schools.
New studies have compared public and voucher schools with novel methodologi-
cal and statistical techniques. For example, Anand, Mizala, and Repetto (2009)
compared public schools, free voucher schools and voucher schools that charge a
family fee. They selected students with scholarships, enrolled in voucher schools
that charge a fee and used propensity score matching in order to have comparable
samples. They found that voucher schools that charge a family fee had test-score
gains of 0.2 standard deviations over public schools. Nevertheless, the authors state
that this identification strategy is limited because it adjust only for observed char-
acteristics.
Another example is Lara, Mizala, and Repetto (2011) that used an strategy based on
propensity scores and a changes-in-changes estimation method. They exploited the
fact that there are public schools where there is only primary education (until 8th
grade) and students have to change schools to continue secondary education. The
sample were students that assisted to public schools until 8th grade. They compared
students’ SIMCE scores in 10th grade from students that stayed in public education
with the scores from the students that switched to voucher schools. They found
small effects in favor of voucher schools that were about 4% to 6% of one standard
deviation.
Manzi et al. (2014) estimated the value added of the schools using panel data with
two SIMCE measures. They used the parents educational level as instrumental vari-
ables to address endogeneity problems. They found that the effectiveness of public
and voucher schools was different according to the use of an instrumental variable.
Finally, Zubizarreta and Keele (2016) compared voucher and public schools using
a novel matching strategy that accounts for the clustered nature of the measures
and matched students and schools. They compared SIMCE scores and found non
significant differences between voucher and public schools and an effect size of 0.027
of a standard deviation, which is very small.

Regarding results from newer studies and including the review by Bellei (2008),
we can conclude that in almost all of the studies, after controlling for confounding
variables the voucher-public gap heavily decreases and sometimes changes its sign.
In the case of Anand et al. (2009) and Lara et al. (2011) the effect is significant but
small and in the case of Zubizarreta and Keele (2016) the effect is small and non-
significant. However, none of these studies have addressed the effect of public and
voucher schools on students’ trajectories. The only study that analyzed trajectories
is the thesis of Ortega Ferrand (2015). She studied trajectories from 3th grade to 8th
grade and found that voucher schools did not have an effect on student achievement
growth after controlling for student and school variables. This means that even
public schools showed lower achievement levels than voucher schools, their students
are making the same progress as the students in voucher schools (Ortega Ferrand,
2015, pp. 143, 202).
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In conclusion, studies that compared public and voucher schools show that differ-
ences are negligible or slightly favor voucher schools. Nevertheless, comparing the
effect of these types of schools on students trajectories is an open problem, which
has only been addressed in primary grades by the work of Ortega Ferrand (2015)
showing no effects on student growth.
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Chapter 11

Methodology

11.1 Sample

The sample came from the census-based assessment implemented by the System
of Measurement of the Quality of Education (SIMCE) (Meckes & Carrasco, 2010).
The SIMCE tests aim to measure all the students assisting to regular education in a
defined level (Agencia de Calidad de la Educación, 2015, pp. 63). The sample used in
this study came from the SIMCE assessments done in 4th, 8th and 10th grade during
the years 2007, 2011 and 2013 respectively. It forms a panel and represents Chilean
students that where on track between 4th and 10th grade and that attended Public
and Voucher schools. The sample was selected according to the following steps:

1. First, for each year we deleted about 7% of observations with invalid identi-
fiers. They correspond to observations with duplicated identifiers or undefined
identifiers. It remained a sample with 338.888 students.

2. Second, we selected the students that had valid identifiers for the three years,
in total they were 157.814. Possible reasons for having students with missing
identifiers can be having missed the test because they did not go to school that
day or because they were delayed or overtaken. This selection is indispensable,
because if the longitudinal identifier of an student is missing, also its school
identifier is missing for that year.

3. Third, we selected students that attended only to public and voucher schools
during the three years, which in total were 141.584. The deleted observations
correspond to students that for the three measures were in private schools (N =
12134) and to students that have switched between the private system and the
public and(or) the voucher system (N = 4096). The reason for deleting these
students from the sample is that private schools are not part of the research
objectives. In addition, students that switched between private, voucher and
public schools correspond to 2.6% of the total. Thus, it was better delete them
from the data base than include them in the analysis.
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In summary, the final sample is formed of N = 141.584 students. In the Table
11.1, we specified the number of classes, schools, municipalities and regions of Chile
for each year.

Level (year) Students Classes Schools Municipalities Departments Regions

4th grade (2007) 141.584 9.735 7.146 342 50 13
8th grade (2011) 141.584 7.971 5.424 341 54 15
10th grade (2013) 141.584 6.388 2.440 325 54 15

Table 11.1: Sample sizes for each level

11.2 Variables

The variables can be classified according to their level of measure (occasion, student,
class, school, etc.) and according to their role in the model (outcome, control variable
or identification variable). In Table 11.2, we present the level of measure, role in
the problem and percentage of missing data for each variable. The percentage of
missing data is measured according to the level, for example if it is at the student
level is the percentage of students with missing values, if it is at the school level is
the percentage of schools.

All these variables came from the SIMCE assessments of 2007, 2011 and 2013.
For each year, we used the data bases at the student level, parent level and school
level. In total, 9 databases were merged in order to have a unique data base. In the
following subsections, we describe the different types of variables.

11.2.1 Time variable

The scale of the time variable is presented in Table 11.3. The aim of the study is to
measure the effect of the treatment on the trajectories. We can only model linear
trajectories because we have three measures. A linear trajectory can be characterized
with a slope and a intercept. We defined time = 0 for the measures taken in 10th
grade. Therefore, the intercepts of the growth curves correspond to the students’
test scores at 10th grade. The values for time for the measures at 4th and 8th grade
were assigned in order to have variance equal to one. We restricted the variance of
the time variable to one because with a larger variance we had estimation problems
in the multilevel models.
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Variable Level Role % Missing

Time occasion time 0
Mother education occasion control 23
Father education occasion control 26
Number of books occasion control 22
Home Income occasion control 23
Computer occasion control 23
Internet occasion control 27
Parents expectations occasion control 25
Normalized score reading occasion outcome 7
Normalized score mathematics occasion outcome 7

Trajdep student treatment 0
Gender student control 0
Kindergarten student control 48
Pre-kindergarten student control 40
ECE (0-2) student control 33
ECE (2-4) student control 27
mrun student id 0

SES index 4th school 4th treatment 16
SES Selection index 4th school 4th treatment 16
Academic Selection index 4th school 4th treatment 16
Preschool attendance index 4th school 4th treatment 16
rbd 4th school 4th id 0
SES index 8th school 8th treatment 1
SES Selection index 8th school 8th treatment 1
Academic Selection index 8th school 8th treatment 1
Preschool attendance index 8th school 8th treatment 1
rbd 8th school 8th id 0
SES index 10th school 10th treatment 3
SES Selection index 10th school 10th treatment 3
Academic Selection index 10th school 10th treatment 3
Preschool attendance index 10th school 10th treatment 3
rbd 10th school 10th id 0

Table 11.2: Description of variables used in the multilevel models and in propensity
score analysis

Grade Time coding

4th -2.405
8th -0.802
10th 0

Table 11.3: Time coding
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11.2.2 Treatment variable

The treatment variable trajdep defines the possible treatments. It is a categorical
variable, where the categories are denoted with three letters indicating the belonging
to the public or voucher system in each of the measured years. For example, the
category ppp corresponds to students that attended public schools in 4th, 8th and
10th grade. The category vpp corresponds to students that in 4th grade attended a
voucher school and in 8th and 10th grade attended a public school. In total there
are 23 = 8 possible treatments. The distribution of the sample in the different
treatments is presented in Table 11.4. It is important to clarify that this variable
does not vary at the school level, but at the student level because students can
change schools.

Treatment N %

ppp 39.699 28.04
ppv 3.909 2.76
pvp 1.943 1.37
pvv 10.041 7.09
vpp 18.608 13.14
vpv 2.282 1.61
vvp 7.827 5.53
vvv 57.275 40.45

Total 141.584 100

Table 11.4: Sample sizes for each treatment

11.2.3 Outcome variables: Student achievement measures

The outcome variables Normalized score mathematics and Normalized score reading
are normalized scores in mathematics and reading from the national standardized
tests implemented by SIMCE. The tests have the aim to evaluate the student learning
on different subjects. For each subject, they are designed to evaluate the contents
and abilities from the national curriculum (Agencia de Calidad de la Educación,
2015, pp. 3). They are applied close to the end of the school year and several levels
are evaluated each year.

The SIMCE test scores are calibrated trough item response theory to compare
the same level across different years. They are not designed to be compared longi-
tudinally between different levels, that means it is not correct to model trajectories
in the test scores given by SIMCE. This is why, for each year, we normalized the
SIMCE test scores before merging the data bases. The process is represented in
Figure 11.1. This implies that we forced the distributions of the scores to be normal
in our sample and that the average trajectory of all the sample is constant and equal
to 0.
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Reading	score	4th
grade	

Normalized	reading	
score	4th grade	

Reading	score	8th
grade	

Normalized	reading	
score	8th grade	

Reading	score	
10th grade	

Normalized	reading	
score	10th grade	

Normalization	of	scores Merging	of	
data	bases

Data	Base	long	format

Data	Base	wide	format

Student Occassion Normalized score	reading

1 4th grade 0.1

1 8th grade 0.2

1 10th grade 0.23

2 8th grade -0.3

2 10th grade -0.31

Student Normalized
score	reading
4th

Normalized
score	reading
8th

Normalized
score	reading
10th

1 0.1 0.2 0.23

2 -0.3 -0.31

Figure 11.1: Normalization of the SIMCE test scores

11.2.4 Control variables: Student socioeconomic and expec-
tatives measures

The control variables corresponding to mother education, father education, number of
books, computer, internet, income, parents expectations and attendance to pre-school
came from the parents questionnaire. This questionnaire is sent with the student
to their parents or guardians to be answered during the days of application of the
SIMCE test (Agencia de Calidad de la Educación, 2015, pp. 59). Its design changes
every year and we only considered the variables that were measured the years 2007,
2011 and 2013.

The variables mother education, father education, income and parents expectations
were measured with alternatives, but before the analysis they were transformed to
numeric variables according to the conversion tables from Agencia de Calidad de la
Educación (n.d.). The conversion tables are reproduced in Tables 11.5 and 11.6. We
did a similar re-coding for the variable number of books in the house, which is detailed
in the Table 11.7. After this procedure, all the variables were used in the analysis
as numeric variables. In addition, we divided the income variable by 100.000. This
re-scaling was necessary because the original scale in Chilean pesos has a variance
too large. Using the scale in Chilean pesos produced estimation problems for the
multiple imputation and multilevel models.

The variables computer, internet, Kindergarten, Pre-kindergarten, ECE 0-2, ECE
2-4 are dummy variables. In the case of computer and internet, they value 1 if the
student has a computer or internet connection at his or her home and 0 if not. The
variables Kindergarten, Pre-kindergarten, ECE 0-2, ECE 2-4 have the value 1 if the
student has attended to the corresponding level of preschool education and 0 if not.
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Educational level Imputed years of education

No studies 0
1th grade 1
2th grade 2
3th grade 3
4th grade 4
5th grade 5
6th grade 6
7th grade 7
8th grade 8
9th grade 9
10th grade 10
11th grade 11
12th grade academic track 12
12th or 13th grade vocational track 12
Incomplete short-cycle tertiary education 14
complete short-cycle tertiary education 16
Incomplete tertiary education (university) 15
complete tertiary education (university) 17
Master degree 19
Doctoral degree 22
Does not know or do not remember It is not converted

Table 11.5: Conversion table for educational level, retrieved from (Agencia de Cali-
dad de la Educación, n.d.)

11.2.5 Treatment variation: School aggregated variables

In Chile, school socioeconomic segregation is very strong, which implies that schools’
composition can vary heavily. Therefore, it is very important to consider aggregate
variables at the school level defined from the student-level variables.

The student level variables used to define school aggregate variables are socioeco-
nomic variables, attendance to pre-school and variables about school selection. The
socioeconomic variables and attendance to pre-school where already described and
are listed in Table 11.2.
The variables about school selection came from the parent questionnaire. They cor-
respond to questions regarding what did the school require to accept the student.
For example, questions asking if the school applied a test, asked for a parent in-
terview, required an income certificate, etc. Each question was coded as a dummy
variable, so the mean is the fraction of the students in the school that were asked
for the specific requirement.

To develop the school-level indexes, we calculated the school average for each
variable, creating school-level aggregate variables. We denote these variables with
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Income interval (Chilean pesos) Imputed income (Chilean pesos) Re-scaling

Under 100.000 50.000 0,5
Between 100.000 and 200.000 150.000 1,5
Between 200.001 and 300.000 250.000 2,5
Between 300.001 and 400.000 350.000 3,5
Between 400.001 and 500.000 450.000 4,5
Between 500.001 and 600.000 550.000 5,5
Between 600.001 and 800.000 700.000 7
Between 800.001 and 1.000.000 900.000 9
Between 1.000.001 and 1.200.000 1.100.000 1,1
Between 1.200.001 and 1.400.000 1.300.000 1,3
Between 1.400.001 and 1.600.000 1.500.000 1,5
Between 1.600.001 and 1.800.000 1.700.000 1,7
Between 1.800.001 and 2.000.000 1.900.000 1,8
Between 2.000.001 and 2.200.000 2.100.000 1,9
Over 2.200.000 2.300.000 2,3

Table 11.6: Conversion table for the monthly income imputed to the student’s home,
retrieved from (Agencia de Calidad de la Educación, n.d.). In addition, we precise
the re-scaling done to the variable in order to have with lower variance.

Number of books interval Number of books imputed to the student’s home

No books 0
Less than 10 5
Between 10 and 50 30
Between 51 and 100 75
More than 100 120

Table 11.7: Conversion table for number of books at home.

the same name than at the student level, but we add a sc as superscript. In order
to give the same importance to each variable we standardized each of them. To
develop the indexes we did different principal component analysis, which results are
described in the following list.

1. School Socioeconomic Index
For each year, we made a principal component analysis with the variables
Mother educationsc, Father educationsc, Number of bookssc, Incomesc, Com-
puter sc, Internetsc. In all the analysis the results suggested one factor, where
all the variables have high loadings. Therefore, we defined the School Socioe-
conomic Index as the standardized average of these variables (Table 11.8).

2. School Socioeconomic Selection Index and School Academic Selec-
tion Index
For each year, we made a principal component analysis with the variables
Preschool certificatesc, Grades certificatesc, Testsc, Marriage certificatesc, Church-
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related certificatesc, Income Certificatesc, Game sesionsc and Parent inter-
view sc. We tested Varimax and Promax rotations, in order to get more inter-
pretable solutions. The results of the years 2007 and 2011 suggested extract-
ing two components. In the first component the variables with high loadings
where Marriage certificatesc, Church-related certificatesc,Income Certificatesc

and Game sesionsc. These are all variables related with social selection. In
the second component the variables with high loadings where Preschool cer-
tificatesc, Grades certificatesc and Testsc and can be interpreted as academic
selection variables. In these solutions, Parent interview sc had double load-
ing, and after eliminating it, the structure was clearer. In 2013, the structure
remains unclear because Testsc with Income Certificatesc load on the same
factor. In spite of this, with the aim to have the same indexes for the three
years, the indexes were defined considering the solutions from 2007 and 2011
(Table 11.8).

3. Preschool attendance index
For each year, we made a principal component analysis with the variables
Kindergartensc, Pre-kindergartensc, ECE 0-2 sc, ECE 2-4 sc. All the analysis
suggested to extract one component, excepting the one done with data from
the year 2007. In this analysis, Kindergartensc had a very low loading (0.158).
With the aim to have the same indexes for the three years, the index was
defined considering the solutions from 2011 and 2013 (Table 11.8).

