
M U L T I R O B O T  S Y S T E M S

22  1541-1672/17/$33.00 © 2017 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Robust Tracking of 
Soccer Robots Using 
Random Finite Sets
Pablo Cano and Javier Ruiz-del-Solar, AMTC Center, Universidad de Chile

Maintaining a 

good estimation of 

the other robots’ 

positions is crucial 

in soccer robotics. 

To tackle the data 

association problem, 

the proposed 

approach doesn’t 

require explicit 

data association 

and integrates 

information shared 

by teammate robots.

Multirobot systems correspond to groups of intelligent robots that per-

ceive and act in a given environment to collectively solve a task. The 

robots can use different cooperation and coordination mechanisms, which can  

include cooperative perception, distributed world modeling, planning and control,

and distributed decision making, among 
others. There are many application areas 
of multirobot systems such as surveillance,  
exploration, warehouse management, trans-
portation, rescue applications, and soccer 
robotics, just to name a few.

Soccer robotics corresponds to a very 
well-known benchmark of multirobot sys-
tems, in which two teams of autonomous 
robots play soccer against each other. In 
the most advanced soccer leagues (Stan-
dard Platform League [SPL] and Humanoid 
League; www.robocup.org/robocup-soccer), 
each robot player perceives the environment 
individually, shares its observations with 
its teammates, models the environment, 
which includes the modeling of dynamic 
objects such as the ball and the other ro-
bot players, makes decisions in a centralized 

or distributed fashion, and acts (that is, it 
plays soccer). The focus of our research is 
on soccer robotics, specifically, the robust 
tracking of robot players by a robot. This 
is an interesting tracking problem in which 
both teammates and opponents need to be 
tracked. Teammates normally share their 
positions and their estimations of the other 
robots’ positions, but opponents don’t share 
any information.

When playing soccer, one of the main 
challenges is maintaining a good estima-
tion of opponent and teammate positions 
to select appropriate behaviors. High-level 
behaviors such as passing, team formation, 
and role decisions, just to name a few, need 
information about players’ positions on the 
field. This problem is particularly complex 
in leagues that use humanoid robots such as 
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the SPL and the Humanoid League: 
the number of robots in the field 
changes constantly (robots can be re-
moved from the field due to penaliza-
tions or failures), robots of the same 
team are indistinguishable, the small 
field of view of the cameras allows 
only a restricted or partial observa-
tion of the field, and the robots have 
limited computational capabilities. 
These limitations can be overcome 
by sharing observations among team-
mates and by a robust estimation of 
the robots’ positions. The estimation 
of those positions, which is denoted 
as robot tracking, has been tackled 
in a variety of ways within the ro-
bot soccer community. Bayesian fil-
tering approaches such as multiple  
hypothesis tracking (MHT),1 ex-
tended Kalman filters (EKFs),2 the 
multihypothesis unscented Kalman 
filter,3 and Gaussian mixture mod-
els4 have been proposed to address 
this problem. However, all these ap-
proaches involve an explicit asso-
ciation between measurements and 
targets, using heuristics or statistics. 
This step is commonly known as the 
data association problem.

In this context, the main goal of 
this article is to propose a new meth-
odology for the robust tracking (po-
sition estimation) of multiple soccer 
robots using the Random Finite Sets 
(RFS) framework, which doesn’t re-
quire explicit data association. The 
proposed methodology is inspired by 
another work5 where the term prob-
ability hypothesis density (PHD) was 
introduced as the first moment of a 
point process. The PHD filter is pro-
posed as a way to maintain hypothe-
ses of multiple objects using finite sets 
instead of vectors to describe object 
states.6 In fact, this paradigm consid-
ers the unknown number of objects 
to be tracked (robots, in our case) as 
a multi-object set represented by an 
object and the measurements received 

by the sensor as a single set of ob-
servations, which it models as RFS. 
RFS is a set of random variables, for 
which the cardinality is itself a ran-
dom variable.

