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A number of solutions and computer programs are already available to determine the dynamic stiffness
of complete pile foundations, assuming linear elastic soil behavior and perfect bonding between the piles
and the surrounding soil. These are assumptions that would be generally valid for properly designed
machine foundations where very small strains should be expected. A number of approximate formula-
tions have also been developed. Among these the most commonly used one is that proposed by Poulos
(1971) [1,2] for the static case, computing interaction coefficients between the heads of two piles consid-
ered by themselves, then forming a matrix of these coefficients to obtain the interaction between the
heads of all the piles in the group. Additional approximations have been suggested, particularly for the
computation of the interaction coefficients, using closed form expressions. In this paper, a semi-
analytical-semi-numerical formulation has been adopted to calculate the static and dynamic stiffness
of pile foundations in the frequency domain, and some approximate expressions are suggested. They
are intended for pile groups with pile spacing of the order of two to four diameters, typical range of
the modulus of elasticity of the piles over that of the soil between 100 and 1000, and very small ampli-
tude vibrations.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic stiffness of pile groups was studied by Gomez [3],
Kaynia [4], Dai [5,8] and Dai and Roesset [6,7] using an Elasto-
Dynamics formulation and assuming linear elastic behavior of piles
& soil and perfect bonding between them. They studied groups of 2
by 2, 3 by 3 and 4 by 4 piles, accounting for the complete interac-
tion between all piles and enforcing perfect bonding between the
piles and the surrounding soil over the complete lengths of all
piles, considering only the pile head interactions. Some other
researchers, e.g. Kouroussis [9], instead, employed a three-
dimensional finite element method to calculate dynamic stiffness
of pile groups in time domain considering nonlinear effect.

In this study, a numerical formulation has been adopted to cal-
culate static and dynamic stiffness of the pile foundations, which is
a semi-analytical solution in the frequency domain and also
assumes linear elastic behavior and perfect soil-pile bonding, while
incorporating the Poulos’ approximation instead of complete inter-
action between all piles. Results show very little differences to
those with complete interaction. The analysis consists then of the
following steps:

1. Determination of the dynamic stiffness matrix of one cylindrical
cavity (to be filled by a pile) in a horizontally layered soil
deposit extending to infinity in the horizontal directions for
any frequency of interest. This step is carried out using a
semi-analytical-semi-numerical formulation developed by Kau-
sel [10]. The formulation uses an analytical solution in the hor-
izontal directions extending to infinity, while the soil deposit is
discretized vertically enabling a numerical method. Below the
horizontally layered soil deposit, bed rock or very stiff soils
are assumed in this study. One can also consider a uniform half
space underneath the layered soil deposit with small modifica-
tions to the computer program. The dynamic stiffness matrix of
the cylindrical cavity is then combined with that of a single pile,
which is modeled using beam theory, to obtain the dynamic
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stiffness matrix of the pile-surrounding soil system, ½KF �. This
matrix would provide the solution to the dynamic analysis of
a single pile.

2. Using ½KF � and Poulos’ assumption, which considers only one
pile at a time and neglects the existence of all other piles, and
applying a unit horizontal load at the pile head, one can calcu-
late the horizontal dynamic displacement at the pile head, u1;1,
and the displacement at the position supposed to be occupied
by the other pile, u2;1, in the frequency domain, although Poulos’
assumption was originally used only for static cases. Using the
same approach, one can calculate u1;2 and u2;2. The resulting
expressions for displacements of the two pile heads with forces
P1 and P2 applied at each one would be
u1 ¼ u1;1P1 þ u1;2P2 ¼ u1;1ðP1 þ a1;2P2Þ
u2 ¼ u2;1P1 þ u2;2P2 ¼ u2;2ða2;1P1 þ P2Þ

�

a1;2 ¼ u1;2=u1;1 and a2;2 ¼ u2;1=u2;2 are the pile head inter-
action coefficients. If the heads of the two piles are connected by
a rigid cap and a total force P is applied to the cap, writing