School Index Variables Interpretation

SES Mother educationsc

Father educationsc

Number of bookssc

Home incomesc

Computer sc

Internetsc

Schools with higher values in this index
are composed with students with better
socioeconomic conditions

SES Selection Marriage certificatesc

Church-related certifi-
catesc

Income Certificatesc

Game sessionsc

Schools with higher values in this index
asked more frequently for socioeconomic
related certificates to accept a student

Academic Selec-
tion

Preschool certificatesc

Grades certificatesc

Testsc

Schools with higher values in this index
asked more frequently for academic re-
lated certificates or test to accept a stu-
dent

Preschool atten-
dance

Kindergartensc

Pre-kindergartensc

ECE 0-2 sc

ECE 2-4 sc

Schools with higher values in this index
are composed with students with more
years of pre-school education

Table 11.8: School indexes definition
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11.3 Data Analysis

In this study, the structure of the data is multilevel and the research objectives
concerns school effects on students’ trajectories. The most suitable models for this
situation are multilevel growth models, which allow to model trajectories and data
with a hierarchical structure. Also, they are flexible enough for modeling students’
mobility between schools through cross-classified structures.

Two methodological problems appeared in this research: selection bias and miss-
ing data. The main problem of comparing public and voucher schools in Chile is
selection bias (Bellei, 2008), and probably during the years under study the school
segregation and stratification was in its peak, increasing the selection bias problem.
This is why, we will address selection bias trough linear adjusting for the control
variables and using propensity score matching. A summary of the data analysis
strategies are presented in Figure 11.2.

The missing data problem is going to be addressed through multiple imputation
techniques. The imputation models have to preserve the relevant characteristics of
the data (Enders et al., 2016). In the case of our data, the hierarchical nature is a
key aspect of the data structure. Measurement of the intra-class correlations of most
of the variables using the grouping of schools in 4th, 8th and 10th grades were very
high. This is why imputation techniques specific for multilevel variables where used.
The description of the multiple imputation procedure is presented in appendix B.1.

The data can be formatted as a person-level data set or wide format where each
row is a student. Also it can be formatted as a period-level data set or long format
where each row is one occasion of measure of the student (Singer & Willett, 2003,
pp. 17). Multiple imputation and propensity score matching was done over the
person-level data set. Multilevel models were estimated over the period-level data
set.

All the estimation processes were done using the software R (R Core Team,
2016). Propensity score matching was done with the Matching package (Sekhon,
2011) . For multilevel models we used the package lme4 (Bates, 2010) and for
multiple imputation the packages mice (Buuren & Groothuis-Oudshoorn, 2011) and
pan (Zhao & Schafer, 2016). Multiple imputation procedures and the estimation of
multilevel models with cross-classified random effects was very demanding in terms
of computational resources. This is why we used the super-computing infrastructure
of the National Laboratory for High Performance Computing NLHPC (ECM-02).
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Figure 11.2: Statistical strategies to address selection bias and missing data.
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Chapter 12

Results

In the first section of this chapter, we present a descriptive analysis of the variance
distribution and the trajectories in mathematics and reading scores for different
groups.
In the second section we present several estimations of the effect of the public sys-
tem and the voucher system on trajectories in mathematics and reading scores. The
section starts with raw comparisons of both groups. Then, we present the esti-
mated effects of public education adjusting by confounding variables trough linear
adjustment, propensity score matching and using both methods simultaneously.

In all the analyses presented in this chapter the nested nature of the data was
modeled with multilevel models and missing data was handled with multiple impu-
tation.

12.1 School effects and characteristics of achieve-

ment trajectories of Chilean students

In this section we present the results regarding the first research objective. This ob-
jective implies doing descriptive analyses and it consider two specific objectives. The
first specific objective is to determine what are the school effects on students’ trajec-
tories in mathematics and reading. The second specific objective is to characterize
the achievement trajectories in mathematics and reading of Chilean students.

12.1.1 School effects on students’ trajectories

In this subsection we understand school effects as the variance explained by the
random intercepts at the school level. To interpret these results, it is important to
consider that the duration of primary and secondary education. In Chile, primary
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education starts at 1st grade and ends at 8th grade and secondary education starts at
9th grade and ends at 12th grade. Primary and secondary education are compulsory
by law.

We present mean unconditional models to understand how the variance is dis-
tributed in mathematics and reading normalized scores (Singer & Willett, 2003, pp.
92-101). Tables 12.1 and 12.2 present the results for mathematics and reading re-
spectively. Model 1.a is the simplest model and only specifies random intercepts
at the student level. Models 1.b to 1.d define, respectively, random intercepts for
the school at 4th, 8th and 10th grade. Model 1.e includes cross-classified random
intercepts at the school level in 8th and 10th grade. Finally, Model 1.f specifies
cross-classified random intercepts at the school level in 4th, 8th and 10th grade.
The models’ exact definitions are detailed in appendix B.2.

In all the models, the variance intra-individual or residual is lower than the vari-
ance inter-individuals, but remains very important. In the models for reading scores
it represents about 35% of the total variance and for the mathematics scores it rep-
resents about 30% of the total variance.
The variance inter-individuals, or at the student level, changes if we add random
intercepts at the school level. In Model 1.a, where there are not school random
intercepts, the variance at the student level is about 64% and 70% for reading and
mathematics scores respectively. If school effects from the primary schools (4th and
8th grade) and the secondary school (10th grade) are added (Models 1.e and 1.f)
the student level variance descends to about 40 % in math and 38% in reading.

An important question is what is the size of the school level variances. In Models
1.b to 1.f we included school random intercepts for the school at 4th grade, 8th grade
and 10th grade. Regarding the variance from the random intercepts for the different
school clustering, it can be seen that it is important to define random effects at the
school level, because all the models are considerable better than Model 1.a.
Models 1.b, 1.c and 1.d define school effects from the school at 4th, 8th grade and
10th grade respectively. In all the models the percentage of variance explained at
the school level is important, ranging from 13% to 23% for reading scores and from
19% trough 31% for mathematics scores. Also, the percentage of variance explained
from the school in 10th grade is bigger than the variance from the school in 8th and
4th grade.
Nevertheless, when the models include school effects simultaneously from the school
at 4th grade, 8th grade and 10th grade (Model 1.f) the variance from the school at
4th grade vanishes. This is probably related with identification issues between the
school in 4th grade and the school in 8th grade. In Chile, primary education ends at
8th grade, and several students change school to attend secondary education. Usu-
ally students do not change school during primary, in fact 69.7% of the sample had
the same school between 4th and 8th grade. However, only 33.3% of the sample had
the same school between 8th grade and 10th grade. The identification issue appears
also in the amount of computer time used to estimate the models. When we added
school random intercepts for 4th grade and 8th grade simultaneously, the computer
time increased enormously.
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In summary, considering the almost null variance from the school effects in 4th
grade when school effects at the 8th and 10th grade are added and the identification
problems, for the conditional models we will model only random intercepts from the
school in 8th grade and in 10th grade.

Table 12.1: Variances of the random effects from the unconditional mean models for
mathematics. The parameters are the mean trough 20 imputations

Mathematics

Parameters 1.a 1.b 1.c 1.d 1.e 1.f

Fixed effects
Intercept 0 (0,00) -0,15 (0,01) -0,16 (0,01) -0,07 (0,01) -0,11 (0,01) -0,11 (0,01)
Random intercepts
Residual 0,31 0,31 0,31 0,31 0,31 0,31
Student 0,69 0,5 0,46 0,41 0,37 0,37
School 4th 0,19 0,02
School 8th 0,21 0,05 0,03
School 10th 0,32 0,24 0,24
Fit Indexes
Deviance 993007 964524 955515 937151 932983 932142
df 424749 424748 424748 424748 424747 424746
AIC 993013 964532 955523 937159 932993 932154
BIC 993046 964576 955567 937203 933047 932219

Table 12.2: Variances of the random effects from the unconditional mean models for
reading. The parameters are the mean trough 20 imputations

Reading

Parameters 1.a 1.b 1.c 1.d 1.e 1.f

Fixed effects
Intercept 0 (0,00) -0,09 (0,01) -0,11 (0,01) -0,04 (0,01) -0,06 (0,01) -0,07 (0,01)
Random intercepts
Residual 0,36 0,36 0,36 0,36 0,36 0,36
Student 0,64 0,51 0,48 0,43 0,41 0,4
School 4th 0,13 0,01
School 8th 0,15 0,03 0,03
School 10th 0,24 0,2 0,2
Fit Indexes
Deviance 1030107 1012073 1005941 990315 987987 987624
df 424749 424748 424748 424748 424747 424746
AIC 1030113 1012081 1005949 990323 987997 987636
BIC 1030146 1012124 1005993 990367 988052 987702

The second step for model specification was testing unconditional growth models,
where we added random slopes (Singer & Willett, 2003, pp. 92-101). We tested
random slopes at the student and school level. The exact definitions of the models
are detailed in appendix B.2. In all the unconditional growth models we defined
random intercepts and random slopes at the student level and cross-classified random
intercepts at the school level at 8th and 10th grade. Model 2.a defines random slopes
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only at the student level, Models 2.b and 2.c include random slopes at the school
level in 8th grade and in 10th grade respectively. Finally, Model 2.d includes random
slopes at the student level and at the school level in 8th and 10th grade. How the
time variable is coded in a way that time = 0 in 10th grade, the intercepts correspond
to the scores at 10th grade. The results for reading and mathematics are presented
in Tables 12.4 and 12.3.

When we add random slopes at the school level, the variances of the slopes at
the student level decrease. The slopes’ variances are small, but it is important to
note that the size of these variances depends on how the time is coded. In fact,
the difference in deviance from Model 2.a with Models 2.b, 2.c and 2.d shows that
including random slopes at the school level is relevant.

In summary, from the analyses of Models 1.a to 1.f and 2.a to 2.d, the school
effects on students’ trajectories are significant.
With respect to the random intercepts, the most important school effects are from the
school at 10th grade. The effect of primary schools on the intercepts are important.
However, when the effect of secondary school is included, they decrease substantially.
Regarding random slopes, it is relevant to model random slopes at the student level
and at the school level in 8th and 10th grade. From these analyses, we decided to
model the random effect structure from equation (12.1). We will use this structure
in the following sections for the models that include explanatory variables.

yti(jk) = β0 + β1i(jk)time + ξi(jk) + µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + ν8th
j + ν10th

k + υi(jk).
(12.1)
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Table 12.3: Fixed effects and variances of the random effects from the uncondi-
tional growth models for mathematics. The parameters are the mean trough 20
imputations

Mathematics

Parameters 2.a 2.b 2.c 2.d

Fixed Effects
Intercept -0,106 (0,011) -0,111 (0,011) -0,111 (0,013) -0,107 (0,013)
Time 0 (0,001) -0,005 (0,002) -0,005 (0,003) 0,001 (0,003)
Random Effects
Residual 0,246 0,246 0,246 0,246
Student 0,379 0,37 0,368 0,365
Student-time 0,04 0,028 0,027 0,022
Student time-intercepts 0,013 0,003 0,002 -0,002
School 8th 0,048 0,063 0,048 0,047
School 8th time 0,011 0,007
School 8th time-intercepts 0,013 0,002
School 10th 0,262 0,258 0,336 0,34
School 10th time 0,014 0,013
School 10th time-intercepts 0,05 0,053
Fit Indexes
Deviance 925845 918094 913552 910656
df 424744 424742 424742 424740
AIC 925861 918114 913572 910680
BIC 925949 918224 913681 910811

12.1.2 Students trajectories in different groups

In this subsection, we aim to describe the achievement trajectories in mathematics
and reading for different groups of Chilean students. In order to do this, we will test
the following model:

yti(jk) = β0 + β02xti(jk) + β1i(jk)time + β12time ∗ xti(jk) + ξi(jk) + µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + ν8th
j + ν10th

k + υi(jk)

(12.2)

The results of models with the form of equation (12.2) allow us to describe how
are the trajectories for different groups of students determined by the variable x.
Nevertheless, they do not allow to do causal inferences regarding the effect of x on
the trajectories, unless very strong suppositions are true. In this sense, these findings
are only descriptive for the population of Chilean students attending to voucher and
public schools.

To summarize the results, for different variables x, we estimated the model 12.2.
We present graphics of the predicted trajectories for different groups defined by x.
In the case that x is a categorical variable that varies only at the student level,
like gender or attendance to preschool education, the groups are the ones defined
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Table 12.4: Fixed effects and variances of the random effects from the unconditional
growth models for reading. The parameters are the mean trough 20 imputations

Reading

Parameters 2.a 2.b 2.c 2.d

Fixed Effects
Intercept -0,064 (0,01) -0,059 (0,01) -0,058 (0,011) -0,054 (0,011)
Time 0 (0,001) 0,004 (0,002) 0,005 (0,002) 0,01 (0,003)
Random Effects
Residual 0,316 0,316 0,316 0,316
Student 0,425 0,419 0,415 0,414
Student-time 0,027 0,02 0,018 0,014
Student time-intercepts 0,017 0,01 0,007 0,005
School 8th 0,034 0,039 0,034 0,032
School 8th time 0,007 0,005
School 8th time-intercepts 0,006 0,001
School 10th 0,205 0,205 0,244 0,249
School 10th time 0,009 0,009
School 10th time-intercepts 0,025 0,029
Fit Indexes
Deviance 985936 982546 979250 977841
df 424744 424742 424742 424740
AIC 985952 982566 979270 977865
BIC 986039 982676 979380 977996

by x. In the case that x is a continuous variable, like mother education or number
of books, we plotted the trajectories at the first, second and third quartile of the
variable to understand it relation with the outcome. In the case that x is a dummy
variable and vary over time, the process is analogous.
The results for each model are presented in appendix B.3. We present a graphi-
cal summary of the models in Figures 12.1 and 12.2. Figures 12.1a, 12.1b, 12.1c
and 12.1d compare the trajectories of students according if they attended or not to
preschool education. We can see that students’ trajectories in reading and mathe-
matics scores show no differences between students that attended or not to ECE-02.
Nevertheless, the trajectories are different for students that assisted to higher levels
of pre-school educations. The largest differences are for the variable Kindergarten.
In Figure 12.1e we can see the predicted trajectories by gender. The figure show
advantage for boys in mathematics and for girls in reading. The gap is bigger in
mathematics than in reading and the differences are in intercepts and slopes. In
mathematics, boys have a larger an positive growth rate and in reading girls have a
larger and positive growth rate. The differences increase over time.
Regarding parents’ expectations, Figure 12.1f presents the trajectories for the first,
second and third quartile of the parents expectation distribution. We can see im-
portant differences between the first quartile with the second and third quartile.
The trajectories for different groups defined by the socioeconomic indicators and
access to different resources are presented in Figure 12.2. Students’ trajectories in
mathematics and reading scores show large differences between the groups defined

100



12.1. School effects and characteristics of achievement trajectories of Chilean
students

by mother education and father education. The largest differences are between the
first quartile and the second quartile. This reflects the structure of inequalities in
Chile.
Regarding the number of books, in 4th grade the biggest differences are between the
first and second quartile and in 10th grade the biggest differences are between the
second and third quartiles. The variables that show the largest differences between
the trajectories are number of years of parents’ education and number of books.
Having access to a computer produce differences on the trajectories at 4th grade, but
not in 8th and 10th. This is because during 8th grade and 10th grade the quartiles do
not variate for having a computer. In addition, there are no significant differences.
Regarding access to internet, there are differences between the quartiles, but they
are not important for the predicted trajectories. These trajectories are probably
explained by the increasing access to technological resources during the last decade.
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Figure 12.1: Predicted trajectories for students with different characteristics
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Figure 12.2: Predicted trajectories for students with different characteristics
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12.2 Comparison of public and vouchers educa-

tion in students trajectories

In this section we present the results regarding the second research objective. We will
measure the effect of public schools in comparison with voucher schools on students’
trajectories in mathematics and reading scores. We will compare the estimated
effects controlling for confounding variables using linear adjustment, propensity score
matching and both methods simultaneously.
The results will be estimated over the subset of students that where enrolled in
public schools for the three measurement points (ppp, N=39.699) or in voucher
schools for the three measurement points (vvv, N=57.275). We decided to compare
only this two groups because the sample sizes for patterns of students that switched
from voucher to public schools, and vice versa, are small. Therefore, we could not
guarantee to have enough common support. How the trajectories covers a time span
of 5 years (from 4th grade to 10th grade), we are measuring the effect of being in
the public school system in comparison with the voucher school system.

