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Abstract. We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29◦ S
and 35.5◦ S, and longitudes 69.501◦ W and 73.944◦ W (in the Chilean central zone). Our work compares
the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of
earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earth-
quake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory
of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes
and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probabil-
ity distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such
as major earthquakes, as opposed to smaller activations which contribute less significantly though they
have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy
dissipation mechanisms are essentially “scale-free”, displaying statistical and dynamical self-similarity. Our
results provide some evidence that earthquake radiated energy and directed percolation belong to a similar
universality class.

1 Introduction

Earthquakes represent an area of research with important
theoretical and practical implications. In terms of basic
human wellbeing, earthquakes are natural hazards with
devastating consequences. As natural events, they possess
qualities in common with other areas of scientific research
and, as such, their universal qualities offer the tantaliz-
ing suggestion that with further research their shattering
social and economic costs might be reduced.

A predominantly empirical approach is typically ap-
plied to energy dissipation and associated earthquake dy-
namics. Earthquakes are generally characterized by the
well-known Gutenberg-Richter and Omori laws. These
power-laws are viewed as the product of multiscale inter-
actions and are themselves scale-invariant and unaffected
by energy or time scales. But while these laws appear in-
different to energy or time scales earthquakes sometimes
do exhibit characteristic energy scales.

An earthquake involves energy release in the form of
seismic waves, with dynamics exhibiting intermittent tem-
poral patterns where periods of high activity are separated
by periods of relative quiet. Rather than a smooth path,
earthquake dynamics follow an avalanche or punctuated
type development reminding one of self-organized critical
systems [1].
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Over the past few decades research has begun to ex-
plore the possibility of seismicity being in a self-organized
critical state [1–6]. These studies show how the earthquake
energy release distribution (seism energy or avalanche
size) follows a power law distribution, and how spatial dis-
tributions (of avalanches or the seism magnitude) shows
(multi)fractal structure.

In this paper we propose to study ensemble-averaged
statistical properties of earthquakes in Chile. Since we do
not have detailed knowledge about underlying dynamics,
it is important to attempt to explain the ensemble aver-
aged arrangement of correlations to extract information of
the dynamical features of a time series. In general when a
nonlinear system has many sources of spatially dispersed
instability it cannot be wholly characterized in determin-
istic terms. That is why a statistical analysis is necessary.
Applicable statistical-physical methods of analysis allow
one to extract a great deal of information about system
dynamics found in multiscale correlations of non-Gaussian
random variables [7]. Consequently, we frame the follow-
ing working hypothesis: there exists a correlation, at least
at the statistical level, between any two successive events.
It does not matter how distant they are. In other words,
one earthquake can trigger the next one over 1000 km
away [8], and system correlation length can be diver-
gently large. These factors suggests a similarity to critical
phenomena.
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Using this approach we seek to probe earthquake data
to answer the following questions: Do seismic disturbances
of various sizes exhibit a distinctive temporal signature?
In terms of overall energy dissipation what are the rela-
tive contributions of large- and small-scale earthquakes?
If there is a characteristic scale does this suggest the dom-
inance of a specific dissipation mechanism?

Our work finds motivation in the above questions,
which point to a few interesting and novel results regard-
ing the temporal dynamics of earthquake energy radiation
and dissipation. Various earthquake studies frequently
demonstrate robust power-law statistical relations. We ex-
plore whether these are consistent with the dynamics of
nonequilibrium systems undergoing transitions between
several metastable states. Given that stress buildup is re-
leased within minutes, even seconds, we have an intuitive
expectation that earthquakes, as a slowly driven thresh-
old phenomenon, might exhibit such metastable, critical
behavior. If such is the case it may suggest that the ob-
served seismic activity bursts are not dominated by char-
acteristic space, time, or energy scales; and so the energy
dissipation mechanisms associated with earthquakes are
essentially “scale-free”.