The RFS framework has been used 
to track features in SLAM (Simulta-
neous Localization and Mapping) ap-
plications as well as to track multiple 
objects and targets.7,8 However, this is 
the first application of RFS in soccer 
robotics, and one of the first that ad-
dresses the tracking of robots in a dy-
namic environment, along with other 
works9,10 that track moving objects. 
The main contributions here are the ap-
plication of the RFS framework to the 
tracking of multiple robots in a highly 
dynamic environment and the incorpo-
ration in the tracking process of infor-
mation shared by teammates’ robots.

The proposed robot tracking meth-
odology is validated in simulated robot 
soccer games, using simulated Nao ro-
bots, and compared against a classical, 
state-of-the-art multihypothesis EKF 
tracking methodology.3 The specific 
application of the proposed tracking 
methodology is soccer robotics, but it 
can be adapted to track robots in other 
applications and environments.

Problem Description: Data 
Association when Tracking 
Multiple Players in Robot 
Soccer
As already mentioned, knowing the 
position of the other robots in the 
field is relevant for implementing 
high-level soccer behaviors. In this 
work, we will use local map of robots 
for a map that a given player builds 
and that includes the positions on 
the field of every other robot player 
(teammate or opponent). We denote 
observations of robot detections and 
hypotheses for the estimated posi-
tions of the robots on that map.

Most existing methods for estimat-
ing the local map of robots employ a 

classical approach with a vector rep-
resentation of the robot hypotheses, 
which are propagated over time us-
ing a Bayesian filter (such as an EKF 
filter). However, it has been demon-
strated that the use of a vector repre-
sentation of hypotheses has numerous 
drawbacks mainly related to the data 
association between new and past  
observations (hypotheses).11

Multitarget Tracking  
with RFS
The main idea of the proposed meth-
odology is to use finite sets instead 
of vectors to represent both observa-
tions and hypotheses. As has been 
widely demonstrated,6,11 the first 
moment of RFS, known as PHD, 
can be used to construct a filter that 
propagates PHD to the map pos-
terior instead of the map posterior 
itself.

PHD Filter
The PHD function v(m) at position m 
represents the density of the expected 
number of objects (robots) occurring at 
that position of the state space (map). 
Therefore, a property of the PHD is 
that for any given region S of the map:

E ∫ ( )∩  = SM S v m dm,  (1)

where M represents the RFS map and 
| · | denotes a set’s cardinality. This 
means that, by integrating the PHD 
on any region S of the map, we obtain 
the expected number of objects in S.6

The PHD filter considers the fol-
lowing two steps:6

• Prediction:

vk|k21(m) 5 vk21(m) bk(m),  (2)

where vk21(m) is the previous es-
timate of the PHD, vk21(m) is its 
prediction at time k, and bk(m) rep-
resents the PHD of the new objects 
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at time k. This equation is a simplification of the pre-
diction step shown elsewhere,6,12 where the targets are 
supposed to be stationary and don’t spawn new targets. 
This is done because the omnidirectional movement of 
the robots is very difficult to model from the observa-
tional point of view. That is why a zero-order modeling 
is used (zero mean plus covariance).

• Update:

∑ ξ ξ ξ ξ( )
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where z represents a measurement, Zk is the set of all 
measurements obtained at time k, PD(m) represents 
the probability of detecting z at m, gk(z|m) represents  
the likelihood that z is generated by an object at m (that 
is, the observation likelihood), and ck(z) is the PHD of 
the clutter intensity.

Thus, when computing the posterior PHD vk(m), the first 
term corresponds to the predicted objects weighted by their 
probabilities of missed detection and the second to the pre-
dicted objects, updated by the spatial locations of all the 
new observations, and their probabilities of detection.

Using Multiple Sensors
The filter mentioned above works for single-sensor sce-
narios, but for two or more sensors, the PHD corrector 
equation become computationally intractable.13 Given 
this limitation, Ronald Mahler proposed an iterated- 
corrector approximation:13 during each measurement 
cycle, iterate the PHD filter equations once for each sen-
sor. This approximation has been proved to be stable and 
doesn’t result in noticeable differences in performance.13 
So, with these changes, the PHD filter equations are

• Prediction:
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− −v m v m b mk k k k
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where i is the sensor index, and ( )Zk
i  are the observa-

tions obtained by the ith sensor.