12.2.1 Background characteristics of the treatment groups

In this subsection, we present the characteristics of the two treatment groups in
different variables. The aim is understanding the amount of selection bias. In addi-
tion, we will describe the treatments characteristics presenting descriptive statistics
of school aggregated variables for students in public and voucher schools. Table
12.5 presents the means and standard deviations for each control variable between
the students in public and in voucher education. These are pooled estimates across
the 20 imputations. In addition, the standardized mean differences are presented.
Ellis (2010, pp. 41) gives as a guideline that standardized differences of size 0.2 are
small, of size 0.4 are medium and of size 0.8 or more are large. We do not present
the statistical significance of the mean differences because all the differences where
significant, which is natural because the sample sizes are very large. To see the
distribution of these variables for students in voucher and public schools see Figures
B.1, B.2 and B.3 in appendix B.4.

It is clear from Table 12.5 that in the complete sample there are differences
between students attending public and voucher schools. Regarding the differences
in access to learning resources such as internet, computer and books, they are from
size medium to large and slightly decrease across time, specially the access to a
computer.
The differences regarding socioeconomic conditions such as parents’ education and
income are large and stable for the three time measures. The only variable where the
standardized difference is negligible is the percentage of girls. Nevertheless, in all the
other variables the differences are sizable and negative. Regarding the attendance
to pre-school, the standardized mean differences are medium to small. In summary
there is a high amount of selection bias, that remains stable during primary and
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secondary education.

Table 12.5: Descriptive statistics and standardized mean differences (SMD) for back-
ground variables. We compare students attending public and voucher education.
Means are the pooled estimates from the 20 imputed data bases.

Complete sample Matched sample

Variable Public Voucher Public Voucher
Mean (SD) Mean (SD) SMD Mean (SD) Mean (SD) SMD
39699 57257 22342 22342

Computer 4th 0,32 (0,47) 0,66 (0,48) -0,73 0,47 (0,49) 0,42 (0,49) 0,11
Computer 8th 0,75 (0,42) 0,9 (0,31) -0,42 0,85 (0,36) 0,81 (0,39) 0,11
Computer 10th 0,81 (0,37) 0,93 (0,28) -0,36 0,88 (0,32) 0,85 (0,34) 0,07
Internet 4th 0,09 (0,31) 0,35 (0,46) -0,63 0,16 (0,36) 0,12 (0,33) 0,08
Internet 8th 0,46 (0,49) 0,74 (0,44) -0,59 0,6 (0,48) 0,54 (0,49) 0,12
Internet 10th 0,53 (0,48) 0,79 (0,42) -0,59 0,65 (0,46) 0,62 (0,47) 0,08
Father Education 4th 9,67 (3,32) 12,56 (3,26) -0,88 11 (3) 10,5 (3,01) 0,15
Father Education 8th 9,64 (3,36) 12,52 (3,34) -0,86 10,96 (3,06) 10,41 (3,08) 0,16
Father Education 10th 9,61 (3,39) 12,5 (3,4) -0,85 10,92 (3,13) 10,39 (3,14) 0,16
Mother Education 4th 9,69 (3,27) 12,57 (3,13) -0,9 11,1 (2,9) 10,57 (2,93) 0,17
Mother Education 8th 9,71 (3,31) 12,56 (3,19) -0,88 11,09 (2,94) 10,52 (2,98) 0,18
Mother Education 10th 9,71 (3,32) 12,56 (3,22) -0,87 11,06 (3) 10,54 (3,04) 0,16
Number of books 4th 19,76 (26,36) 35,06 (33) -0,5 26,27 (28,92) 23,79 (27,59) 0,08
Number of books 8th 29,74 (28,96) 45,46 (35,36) -0,48 36,43 (31,36) 33,74 (29,85) 0,08
Number of books 10th 32,15 (30,63) 48,67 (36,3) -0,48 38,93 (32,5) 36,29 (31,19) 0,08
Income 4th 1,88 (1,78) 3,73 (3,08) -0,7 2,38 (1,92) 2,16 (1,7) 0,08
Income 8th 2,23 (2) 4,47 (3,96) -0,68 2,8 (2,25) 2,49 (1,83) 0,09
Income 10th 2,73 (2,5) 5,21 (4,45) -0,66 3,37 (2,7) 3,09 (2,34) 0,08
Parents expectations 4th 14,47 (2,79) 16,41 (2,19) -0,79 15,53 (2,41) 15,29 (2,51) 0,1
Parents expectations 8th 15,37 (2,3) 16,72 (1,75) -0,68 15,95 (2,05) 16 (2) -0,02
Parents expectations 10th 15,77 (1,99) 16,94 (1,55) -0,67 16,24 (1,78) 16,34 (1,71) -0,06
Gender (fraction of girls) 0,51 (0,5) 0,53 (0,5) -0,03 0,51 (0,5) 0,51 (0,5) 0
ECE (0-2) 0,31 (0,45) 0,43 (0,48) -0,26 0,36 (0,47) 0,33 (0,46) 0,05
ECE (2-4) 0,66 (0,44) 0,82 (0,39) -0,37 0,73 (0,42) 0,74 (0,42) -0,03
Pre-kinder 0,47 (0,49) 0,63 (0,49) -0,33 0,53 (0,49) 0,51 (0,49) 0,04
Kinder 0,05 (0,21) 0,09 (0,29) -0,17 0,06 (0,24) 0,05 (0,23) 0,03

Regarding the differences between treatments, Table 12.6 illustrates that, for the
complete sample, the composition and selection practices of schools generate large
and huge differences.
Students from voucher schools have peers with very different social composition. In
fact, the effect sizes for these differences are 1, 49 and 1, 57, which is about twice the
size of a large effect. Regarding the Attendance to preschool indexes, the differences
are also large.
Standardized differences regarding academic selection and the socioeconomic selec-
tion indexes are between 0, 63 and 1, 66.
These results are a reflex of the system, where vouchers schools are allowed to select
students but public schools are not, except in the case they have more applicants
than places. To see the distribution of these variables for voucher and public schools
see Figures B.4 and B.5 in appendix B.5.
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Table 12.6: Descriptive statistics and standardized mean differences (SMD) for
school indexes. We compare students attending public and voucher education.
Means are the pooled estimates from the 20 imputed data bases.

Complete sample Matched sample

Variable Public Voucher Public Voucher
Mean (SD) Mean (SD) SMD Mean (SD) Mean (SD) SMD
39699 57257 22342 22342

SES Index 8th -0,31 (0,54) 0,64 (0,64) -1,57 -0,09 (0,5) 0,23 (0,6) -0,52
SES Index 10th -0,72 (0,55) 0,18 (0,64) -1,49 -0,52 (0,52) -0,21 (0,63) -0,5
Preschool attendance Index 8th -0,15 (0,75) 0,33 (0,64) -0,7 0,02 (0,65) 0,1 (0,65) -0,12
Preschool attendance Index 8th -0,54 (0,78) 0,08 (0,67) -0,88 -0,34 (0,67) -0,18 (0,69) -0,23
SES selection index 8th -0,31 (0,28) 0,68 (1,45) -0,89 -0,3 (0,26) 0,35 (1,18) -0,59
SES selection index 10th -0,53 (0,2) 0,28 (1,1) -0,95 -0,52 (0,2) 0,03 (0,9) -0,64
Academic selection index 8th -0,38 (0,65) 0,87 (0,82) -1,66 -0,22 (0,66) 0,56 (0,81) -1,03
Academic selection index 10th -0,17 (0,9) 0,37 (0,84) -0,63 -0,07 (0,91) 0,17 (0,85) -0,28

12.2.2 Modeling strategies to estimate the effect of public
education

In order to estimate the effect of public education, it is necessary to define which
confounding variables will be used to adjust for selection bias. We tried to consider
all the types of variables that are described by Bellei (2008). A first group are socio-
economical variables, that include structural or economical variables and cultural
and social variables. These variables are considered at the occasion and student
level (see Table 12.5) and at the school level trough the school indexes regarding SES
school composition and preschool education school composition (see Table 12.6). The
school selection is measured with school indexes about academic and socioeconomic
selection (see Table 11.8).
In summary, we considered all the type of variables described by Bellei (2008),
excepting a measure of academic school composition. Tables 12.5 and 12.6 supports
that it is relevant to include these variables.

For the modeling, we distinguish between the student level variables and the
school level variables. We consider the school-level variables as treatment variations
because varied at the school-level and depend also on school level decisions.
Nevertheless, considering the segregation and stratification of the Chilean system
and the work of Hanchane and Mostafa (2012), without school level aggregated vari-
ables probably the treatment variable is endogenous, or analogously the ignorability
assumption is not plausible.

Another decision is considering the control variables only measured in the 1st
time point (4th grade) or in the three time points (4th, 8th and 10th grade). Con-
sidering the variables only from 4th grade is reasonable because they are previous
to the treatment. Nevertheless, considering the variables at the three time points
also is reasonable because it permits to compare students that are similar in the
background characteristics during all the treatment. We choose the last option,
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because we think that these background characteristics should be similar between
groups during all the trajectory and probably they are not affected by treatment
assignment. Nevertheless, we tested the models with only the variables from 4th
grade and the results were similar.

Regarding the modeling strategy to adjust for selection bias, we consider three
strategies: linear adjustment for confounding variables, propensity score matching
and both methods simultaneously (where we used the matched data and in addition
we added the confounding variables as covariates). All these options where imple-
mented in conjunction with multilevel models, to be able to measure the treatment
effect on the random slopes and random intercepts and also being able to include
school aggregated variables. Models with the following structure where estimated:

yti(jk) = β0 +Xti(jk)
~β1 + βinterceptsZi(jk) + β1i(jk)time +Xti(jk)

~β11 ∗ time

+ u8th
j + u10th

k + ηi(jk) + εti(jk)

β1i(jk) = β2 + βslopesZi(jk) +X ′
j
~β8th

2 +X ′′
k
~β10th

2 + ν8th
j + ν10th

k + υi(jk)

u8th
j = X ′

j
~β3 + µ8th

j

u10th
k = X ′′

k
~β4 + µ10th

k

(12.3)

The outcome variable yti(jk) is the normalized test score at time t of student i
which in 8th grade attended school j and in 10th grade attended school k. How the
time is coded in a way that the measure in 10th grade was assigned the value 0, the
intercepts ηi(jk) correspond to students scores at 10th grade. The students’ slopes
are denoted by β1i(jk). In the vector X there are the control variables at the occasion
and student level. In the vectors X ′ and X ′′ there are the variables at the school
level for the school at 8th and 10th grade respectively. The coefficients βintercepts and
βslopes are the estimated average treatment effect for public schools on the intercepts
and the slopes respectively. We adjusted by selection bias with propensity score
matching and with linear adjusting, including the linear effect of the confounding
variables through the vector X. We included the effect of X in the intercepts and
slopes.

The tested models are described in Table 12.7. We tested models with and
without school aggregated variables (X ′, X ′′). Raudenbush and Willms (1995) define
two types of school effects. Type A effects consider the effect of the school without
distinguish if it came from the school context (for example being in a privileged
neighborhood or having students with good previous achievement) or from good
school practices (for example an effective staff). Type A effects are important for
parents, which want that their kids have good results regardless if that came from
the school practice or context. Type B effects are important for policy makers
(Raudenbush & Willms, 1995). In our study, when we control only by student level
variables, our estimation of the public school effect correspond to a Type A effect
(Models 4.b, 5.a and 5.c). When we control by student level variables and school
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compositional effects and selection practices, our estimation of the public school
effects correspond to a Type B effect (Models 5.b and 5.d).

Table 12.7: Models for treatment effect estimation.

Model Adjusting of control variables Inclusion of school characteristics

4.a None No
4.b Linear adjusting No
4.c Linear adjusting Yes
5.a Propensity score matching No
5.b Propensity score matching Yes
5.c Linear adjusting and Propensity score matching No
5.d Linear adjusting and Propensity score matching Yes

In subsection 12.2.3, we describe the details of the implementation of the propen-
sity score matching. Then, in subsection 12.2.4 we present graphic summaries of the
results of the models from Table 12.7. For each model, all the estimated parameters
are presented in appendix B.6.

12.2.3 Application of propensity score matching

To estimate the propensity scores, first we fitted a logistic regression that predicted
for each student the probability of being in public or voucher education as in the
following equation:

P(zi = 1|Xi) =
exp(β0 +X~β1)

1 + exp(β0 +X~β1)
(12.4)

To fit the model we used the data base in wide format, where each row corre-
sponds to one student. We used as covariates in X all the control variables at the
occasion and the student level described in Table 12.5. In addition, we add all the
possible interactions between two variables and all the quadratic terms for the nu-
meric variables. We used non parsimonious models because the focus for propensity
score modeling is achieve balance more than parsimony.
For each of the 20 imputed data sets, we estimated the propensity score model and
extracted the estimated propensity scores. Then, for each observation, we averaged
the 20 propensity scores getting only one propensity score for each individual. With
these estimated propensity scores, we matched students from public education with
students from voucher education. The matching method was nearest neighborhood
matching with a caliper equal to 0.2 times the standard deviation of the logit of the
propensity scores (caliper=0.26). This caliper was chosen according to recommenda-
tions from Austin (2011). We choose nearest neighborhood matching because it was
fast, which was an important property considering the sample size. Also because of
the sample size, the results should be robust to the matching algorithm.

To evaluate covariate balance, we compared the standardized mean difference
(SMD) between students in public education with students in voucher education
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in the complete and the matched sample (Pattanayak, 2015). The standardized
mean differences before and after matching are detailed in Table 12.5. In all the
variables, after matching the standardized mean differences were lower than 0.2 and
we considered that the achieved balance was acceptable. We did not consider the
significance of the mean differences because is not recommended, as it depend on
sample sizes that varies for different matching strategies (Pattanayak, 2015).

After checking balance it is important to verify if there is common support be-
tween the groups (Thoemmes & Kim, 2011). Also, this illustrate how comparable
are the groups. We plotted in Figure 12.3 the estimated propensity score for each
group. We can see that there is a large amount of students in both extremes of the
propensity score distribution which do not have matches. This explain the decrease
of sample size in the matched data. The original sample has 39699 students from
public schools and 57257 students from private schools. The matched sample has
22342 in each group, which implies a major reduction. Considering the high amount
of selection bias, loosing so many units is not surprising. This also implies that
without matching we are comparing several units without similar counterparts and
that after matching the studied population changed. In Table 12.5 it is possible to
see that the characteristics of the original sample and the sample after matching
differ.
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Figure 12.3: Common support of the estimated propensity scores

Finally, to estimate the average treatment effect we used multilevel models to
account for the multilevel structure of the data. This allows us to model the effect
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on the intercepts and the slopes and to include variables regarding schools’ charac-
teristics. The results are described in the following section.

12.2.4 Effect of public education: combination of multilevel
models, linear adjusting and propensity score match-
ing

The results of the models for estimating the effect of public education on students
trajectories are detailed in appendix B.6 (Tables B.6, B.7, B.8, B.9). Graphical
summaries of the estimated effects of public education in intercepts and slopes are
presented in Figure 12.4. For each model, the predicted trajectories for public and
voucher education in math and reading are depicted in Figures 12.5 and 12.6.