We already know the Omori and Gutenburg-Richter
scalings hold for both energy and timing data. How-
ever, not all power law behavior is necessarily an effect
of dynamical self-organization into a critical stationary
state [9,10]. In this paper we wish to go beyond the
well-known scaling behaviors and explore the question of
whether earthquakes fit the hypothesis of an avalanching
critical system. We propose to do this by defining and find-
ing a set of new power law exponents explicitly predicted
for critical avalanching systems.

2 Statistical theory

When equilibrium systems display critical behavior the
most common characterization is via long-range correla-
tions propagating through the system. This is usually re-
alized by the fine-tuning of a control parameter [11]. What
this demonstrates is that many systems, near their critical
points, tend to produce long-range and scale-free correla-
tions having universal statistical properties. The system
in thermodynamic equilibrium, and system phase transi-
tions, is the most familiar setting for discussion of critical
system reconfigurations.

However, nonequilibrium situations such as the on-
set of fluid convection, also exhibit critical reconfigu-
rations. Similarly, models of dynamics in markets [12],
epidemics [13,14], space weather [15–19] and city traf-
fic [20–22] are other respectable examples, and refer-
ences above suggest the earthquakes follow a similar
universality.

The nascent theory of nonequilibrium critical systems
offers an explanation for scale-invariant dynamics in sys-
tems both driven and distorted. Critical behavior is, as
mentioned above, often associated with fine tuning of one
or more system parameters. Systems in a so-called self-
organized critical (SOC) state exhibit scale-free correla-

tions, correlations usually accompanying criticality, giving
the appearance of arising spontaneously. That is why it
can be a frustrating exercise to search for a specific trig-
ger that initiates the explosive system reconfiguration –
there is often simply no unambiguously and unique trig-
ger [23]. For example, if a system is in a SOC state it
will be barely stable and far from equilibrium. Yet it will
reliably return to the critical state again and again, thus
responding resiliently to driving.

We note that a mere demonstration of scale-invariance
at a point in parameter space is insufficient to elucidate
the behavior of nonequilibrium natural systems. Further-
more, it does not directly offer any explanation of how
to maintain the system at, or close to, the critical point.
In the language of earthquake dynamics, the existence of
power law behavior (e.g. Omori or Gutenberg-Richter) is
not sufficient to guarantee that the dynamics are con-
sistent with the statistics of a non-equilibrium critical
avalanching system.

To explore such issues we will use recently developed
frameworks [24,25] to describe dynamics of critical recon-
figurations – the so-called avalanches [26] – taking place in
a general class of nonlinear dynamical systems with cou-
pled degrees of freedom. We will define N(τ) as the aver-
age number of avalanche sites which are active. This is the
same as the average excitation area in the continuum limit.
Here we define the parameter τ as the temporal interval
each initiation of an avalanche. The nonequilibrium mod-
els mentioned above, for delay times less than the time-
scale introduced by finite-size effects, predict that close to
the critical point, the number of avalanche sites follows a
power law scaling as follows N ∝ τη . If we define PS(τ)
as the probability of an avalanche surviving by this time,
then theory also predicts a power law scaling: PS ∝ τ−δ.
Two power law exponents η and δ are introduced, called
spreading-exponents [25]. The avalanche size S is the to-
tal number of active sites participating in the system re-
arrangement. The avalanche lifetime is represented by T .
For SOC, which is a nonequilibrium critical state, there is
a strong connection between avalanche lifetime and size.
Following the definition of δ and η, one can demonstrate
how there must exist a scaling relationship for the average
number of active sites in surviving runs which participated
in producing avalanches with T > τ . The scaling is on the
order of τδ+η. Further, upon creating the time integral of
this quantity to compute the characteristic size S of the
event, we realize S ∼ T 1+δ+η (details are found in [25]).
Such scaling relations comprise a central role in the statis-
tical analysis of nonequilibrium critical systems [27–29].