To adapt this framework to the multiple object tracking 
by a mobile robot problem, some considerations must be 
made. As presented earlier, ( )( )P mD

i  represents the prob-
ability of detecting object at m by the ith sensor, but it 
doesn’t consider its dependence on the current robot posi-
tion. So, the real probability is represented by ( )( )P m X|D

i
k ,  

where Xk represents the position of the robot at time k. 
The same dependence on Xk applies to ( )gk

i , ( )ck
i , and ( )bk

i  
because they also depend on robot position.

Tracking Robots Using RFS
The proposed robot tracking system is based on the PHD 
filter, and it considers the robots’ observations of their 
own cameras and robot poses received from teammate ro-
bots to build the local map of robots (see Figure 1). In 
addition, the system can merge local maps received from 
teammate robots to build a combined map of robots.

The tracking system uses a mixture of Gaussians imple-
mentation of the PHD filter (GM-PHD)12 because it’s time 
efficient and able to run in real time in robots with limited 
computational resources.

GM-PHD Implementation
We want to represent the likelihood of any RFS, that is, the 
PHD, as a mixture of Gaussians, so both hypotheses and 
new observations are represented by Gaussians. But to allow 
Gaussians to represent the position and number of objects 
(robots) in the field, it’s necessary to add a weight to every 
Gaussian. In this way, the Gaussian mean values represent 
the different locations of the hypotheses on the map, while 
their weights represent the number of hypotheses in a given 
region. So, a PHD map is a Gaussian mixture of the form

∑ω µ( ) = 

 


( ) ( ) ( )

− −
=

− − −

−

Nv m X m P| ; ,k k

j

J

k k
j

k k
j

k k
j

1 1
1

| 1 | 1 | 1

k 1

,  (6)

which is a mixture of Jk21 Gaussians, with ω( )
−k k

j
| 1

, µ( )
−k k

j
| 1

, 
and ( )

−Pk k
j
| 1 being the weight, mean, and covariance, respec-

tively. The same form is used to represent the new hypoth-
eses at time k, ( )b m X( | )k

i
k :
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where Jb,k is the number of Gaussians in the new PHD at 
time k, and ω( )

b k
j
, , µ( )  b k

j
, , and ( )Pb k

j
,  are the weight, mean, and 
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covariance, respectively. The calculation of this PHD is 
made by using the previous observations of each sensor, 
where each observation creates a Gaussian of the GMM, 
implying that Jb,k 5 |Zk21|. Therefore, the predicted PHD 
of the map is also a Gaussian mixture given by

∑ω µ( ) = 
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where Jk|k21 5 Jk21 1 Jb,k is the number of Gaussians repre-
senting the union of the prior PHD map vk21(m|Xk21), and 
the new PHD hypotheses at time k. Note that ω( )

−k k
j
| 1, µ

( )
−k k

j
| 1

,  
and ( )

−Pk k
j
| 1 are the weight, mean, and covariance of the 

Gaussians of the prior map PHD if j # Jk21, and the weight, 
mean, and covariance of the Gaussians of the new observa-
tions PHD otherwise.

So, the posterior PHD given by Equation 5 is also a 
Gaussian mixture of the form
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where, according to the general PHD filter update equa-
tion, ( )vG k

i j
,
,  corresponds to

ω µ( ) ( )= 
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where µ( ) = 
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likelihood, i is the sensor index, and j the Gaussian index.
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standard EKF update equations:
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with ∇ ( )Hx k
i  representing the Jacobian of the observation 

model with respect to the estimated location for the ith 
sensor.

The parameters used for the creation of the 
( )( )

−b m Z X| ,k
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k k1  Gaussians are
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where −hi
1 is the inverse observation model of the ith sen-

sor, R(i) is the observation noise covariance of the ith  
sensor, ∇ ( )Hm

j
k
i  is the Jacobian of the observation model 

of the ith sensor, with respect to the Gaussian state j, and 
weight is the initial weight.