We recall that model 4.a is a baseline model where no control for confounding
variables was added. In Model 4.b there is linear adjusting for time varying and
student level variables and Model 4.c includes, beside the control variables, school
level variables.
Models 5.a, 5.b, 5.c and 5.d are done over the matched data. In the models 5.a and
5.b, the treatment effect is estimated without linear adjusting for control variables
variables. Nevertheless, in Model 5.b school level variables are included.
Model 5.c and 5.d are doubly robust because, in addition of using the matched data,
there is linear adjustment for the confounding variables. In Model 5.d also school
level variables are included.

The estimated average treatment effects are presented in Figure 12.4. We can see
that in the baseline Model 4.a, the differences between public and voucher schools
are very important, showing lower intercepts and negative growth for student from
public schools. The differences are bigger for mathematics than for reading.
When control variables at the occasion and student level are included trough linear
adjustment (Model 4.b), matching (Model 5.a) or both (Model 5.c), the effect of
public schools is less negative for the intercepts and equal or slightly more negative
for the slopes. If the control is done trough propensity score matching, the differences
between public and voucher schools are smaller.

With models 4.b, 4.a and 5.c we are measuring a Type A effect of public educa-
tion (Raudenbush & Willms, 1995).
Nevertheless, if we want to measure Type B effects, that is the effect of the practices
of the schools, these models are not correct. When we do not include school level
characteristics the treatment variable is endogenous, because of the system stratifi-
cation and segregation (see Hanchane and Mostafa (2012)). This is reflected by the
data, where the most dramatic change in the estimated effects is when we add the
school level aggregate variables (Models 4.c, 5.b and 5.d). These variables refers to
preschool attendance, socioeconomic school composition and academic and socioeco-
nomic selection practices. When these variables are added, the estimated treatment
effects on the intercepts became very small. In addition, for the strategies with
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matching, the estimated effects become non significant. The same pattern is present
for mathematics and reading. On the other hand, for the effects on the slopes, when
the school characteristics are added they decrease notoriously for mathematics but
not for reading.

In the schools aggregated variables, the SES index has by far the biggest effect
on the trajectories, showing that socioeconomic composition has a strong effect on
student trajectories (see Tables B.6, B.7, B.8, B.9 in appendix B.6).

To see how the estimated treatment effects are transformed in predicted trajec-
tories, we plotted the predicted trajectories for the different models in Figures 12.5
and 12.6. We can see that, without controlling, voucher schools have better trajec-
tories, but the differences start from the beginning. In mathematics the difference
on slopes between public and voucher schools is visible.
The differences between public and voucher schools get smaller after controlling for
confounding variables at the occasion and student level trough linear adjustment
(Model 4.b), propensity score matching (Model 5.a) and both methods (Model 5.c).
In addition, after controlling for confounding variables the difference in slopes is
visible for mathematics but nor for reading.
After adding the school level variables, there are no relevant differences between the
trajectories (Models 4.c, 5.b and 5.d). In fact, the differences in slopes are signif-
icant, but visually it is clear that they are not relevant. In conclusion, there are
visible differences in the trajectories from students in public schools and voucher
schools when controlling only by background student variables. Nevertheless, these
differences appear to be explained completely by school compositional effects and
school selection practices.
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Figure 12.4: Estimated ATE on reading and mathematics scores using different models.
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Figure 12.5: Predicted trajectories for students with different characteristics

113



12.2. Comparison of public and vouchers education in students trajectories

● ● ●●
●

●

−1.0

−0.5

0.0

4 6 8 10

grade

N
or

m
al

iz
ed

 S
co

re

group

● p

v

test

●

●

maths

reading

(a) Model 5.a

● ● ●● ● ●

−1.0

−0.5

0.0

4 6 8 10

grade

N
or

m
al

iz
ed

 S
co

re

group

● p

v

test

●

●

maths

reading

(b) Model 5.b

●

●

●

●

●

●−1.0

−0.5

0.0

4 6 8 10

grade

N
or

m
al

iz
ed

 S
co

re

group

● p

v

test

●

●

maths

reading

(c) Model 5.c

●

●

●

●

●
●

−1.0

−0.5

0.0

4 6 8 10

grade

N
or

m
al

iz
ed

 S
co

re

group

● p

v

test

●

●

maths

reading

(d) Model 5.d

Figure 12.6: Predicted trajectories for students with different characteristics
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Chapter 13

Discussion and Conclusions

In this chapter we present a discussion about the results regarding school effects in
trajectories of Chilean students. We modeled three repeated measures of mathe-
matics and reading tests scores taken in 4th, 8th and 10th grade. In Chile, primary
education starts in 1st grade and ends in 8th grade and secondary education starts
in 9th grade and ends in 12th grade. The 5 years time span considered in this study
covers students from the middle of primary to the middle of secondary.
The first objective was to describe how the variance of the test scores were dis-
tributed among the intra-student level, the inter-student level and the school level.
We modeled linear trajectories for each student, thus, each student trajectory can
be characterized with an intercept and a slope. The time coding was defined in a
way that the intercept correspond to the student score in 10th grade. In particular,
we wanted to understand the size of the school-level variances on the intercepts and
slopes of students’ growth in mathematics and reading scores. Also, we wanted to
describe the average trajectories for different groups of students.
The second objective was to measure the effect of being in the public school system
and in the voucher school system in students’ trajectories. For this, we controlled for
confounding variables using linear adjusting, propensity score matching and doubly
robust estimation.

Regarding the first research objective, the results from the unconditional mean
models and the unconditional growth models show important differences in student
trajectories among schools. We tested several unconditional mean models. First,
we modeled only random intercepts for the student level (Model 1.a), this model
had considerable worst fitting than the models that included school effects. Then,
we model independently random intercepts from the school at 4th, 8th and 10th
grade (Models 1.b, 1.c and 1.d). These models show large and increasing variances
for each school level. The variances at the school level at 4th, 8th and 10th were
respectively for mathematics 19%, 21% and 32%; for reading they were respectively
13%, 15% and 24%. However, when we modeled cross-classified school effects, the
variances explained by the primary schools dramatically dropped (Models 1.e and
1.f). The final unconditional mean model only included the school effects at 8th
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and 10th grade. For mathematics the percentage of explained variance was 5% for
the schools at 8th grade and 24% for the schools at 10th grade. For reading, it was
3% for the schools at 8th grade and 20% for the schools at 10th grade (Model 1.e,
Tables 12.1 and 12.2).
After, we tested unconditional growth models which include random slopes. The
variances of the random slopes between schools in primary and secondary were signif-
icant. This shows that there are differences between primary and secondary schools
on the rate of the students’ growth. These results coincide with the study from
Ortega Ferrand (2015, pp. 118) done over trajectories during primary. For mathe-
matics and reading, the slope variance of the schools at 8th grade was about half of
the slope variance of the schools at 10th grade.
For the random intercepts, the drop of the school-level variances for the school at 4th
and 8th grade can be attributed to an identification issue. In Chile, primary ends
at 8th grade and most of the students do not change school during primary years.
Therefore, we cannot distinguish the effects from the schools at 4th and 8th grade.
However, this does not explain that in the model with school effects at 8th and 10th
grade the variance of the school at 8th grade dropped to 5% in mathematics and to
3% in reading (Model 1.e). These results show that we cannot measure the effect of
primary school in an outcome at secondary without including the effect of the sec-
ondary school because they change dramatically. However, despite the decrease in
values after including secondary school effects, the primary school variances remain
relevant and show a long term effect of primary schools.
Goldstein and Sammons (1997) and Vanwynsberghe et al. (2017) modeled cross-
classified school effects from primary schools and secondary schools in outcomes
measured in secondary education. Goldstein and Sammons (1997) found larger vari-
ation from primary schools than for secondary schools. We found the opposite
pattern for the variation in intercepts and slopes. Regarding the intercepts, our
results are in line with Vanwynsberghe et al. (2017), and even if the variances for
the primary school level are small, they are relevant.
In line with trends of the literature, the school variances of slopes and intercepts
are larger for mathematics than for reading. Also the school variances of intercepts
are large. In Chile there are several reasons that produce high school level vari-
ances. First, there is an enormous school socioeconomic segregation (Valenzuela et
al., 2014). Second, principals from voucher schools have autonomy in administrative
and pedagogical matters (Weinstein & Muñoz, 2014).

Regarding the characteristics of the trajectories, we plotted the predicted trajec-
tories for different groups of students according to attendance to preschool, gender
and socioeconomic variables.There are no differences in the trajectories regarding the
attendance to ECE (0-2)1. Nevertheless, there are differences regarding the atten-
dance to ECE (2-4)2, Pre-kindergarten and Kindergarten. Students that attended
to pre-school education have better trajectories. Attendance to Kindergarten shows
larger differences than the other levels. Students that attended Kindergarten have
higher average and growth rate in mathematics and reading.

1Early childhood education for children with ages between 3 months and 2 years
2Early childhood education for children with ages between 2 and 4 years
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The variables which show the largest differences between the groups are gender, par-
ents expectations, parents education, and number of books at home. The gender gap
is large for mathematics and reading trajectories. Already in 4th grade boys have
advantage in mathematics and girls in reading. The gap increase for both measures
and in 10th grade they are very important. These results coincide with the TERCE
study showing that the gender gap increase across time in Chile (Gelber, Treviño,
Inostroza, & others, 2016). The differences in trajectories for parents’ expectations,
mother education and father education are large when we compare the first quartile
with the second quartile. These differences reflect the structures of inequalities in
Chile, where there are larger differences between the first and second quartiles than
between the second and third quartiles. Regarding parents’ expectations, higher
education in Chile is very expensive, which implies that parents expectations should
be very correlated with socioeconomic conditions. This fact should explain in part
the observed differences.
Students with access to computer and internet have different trajectories than the
ones without access, but the differences are not relevant in 10th grade. These are
good news, probably explained by the greater access to technological resources (see
for example Table 10.1).
These results do not show a causal effect of the variables. For example we cannot
say that attendance to Kindergarten produce better trajectories between 4th and
10th grade, because probably that effect is confounded with unmeasured variables.
Nevertheless, they illustrate the inequalities of the system, in particular the gender
and socioeconomic differences.

The second research objective was to measure the effect of public schools and
voucher schools in students’ trajectories in mathematics and reading. We consid-
ered a time span from 4th to 10th grade (5 years) and we compared trajectories
of students that were in the public system or in the voucher system for the three
measures. Therefore, we are measuring an effect of the public school system over
the voucher school system for students maintained in one of the two system for 5
years.
First, students from public and voucher schools vary a lot on background variables.
We found absolute standardized differences from 0,36 to 0,88 for socioeconomic re-
lated variables and from 0,17 to 0,37 in attendance to pre-school education. Second,
the most dramatic differences are between school aggregated variables, where the
absolute standardized differences range between 0,63 and 1,66. Considering usual
criteria to interpret standardized differences, several of these values can be consid-
ered large and illustrate the high level of stratification of the Chilean educational
system.
Before continuing, it is convenient to recall the definition of Type A and Type B
school effects Raudenbush and Willms (1995). Type A effects consider the effect of
the school without distinguish if it came from the school context (for example being
in a privileged neighborhood or having students with good previous achievement)
or from good school practices (for example an effective staff). Type A effects are
important for parents, which want that their children to have good results regardless
if that came from the school practice or context. Type B effects are important for
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policy makers (Raudenbush & Willms, 1995). In our study, when we control only
by student level variables, our estimation of the public school effect correspond to a
Type A effect (Models 4.b, 5.a and 5.c). When we control by student level variables,
socioeconomic school composition and school selection practices, our estimation of
the public school effects correspond to a Type B effect (Models 5.b and 5.d).
We first analyze the effect of public education on the intercepts of the trajectories,
that correspond to the test scores in 10th grade and then we analyze the effect on
students slopes. Without controlling for background variables, the estimated effect
of public schools is students intercepts is negative and large. The effect is larger for
mathematics than for reading. When we control by students background variables,
the effect of public schools in the students intercepts became less negative, but of an
important size (Models 4.b, 5.a and 5.c , Figure 12.4). These estimates correspond
to Type A effects and include the effect of the school context and the school prac-
tices (Raudenbush & Willms, 1995). They are important for the families which want
effective schools regardless of what explains the differences. Then, when we added
the school aggregated variables the effect of public schools dramatically change and
became null for mathematics and reading scores (Models 4.c, 5.b and 5.d, Figure
12.4). This pattern occurs for the three estimation methods. These estimates cor-
respond to Type B effects, under the assumption that we do not have endogeneity.
They are important for policy makers which want to evaluate school practice.
With respect to the students slopes, the effect of public schools are negative and
significant. They do not change systematically when we add students background
variables and school aggregated variables. However, the results imply that for each
year of education the student normalized scores in mathematics decrease between
0, 02 and 0, 03 and for reading the decrease is about 0, 01. These differences are not
relevant, which is clear in the plotted trajectories in Figures 12.5 and 12.6.
If we aim to estimate Type B effects, in the models without school aggregated vari-
ables the treatment variable is endogenous, so the estimated treatment effect is not
valid (Bellei, 2008; Hanchane & Mostafa, 2012; Valenzuela et al., 2014). This also
shows that the use of multilevel models is indispensable because permits to add the
school level variables.
Regarding the use of propensity score matching, linear adjustment or both methods
combined. The conclusions are the same for the three methods. We could argue that
the propensity score analysis did not give much new information. Nevertheless, this
analysis evidenced a very large group of students which are not comparable. Figure
12.3 shows summarily that public schools are in charge of educating the students
with the most disadvantaged socioeconomic conditions. This is depicted in detail
for each control variable in Figures B.1, B.2 and B.3 in appendix B.4.
Therefore, it is not posible to measure the effect of voucher schools in the group
of students with the most disadvantaged socioeconomic conditions, because these
schools are not educating this population. Also we cannot measure the effect of
public schools in the group of students with more advantaged socioeconomic condi-
tions.
When we only control for student background variables the estimated effect of the
public schools was more negative for linear adjusting. This can be explained with
two reasons. First, it could be an effect of extrapolating results for a large number
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of students which are not comparable. Second, it can just be an effect of including
only linear effects of the control variables.
In summary, the present study suggest that there are no different effects of the pub-
lic system versus the voucher system on students trajectories between 4th and 10th
grade. These is in line with the conclusions from Ortega Ferrand (2015). In addi-
tion, this coincide with several studies that have found no relevant or not significant
differences between public and voucher schools using one final outcome measure
(Anand et al., 2009; Bellei, 2008; Lara et al., 2011; Zubizarreta & Keele, 2016).
We found a huge effect of school socioeconomic composition and selection practices
which explain the differences between public and voucher schools.

Future research

Regarding primary and secondary school effects in students trajectories, more com-
plex models that take account simultaneously the multiple membership structure and
the cross-classified structure could be explored. This could enable us to understand
better the relation between primary and secondary school effects. For example, the
cross-classified multiple membership model described by Sun and Pan (2014) could
allow modeling the effect of the schools at 4th grade, 8th grade and 10th grade si-
multaneously. Also the scale of the score is relevant, we modeled normalized scores
for each year. This implies modeling the positions of the students in relation with
the rest of the population.

Future research should consider schools effects in variables that are not achieve-
ment variables, for example the school climate and motivational variables (Reynolds
et al., 2014). It is possible to study these issues in Chile with census-based samples
because the institution in charge of SIMCE has been including assessments on other
indicators of educational quality. For example, the Indicators of Personal and So-
cial Development3 which include measures of academic self-esteem and motivation,
school climate, healthy living habits, civic participation, equity, school attendance,
retention and school completeness (Agencia de Calidad de la Educación, 2017).