We will see below, that the distributions for size and
lifetime for this system follow power law distributions,
and these two quantities are related through a power
law relation. Furthermore, it is extremely important that
these three power law indices satisfy the scaling rela-
tion (criticality relation), in a manner similar to what
occurs in traditional theories of equilibrium phase tran-
sitions. Of course, in our case the system is clearly in a
driven non-equilibrium state (by the subduction plate),
so that in principle we cannot use traditional equilibrium
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Fig. 1. Map of the central zone of Chile, with the seismic
events with magnitudes greater than Mw = 1.6.

theory, and must resort to the analysis described in this
manuscript. It is important to note that to have a non-
equilibrium system at criticality; it is insufficient to show
that we have power law distributions for size or duration,
but that they should be related in a manner to satisfy the
critical scaling relation.

In this paper we wish to examine the extent to which
the avalanches of nonequilibrium statistical physics, men-
tioned above, can be related to bursts of seismic activity
in the crust and mantle of the earth. In pursuit of this ob-
jective, we here demonstrate the time-series based version
of spreading exponent studies [30] where bursts of seismic
activity are treated as physical indicators of spatiotempo-
ral spreading dynamics.

3 Data and analysis method

The data used for this paper was measured by the Chilean
Servicio Sismológico Nacional (National Seismologic
Service). They were recorded from October 2000 to
January 2007 and comprise in excess of 17 000 seismic
events of magnitude above 1.6. All data were recorded
between longitudes 69.5◦ W and 73.9◦ W and latitudes
between 29.0◦ S and 35.5◦ S. The data fall within a volume
having dimensions Lz = 300 km in depth, LNS = 730 km
long in the North-South direction, and LEW = 500 km
in the East-West direction. The zone studied is showed in
Figure 1.

From these data we have the hypocenter (the 3D point
of the seismic event), the time of seismicity, and the
Richter or local magnitude ML [31], which is directly re-
lated to the energy release and to the amplitude of the
seismic event:

ML = log10(A) − log10(A0)δ0.

In this equation δ0 is the distance between the observation
location and epicenter, A is the amplitude of the S-waves
measured 600 km from the epicenter, and A0 is a standard

Fig. 2. Frequency-magnitude distribution for our earthquake
catalogue. The red curve fits the cumulative distribution func-
tion to the point of maximum curvature.

value, depending on the temporal interval between P - and
S-wave observation at the recording station.

We include a preliminary completeness analysis of our
dataset. Following [32] we define the completeness mag-
nitude Mc as the lowest magnitude at which all of the
earthquakes in a space-time volume are detected. The
magnitude where the lower end of the distribution of fre-
quency versus magnitude leaves the Gutenberg-Richter
law is taken as an estimate of Mc. We use the method
of [33] in which Mc is estimated by fitting a Gutenberg-
Richter model to the observed frequency-magnitude dis-
tribution. The expected relationship can be written as:

log10 N = a − b(M − Mc).

Here N is the number of events with a magnitude larger
than or equal to M , a is the earthquake productivity, and
b is related to the relative distribution of large and small
earthquakes [34].

The fit is computed using a maximum curvature
method as explained by [35]. In Figure 2 we show the
results of this preliminary analysis.

Our best fit yields Mc = 3.4, b = 1.13 ± 0.01, and
a =7.75.

Since we wish to examine energy dissipation, the earth-
quake magnitudes must be convolved to seismic radiated
energy:

E = 104.8+1.5ML ,

where E is the radiated energy in joules [36]. Radiated en-
ergy is a dynamic measure of earthquake size that depends
on the details of the rupture process. For instance, when
there is slow slip on a fault, perhaps only a small amount
of energy is radiated, yet this may have the same Richter
magnitude in a felt earthquake which actually radiates far
more energy.