I ¼ pr2f1;1gT , P ¼ P1 þ P2 ¼ ITfP1; P2gT , U ¼ fu1;u2gT , and defin-

ing A ¼ 1 a1;2

a2;1 1

� �
, K ¼ 1=u1;1 1

1 1=u2;2

� �
, U ¼ K�1A P1

P2

� �
or

P1

P2

� �
¼ A�1KU, and P ¼ ITA�1KU, the dynamic stiffness of the

group of two piles is KG ¼ ITA�1KI. All matrices and vectors are
denoted in bold throughout this paper unless notified otherwise.
It is also assumed that the two piles have the same horizontal
pile head displacements due to the existence of a rigid cap or
u1 ¼ u2, and the cap is fixed against rotation or rocking. This
would provide the solution for the case of two piles.

3. For a group of N by N piles considering every combination of
two piles i; j from the complete pile foundation, and obtaining
the corresponding interaction factors ai;j and aj;i; an interaction
matrix A of size N by N can be formed in a similar manner.
Defining Ki;j ¼ diagonalð1=ui;jÞ, the pile group stiffness would

still be given by KG ¼ ITA�1KI.

Computer programs were developed implementing the above
formulation. Results were then obtained for pile groups of a single
pile, 2 by 2, 4 by 4, 6 by 6, 8 by 8 and 10 by 10 piles. The soil used
for the study had a shear wave velocity of 100 m/s, a Poisson’s ratio
of 0.25, a mass density of 2000 kg/m3 and internal (material)
damping of 5%. The piles were assumed to have a radius of 0.5
m, pile spacing of 3 m as the base case, a mass density of
2500 kg/m3 and 5% material damping. The modulus of elasticity
of the piles was changed to investigate the effect of the EP=ES ratio
and sensitivity studies were also conducted for pile spacing of 2–4
m. The depth of the soil deposit was assumed to be 50 m for the
base case unless specified otherwise. End bearing and floating piles
were considered. The end bearing piles had a length of 50 m, the
same as the soil deposit, while the floating piles were 25 m long.
Sensitivity studies were also conducted for depth of soil deposit,
pile spacing, Poisson’s ratio and soil material damping.
Fig. 1. Definition of equivalent area (shaded area) for pile groups.
2. Results

The horizontal stiffness of the pile groups was calculated
accounting for the full interaction coefficients computed from the
elastic analyses. A limited number of field tests have suggested
that no interaction takes place beyond a certain distance. As a
result, some authors have recommended using a limiting distance
of 10 or even 5 diameters, beyond which the interaction between
piles is ignored. The differences in results using a limiting distance
or not were discussed in an earlier paper (Dai and Roesset [6]) and
can be significant. Unfortunately, there is a scarcity of experimen-
tal data for very small amplitude vibrations to ascertain which of
the two approaches is more realistic. Among the experimental
studies, the best one is probably the one carried by Sharnouby
and Novak [11]. The results of this study will be compared to
theirs.

The horizontal dynamic stiffness of the foundations can be writ-
ten as

Kdynamic ¼ Kreal þ iKimaginary ¼ Kreal þ iXCeq ¼ Kstatic k1 þ i
XReq

cS
c1

� �

in which X is the frequency of vibration, Ceq is the constant of an

equivalent viscous dashpot, Req ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ar=p

p ¼ Ns=
ffiffiffiffi
p

p
is an equivalent

radius of the pile group, Ar ¼ N2s2 is the foundation area as defined
by Fig. 1, s is the pile spacing, cs is the shear wave velocity of the soil
deposit, and k1 and c1 are dynamic stiffness coefficients.

The objective of this study was to compute values of the stiff-
ness at zero frequency (static stiffness) and the dynamic coeffi-
cients k1 and c1, or the equivalent dashpot, for the frequencies of
interest.