With regard to future research in the study of voucher and public schools , a
limitation of this study is that we did not include school aggregated variables about
academic composition. This factor is highlighted by Bellei (2008) as a source of
selection bias. Also, this study was based in that the assignment process depend
only on observed variables. Other methods which do not have these hypotheses could
be used, for example instrumental variables. Future research could also model more
levels, for example modeling fixed effects from the municipality level to account for
that source of bias. Muñoz-Chereau and Thomas (2016) shows that the municipality
level is important in Chile. In our study we did not included the municipality level
because it had low variance and it was technically complex.

In addition, we should understand which schools produce better learning gains

3Indicadores de Desarrollo Personal y Social
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inside the public system. The same for the voucher system. Also, non cognitive
measures should be considered. Special attention should be given to public schools,
because they are educating the students with more disadvantageous conditions. The
segregation of the system is harshly harming these students. The large negative effect
of public education was finally explained by the school aggregated variables. If we
want to stop impairing these students the mechanism producing this segregation
should be eliminated. An attempt to do this is the SEP law, but probably this
law is not enough to fix the system. There is a need for reforms that improve the
capacities of teachers and directors, reinforce public education, and the inclusion
of other social systems that share the caring of the students should be considered
(Valenzuela et al., 2013).
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Chapter 14

General Discussion

In this chapter we summarize the results and discuss future perspectives. The re-
search for this thesis is framed in the field of educational effectiveness. It contributes
to the field with an statistical discussion and two empirical studies.
Part I of this thesis correspond to the statistics part. Its objective was to offer a
discussion about how to combine statistical methods to address selection bias and
missing data problems in the context of multilevel models. For selection bias, we
studied linear adjustment and propensity score matching. For missing data, we stud-
ied multiple imputation. All of these methods are remarkably useful in educational
research.
Regarding the empirical studies, we present two studies related with the modeling
of academic environments in Chilean students beliefs and achievement. The first
study investigates the influence of Life and Non-life sciences courses in secondary
students’ epistemic and self-efficacy beliefs related to sciences. It is an intervention
and it has a moderate amount of selection bias. Also the outcome variables are stu-
dents beliefs. The second study concerns school effects on academic trajectories of
Chilean students. This study allows us to better understand the Chilean educational
system. We modeled students trajectories in standardized test scores and there is
a large amount of selection bias. Both studies are different examples of the area of
educational effectiveness research and their differences illustrate different statistical
issues that have to be considered.

We presented in Part I the discussion about statistical methods. First, we an-
alyzed how to model simultaneously selection bias and multilevel models. Then,
we discussed how to apply multiple imputation for multilevel data. Finally, we
proposed strategies to combine the multilevel models, selection bias methods and
multiple imputation. Regarding multilevel models and selection bias, we articulated
the discussion according to two cases: intra-cluster treatment assignment and inter-
cluster treatment assignment. For each case, we analyzed how to linearly adjust for
counfounding variables in multilevel models. In particular, we described how the
exogeneity hypothesis is extended when there are several random effects. Also we
described strategies to solve endogeneity problems using means of first-level vari-
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ables and fixed effects. Then, we described the strategies for doing propensity score
matching in the case of intra-cluster and inter-cluster treatment assignment, con-
sidering that the final outcome model was a multilevel model. For the intra-cluster
case, we described the strategies defined by Thoemmes and West (2011). Regarding
the inter-cluster case we classified and discussed four strategies for matching. This
classification is useful to design strategies to control for selection bias in observa-
tional studies with clustered data. Regarding multiple imputation and multilevel
modeling, we described latest developments and open questions. Finally, regarding
combining multilevel models with methods for selection bias an multiple imputation
we proposed three strategies.

1. Strategy 1: The first step in this strategy is doing multiple imputation. The
second step is using multilevel models and linearly adjusting for selection bias
in each imputed data set. Finally, pool the treatment effect estimates.

2. Strategy 2: The first step in this strategy is doing multiple imputation. The
second step is, for each imputed data set, estimate the propensity score and
the treatment effect with multilevel models for the outcome. Finally, pool the
treatment effect estimates.

3. Strategy 3: The first step in this strategy is doing multiple imputation. The
second step is, for each imputed data set, estimate the propensity score and
pool the propensity scores. This will lead to only one estimated propensity
score for unit. The third step is matching the pooled propensity scores, which
will produce only one matched set of units. Select the matched units in each
imputed data set and estimate the treatment effects with multilevel models.
Finally, pool the treatment effect estimates.

We discussed the strengths and weakness of the strategies considering latest simula-
tion studies and practical considerations. In sum, Strategy 1 is relevant because in
some cases it is too complex to do propensity score matching, for example for sample
size reasons or because there are several treatments. Strategy 2 has prove to lead
to more bias reduction than Strategy 3 in simulation studies. But, Strategy 3 has
several practical advantages because each imputed data set has the same units and
sample sizes after matching. In particular, the balance produced by the propensity
score model can be evaluated in the pooled standardized means.

In Part II we studied the effect of summer sciences courses on students beliefs.
We compared the effect of Life and Non-life sciences courses with a control group in
a post and follow-up measure. This was a quasi experiment with a small sample size
of the control group. Also there were several treatments because we compared Life
and Non-life courses and courses with and without laboratory work. These aspects
made very complex to use propensity score matching. Thus, we adopted Strategy 1
for the statistical modeling.
We distinguish Life and Non-life courses because this classification can allows us to
understand some processes in science education. Indeed, we found different results
for Life and Non-life courses. Regarding the effects on self-efficacy beliefs, we found a
splashdown effect on science self-efficacy for Life courses but not for Non-life courses.
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This can be an effect of the teaching cultures of Life disciplines. Nevertheless, it
is also possible that if we use a measure of self-efficacy specifically related with
Non-life courses we could found effects. For Laboratory work, we found effects on
self-efficacy at post but not for follow-up, this is in line with (Itzek-Greulich et
al., 2017). With respect to epistemic beliefs, in Justification we found a significant
effect of life courses at the follow up measure. This dimension was related with
the role of experiments. These results are coherent considering the role that have
experiments in life sciences. For development no significant effects were found. The
courses are not designed to change epistemic beliefs, and probably these dimensions
needs explicit discussion and analysis. For Certainty and Source, Life and Non-
life disciplines produced less sophisticated beliefs. Regarding peer effects, we found
that the intra-class correlations increased at the post measure. No effect was found
from aggregated variables. In conclusion, this study showed positive effects in science
self-efficacy beliefs and justification from the life courses and courses with laboratory
work. These results are relevant for science education for the influence of these beliefs
on students choices, achievement and learning strategies.

In Part III, we studied school effects on students trajectories in reading and
mathematics scores from 4th grade to 10th grade. We also measured the effect of
the public system on students trajectories. This study is novel considering the large
time span between the measures (5 years) and that we used a census-data base. We
used Strategies 1 and 3 for the statistical modeling. This allowed us to compare
the results using propensity score matching, linear adjustment and both methods
simultaneously. We used multilevel growth models with a cross-classified structure
to account for school effects at 8th and 10th grade. Regarding the schools variances
in students intercepts, we found small but sizable variances at the primary school
level and large variances at the secondary school level. The school variances for the
random slopes were significant and more evenly distributed between primary and
secondary schools. This revealed long term effects of primary schools. Also, we
described students trajectories for different groups, illustrating inequalities of the
system. On the question of the effect of public and voucher schools, we found large
negative and significant effects of public education on the intercepts when we con-
trolled only for student background variables. Nevertheless, when we included school
aggregated variables regarding socioeconomic conditions and selection practices, the
effects became non significant.
Regarding students slopes, the effects of public education were significant and nega-
tive, but not relevant considering the effect sizes. Linear adjustment and propensity
score matching individually and combined produced similar conclusions. However
the propensity score analysis revealed a large number of students in the public and
in the voucher system which are not comparable. The students with most disadvan-
taged conditions are in public schools.
We found no relevant difference between trajectories of students in the public and the
voucher system when we controlled for socioeconomic school composition and selec-
tion practices. The conclusions coincide with several cross-sectional studies (Anand
et al., 2009; Bellei, 2008; Lara et al., 2011; Zubizarreta & Keele, 2016) and with the
longitudinal study done by Ortega Ferrand (2015).
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Research perspectives

Regarding statistical research perspectives, it is necessary to clarify when each dif-
ferent inter-cluster option should be used. In observational clustered studies, it can
be unclear how to deal with the cluster variables. Considering that linear adjust-
ment combined with matching is a robust strategy at the individual level, we could
argue that the same strategy is optimal at the cluster level. Nevertheless, other
aspects have to be considered. First, sample sizes at the cluster level are signifi-
cantly smaller than at the individual level. Also, the treatment is delivered at the
cluster level. This implies that discarding clusters could produce loss of treatment
heterogeneity that may be the focus of the research. The selection of strategies for
controlling for selection bias in inter-cluster studies should be studied in deep.
Regarding the combination of multilevel models, propensity score matching and
multiple imputation there are several issues to explore. A first point is to deter-
mine if Strategy 3 produces equal bias reduction than Strategy 2 when matching is
combined with linear adjustment. This could allows us to benefit of the practical
advantages of Strategy 3 and get the same level of bias reduction. Another aspect to
be researched it is determining the characteristics of the proposed strategies when,
instead of propensity score matching, stratification of the propensity score is used.

With respect to the study of the effect of Life and Non-life courses on epistemic
and self-efficacy beliefs, the main suggestions are that the experiences produced by
Life and Non-life courses should be described and other epistemic and self-efficacy
dimensions should be explored. It is important to understand which teaching ap-
proaches and specific epistemic differences can be identified between Life and Non-life
courses. Also, Laboratory work showed to be effective for producing more availing
self-efficacy and justification beliefs. It is important to note that this is a very au-
thentic laboratory work done in a University. Research regarding laboratory work
in the school place should be developed in the Chilean context. Finally, peer effects
on epistemic beliefs should be explored in a school or university context where the
students are exposed to their peers more time. Intra-class correlations and compo-
sitional effects are relevant aspects to consider.

Regarding the study about school effects on students trajectories and the compar-
ison of public and voucher schools, we found that the differences between public and
voucher schools were explained by school composition and school’ selection practices.
Also, we found that the students with most disadvantaged socioeconomic conditions
are only educated by public schools. This implies that public schools and the segre-
gation problem should receive special attention, in order to stop the severe level of
segregation that is producing inequalities. Comparisons between the public system
and the voucher system have been done by several studies, it would be valuable to
study inside each system which schools are more efficient.
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Garćıa, M. B., & Mateos, M. (2013). Las cuestiones de dominio intersujeto
e intrasujeto en el contenido de las concepciones epistemológicas en do-
centes universitarios. Avances en Psicoloǵıa Latinoamericana, 31 (3), 586–
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Weinstein, J., & Muñoz, G. (2014). When duties are not enough: principal leadership
and public or private school management in Chile. School Effectiveness and
School Improvement , 25 (4), 651–670. doi: 10.1080/09243453.2013.792850

Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data
(2th ed.). Cambridge, MA, USA: The MIT Press.

Zhao, J. H., & Schafer, J. L. (2016). pan: Multiple imputation for multivariate
panel or clustered data [Computer software manual]. (R package version 1.4)

Zubizarreta, J. R., & Keele, L. (2016). Optimal Multilevel Matching in Clustered
Observational Studies: A Case Study of the Effectiveness of Private Schools
Under a Large-Scale Voucher System. Journal of the American Statistical
Association. doi: 10.1080/01621459.2016.1240683

136



Appendices

137





Appendix A

Part II

A.1 Epistemic and Self-efficacy Beliefs question-

naire

The items from the science self-efficacy dimension are presented in Table A.1. The
items from the epistemic dimensions are a translation from the questionnaire of
Conley et al. (2004). The items’ translations are presented in Tables A.2, A.3, A.4,
A.5.

Table A.1: Items of Self-efficacy in science

Item English Item Spanish

I am sure that I can understand the
most difficult concepts in sciences

Estoy seguro de que puedo comprender los
conceptos más dif́ıciles de ciencias

I can succeed in sciences Sé que puedo tener éxito en las ciencias
I know I can dominate the abilities
that are teached in sciences

Estoy seguro de que puedo dominar las ha-
bilidades que se enseñan en ciencias

I am sure that I can learn sciences Estoy seguro de que puedo aprender cien-
cias

I think I can do better than now in
sciences

Creo que podŕıa hacerlo mejor que hasta
ahora en ciencias

I can get good grades in sciences Puedo sacar buenas notas en ciencias
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A.1. Epistemic and Self-efficacy Beliefs questionnaire

Table A.2: Items of Certainty: A belief in a right answer

Item English Item Spanish

All questions in science have one right
answer

Todas las preguntas en ciencias tienen una
respuesta correcta

The most important part of doing sci-
ence is coming up with the right an-
swer

Lo más importante de hacer ciencia es en-
contrar la respuesta correcta

Scientists pretty much know every-
thing about science; there is not much
more to know

Los cient́ıficos saben prácticamente todo
sobre la ciencia, no hay mucho más que
conocer

Scientific knowledge is always true El conocimiento cient́ıfico siempre es ver-
dadero

Once scientist have a result from an
experiment, that is the only answer

Cuando un cient́ıfico tiene un resultado de
un experimento, esa es la única respuesta

Scientist always agree about what is
true in science

Los cient́ıficos siempre están de acuerdo
respecto a que es lo verdadero en ciencias

Table A.3: Items of Justification: Role of experiments and how individuals justify
knowledge

Item English Item Spanish

Ideas about science experiments come
from being curious and thinking
about how things work

Las ideas sobre los experimentos cient́ıfi-
cos vienen de ser curioso y de pensar sobre
cómo funcionan las cosas

In science there can be more than one
way for scientists to test their ideas

En ciencias puede haber más de una
manera para que los cient́ıficos pongan a
prueba sus ideas

One important part of science is do-
ing experiments to come up with new
ideas about how things work

Una parte importante de la ciencia es
hacer experimentos para obtener nuevas
ideas sobre cómo funcionan las cosas

It is good to try experiments more
than once to make sure of your find-
ings

Es bueno realizar los experimentos más de
una vez para estar seguro de los resultados

Good ideas in science can come from
anybody, not just from scientists

Las buenas ideas en ciencias pueden venir
de cualquier persona, no solo de los cien-
t́ıficos

A good way to know if something is
true is to do an experiment

Una buena manera de saber si algo es
cierto es hacer un experimento

Good answers are based on evidence
from many experiments

Las buenas respuestas estÃ¡n basadas en
evidencia de muchos experimentos

Ideas in science can come from your
own questions and experiments

Las ideas en ciencias pueden venir de tus
propias preguntas y experimentos

It is good to have an idea before you
starts an experiment

Es bueno tener una idea antes de empezar
un experimento
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Table A.4: Items of Source: Knowledge residing in external authorities

Item English Item Spanish

Everybody has to believe what scien-
tists say

Todos tienen que creer lo que dicen los
cient́ıficos

In science, you have to believe what
science books say about stuff

En ciencias, tienes que creer lo que dicen
los libros de ciencias sobre las cosas

Whatever the teacher says in science
class is true

Todo lo que dice el profesor en la clase de
ciencias es verdad

If you read something in a science
book, you can be sure it’s true

Si lees algo en un libro de ciencia, puedes
estar seguro de que es verdad

Only scientists know for sure what is
true in science

Sólo los cient́ıficos saben realmente que es
verdadero en ciencias

Table A.5: Items of Development: beliefs about science as an evolving and changing
subject

Item English Item Spanish

Some ideas in science today are differ-
ent than what scientists used to think

Hoy en d́ıa algunas ideas en ciencias son
distintas a las que los cient́ıficos soĺıan
tener

The ideas in science books sometimes
change

Las ideas en los libros de ciencias a veces
cambian

There are some questions that even
scientists cannot answer

Hay algunas preguntas que ni si quiera los
cient́ıficos pueden responder

Ideas in science sometimes change Las ideas en ciencias algunas veces cam-
bian

New discoveries can change what sci-
entist think is true

Los nuevos descubrimientos pueden cam-
biar lo que los cient́ıficos piensan que es
verdad

Sometimes scientists change their
minds about what is true in science

A veces los cient́ıficos cambian de opinión
respecto a lo que es verdadero en ciencias
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A.2 Multiple imputation procedure

In this section we present the multiple imputation procedure for the study of part II
of this thesis, regarding the effect of academic climates on students’ beliefs. There
was an important percentage of missing data in the outcome variables (Table 7.4).
To develop a missing data procedure to account for it, first we tried to determine
which was the missing data mechanism. In order to do that, how there were variables
with 100% of response, we compared students with missing data with students with
complete data in these variables. Statistical tests showed that the groups differed,
for example in the average of school grades. This is evidence suggesting that the
data was not missing completely at random. Therefore, it was not appropriate to
use list-wise deletion.
In order to deal with missing data, we decided to use multiple imputation, which is
a recommended method to deal with data missing at random (Lang & Little, 2016;
Peugh & Enders, 2004). We cannot test if data was missing at random, so this
is a hypothesis that we will assume. In the missing data pattern, it is important
to note that the outcome variables had a high amount of missing values. Doing a
regular multiple imputation procedure implied impute the outcomes values for 221
individuals in the post-measure and for 680 individuals in the follow-up measure.
This strategy implied a very important loss of power for added noise. To address this
problem, we used the approach of multiple imputation and then deletion proposed
by Von Hippel (2007). This approach consists in two steps:

1. Impute all the data

2. Delete variables were the outcome missing

This technique is suitable because imputed values in the outcome variable of a
linear regression do not contribute to the maximum likelihood (Von Hippel, 2007).
As a precision, in this study there were person non-response, when a person did not
answer a complete questionnaire and item non-response, when a person answered the
questionnaire but leave some items without answer. The percentages of the sample
that had missing data for item-non response were small. The main problem was the
person-non response, Therefore, we considered the individuals with a missing item
as a missing individual, that means we modeled their data as person non-response.