Figure 3 shows the raw, unsmoothed radiated energy
data. Note that these data, covering over seven orders
of magnitude in energy, show evidence of strong inter-
mittency, and have a multifractal nature [37–39]. Given
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Fig. 3. Radiated energy for 2001 through 2007, with a strong
intermittency.

that earthquake magnitudes, from which the radiated en-
ergy curve is calculated, are often like point processes in
a given geographic region, there may be periods where
radiated energy is below the measurement threshold so
that there are only apparent intermittent spikes in en-
ergy above a zero threshold. Since the original data set
considers seismic magnitudes only above 1.6, any lower
magnitude tremors contribute zero to energy budgets as
they are effectively ignored. In addition, each earthquake
magnitude is given at a particular instant, whereas in re-
ality the radiated energy profile is spread out, rather than
a delta function. Since this is unrealistic, and since the
effect is to have long gaps where there is no radiated en-
ergy reflected in our raw data, we convolve the time series
of earthquake magnitudes to create a modified radiated
energy profile.

First we produce a time series of radiated energy on a
uniform grid. This mitigates the effects of long gaps with
no seismic activity. Next we smooth the radiated energy
data using a running average filter. Smoothing the radi-
ated energy data using a running average filter avoids the
problem of the most energetic seismic events destroying
information contained in lower energy events found in an
averaging box. Specifically we use a second degree poly-
nomial model to perform a local regression with weighted
linear least-squares. This reduces the impulsive nature of
the raw data by flattening the raw energy profile.

We create the final cumulative radiated energy time se-
ries by summing the energy within a box of length 1 week,
then moving the box through the data with a step size of
1 min.

We selected this temporal cadence and box size be-
cause the minimum gap between recorded seismic events
is on the order of a minute and the maximum time interval
between seismic activity above the minimum threshold is
2.2 days. We experimented to see the results of our anal-
ysis with different box sizes, and found little difference
within the experimental uncertainty.

The smoothing reduces the dominance of local seismic
events that are orders above the average, and spread the

Fig. 4. Radiated energy profile.

Fig. 5. Comparison of the raw point process radiated energy
profile for March through June 2002, showing large intermit-
tency, and the smoothed total radiated energy. The horizontal
line shows the 50th percentile for the full data set shown in
Figure 3.

energy of these events. This can be seen in Figure 4, which
shows energy data. These data are less intermittent than
the raw data of Figure 3. Figure 5 shows a comparison
of the raw radiated energy profile and the original point
process nature of the raw data. The raw radiated energy
profile is highly intermittent compared to the modified
radiated energy.

Note from this figure how the modified radiated en-
ergy profile smooths the data but retains the continued
effect of the dominant seismic event within a given box
which, though still evident, no longer makes irrelevant the
other seismic events within any given box. For instance,
see around April 1, 2002, May 1, 2002, and just prior to
June 1, 2002.

Now that we possess a reasonable measure of cumula-
tive energy radiation, we can assess the extent of the seis-
mic behavior that reflects critical behavior. If the energy
perturbations are near a critical state, it should possible to
recover some, perhaps all, power-law relations introduced
in the previous section.
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To do so we follow the methodology of [30] and de-
compose the radiated energy data into series of activity
bursts. We define an activity burst (AB) to be a transient
increase of the seismic radiated energy, from the time se-
ries shown in Figures 4 and 5. Such an AB is flagged if the
data exceed a specified constant threshold. We define the
waiting-time as the time interval between two such bursts
of activity. If a system is SOC-like there can be a broad
range of thresholds where gradients of the power-law por-
tion of the burst lifetime distribution are constant [40].

We define as the lifetime T for each AB the temporal
interval during which the data exceeds the threshold. In
addition we compute the AB size, S =

∫
{T}(Erad(t)−L)dt,

where L is the selected threshold. Erad is the cumulative
radiated energy data, reflecting the dissipation of stress
within Earth’s crust.

We follow definitions of S and T that match energy-
based estimates of sizes and lifetimes of critical avalanches
in “running, continuously driven” SOC models [41]. This
is relevant, as the time series of individual earthquakes
does not contain specific information on either size or du-
ration of a given event (which can be thought of as a
single avalanche), and thus another criterion needs to be
established to estimate both S and T . Regarding the size
estimate, in some sandpile models the number N of active
elements is commonly proportional to the energy dissi-
pated, thus we use an analogous reasoning for the cumu-
lative radiated seismic energy to define an N∗ scaling in
much the same manner as N ; N∗ = 〈Erad(t1 + τ) − L〉.
Thus, the size of the event is estimated from the energy
released.