2.1. Static stiffness

Blaney et al. [12] expressed the lateral static stiffness of a single
solid circular pile with the head fixed against rotation as

K ¼ a
EPIP
R3

ES

EP

� �b

;

where EP , ES are the Young’s moduli of the pile and the soil, respec-
tively, R is the radius of the pile and IP its moment of inertia. San-
chez Salinero [13] conducted an extensive set of comparisons for
the static stiffness of a single pile using the formulations and results
presented by Poulos [1,2,14], Kuhlemeyer [15], Novak and Nogami
[16] and Blaney et al. [12]. The values of the coefficients varied from
2.38 and 0.80, to 4.6 and 0.83. Using Blaney’s formulation [12],
Sanchez-Salinero [13] recommended values of a ¼ 3:34, b ¼ 0:81.
Results from this study recommend a ¼ 6:09 and b ¼ 0:786. It is
worth nothing that static stiffness of a single pile obtained in this
study is only a result of Kausel formulation before introducing Pou-
los’ assumption.

The static group factors for end bearing piles with spacing of 3
diameters are presented in Fig. 2. The group factor is defined as the
ratio of the group stiffness to that of a single pile multiplied by the
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total number of piles, GF ¼ KG
n�KS

with n ¼ N2 for the case of N by N

piles while KG and KS are the static group stiffness and static single
pile stiffness, respectively. It should be noticed that in computing
the group factors one assumes the same soil properties for the pile
group and for a single pile.

The value of the group factor will depend on the ratio of the
modulus of elasticity of the pile EP to that of the soil ES and on
the spacing between piles or its ratio to the pile diameter s=D. Ratio
of pile length to the depth of soil deposit has little effect on the
value of group factors. Fig. 2 shows the effect of the EP=ES ratio
on the static group factor. From this figure one can conclude that
the group factor is approximately inversely proportional to N for
an EP=ES ratio of 1000, which implies that the static stiffness is pro-
portional to N (the denominator tends to be closer to N � 1 than to
N as the number of pile increases). This is very similar to the case of
a rigid mat foundation, whose horizontal stiffness is proportional
to the radius and not to the area. With the EP=ES ratio decreasing
from 1000 to 100, the static group factor will increase by 15–35%
depending on the number of piles (the relative increase is larger
as the number of piles increases).

The effect of the s=D ratio on the group factor is illustrated in
Fig. 3. It can be seen that as the spacing decreases the group factor
decreases as well, which implies more interaction effects between
piles. For floating piles 25 m long, the group factors and the
dynamic stiffness coefficients are almost exactly the same as those
of 50 m long end bearing piles.

Fig. 4 shows a comparison of the group factors of this work with
those presented by Poulos [17]. To make the results comparable,
the depth of the soil deposit and the length of the piles used for this
case were 50 m and 25 m, respectively. It can be concluded that,
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except for a small discrepancy for 2 by 2 pile groups, the static
group factors from this research match Poulos’ results very well.

From these results the group factor can be expressed approxi-
mately as:

GF ¼ 0:8
N

� �
s
D

� � EP

ES

� ��0:125

and

KStatic ¼ KG ¼ GF � KS ¼ 0:8
N

� �
s
D

� � EP

ES

� ��0:125

� 5N2GS
D
2

� �
EP

ES

� �0:25

or Kstatic � 3:5GSReq
EP

ES

� �0:125

ð1Þ

For hollow piles the expression EP
ES

would have to be replaced in

expression (1) and all the following ones by ðEPESÞeff ¼
4EPIP
ESpR4

, where R

is the radius of the individual piles.
To illustrate further the similarity between the horizontal static

stiffness of a pile group when accounting for the full interaction
coefficients and that of a rigid mat foundation with the same area
(as defined in Fig. 1), results were obtained for circular mats with
areas corresponding to the 2 by 2, 4 by 4, 6 by 6, 8 by 8 and 10
by 10 pile groups. The mat stiffness was computed using the for-
mula proposed by Elsabee and Morray [18], Kmat ¼ 8GSRm