Then, as every Gaussian hypothesis is combined with 
every observation to generate new Gaussian hypotheses, 

Other robots
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Figure 1. General representation of the proposed method.
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the numbers of Gaussians may grow exponentially in  
every frame. That is why pruning and merging operations 
are necessary.13 First, all Gaussians are sorted by weight. 
Then, for each Gaussian gi from vk(m|Xk),

merge(gi, gj) if dM(gi, gj) , local, ∀gj  vk, j . i,  (17)

where dM(gi, gj) is the Mahalanobis distance between 
gi and gj, and local is the local distance threshold. Note 

that this merge doesn’t represent an elimination of a hy-
pothesis because one Gaussian can represent more than 
one hypothesis by its weight, which are added when two 
or more Gaussians are merged. The Mahalanobis dis-
tance is used because it considers the covariance of the 
Gaussians being compared. Also, if a Gaussian has a 
weight below a given threshold minWeight, then it’s erased 
from the map.

This process is called merge_and_prune in Figure 2.

//the parameters of the Map’s MoG model (vk–1 (m|Xk–1)) are modified
for i = 1 to Jk–1 do
  //the robots may move -> covariance is increased using the movement noise
covariance Q
    μk|k–1 = μk–1, Pk|k–1 = Pk–1 + Q, wk|k–1 = wk–1
end for
//birth; observations are added; robots’ position received from other robots are
treated as observations from additional sensors
for each sensor i
  generateNewGausians(Zk–1, Xk–1) //use eq.(7) and (16)

     vk|k–1(m|Xk) = {μk|k–1, Pk|k–1, wk|k–1}Jk|k–1 

  //update step
  for j = 1 to Jk|k–1 do
  calculate PD

  wk = (1 – PD  ) wk|k–1

  endfor
  N = 0
  for each z in Zk
  for j = 1 to Jk|k–1 do

    calculate Hi, S(j) and K(j) 

    μk
       = μk|k–1

  + Kk  (z–μk|k–1)

    Pk
       = [I –  Kk  Hi]Pk|k–1

    t    = PD   wk|k–1|2πSk  |–0.5

    × exp ((z – μk|k–1)[Sk  ]–1 (z – μk|k–1)T)
  end for
  for j = 1 to Jk|k–1 do

    wk      = t(j)/(c(z)  + ∑J
k|k–1 t(l))

  end for
  N = N + Jk|k–1

  end for
     Jk = N 

  //updated map

     vk(m|Xk) = {μk, Pk, wk }
J

k

  merge_and_prune (vk(m|Xk)) // use eq. (18)
end for
//combined map building; local maps received from other robots are merged with
the local map
for each received local map i

  merge_maps (vk(m|Xk), vk (m|Xk)) //use eq. (19)
end for
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(j) (i) (i)
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(j) (j)

(j) (j)(j)
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(i,j)
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(N+j)
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Figure 2. Pseudocode of the general algorithm that calculates the PHD that represent the map of robots.
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Construction of the Local Map of Robots
Multiple aspects are needed to construct the local map of 
robots using the presented framework (GM-PHD).

Observation process. The robot that builds the map has two 
sources of information: its own camera and the information 
sent by its teammates. To detect the other robots in the in-
put images, color blobs are built using scan lines. Blobs sur-
rounded by green pixels are robot candidates (because the 
field is always green as a rule). Additional details of this de-
tector can be found elsewhere.3 Then, if one or more ro-
bots are detected in the image, their positions are projected 
on the field coordinates by using the camera’s forward kine-
matic, its intrinsic and extrinsic parameters, and the robot’s 
pose. Also, depending on the position of the detected robots 
relative to the observing robot, a covariance is calculated, 
which is also projected on the field coordinates.3 This cova-
riance is used as R(1) (the covariance of the first sensor). The 
probability of detection pD and the clutter intensity are cal-
culated empirically, using statistics of the false and true pos-
itives in several situations. The pD of each Gaussian of the 
map doesn’t have a constant value and must be recalculated 
in every frame by using the inverse kinematics of the cam-
era, that is, the information of where the camera is observ-
ing. If the robot is expected to appear in the image, then it 
has the pD calculated before. But if not, the pD is set to zero.