The estimation of the duration of the avalanche is less
straightforward. One reason is the fact that the earth-
quake time series does not have information on the dura-
tion of the earthquakes. Another reason is that a single
seism can trigger others, making the very definition of
“event” non trivial. But, as suggested in [41], a state with
interacting avalanches can be thought of as the aftershock
regime following a main shock. This is what the smoothing
process described above intends to represent. Rather than
considering an earthquake as a single event, by smooth-
ing the time series we can define an event as a number of
seisms. For seisms with a large separation in time, this is
equivalent to considering each event as a single avalanche,
as expected. But if many seisms are very close in time
(such as in aftershocks or seismic swarms), the smoothing
process allows them to be regarded as a single event of en-
ergy release. Hence, the notion of the duration of an event
becomes clear when considering it as a sequence of seisms.
Once the smoothed events are found, the prospect an AB
lasts beyond a certain time interval is termed the survival
probability, PS(τ) = n(τ)/m, where n is the number of
ABs with T > τ and m is the total number of ABs.

4 Results and discussion

The top panel of Figure 6 shows plots of N∗(τ) for cu-
mulative radiated seismic energy and its bottom panel
shows the associated plots for the survival probabilities

Fig. 6. Top panel: N∗ as a function of lifetime τ . Bottom
panel: survival probability PS as a function of lifetime τ .

PS(τ). In these figures we show results for the threshold
of L = 1.39 × 1012 J which corresponds to the 50th per-
centile for our data signal; this corresponds to values sig-
nificantly above the associated completeness magnitude
determined previously. We find simultaneous power-law
fits over a broad range of thresholds L for cumulative ra-
diated seismic energy, up to the 90th percentile. There
is some divergence for the power law fits for the small-
est lifetimes, and a strong break in the average number
of activity bursts past periods of 3 days. We therefore at-
tempt to fit a power law over the interval τ < 3.5 days.
Fitting of power laws is difficult and an extensive litera-
ture demonstrates a preference for maximum-likelihood
methods [42], which we follow as well. We use the ro-
bust Levenberg-Marquardt algorithm for nonlinear least
squares [43], to estimate best-fit critical scaling exponents,
η = 1.11 ± 0.01 and δ = 0.079 ± 0.001.

In the event they exist it is possible to relate theo-
retical dynamic critical exponents with avalanche scaling
exponents. The latter are estimated via probability distri-
butions of avalanche sizes and lifetimes. We fit avalanche
and lifetime distributions by power laws with exponen-
tial cutoffs, namely PS ∝ S−tS exp(−S/SC) and P (T ) ∝
T−tT exp(−T/TC). The exponential cutoffs account for
deviation from self-similar statistics at the largest scales
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Fig. 7. Avalanche probability distributions P (S) (grey dia-
monds) and P (T ) (black triangles) for the threshold of L =
1.39 × 1012 J.

Table 1. Avalanche scaling exponents from the lifetime and
avalanche size probability distributions for various AB thresh-
olds.

Threshold tS tT

90 (6.93 × 1012 J) 1.00 ± 0.04 0.81 ± 0.08

75 (3.03 × 1012 J) 0.92 ± 0.02 0.82 ± 0.06

50 (1.39 × 1012 J) 0.96 ± 0.02 0.81 ± 0.05

25 (0.78 × 1012 J) 1.00 ± 0.03 0.94 ± 0.05

10 (0.45 × 1012 J) 0.99 ± 0.03 0.93 ± 0.04

resulting from the paucity of such seismic events. In Fig-
ure 7 we plot these distributions for the threshold at the
50th percentile.

To demonstrate the robustness of the power law expo-
nents, irrespective of L-threshold used, Table 1 presents
the fitting parameters calculated from the probability dis-
tributions for multiple thresholds. There is reasonable
agreement except for at and below the 25th percentile
for tT . This deviation may exist because there are sim-
ply insufficient avalanches at this threshold to measure
reasonable statistics.