The multiple imputation model was implemented with package mice in the soft-
ware R (Buuren & Groothuis-Oudshoorn, 2011). This package uses chained equa-
tions to model the missing values. In addition, it uses functions from the pan package
to deal with multilevel imputation (Grund, Lüdtke, & Robitzsch, 2016).
We used the data of the 994 students, which correspond to the students that an-
swered at least one time the beliefs questionnaire. We used all the variables in Table
7.4 to do the multiple imputation model. Also, we used record variables. These
variables were only used in the imputation model and not in the final multilevel
models because they were not significant in the later ones.

We specified the imputation method for each variable with missing data according
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with its type. For post and follow-up beliefs, the imputation method considered
the multilevel structure. We added interactions between all the variables with the
variable that assigned the type of course discipline (Life, Non-life and Control). The
reason for this is that the missing data processes were different for each treatment
group. This is very important in the post measure, where questionnaires for Life
and Non-life courses were measured in paper-and-pencil format and in the control
group the measurement was done online.

We did 100 imputations. For each imputation we did 100 iterations of the algo-
rithm. The procedure took several hours to be finished.
We checked convergence according to Buuren and Groothuis-Oudshoorn (2011) guide-
lines. All the variables showed good mixing for the Markov Chain procedure, except
for follow-up beliefs. At the end of the procedure, we deleted the imputed values.
We considered that, in spite of the bad mixing of follow-up variables, the overall
imputation procedure was acceptable.
For the analysis where the post-beliefs where the outcomes, we deleted in each of
the 100 complete data sets the observations with imputed post beliefs. We did the
same for the analysis where the follow-up beliefs where the outcomes.
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Part III

B.1 Multiple imputation procedure

In this section we present the multiple imputation procedure for the study of part
III of this thesis, regarding school effects on students’ trajectories. The percentage
of missing data for each variable was moderate (Table 11.2), but using complete case
analysis implied an excessive loss of information.
In order to deal with missing data, we decided to use multiple imputation, which is
a recommended method to deal with data missing at random (Lang & Little, 2016;
Peugh & Enders, 2004). We cannot test if the data was missing at random, so this is
a hypothesis that we will assume. The multiple imputation model was implemented
with package mice in the software R (Buuren & Groothuis-Oudshoorn, 2011). This
package uses chained equations to model the missing values. In addition it uses
functions from the pan package to deal with multilevel imputation (Grund et al.,
2016).
We used the data base in wide-format in order to have two levels: students and
schools. We specified the imputation method for each variable with missing data ac-
cording with its type. There were three grouping variables, the school at 4th grade,
the school at 8th grade and the school at 10th grade. We estimated intra-class cor-
relations for each variable using as grouping variable the school at each grade. Most
of the variables had higher intra-class correlations for several groupings. However,
it was not feasible with the available softare to define cross-classified multiple impu-
tation models. This is why we decided to model the multilevel structure according
to the level defined by the school at the year were the variable was measured.
We generated 20 imputations and for each imputation we run 100 iterations of the al-
gorithm. It is important to note that for estimating 1 imputation with 100 iterations,
the algorithm used between 12 and 14 hours. In order to count with the necessary
computer capabilities, we used the computer facilities of the National Laboratory
NLHPC (ECM-02). These amount of time called for not complicate in excess the
models in order to do not increase the estimation time. This is also a reason to
explain why we did only 20 imputations. In addition, Goldstein (2011, pp. 306)
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recommends doing at least 10 imputation for multilevel models.

For each variable with missing data, we tried to define imputation models with the
relevant predictors but that were at the same time simple. For longitudinal studies,
Van Buuren (2012, pp. 226) proposes that to reduce the number of predictors an
option is only use the ones corresponding to the same measurement time. We used
this strategy in order to have simple models. The principal predictor variables for
each variable with missing data are detailed in Table B.1. In this table, achievement
variables refers to normalized scores in reading and mathematics in 4th, 8th and 10th
grade. Socioeconomic variables refer to mother education, father education, number
of books, home income, computer and internet. Each variable was measured in 4th,
8th and 10th grade. Pre-school variables refers to kindergarten, pre-kindergarten,
ECE (0-2) and ECE (2-4). The school level indexes for 4th, 8th and 10th grade were
used. The initials in the table mean:

• AV: All the variables, excepting the predicted variable. For example the nor-
malized mathematics score in 8th grade is an achievement variable. The table
indicates that it was predicted by all the achievement variables (excepting
normalized mathematics score in 8th) all the pre-school variables, gender and
trajdep.

• AV-CY: All the variables for the corresponding year. Following the example
of the normalized mathematics score in 8th grade, the table implies that only
the socioeconomic variables in 8th grade were used to predict it. The same for
parents expectations and the school level indexes.

• CY: Corresponding year. It indicates that the multilevel imputation modeling
use as clustering variable the school at the corresponding year. For the nor-
malized mathematics score in 8th grade the grouping variable was the school
at 8th grade.

We checked convergence according to Buuren and Groothuis-Oudshoorn (2011) guide-
lines. All the variables showed good mixing for the Markov Chain procedure.
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B.2 Definition of multilevel growth models

Unconditional mean models:

• Model 1.a
yti = β0 + ξi + εti

• Model 1.b
ytij = β0 + ξij + µ4th

j + εtij

• Model 1.c
ytij = β0 + ξij + µ8th

j + εtij

• Model 1.d
ytij = β0 + ξij + µ10th

j + εtij

• Model 1.e
yti(jk) = β0 + ξi(jk) + µ8th

j + µ10th
k + εti(jk)

• Model 1.f
yti(jkl) = β0 + ξi(jkl) + µ4th

j + µ8th
k + µ10th

l + εti(jkl)

Unconditional growth models:

• Model 2.a

yti(jk) = β0 + β1i(jk)time + ξi(jk) + µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + υi(jk)

• Model 2.b

yti(jk) = β0 + β1i(jk)time + ξi(jk) + µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + ν8th
j + υi(jk)

• Model 2.c

yti(jk) = β0 + β1i(jk)time + ξi(jk) + µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + ν10th
k + υi(jk)

• Model 2.d

yti(jk) = β0 + β1i(jk)time + ξi(jk) + µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + ν8th
k + ν10th

k + υi(jk)

Conditional mean models for trajectory characterization:

• Model 3.a

yti(jk) = β0 + β01ECE 0-2i(jk) + β1i(jk)time + ξi(jk) + µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + β11ECE 0-2i(jk) + ν8th
j + ν10th

k + υi(jk)

147



B.2. Definition of multilevel growth models

• Model 3.b

yti(jk) = β0 + β01ECE 2-4i(jk) + β1i(jk)time + ξi(jk) + µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + β11ECE 2-4i(jk) + ν8th
j + ν10th

k + υi(jk)

• Model 3.c

yti(jk) = β0 + β01Pre kinderi(jk) + β1i(jk)time + ξi(jk) + µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + β11Pre kinderi(jk) + ν8th
j + ν10th

k + υi(jk)

• Model 3.d

yti(jk) = β0 + β01Kinderi(jk) + β1i(jk)time + ξi(jk) + µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + β11Kinderi(jk) + ν8th
j + ν10th

k + υi(jk)

• Model 3.e

yti(jk) = β0 + β01genderi(jk) + β1i(jk)time + ξi(jk) + µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + β11genderi(jk) + ν8th
j + ν10th

k + υi(jk)

• Model 3.f

yti(jk) = β0 + β01Parents expect.ti(jk) + β11Parents expect.ti(jk) ∗ time + β1i(jk)time + ξi(jk)

+ µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + ν8th
j + ν10th

k + υi(jk)

• Model 3.g

yti(jk) = β0 + β01Mother educ.i(jk) + β11Mother educ.ti(jk) ∗ time + β1i(jk)time + ξi(jk)

+ µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + ν8th
j + ν10th

k + υi(jk)

• Model 3.h

yti(jk) = β0 + β01Father educ.i(jk) + β11Father educ.ti(jk) ∗ time + β1i(jk)time + ξi(jk)

+ µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + ν8th
j + ν10th

k + υi(jk)

• Model 3.h

yti(jk) = β0 + β01Incometi(jk) + β11Incometi(jk) ∗ time + β1i(jk)time + ξi(jk)

+ µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + ν8th
j + ν10th

k + υi(jk)
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• Model 3.i

yti(jk) = β0 + β01N booksti(jk) + β11N booksti(jk) ∗ time + β1i(jk)time + ξi(jk)

+ µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + ν8th
j + ν10th

k + υi(jk)

• Model 3.j

yti(jk) = β0 + β01Computerti(jk) + β11Computerti(jk) ∗ time + β1i(jk)time + ξi(jk)

+ µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + ν8th
j + ν10th

k + υi(jk)

• Model 3.k

yti(jk) = β0 + β01Internetti(jk) + β11Internetti(jk) ∗ time + β1i(jk)time + ξi(jk)

+ µ8th
j + µ10th

k + εti(jk)

β1i(jk) = β10 + ν8th
j + ν10th

k + υi(jk)
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B.3 Results of unconditional multilevel growth mod-

els for trajectory description

Table B.2: Estimated parameters for the models 3.a, 3.b, 3.c, 3.d, 3.e and 3.f.
in mathematics scores. The parameters are the mean trough 20 imputations, for
random effect and fit indexes we present also the 5th and 95th percentile.

Mathematics

3.a 3.b 3.c 3.d 3.e 3.f

Fixed effects
Intercept 0.006 (0.013) -0.108 (0.013) -0.103 (0.013) -0.102 (0.013) -0.146 (0.013) -0.721 (0.021)
time 0.009 (0.003) 0.001 (0.003) 0 (0.003) 0.001 (0.003) -0.006 (0.004) -0.073 (0.01)
Gender (girl) -0.216 (0.005)
time:Gender (girl) -0.016 (0.002)
ECE (0-2) 0.011 (0.009)
time:ECE (0-2) 0 (0.004)
ECE (2-4) -0.012 (0.005)
time:ECE (2-4) 0.002 (0.002)
Pre-kinder -0.009 (0.005)
time:Pre-kinder -0.001 (0.002)
Kinder 0.053 (0.007)
time:Kinder 0.009 (0.003)
Parents expectations 0.038 (0.001)
time:Parents
expectations 0.004 (0.001)
Random intercepts
Residual mean 0.246 0.246 0.246 0.246 0.246 0.248
Residual P5 0.246 0.246 0.246 0.246 0.246 0.247
Residual P95 0.247 0.247 0.247 0.247 0.247 0.248
Student mean 0.356 0.365 0.365 0.365 0.365 0.351
Student P5 0.355 0.364 0.364 0.364 0.364 0.35
Student P95 0.357 0.366 0.366 0.366 0.366 0.352
School 2011 mean 0.047 0.047 0.047 0.047 0.047 0.045
School 2011 P5 0.046 0.047 0.047 0.047 0.046 0.044
School 2011 P95 0.048 0.048 0.048 0.048 0.047 0.045
School 2013 mean 0.346 0.34 0.341 0.341 0.337 0.311
School 2013 P5 0.343 0.338 0.338 0.338 0.334 0.309
School 2013 P95 0.347 0.342 0.342 0.342 0.339 0.313
Random slopes
Student-time mean 0.022 0.022 0.022 0.022 0.022 0.021
Student-time P5 0.021 0.021 0.021 0.021 0.021 0.021
Student-time P95 0.022 0.022 0.022 0.022 0.022 0.021
School 2011-time mean 0.007 0.007 0.007 0.007 0.007 0.007
School 2011-time P5 0.007 0.007 0.007 0.007 0.007 0.007
School 2011-time P95 0.007 0.007 0.007 0.007 0.007 0.007
School 2013-time mean 0.013 0.013 0.013 0.013 0.012 0.012
School 2013-time P5 0.012 0.012 0.012 0.012 0.012 0.012
School 2013-time P95 0.013 0.013 0.013 0.013 0.013 0.013
Fit indexes
Deviance mean 908123.745 910652.809 910643.656 910649.541 910538.153 907266.444
Deviance P5 907758.745 910297.439 910290.685 910296.814 910196.917 906856.365
Deviance P95 908379.238 910909.507 910892.572 910903.989 910796.216 907604.607
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B.3. Results of unconditional multilevel growth models for trajectory description

3.a 3.b 3.c 3.d 3.e 3.f

df 424738 424738 424738 424738 424738 424738
AIC mean 908151.745 910680.809 910671.656 910677.541 910566.153 907294.444
AIC P5 907786.745 910325.439 910318.685 910324.814 910224.917 906884.365
AIC P95 908407.238 910937.507 910920.572 910931.989 910824.216 907632.607
BIC mean 908305.175 910834.238 910825.085 910830.971 910719.583 907447.874
BIC P5 907940.175 910478.868 910472.115 910478.244 910378.346 907037.795
BIC P95 908560.668 911090.936 911074.002 911085.418 910977.646 907786.037
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B.3. Results of unconditional multilevel growth models for trajectory description

Table B.3: Estimated parameters for the models 3.g, 3.h, 3.i, 3.j, 3.k and 3.l. in
mathematics scores. The parameters are the mean trough 20 imputations, for ran-
dom effect and fit indexes we present also the 5th and 95th percentile.