The second source of information corresponds to the 
poses of all the teammates, each one treated as a simu-
lated sensor. This information is available through wire-
less communication. Each robot shares not only its pose 
but also its player number (every robot on a team must 
have a number between 1 and 7). So, to use this informa-
tion in the GM-PHD framework, two other variables are 
added to each Gaussian. The first is a Boolean (called gc) 
that indicates if this Gaussian has ever been updated using 
the communication information (that is, the other robot 
poses), and the second is the player number that was used 
to update this Gaussian (called gp). This second variable is 
considered valid only when gc 55 true. So, when the pose 
of a teammate is added to the map as defined in Equation 
7, this Gaussian starts with gc 55 true and gp equal to 
the number of the sharing teammate. For these cases, the 
merge operation defined by Equation 17 is modified as

θ
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{ }

( ) ( )
< ==
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.  (18)

This implies that Gaussians made from poses of two 
different teammates are never merged, but Gaussians 

made from the camera sensor can be merged with any 
other Gaussian that’s close enough. This also lets us cal-
culate a detection probability that depends on whether the 
Gaussian was communicated one or not, that is, the pD 
is set on zero for this simulated sensor if gc 55 false and 
near 1 if gc 55 true.

So, when the final local map is constructed, each tar-
get can be associated with one of the teams (their own 
team or the rival team) by using the Boolean gc. This in-
formation is critical if the local map is going to be used 
for a high-level task such as passing, and it can’t be ac-
complished without information about the teammates’ 
positions.

Modeling. The state space used in this approach is a vec-
tor p 5 (x, y) that indicates the robot’s position in the field 
coordinates, whose origin is the center of the field. To use 
this state space, it’s necessary to assume that the robot is 
always localized. In the RoboCup competition, this is gen-
erally true because this is the most important subject for a 
robot to play properly. Particularly in this case, the robots 
use a multihypothesis Kalman filter for self-localizing.14,15

Given that both sensors already give their observations in 
the field coordinates, H is the identity matrix for both sen-
sors. Also, the use of this state space implies that the speed 
of the robots isn’t used as part of the state. This is the rea-
son for using the simplified version showed in Equation 2.

Construction of the Combined Map of Robots
To build a combined map of robots for each robot, the ro-
bots must share their local maps, that is, the GM representa-
tion of the map. Thus, the local maps are combined by using 
the weight and positions of every Gaussian using a pruning 
and merging process.12 This process orders every Gauss-
ian by its weight and then uses the Mahalanobis distance to 
merge similar hypotheses into one. So, for each Gaussian g 
of every local map ( )( )v m X|k

i
k  of each other robot i,

θ

θ

( )
( ) ( )

←
>

<









∈

∈

CMap
g dM g g

merge g g dM g g

,        ,

, ,        ,

j LMap combined

j j LMap combined

, (19)

where CMap is the combined map, LMap is the local map of 
the current robot, that is, vk(m|Xk), dM(gi|gj) is the Mahala-
nobis distance between gi and gj, and combined is the distance 
threshold. This process is called merge_maps in Figure 2.

Results
We evaluated the proposed tracking methodology in 
simulated soccer matches of Nao robots (1 versus 1 and  
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5 versus 5). The main reason for using simulations is to 
repeat experiments and get an accurate measurement of 
the ground truth of the robots’ positions. Nevertheless, 
it’s important to mention that the proposed tracking sys-
tem is used in our soccer team of Nao robots, where it can 
run in real time (approximately 30 fps).