Consider now the overall earthquake radiated energy
dissipation. Our results present the opportunity to con-
trast and compare the relative importance of small and
large ABs. Given the scaling ansatz for p(S) previously
introduced the rate of total energy release by the ensem-
ble of bursts scales like:

Etot ∼
∫ SC

S0

Sp(S)dS ∼ S2−tS

2 − tS

∣
∣
∣
∣

SC

S0

, tS �= 2, (1)

where S0 � SC is the tiniest burst size. Large bursts dic-
tate the release of energy if tS < 2, and small ABs domi-
nate the energetics when tS > 2. We find tS much below 2,
which suggests that large ABs are most important in the
dissipation of earthquake total energy.

Let us now attempt to relate the avalanche exponents
tS and tT . First note that conservation of probability

Fig. 8. Burst size S as a function of lifetime T .

gives p(S)dS ∼ p(T )dT and then apply the scaling law
S ∼ T 1+δ+η which was derived previously. Then, over the
power-law regions, we find tT = (1 + δ + η)(tS − 1) + 1.
Because δ is the survival probability exponent, it should
relate directly to the cumulative avalanche lifetime prob-
ability distribution; it equals the power-law slope tT − 1.
This produces tT = (η[tS − 1] + 1) /(2 − tS). The scal-
ing relation we find matches the analysis of spreading
and avalanche exponents first introduced by [25]. They
found that tS = (η + 2δ + 1)/(η + δ + 1). This expres-
sion contracts to our formula following the substitution
δ = tT − 1. The theoretical value then, calculated from
N∗(τ), is tT = 1.08± 0.01 which compares favourably
with the values calculated from p(T ), viz. tT = 1.02± 0.09.

The relation tS = (η + 2δ + 1)/(η + δ + 1) works fairly
well in the case of the earthquake radiated energy for the
area of Chile we have examined: the predicted value is
tS = 1.03 ± 0.01, which is close to the value measured
directly via p(S), viz. tS = 1.00± 0.05 (the two estimates
are statistically indistinguishable at the confidence test
level p = 0.95).

Figure 8 shows avalanche size versus lifetime. The
largest earthquake seisms broaden the range of sizes for
the largest lifetimes. The best-fit critical exponent cal-
culated from the local slope was 2.04 ± 0.16. In critical
avalanching systems, the lifetimes and sizes are related
by S ∝ T 1+η+δ. Our results show the strong connec-
tion between the experimental theoretical value between
avalanche lifetime and size (1 + η + δ) = 2.29 ± 0.02.

In Table 2 we summarize the results, giving scaling
exponents measured directly from power laws produced by
the seismic processes, and comparing these to theoretical
predictions calculated from η and δ values. These latter
values we derive from N∗(τ), the average number of active
avalanche sites, and the survival probabilities PS(τ).

It is interesting to observe the match between mea-
sured and theoretical values of the scaling exponents tS
and tT as shown in Table 2, in view of the assumptions
involved in the definition of activity burst as described
in Section 3. In reference [30] the same method was ap-
plied but unlike the earthquake series, the time series used
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Table 2. Compilation of the theoretical values for scaling ex-
ponents, calculated from η and δ, and the equivalent experi-
mental measurements from actual distributions.

Exponent Measurement Theory

η 1.11 ± 0.01 –

δ 0.079 ± 0.001 –

tS 1.00 ± 0.05 1.03 ± 0.01

tT 1.02 ± 0.09 1.08 ± 0.01

η + δ + 1 2.04 ± 0.16 2.19 ± 0.02

in [30] is a continuous record of space science activity in-
dex data, and thus the duration of an event has a direct
meaning. Here, only data for individual seisms are avail-
able. However, seismic energy is not necessarily released in
single events, such as when aftershocks or seismic swarms
occur, and thus activity bursts are defined in terms of a
longer time scale by means of a smoothing process, which
allows several, close-in-time events, to contribute to a sin-
gle burst. There are several ways in which the process
could be improved (tuning the window size for smooth-
ing, or the threshold to define a burst), so we regard this
approach as a first approximation to the problem, but it
is encouraging that our method yields results consistent
with SOC behavior for seismicity, beyond the well known
Omori and Gutenberg-Richter laws.