Mathematics

3.g 3.h 3.i 3.j 3.k 3.l

Fixed effects
Intercept -0.243 (0.014) -0.234 (0.014) -0.133 (0.013) -0.149 (0.013) -0.151 (0.013) -0.109 (0.013)
time 0.025 (0.005) 0.015 (0.005) -0.004 (0.003) -0.003 (0.003) -0.011 (0.003) -0.001 (0.003)
Mother education 0.012 (0.001)
time:Mother education -0.002 (0)
Father education 0.012 (0.001)
time:Father education -0.001 (0)
Home income 0.007 (0.001)
time:Home income 0 (0)
Number of books 0.001 (0)
time:Number of books 0 (0)
Computer 0.05 (0.005)
time:Computer 0.006 (0.003)
Internet 0.004 (0.004)
time:Internet 0.008 (0.003)
Random Intercepts
Residual mean 0.247 0.247 0.246 0.247 0.247 0.246
Residual P5 0.246 0.246 0.246 0.246 0.246 0.246
Residual P95 0.247 0.247 0.247 0.248 0.247 0.247
Student mean 0.363 0.363 0.365 0.362 0.364 0.365
Student P5 0.361 0.362 0.363 0.36 0.362 0.364
Student P95 0.364 0.364 0.366 0.363 0.365 0.366
School 2011 mean 0.045 0.045 0.046 0.046 0.047 0.047
School 2011 P5 0.044 0.044 0.045 0.046 0.046 0.047
School 2011 P95 0.045 0.046 0.047 0.047 0.047 0.048
School 2013 mean 0.324 0.325 0.332 0.331 0.336 0.34
School 2013 P5 0.321 0.322 0.329 0.329 0.334 0.338
School 2013 P95 0.326 0.326 0.333 0.333 0.338 0.341
Random Slopes
Student-time mean 0.022 0.022 0.022 0.022 0.022 0.022
Student-time P5 0.021 0.021 0.021 0.021 0.021 0.021
Student-time P95 0.022 0.022 0.022 0.022 0.022 0.022
School 2011-time mean 0.007 0.007 0.007 0.007 0.007 0.007
School 2011-time P5 0.007 0.007 0.007 0.007 0.007 0.007
School 2011-time P95 0.007 0.007 0.007 0.007 0.007 0.007
School 2013-time mean 0.013 0.013 0.012 0.013 0.013 0.012
School 2013-time P5 0.013 0.012 0.012 0.012 0.012 0.012
School 2013-time P95 0.013 0.013 0.013 0.013 0.013 0.013
Fit Indexes
Deviance mean 909761.707 909880.019 910407.21 909762.3 910417.535 910642.901
Deviance P5 909402.711 909477.743 910035.114 909398.803 910057.79 910292.091
Deviance P95 910083.278 910108.005 910652.45 910053.633 910677.641 910900.443
df 424738 424738 424738 424738 424738 424738
AIC mean 909789.707 909908.019 910435.21 909790.3 910445.535 910670.901
AIC P5 909430.711 909505.743 910063.114 909426.803 910085.79 910320.091
AIC P95 910111.278 910136.005 910680.45 910081.633 910705.641 910928.443
BIC mean 909943.137 910061.449 910588.64 909943.729 910598.964 910824.331
BIC P5 909584.141 909659.173 910216.543 909580.232 910239.219 910473.52
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B.3. Results of unconditional multilevel growth models for trajectory description

3.g 3.h 3.i 3.j 3.k 3.l

BIC P95 910264.708 910289.435 910833.88 910235.062 910859.07 911081.873
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B.3. Results of unconditional multilevel growth models for trajectory description

Table B.4: Estimated parameters for the models 3.a, 3.b, 3.c, 3.d, 3.e and 3.f. in
reading scores. The parameters are the mean trough 20 imputations, for random
effect and fit indexes we present also the 5th and 95th percentile.

Reading

3.a 3.b 3.c 3.d 3.e 3.f

Fixed Effects
Intercept -0.145 (0.011) -0.054 (0.011) -0.048 (0.011) -0.043 (0.012) -0.091 (0.012) -0.765 (0.02)
time -0.011 (0.003) 0.011 (0.003) 0.01 (0.003) 0.011 (0.003) 0.004 (0.004) -0.095 (0.009)
Gender (girl) 0.172 (0.005)
time:Gender (girl) 0.04 (0.002)
ECE (0-2) 0.001 (0.01)
time:ECE (0-2) -0.003 (0.004)
ECE (2-4) -0.018 (0.006)
time:ECE (2-4) 0.002 (0.002)
Pre-kinder -0.02 (0.006)
time:Pre-kinder -0.002 (0.003)
Kinder 0.05 (0.007)
time:Kinder 0.009 (0.004)
Parents expectations 0.044 (0.001)
time:Parents expectations 0.006 (0.001)
Random Intercepts
Residual mean 0.316 0.316 0.316 0.316 0.316 0.317
Residual P5 0.315 0.315 0.315 0.315 0.315 0.317
Residual P95 0.317 0.317 0.317 0.317 0.317 0.318
Student mean 0.408 0.414 0.414 0.414 0.413 0.396
Student P5 0.406 0.412 0.412 0.412 0.412 0.394
Student P95 0.409 0.415 0.415 0.415 0.415 0.397
School 2011 mean 0.031 0.032 0.032 0.032 0.031 0.03
School 2011 P5 0.031 0.031 0.031 0.031 0.031 0.029
School 2011 P95 0.032 0.032 0.032 0.032 0.032 0.03
School 2013 mean 0.244 0.249 0.25 0.25 0.247 0.22
School 2013 P5 0.243 0.248 0.249 0.249 0.246 0.218
School 2013 P95 0.245 0.251 0.251 0.252 0.248 0.222
Random Slopes
Student-time mean 0.014 0.014 0.014 0.014 0.014 0.014
Student-time P5 0.014 0.014 0.014 0.014 0.014 0.014
Student-time P95 0.014 0.015 0.015 0.015 0.015 0.014
School 2011-time mean 0.005 0.005 0.005 0.005 0.005 0.005
School 2011-time P5 0.005 0.005 0.005 0.005 0.005 0.005
School 2011-time P95 0.005 0.005 0.005 0.005 0.005 0.005
School 2013-time mean 0.008 0.009 0.009 0.009 0.009 0.008
School 2013-time P5 0.008 0.008 0.008 0.009 0.008 0.008
School 2013-time P95 0.009 0.009 0.009 0.009 0.009 0.008
Fit Indexes
Deviance mean 976494.124 977838.919 977818.424 977818.672 977751.239 974348.497
Deviance P5 976128.381 977496.611 977479.137 977483.413 977412.375 973971.894
Deviance P95 976887.639 978223.776 978206.551 978211.27 978125.697 974745.757
df 424738 424738 424738 424738 424738 424738
AIC mean 976522.124 977866.919 977846.424 977846.672 977779.239 974376.497
AIC P5 976156.381 977524.611 977507.137 977511.413 977440.375 973999.894
AIC P95 976915.639 978251.776 978234.551 978239.27 978153.697 974773.757
BIC mean 976675.553 978020.349 977999.854 978000.102 977932.669 974529.926
BIC P5 976309.811 977678.04 977660.566 977664.842 977593.805 974153.324
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B.3. Results of unconditional multilevel growth models for trajectory description

3.a 3.b 3.c 3.d 3.e 3.f

BIC P95 977069.068 978405.205 978387.981 978392.7 978307.127 974927.187
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B.3. Results of unconditional multilevel growth models for trajectory description

Table B.5: Estimated parameters for the models 3.g, 3.h, 3.i, 3.j, 3.k and 3.l. in
reading scores. The parameters are the mean trough 20 imputations, for random
effect and fit indexes we present also the 5th and 95th percentile.

Reading

3.g 3.h 3.i 3.j 3.k 3.l

Fixed Effects
Intercept -0.187 (0.013) -0.176 (0.013) -0.067 (0.011) -0.108 (0.011) -0.115 (0.012) -0.056 (0.011)
time 0.035 (0.005) 0.024 (0.005) 0.012 (0.003) 0.002 (0.003) -0.009 (0.004) 0.01 (0.003)
Mother education 0.012 (0.001)
time:Mother education -0.002 (0)
Father education 0.011 (0.001)
time:Father education -0.001 (0)
Home income 0.003 (0.001)
time:Home income -0.001 (0)
Number of books 0.001 (0)
time:Number of books 0 (0)
Computer 0.07 (0.006)
time:Computer 0.016 (0.004)
Internet 0.002 (0.005)
time:Internet -0.003 (0.003)
Random Intercepts
Residual mean 0.316 0.316 0.316 0.316 0.316 0.316
Residual P5 0.316 0.316 0.315 0.316 0.315 0.315
Residual P95 0.317 0.317 0.317 0.317 0.317 0.317
Student mean 0.411 0.411 0.413 0.408 0.412 0.414
Student P5 0.41 0.41 0.412 0.407 0.41 0.412
Student P95 0.413 0.413 0.415 0.41 0.413 0.415
School 2011 mean 0.03 0.031 0.031 0.031 0.031 0.032
School 2011 P5 0.03 0.03 0.031 0.03 0.031 0.031
School 2011 P95 0.031 0.031 0.032 0.031 0.032 0.032
School 2013 mean 0.236 0.236 0.246 0.239 0.245 0.249
School 2013 P5 0.235 0.235 0.245 0.238 0.243 0.248
School 2013 P95 0.237 0.238 0.247 0.241 0.246 0.25
Random Slopes
Student-time mean 0.014 0.014 0.014 0.014 0.014 0.014
Student-time P5 0.014 0.014 0.014 0.014 0.014 0.014
Student-time P95 0.015 0.015 0.015 0.015 0.015 0.015
School 2011-time mean 0.005 0.005 0.005 0.005 0.005 0.005
School 2011-time P5 0.005 0.005 0.005 0.005 0.005 0.005
School 2011-time P95 0.005 0.005 0.005 0.005 0.005 0.005
School 2013-time mean 0.009 0.009 0.009 0.009 0.009 0.009
School 2013-time P5 0.009 0.009 0.008 0.008 0.008 0.009
School 2013-time P95 0.009 0.009 0.009 0.009 0.009 0.009
Fit Indexes
Deviance mean 977094.791 977218.371 977741.205 976871.312 977550.588 977835.129
Deviance P5 976752.094 976870.695 977399.821 976506.51 977195.303 977490.15
Deviance P95 977462.683 977585.506 978117.957 977251.433 977922.09 978217.863
df 424738 424738 424738 424738 424738 424738
AIC mean 977122.791 977246.371 977769.205 976899.312 977578.588 977863.129
AIC P5 976780.094 976898.695 977427.821 976534.51 977223.303 977518.15
AIC P95 977490.683 977613.506 978145.957 977279.433 977950.09 978245.863
BIC mean 977276.22 977399.801 977922.635 977052.742 977732.018 978016.559
BIC P5 976933.524 977052.125 977581.251 976687.94 977376.733 977671.579
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B.3. Results of unconditional multilevel growth models for trajectory description

3.g 3.h 3.i 3.j 3.k 3.l

BIC P95 977644.112 977766.936 978299.387 977432.862 978103.52 978399.293
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B.4. Commont support control variables

B.4 Commont support control variables
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Figure B.1: Histograms for control variables in 4th grade
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B.4. Commont support control variables
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Figure B.2: Histograms for control variables in 8th grade
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B.4. Commont support control variables
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Figure B.3: Histograms for control variables in 10th grade
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B.5. Commont support treatment variables

B.5 Commont support treatment variables
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Figure B.4: Histograms for school level variables at 8th grade (treatment variables)
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B.5. Commont support treatment variables
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Figure B.5: Histograms for school level variables at 10th grade (treatment variables)
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B.6. Results of unconditional multilevel growth models for treatment effect
estimation in the complete sample

B.6 Results of unconditional multilevel growth mod-

els for treatment effect estimation in the com-

plete sample

Table B.6: Estimated parameters for the models 4.a, 4.b, 4.c in mathematics scores.
The parameters are the mean trough 20 imputations, for random effect and fit
indexes we present also the 5th and 95th percentile.

Mathematics

4.a 4.b 4.c

Fixed Effects
Intercept 0.164 (0.015) -0.56 (0.028) -0.62 (0.027)
time 0.024 (0.004) -0.05 (0.013) -0.058 (0.014)
Trajdep -0.657 (0.025) -0.565 (0.023) -0.064 (0.022)
time:Trajdep -0.075 (0.006) -0.08 (0.006) -0.048 (0.007)
ECE (0-2) 0.017 (0.011) 0.017 (0.011)
time:ECE (0-2) -0.001 (0.005) -0.001 (0.005)
ECE (2-4) -0.019 (0.008) -0.018 (0.008)
time:ECE (2-4) 0.002 (0.004) 0.003 (0.004)
Pre-kinder -0.031 (0.009) -0.031 (0.009)
time:Pre-kinder -0.003 (0.004) -0.003 (0.004)
Kinder 0.058 (0.009) 0.056 (0.009)
time:Kinder 0.014 (0.004) 0.014 (0.004)
Gender (girl) -0.22 (0.005) -0.221 (0.005)
time:Gender (girl) -0.021 (0.002) -0.021 (0.002)
Mother education 0.005 (0.001) 0.003 (0.001)
time:Mother education -0.002 (0) -0.002 (0)
Father education 0.006 (0.001) 0.005 (0.001)
time:Father education 0 (0) 0.001 (0)
Parents expectations 0.037 (0.001) 0.036 (0.001)
time:Parents expectations 0.004 (0.001) 0.005 (0.001)
Number of books 0.001 (0) 0.001 (0)
time:Number of books 0 (0) 0 (0)
Home income 0.004 (0.001) 0.003 (0.001)
time:Home income 0.002 (0.001) 0.002 (0.001)
Computer 0.046 (0.007) 0.045 (0.007)
time:Computer 0.008 (0.004) 0.009 (0.004)
Internet -0.03 (0.005) -0.032 (0.005)
time:Internet 0.006 (0.004) 0.007 (0.004)
SES index 8th 0.084 (0.011)
time:SES index 8th -0.027 (0.005)
SES index 10th 0.424 (0.017)
time:SES index 10th 0.042 (0.006)
Preschool attendance index 8th -0.057 (0.007)
time:Preschool attendance index 8th 0 (0.003)
Preschool attendance index 10th -0.159 (0.013)
time:Preschool attendance index 10th -0.014 (0.004)
Academic Selection index 8th 0.02 (0.008)
time:Academic Selection index 8th 0.001 (0.003)
Academic Selection index 10th 0.118 (0.011)
time:Academic Selection index 10th 0.018 (0.003)
SES Selection index 8th 0.013 (0.006)
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B.6. Results of unconditional multilevel growth models for treatment effect
estimation in the complete sample

4.a 4.b 4.c

time:SES Selection index 8th -0.006 (0.003)
SES Selection index 10th 0.11 (0.012)
time:SES Selection index 10th 0.022 (0.004)
Random Intercepts
Residual mean 0.245 0.247 0.246
Residual P5 0.244 0.246 0.246
Residual P95 0.246 0.247 0.247
Student mean 0.377 0.345 0.346
Student P5 0.374 0.344 0.344
Student P95 0.378 0.346 0.347
School 2011 mean 0.04 0.038 0.036
School 2011 P5 0.04 0.037 0.035
School 2011 P95 0.041 0.038 0.036
School 2013 mean 0.279 0.242 0.122
School 2013 P5 0.277 0.24 0.12
School 2013 P95 0.281 0.243 0.123
Random Slopes
Student-time mean 0.021 0.02 0.02
Student-time P5 0.02 0.02 0.02
Student-time P95 0.021 0.02 0.02
School 2011-time mean 0.008 0.008 0.008
School 2011-time P5 0.008 0.008 0.008
School 2011-time P95 0.008 0.008 0.008
School 2013-time mean 0.011 0.01 0.009
School 2013-time P5 0.01 0.01 0.009
School 2013-time P95 0.011 0.01 0.009
Fit Indexes
Deviance mean 624520.454 619190.279 617344.632
Deviance P5 624233.826 618858.83 617042.21
Deviance P95 624755.097 619465.472 617618.82
df 290908 290884 290868
AIC mean 624548.454 619266.279 617452.632
AIC P5 624261.826 618934.83 617150.21
AIC P95 624783.097 619541.472 617726.82
BIC mean 624696.586 619668.35 618023.996
BIC P5 624409.958 619336.901 617721.573
BIC P95 624931.228 619943.542 618298.184
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B.6. Results of unconditional multilevel growth models for treatment effect
estimation in the complete sample

Table B.7: Estimated parameters for the models 4.a, 4.b, 4.c in reading scores. The
parameters are the mean trough 20 imputations, for random effect and fit indexes
we present also the 5th and 95th percentile.