The Nao robot has two cameras of 60° horizontal field 
of view and 47° vertical field of view, and uses a single-
core ATOM processor running at 1.6 GHz. The B-Human 
Simulator,16 a 3D tool that accurately simulates the phys-
ics and sensors in the Nao robot, is used in the experi-
ments. Note that this tool simulates the images that the 
robot receives, therefore perception procedures are made 
using these images exactly as in a real robot, meaning 
that the simulation has a very similar noise process of the  
detected robots.

Two variants of the proposed method are analyzed, 
RFS-Local-Map, which doesn’t consider maps received 
from other robots, and RFS-Combined-Map, which 
corresponds to the proposed method. The methods  
are tested against a classical multihypothesis EKF  
(MH-EKF) tracking method,3 where each robot posi-
tion is estimated via an independent EKF. In the method, 
each observation is associated with an existing hypoth-
esis using a distance threshold DEKF; a new hypothesis is 
created if the observation isn’t associated. If a hypothesis 
has no observations in a certain period TEKF, then it’s 
eliminated.

To evaluate the performance of each method, we used 
the OSPA metric.17 This metric allows us to compare the 
obtained maps of robots with the ground truth map of 
robots by calculating a distance dc between the two sets 
(maps) as

∑ ( ) ( )( ) = + −
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where |X| , |Y|, dc(xi, yj) 5 min(c, ||xi 2 yj||), and c is a 
cut-off parameter that represents the maximum distance 
to associate two positions.

The first experiments correspond to 10 simulated soccer 
matches of 5 versus 5 robots. In the experiments, all the ro-
bots calculate the OSPA metric for each method under eval-
uation, with a cut-off value c 5 500 mm. The MH-EKF 
parameters used are DEKF 5 500 mm and TEKF 5 8s, which 
are selected to have the best OPSA results. In the case of the 
RFS-Local-Map, the parameters are weight 5 0.01, local 5 
18, and object 5 0.3. For the sensors, =( )P 0.35D

1  if the robot 
must appear in the image and zero if not, and =( )P 0.98D

2  if 
the Gaussian has gc 5 true and zero if gc 5 false. In ad-
dition, R(1) is calculated for the perceptor4 and R(2) 5 
[10000,0; 0,10000]. As explained earlier, H(i) 5 I for i 5 
{1,2}, that is, for both sensors. For the RFS-Combined-
Map, combined 5 20 is chosen.

During the matches, which were 10 minutes each, 
every robot played normally, applying the same rules 
of penalization as in a real RoboCup competition. The 
results of these matches can be seen in Table 1 (best, 
average, and worst OSPA errors for each case). The re-
sults show that the OSPA errors of the RFS-Local-Map  
and the RFS-Combined-Map methods are lower 
than the error of the MH-EKF method. Error reduc-
tions of 17.29 percent and 35.73 percent are obtained 
by RFS-Local-Map and the RFS-Combined-Map, 
respectively.

In the second set of experiments, 10 matches of 1 versus 1  
were performed. In this case, only the RFS-Local-Map  
is compared against the MH-EKF method (there is no 
shared information to use). These experiments were per-
formed to show that the proposed method overcomes the 
difficulties of data association and has a better performance 
even though no information is shared by other robots.  
As can be seen in Table 1, in this case, RFS-Local-Map 
obtains an error reduction of 32.62 percent when com-
pared to the baseline method.

Table 1. Summary of the obtained results. The numbers correspond to the OSPA values of each experiment.  
All values are in millimeters (mm).

 Test Average Best Worst

RFS-Local-Map
1 vs. 1 197.8 182.4 212.4

5 vs. 5 348.6 319.7 381.9

RFS-Combined Map 5 vs. 5 271.3 225.2 298.7

MH-EKF
1 vs. 1 293.6 271.1 305.3

5 vs. 5 421.5 391.3 453.2
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Our proposed methodology can 
integrate information shared 

by teammate robots, their positions, 
and their estimations of other robots’ 
positions (that is, their local maps). 
We validated our methodology in 
several soccer matches and compared 
with a classical multihypothesis EKF 
tracking methodology. Although the 
specific application of the proposed 
tracking methodology is soccer ro-
botics, its adaptation to other robot 
tracking applications/environments is 
straightforward. 
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