2�m ð1þ 2
3

B
Rm
Þ,

where GS is the shear modulus of the soil deposit, and Rm and B
are the radius of the mat and the depth of embedment. As shown
in Fig. 5, for small values of EP=ES; say 100, the static group stiffness
is very similar to that of a rigid circular surface mat with the same
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deposit).
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radius for smaller pile groups, like 2 by 2 and 4 by 4, while the sta-
tic stiffness of larger pile groups is 10–20% larger than that of an
equivalent mat foundation. For EP=ES = 500, the static pile group
stiffness is about 25–30% higher than that of the rigid mat; and
for EP=ES = 1000 it is about 30–35% higher. For embedded rigid
mats, the static stiffness increases substantially even for a small
value of the embedment. If the B=Rm ratio is 0.65 its static stiffness
is similar to that of a pile group with EP=ES = 1000. A B=Rm ratio of
0.5 seems appropriate for EP=ES = 500. From the above, for the pile

groups one has approximately 1þ 2
3

B
Req

� 1ffiffi
2

p ðEPESÞ
0:125

leading for a

value of m between 0.35 and 0.4 to: KG � 3:5GSReqðEPESÞ
0:125

, the same

expression obtained above.
Fig. 7. Effect of surface mat foundation radius Rm on real coefficient ðk1Þ
(EP = 1000ES = 5E10 N/m2, 5% material damping, 40 m deep soil deposit).
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2.2. Real stiffness coefficient

The real stiffness coefficient k1 is nearly independent of fre-
quency for a single pile over the range of frequencies normally con-
sidered, say from 0 to 10 Hz, with a dip at the natural frequency of
the soil deposit in shear (0.5 Hz in this case), some small fluctua-
tions around a horizontal line (with a value of 1) for somewhat
higher frequencies and a slight decrease for very high frequencies.
As the number of piles in the group increases the variation of k1
with frequency becomes more pronounced, as illustrated in
Fig. 6. The real stiffness coefficients decrease with increasing fre-
quency exhibiting a parabolic variation, which would suggest that
there is a soil mass entrapped between the piles vibrating in-phase
with all the piles. The larger the number of piles, the bigger the
fluctuations. These fluctuations are associated with the natural fre-
quencies of the soil deposit. For a half space, the variation would be
a much smoother second degree parabola. The situation is similar
to that of a surface foundation on a soil deposit of finite depth with
respect to the fluctuations. To illustrate this point Fig. 7 shows the
variation of the real stiffness coefficients k1 for a circular mat foun-
dation with radius Rm on the surface of the same 50 m deep soil
deposit considered previously. It can be seen that the fluctuations
increase as the radius of the foundation and thus the ratio Rm=H
increases. Fig. 8 shows the variation of the real stiffness coefficients
for the pile groups when the depth of the stratum is doubled to 100
m (decreasing therefore the Rm=H ratio). The fluctuations decrease
in amplitude and the frequencies at which peaks and valleys occur
are much smaller than those for the 50 m deep soil layer. The fluc-
tuation also depends on the EP=ES and s=D ratio. As EP=ES and s=D
ratio decrease, the fluctuations become less pronounced, as shown
in Figs. 9 and 10, respectively. The amplitude of the fluctuations
will also depend of course on the amount of internal soil damping.

Using a second degree parabola to fit each curve in Figs. 6, 8–10,
an equivalent mass can be determined to simulate the pile-soil
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Fig. 6. Effect of number of pile on normalized real coefficients ðk1Þ (EP = 1000-
ES = 5E10 N/m2, 5% material damping, 50 m deep soil deposit, 25 m long piles).