Reading

4.a 4.b 4.c

Fixed Effects
Intercept 0.153 (0.013) -0.859 (0.027) -0.888 (0.026)
time 0.013 (0.003) -0.126 (0.013) -0.135 (0.013)
Trajdep -0.513 (0.021) -0.41 (0.02) -0.058 (0.02)
time:Trajdep -0.022 (0.005) -0.024 (0.006) -0.029 (0.007)
ECE (0-2) 0.008 (0.013) 0.008 (0.013)
time:ECE (0-2) -0.005 (0.005) -0.005 (0.005)
ECE (2-4) -0.021 (0.009) -0.02 (0.009)
time:ECE (2-4) 0.004 (0.004) 0.004 (0.004)
Pre-kinder -0.037 (0.01) -0.036 (0.01)
time:Pre-kinder -0.004 (0.004) -0.004 (0.004)
Kinder 0.063 (0.009) 0.062 (0.009)
time:Kinder 0.014 (0.005) 0.015 (0.005)
Gender (girl) 0.163 (0.006) 0.162 (0.006)
time:Gender (girl) 0.032 (0.003) 0.032 (0.003)
Mother education 0.005 (0.001) 0.004 (0.001)
time:Mother education -0.002 (0.001) -0.001 (0.001)
Father education 0.006 (0.001) 0.006 (0.001)
time:Father education 0.001 (0.001) 0.001 (0.001)
Parents expectations 0.04 (0.001) 0.04 (0.001)
time:Parents expectations 0.006 (0.001) 0.006 (0.001)
Number of books 0.001 (0) 0.001 (0)
time:Number of books 0 (0) 0 (0)
Home income 0 (0.001) 0 (0.001)
time:Home income 0 (0.001) 0 (0.001)
Computer 0.07 (0.008) 0.069 (0.008)
time:Computer 0.028 (0.005) 0.03 (0.005)
Internet -0.035 (0.007) -0.036 (0.007)
time:Internet -0.01 (0.004) -0.009 (0.004)
SES index 8th 0.037 (0.011)
time:SES index 8th -0.027 (0.005)
SES index 10th 0.353 (0.016)
time:SES index 10th 0.01 (0.006)
Preschool attendance index 8th -0.05 (0.007)
time:Preschool attendance index 8th 0.005 (0.003)
Preschool attendance index 10th -0.158 (0.013)
time:Preschool attendance index 10th -0.006 (0.004)
Academic Selection index 8th 0.009 (0.008)
time:Academic Selection index 8th 0.002 (0.003)
Academic Selection index 10th 0.081 (0.01)
time:Academic Selection index 10th 0.003 (0.003)
SES Selection index 8th 0.006 (0.006)
time:SES Selection index 8th -0.008 (0.003)
SES Selection index 10th 0.09 (0.011)
time:SES Selection index 10th 0.012 (0.004)
Random Intercepts
Residual mean 0.315 0.317 0.317
Residual P5 0.314 0.316 0.316

165



B.6. Results of unconditional multilevel growth models for treatment effect
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4.a 4.b 4.c

Residual P95 0.316 0.318 0.318
Student mean 0.424 0.394 0.395
Student P5 0.422 0.392 0.392
Student P95 0.426 0.396 0.397
School 2011 mean 0.029 0.026 0.025
School 2011 P5 0.028 0.026 0.024
School 2011 P95 0.03 0.027 0.026
School 2013 mean 0.203 0.164 0.096
School 2013 P5 0.2 0.162 0.094
School 2013 P95 0.205 0.166 0.098
Random Slopes
Student-time mean 0.013 0.013 0.013
Student-time P5 0.013 0.012 0.012
Student-time P95 0.013 0.013 0.013
School 2011-time mean 0.005 0.005 0.005
School 2011-time P5 0.005 0.005 0.005
School 2011-time P95 0.005 0.005 0.005
School 2013-time mean 0.008 0.008 0.008
School 2013-time P5 0.008 0.007 0.007
School 2013-time P95 0.008 0.008 0.008
Fit Indexes
Deviance mean 670931.501 666619.467 665177.613
Deviance P5 670687.441 666342.954 664875.297
Deviance P95 671281.981 666985.416 665579.98
df 290908 290884 290868
AIC mean 670959.501 666695.467 665285.613
AIC P5 670715.441 666418.954 664983.297
AIC P95 671309.981 667061.416 665687.98
BIC mean 671107.632 667097.538 665856.977
BIC P5 670863.572 666821.024 665554.66
BIC P95 671458.112 667463.487 666259.343
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Table B.8: Estimated parameters for the models 5.a, 5.b, 5.c and 5.d in mathematics
scores. The parameters are the mean trough 20 imputations, for random effect and
fit indexes we present also the 5th and 95th percentile.

Mathematics

5.a 5.b 5.c 5.d

Fixed Effects
Intercept 0.059 (0.016) -0.01 (0.014) -0.595 (0.036) -0.612 (0.035)
time 0.021 (0.004) 0.024 (0.005) -0.072 (0.017) -0.079 (0.017)
Trajdep -0.417 (0.026) 0.028 (0.024) -0.412 (0.025) 0.002 (0.023)
time:Trajdep -0.077 (0.007) -0.048 (0.008) -0.072 (0.007) -0.043 (0.008)
ECE (0-2) 0.018 (0.017) 0.017 (0.017)
time:ECE (0-2) -0.005 (0.008) -0.005 (0.007)
ECE (2-4) -0.019 (0.011) -0.017 (0.011)
time:ECE (2-4) 0.004 (0.005) 0.004 (0.005)
Pre-kinder -0.035 (0.011) -0.034 (0.011)
time:Pre-kinder -0.003 (0.005) -0.003 (0.005)
Kinder 0.048 (0.013) 0.045 (0.013)
time:Kinder 0.014 (0.005) 0.014 (0.005)
Gender (girl) -0.231 (0.008) -0.232 (0.008)
time:Gender (girl) -0.02 (0.004) -0.019 (0.004)
Mother education 0.004 (0.001) 0.003 (0.001)
time:Mother education -0.002 (0.001) -0.001 (0.001)
Father education 0.005 (0.001) 0.003 (0.001)
time:Father education -0.001 (0.001) 0 (0.001)
Parents expectations 0.037 (0.002) 0.036 (0.002)
time:Parents expectations 0.006 (0.001) 0.006 (0.001)
Number of books 0.001 (0) 0.001 (0)
time:Number of books 0 (0) 0 (0)
Home income 0.002 (0.001) 0.001 (0.001)
time:Home income 0.001 (0.001) 0.002 (0.001)
Computer 0.061 (0.009) 0.059 (0.009)
time:Computer 0.017 (0.005) 0.018 (0.005)
Internet -0.041 (0.007) -0.044 (0.007)
time:Internet -0.003 (0.006) -0.002 (0.006)
SES index 8th 0.092 (0.014) 0.066 (0.014)
time:SES index 8th -0.035 (0.006) -0.032 (0.006)
SES index 10th 0.438 (0.021) 0.409 (0.02)
time:SES index 10th 0.039 (0.007) 0.036 (0.007)
Preschool attendance index 8th -0.065 (0.01) -0.062 (0.01)
time:Preschool attendance index 8th 0.001 (0.004) 0.001 (0.004)
Preschool attendance index 10th -0.171 (0.016) -0.161 (0.015)
time:Preschool attendance index 10th -0.015 (0.005) -0.014 (0.005)
Academic Selection index 8th 0.041 (0.01) 0.04 (0.01)
time:Academic Selection index 8th 0.006 (0.004) 0.006 (0.004)
Academic Selection index 10th 0.119 (0.012) 0.116 (0.012)
time:Academic Selection index 10th 0.016 (0.004) 0.016 (0.004)
SES Selection index 8th 0.011 (0.009) 0.017 (0.009)

167



B.7. Results of unconditional multilevel growth models for treatment effect
estimation in the matched sample

5.a 5.b 5.c 5.d

time:SES Selection index 8th -0.006 (0.004) -0.005 (0.004)
SES Selection index 10th 0.122 (0.015) 0.118 (0.015)
time:SES Selection index 10th 0.024 (0.005) 0.024 (0.005)
Random Intercepts
Residual mean 0.245 0.245 0.247 0.247
Residual P5 0.244 0.244 0.246 0.246
Residual P95 0.247 0.247 0.248 0.248
Student mean 0.369 0.369 0.339 0.339
Student P5 0.366 0.366 0.336 0.337
Student P95 0.371 0.37 0.341 0.341
School 2011 mean 0.038 0.036 0.037 0.035
School 2011 P5 0.038 0.035 0.036 0.034
School 2011 P95 0.039 0.036 0.038 0.036
School 2013 mean 0.266 0.133 0.239 0.124
School 2013 P5 0.264 0.131 0.236 0.123
School 2013 P95 0.269 0.135 0.241 0.125
Random Slopes
Student-time mean 0.019 0.019 0.018 0.018
Student-time P5 0.018 0.018 0.018 0.018
Student-time P95 0.019 0.019 0.019 0.019
School 2011-time mean 0.008 0.008 0.008 0.008
School 2011-time P5 0.008 0.008 0.008 0.008
School 2011-time P95 0.008 0.008 0.008 0.008
School 2013-time mean 0.01 0.009 0.01 0.009
School 2013-time P5 0.01 0.009 0.01 0.009
School 2013-time P95 0.011 0.01 0.01 0.009
Fit Indexes
Deviance mean 289260.396 287753.024 286896.789 285530.647
Deviance P5 289060.769 287556.115 286693.532 285327.291
Deviance P95 289544.227 288022.578 287107.754 285737.505
df 134038 134022 134014 133998
AIC mean 289288.396 287813.024 286972.789 285638.647
AIC P5 289088.769 287616.115 286769.532 285435.291
AIC P95 289572.227 288082.578 287183.754 285845.505
BIC mean 289425.68 288107.203 287345.416 286168.17
BIC P5 289226.052 287910.295 287142.16 285964.814
BIC P95 289709.511 288376.758 287556.381 286375.028
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Table B.9: Estimated parameters for the models 5.a, 5.b, 5.c and 5.d in reading
scores. The parameters are the mean trough 20 imputations, for random effect and
fit indexes we present also the 5th and 95th percentile.

Reading

5.a 5.b 5.c 5.d

Fixed Effects
Intercept 0.054 (0.014) 0.013 (0.014) -0.858 (0.038) -0.855 (0.037)
time 0.016 (0.004) 0.02 (0.005) -0.124 (0.017) -0.137 (0.018)
Trajdep -0.282 (0.024) 0.051 (0.023) -0.27 (0.023) 0.023 (0.022)
time:Trajdep -0.027 (0.007) -0.024 (0.008) -0.021 (0.007) -0.021 (0.008)
ECE (0-2) -0.005 (0.02) -0.005 (0.02)
time:ECE (0-2) -0.013 (0.009) -0.013 (0.009)
ECE (2-4) -0.015 (0.013) -0.011 (0.013)
time:ECE (2-4) 0.008 (0.005) 0.008 (0.005)
Pre-kinder -0.042 (0.012) -0.04 (0.012)
time:Pre-kinder -0.004 (0.006) -0.004 (0.006)
Kinder 0.058 (0.012) 0.056 (0.012)
time:Kinder 0.014 (0.007) 0.015 (0.007)
Gender (girl) 0.164 (0.009) 0.162 (0.009)
time:Gender (girl) 0.036 (0.004) 0.037 (0.004)
Mother education 0.004 (0.001) 0.003 (0.001)
time:Mother education -0.001 (0.001) -0.001 (0.001)
Father education 0.005 (0.001) 0.004 (0.001)
time:Father education -0.001 (0.001) 0 (0.001)
Parents expectations 0.039 (0.002) 0.039 (0.002)
time:Parents expectations 0.006 (0.001) 0.006 (0.001)
Number of books 0.001 (0) 0.001 (0)
time:Number of books 0 (0) 0 (0)
Home income -0.002 (0.002) -0.003 (0.002)
time:Home income -0.001 (0.001) 0 (0.001)
Computer 0.076 (0.01) 0.075 (0.01)
time:Computer 0.035 (0.006) 0.036 (0.006)
Internet -0.037 (0.008) -0.038 (0.008)
time:Internet -0.013 (0.007) -0.011 (0.007)
SES index 8th 0.054 (0.015) 0.035 (0.015)
time:SES index 8th -0.023 (0.006) -0.02 (0.006)
SES index 10th 0.386 (0.02) 0.342 (0.02)
time:SES index 10th 0.009 (0.007) 0.002 (0.007)
Preschool attendance index 8th -0.059 (0.01) -0.051 (0.01)
time:Preschool attendance index 8th 0.005 (0.004) 0.006 (0.004)
Preschool attendance index 10th -0.183 (0.016) -0.17 (0.015)
time:Preschool attendance index 10th -0.008 (0.006) -0.007 (0.006)
Academic Selection index 8th 0.023 (0.01) 0.023 (0.01)
time:Academic Selection index 8th 0.003 (0.004) 0.003 (0.004)
Academic Selection index 10th 0.082 (0.012) 0.08 (0.012)
time:Academic Selection index 10th 0.001 (0.004) 0.001 (0.004)
SES Selection index 8th 0.012 (0.009) 0.008 (0.009)
time:SES Selection index 8th -0.009 (0.004) -0.009 (0.004)
SES Selection index 10th 0.103 (0.015) 0.099 (0.015)
time:SES Selection index 10th 0.015 (0.005) 0.014 (0.005)
Random Intercepts
Residual mean 0.313 0.314 0.315 0.314
Residual P5 0.312 0.312 0.313 0.313
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5.a 5.b 5.c 5.d

Residual P95 0.314 0.315 0.316 0.316
Student mean 0.411 0.41 0.383 0.384
Student P5 0.408 0.406 0.38 0.381
Student P95 0.413 0.413 0.386 0.386
School 2011 mean 0.031 0.03 0.029 0.028
School 2011 P5 0.03 0.029 0.028 0.027
School 2011 P95 0.033 0.031 0.03 0.03
School 2013 mean 0.202 0.115 0.172 0.104
School 2013 P5 0.199 0.113 0.169 0.102
School 2013 P95 0.204 0.117 0.175 0.106
Random Slopes
Student-time mean 0.013 0.012 0.012 0.012
Student-time P5 0.012 0.011 0.011 0.011
Student-time P95 0.013 0.013 0.013 0.012
School 2011-time mean 0.006 0.005 0.006 0.005
School 2011-time P5 0.005 0.005 0.005 0.005
School 2011-time P95 0.006 0.006 0.006 0.005
School 2013-time mean 0.008 0.008 0.008 0.008
School 2013-time P5 0.008 0.008 0.008 0.008
School 2013-time P95 0.008 0.008 0.008 0.008
Fit Indexes
Deviance mean 309570.808 308391.509 307731.79 306687.23
Deviance P5 309408.977 308224.244 307501.789 306457.871
Deviance P95 309765.159 308573.966 307917.922 306889.304
df 134038 134022 134014 133998
AIC mean 309598.808 308451.509 307807.79 306795.23
AIC P5 309436.977 308284.244 307577.789 306565.871
AIC P95 309793.159 308633.966 307993.922 306997.304
BIC mean 309736.091 308745.689 308180.417 307324.753
BIC P5 309574.261 308578.423 307950.417 307095.394
BIC P95 309930.443 308928.145 308366.55 307526.827
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