Fig. 9. Effect of number of pile on normalized real coefficients ðk1Þ (EP = 100ES =
5E9 N/m2, 5% material damping, 50 m deep soil deposit, 25 m long piles).
system in the frequency domain as a single degree of freedom sys-
tem. For a single degree of freedom system, the dynamic stiffness
can be expressed as Kdynamic ¼ k�X2mþ iXc; where k is the static
stiffness of the spring, m is the mass, c is the viscous damping con-
stant of the dashpot and X is the driving circular frequency. One
can fit the real part stiffness coefficients k1 of a pile group by an
expression of the form1�X2b:. The equivalent mass is then
Meq ¼ Kstatic � b.

The equivalent mass resulting from a least squares fit varies as a
function of the area covered by all the piles as presented in Fig. 13.

It is a second degree parabola proportional to ðN � 1Þ2; which
implies that the equivalent mass is almost proportional to the area
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occupied by the cap of the pile group. The equivalent mass for a
single pile is almost zero. Its real stiffness is normally assumed
to be constant over the range of the frequencies of practical inter-
est. For a pile spacing of 2 diameters, the real coefficients, shown in
Fig. 10, follow the same parabolic trend with frequency and the
equivalent mass can be calculated in the same way. Equivalent
mass also depends on EP=ES ratio. Results also show that changes
in Poisson’s ratio from 0.25 to 0.45 will only decrease the equiva-
lent mass by less than 5%, as Fig. 11 shows the real stiffness coef-
ficients for a Poisson’s ratio of 0.35. Fig. 12 shows the real
coefficients for 10% soil material damping. It can be seen that when
soil damping increases, the real coefficients show less fluctuation
against exiting frequency but very little effect on the equivalent
mass.

2.3. Imaginary stiffness coefficients

The imaginary stiffness coefficient c1, representing the radiation
damping, after subtracting the effect of the internal soil damping,
should be zero below the fundamental shear frequency of the soil
layer (0.5 Hz in this case), then jump suddenly and oscillate around
a constant value. In reality, if there is some internal soil damping
the jump is not sudden but there is a small amount of leakage of
energy before the fundamental frequency.

Fig. 14 shows the equivalent dashpot (coefficient Ceq). It can be
seen that as the number of piles increases so do the values of the
equivalent dashpot. Fig. 15 shows, however, that the c1 coefficients
are about the same for different sizes of the pile groups except for
the fluctuations, associated with the natural frequencies of the soil
layer, which increase in amplitude with increasing number of piles
(as in the case of the real coefficient). The c1 coefficients seem to
oscillate approximately around a constant average value. Effect of
EP=ES ratio on the c1 coefficients is shown in Fig. 16, while effect
of s=D in Fig. 17. It can be seen that c1 coefficients are generally
increasing when increasing EP=ES ratio. It can also be seen that
when decreasing s=D ratio it becomes clear that values of c1 coef-
ficients are much larger for smaller pile groups than those for lar-
ger ones, as shown in Fig. 17. Fig. 18 shows that the fluctuations
associated with the value of c1 coefficients become less prominent
when the depth of the soil deposit increases from 50 m to 100 m,
the same conclusion obtained for real coefficients. Figs. 19 and 20
show results of sensitivity studies of the effect of Poisson’s ratio
and soil material damping, respectively, and the same observation
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Fig. 18. Imaginary stiffness coefficients (c1) (EP = 1000ES = 5E10 N/m2, 5% material
damping, 100 m deep soil deposit, 20 m long piles).
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Fig. 19. Imaginary stiffness coefficients (c1) (EP = 100ES = 5E9 N/m2, 5% material
damping, 50 m deep soil deposit, 25 m long piles, Poisson’s ratio = 0.35).
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Fig. 20. Imaginary stiffness coefficients (c1) (EP = 1000ES = 5E10 N/m2, 10% mate-
rial damping, 50 m deep soil deposit, 25 m long piles).
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can be made as on the real coefficients that more damping will
decrease fluctuations while small changes on Poisson’s ratio have
little effects. It can be concluded that the c1 coefficients for small
pile groups (up to 10 by 10 piles) are in the range of 0.25–0.55,
when EP=ES ratio is in the range of 100–1000 and s=D ratio is
between 2 and 4.
3. Comparison with experimental data

As pointed out earlier there is a scarcity of reliable experimental
data on the dynamic stiffness of pile groups. Sharnouby and Novak
[11] published the results of carefully conducted dynamic tests on
a group of 102 small piles and, they compared these data to various
numerical predictions. The piles had a radius of 0.0133 m, a
Young’s modulus of 2� 1011 N=m2 and a length of approximately
1 m. The pile spacing was three pile diameters. The soil over the
length of the piles, particularly over the top half of the piles, was
very soft, with values of EP=ES much higher than those that would
be expected for typical pile foundations and beyond the range con-
sidered in the present study. Even so these experimental results
were still compared to the results from this study. In this study,
a 10 by 10 pile group was used in the calculation of static pile stiff-
ness and dynamic stiffness coefficients to compare with the results
from the pile group of 102 piles originally tested by Sharnouby and
Novak.

Sharnouby and Novak reported one set of soil properties (para-
bolic curve, varying with depth) that they used and another set
used supposedly by Waas. The measured value of the static lateral
stiffness was 22:8� 106 N=m. Using the first set of soil properties
(parabolic curve) the computer program employed for the present
study gives a static stiffness of 21:5� 106 N=m. Using the second
set (Wass curve) the result is 22:4� 106 N=m. Considering



0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50

Am
pl

ifi
ca

tio
n 

Fa
ct

or

Frequency (Hz)

Waas Parabolic

Fig. 21. Amplification factor (5% material damping). Fig. 22. k1 Coefficients for waas and parabolic soil properties.
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only 100 piles (10 by 10) were modeled in the computer program
from this study while the tested pile group had 102 piles,
increasing the computed static stiffness by 2% would result in
22:0 � 22:9� 106 N=m, which are in very good agreement with
the experimental data.

The amplification curve, shown by Novak and Sharnouby [19]
for the case of twelve loading plates, exhibits a peak at about
23 Hz with an amplification ratio (ratio of the peak value to the
values at high frequencies where the curve is nearly horizontal)
of about 2.33 (values of 2.8 at the peak and 1.2 at high frequencies).
This would correspond to an effective damping of about 21.4%.
Fig. 21 shows the amplification curves (normalized by static ampli-
tude) from the present study with two different soil properties
with 5% internal soil damping. It can be seen that the peak is
between 22–25 Hz, and the peak amplification factors are about
2.23 and 2.00 for Waas and parabolic soil properties, respectively,
which corresponds to an effective damping ratio of about 22% and
25%, respectively.

The formula to calculate of c1 coefficients in this paper was
obtained from a uniform soil deposit. When the soil properties vary
with depth it is necessary to estimate an equivalent modulus in
order to use the formula. The average soil properties from the sur-
face to a depth of 0.5–0.66 radii, which is commonly used for mat
foundations, were first used to estimate shear wave velocity. For
the present case, since the equivalent radius of the foundation, as
defined earlier, is 0.452 m, the resulting equivalent depth is about
0.23 to 0.3 m and calculated equivalent shear wave velocity is
between 50 and 60 m=s. Alternatively, if taking a weighted average
of the properties over the length of the pile with a quarter sine
wave as weighting functions, one would obtain a value of 55 m=s
for the first soil profile (used by Sharnouby and Novak) and
57 m=s for the second (used by Waas). The corresponding values
of the shear modulus and the Young’s modulus are:

for cS ¼ 55 m=s;GS ¼ 5:00� 106 N=m2 and ES

¼ 13:00� 106 N=m2;

for cS ¼ 57 m=s;GS ¼ 5:36� 106 N=m2 and ES

¼ 13:94� 106 N=m2:

These numbers lead to effective EP=ES ratios of about 8900–9500
when accounting for the factor 4IP

pR4
. Figs. 22 and 23 show the real

and imaginary dynamic stiffness coefficients from the present study
based on the above estimated soil shear wave velocities.

The predictions of peak frequency, peak amplification and effec-
tive damping from the present study are very reasonable and
match the experimental data very well. Due to the need to esti-
mate an equivalent shear wave velocity of the soil, to extrapolate
the formulae to a value of the effective EP=ES well beyond the range
considered in the study and limitation of the frequency range, it
would not appear that it is appropriate to use least square fit
method to calculate equivalent added mass or dashpot for this
case.
4. Concluding remarks

The formulation and approximate formula presented above
provide estimations for the static stiffness and the dynamic coeffi-
cients needed to define the dynamic stiffness of regular pile groups
as a complex function of frequency in the frequency domain. Alter-
natively, one can use these values and coefficients (Kstatic , k1 and c1)
to define an equivalent spring, mass and viscous dashpot to model
the foundation in the time domain. In this case, however, some
care must be exercised. The use of a traditional single degree of
freedom model to reproduce the foundation (the pile group and
the surrounding soil) when a structure is placed on top will be
valid if there are dynamic forces applied to the structure as in
the case of machine foundations. This is indeed the case for which
these studies were intended since linear elastic soil behavior was
assumed. When dealing with an earthquake excitation the formu-
lation and approximate expressions presented here are question-
able because nonlinear effects are being neglected. In addition,
one must take into account that the inertia force associated with
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the equivalent mass is not the result of the absolute acceleration of
the mass but of the relative acceleration between the foundation
and the free field (the difference between the acceleration at the
foundation level when including the structure and the one that
would be experienced at the same point without structure).

Consider for instance a simple model of a structure consisting of
two masses (m1 on top,m2 at the base) connected by a spring k and
a viscous dashpot c and attached to a pile foundation represented
by a spring Kstat; a dashpot Ceq and a mass Meq. If the earthquake
motion that would be experienced on top of the foundation with-
out a structure (but including kinematic interaction effect) is char-
acterized by a displacement uG, a velocity _uG and an acceleration
€uG, using the subscript 1 to refer to the top structure mass, and 2
for the bottom one (connection with the foundation) calling

M ¼ M1 0
0 M2 þMeq

	 

, C ¼ c �c

�c c þ Ceq

	 

, K ¼ k �k

�k kþ Kstat

	 

,

U ¼ u1

u2

� �
, U ¼ u1

u2

� �
and, _U ¼ _u1

_u2

� �
and €U ¼ €u1

€u2

� �
, the equa-

tions of motion in the time domain would be M €U þ C _U þ KU ¼ P

with P ¼ p1
p2

� �
, p1 ¼ 0 and p2 ¼ Meq€uG þ Ceq _uG þ KstatuG. In terms

of relative displacements Y ¼ U � IuG the vector P would have
components p1 ¼ �M1€uG and p2 ¼ �M2€uG.

The formulation present in this study provides a very reliable
method to calculation dynamic stiffness of pile foundations, espe-
cially for small number of piles (smaller than 10 by 10 pile groups),
with reasonable approximations (e.g. Poulos’ assumption), while
the expressions derived in this paper are approximations intended
only for preliminary design estimates in addition to the simplifying
assumptions already mentioned. Their validity for large pile groups
depends on the validity of using the full interaction coefficients in
the linear range, irrespective of the distance between piles. This is a
question that needs further research. If one imposes a threshold
distance beyond which the interaction is neglected, the static stiff-
ness of the pile groups would be larger than those obtained here
and the equivalent mass would be smaller. Research work is also
needed on the investigation of nonlinearity of the soil behavior
on the dynamic stiffness coefficients of pile groups.
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