5 Conclusion

We have found two different echelons of results. The first
is observational evidence of broad-range scaling in earth-
quake radiated energy dynamics between October 2000
and January 2007, for latitudes 29.0◦ S to 35.5◦ S, and
between longitudes 69.5◦ W and 73.9◦ W.

Our analysis adds a helpful piece of information to
existing portraits of earthquake energy dissipation by un-
covering its multiscale nonlinearity. We have shown the
absence of any time scales where the earthquake radi-
ated energy response is linear. Our results go beyond stan-
dard power-law behaviors like the Omori and Gutenburg-
Richter laws, and may serve as an additional validation
tool for models of earthquake energy dissipation in terms
of their ability to represent correctly effects of cross-scale
coupling [44].

The second level of results, so far less concrete, shows
how earthquake energy dissipation, and attendant multi-
scale dynamics, results from cooperative behavior ruled
by a specific statistical principle. We associate such dy-
namical behavior with nonlinear interactions of spatially
extended degrees of freedom (e.g. multiscale fracture and
stress regimes in rock) that maintain the system in the re-
gion of a global critical point. Such an interpretation, while
supported by the achieved statistics, is far from final. On
the basis of simulation results for nonlinear critical mod-
els [45], our evidence points to the idea that earthquake
radiated energy comes from a geophysical mechanism that
connects a one-dimensional mass and/or energy transport
realized in a medium of two-dimensions. This matches ex-

pectations for the fracture process, or even dynamics of
large-scale fault slippage [46,47].

In summary, temporal development of bursts of radi-
ated earthquake energy follows statistical forms matching
predictions from theories of nonequilibrium phase transi-
tions. Our results provide direct evidence for dynamical
and statistical self-similarity in earthquake energy dissi-
pation and signal its possible critical behavior. The exis-
tence of a dynamic critical power-law exponent of burst
size distribution suggests that the main energy dissipation
is associated with large ABs such as major quakes. Smaller
activations contribute less despite their larger relative oc-
currence. This is consistent with the well-known energy
dissipation laws. Based on the tS value obtained, the rate
of total seismic energy radiated scales as S−tS+1

C ∼ S0.9
C

meaning it is governed by the upper cutoff scale, which
diverges in the limit SC → ∞. However, we find that we
can describe the P (S) distribution by a single power-law
exponent. This suggests that both small- and large-scale
ABs can be a indicator of emergent behavior allied with
intensive cross-scale coupling of multiple intrinsic dissipa-
tion mechanisms.

These results begin to paint a coherent portrait of crit-
ical fluctuations in earthquakes. Of course, the mere exis-
tence of uncomplicated algebraic relations between multi-
ple kinds of scaling exponents is not a definitive indication
of critical systems. Scaling relations arise for any fractal
stochastic process. But the form of the scaling can vary
quite a bit depending on the underlying physics. For exam-
ple, in fractional Brownian motion (fBm), multifractional
Brownian motion (mfBm) [48], or other processes [49].
Peng et al. [50] used a time-varying threshold in fBm to
determine that tS = 2/(1 − H) and tT = 2 − H , and
so tT = 3 − (2/tS). This implies that tT can be defined
uniquely via the value of the exponent tS irrespective of
the Hurst exponent H which describes the time series cor-
relation structure. Therefore, fBm scaling is quite different
from that found in some critical avalanching systems, and
in the dynamics of earthquake radiated energy.

We do not wish to overstate the consistency of the
earthquake energy dissipation dynamics with the scaling
relations predicted for a specific class of critical mod-
els with absorbing configurations (see e.g. [24,25,45]).
Hinrichsen’s review [51] notes the existence of these ab-
sorbing states. He calls these, “a highly idealized require-
ment that is difficult to realize experimentally”. But we
note that it has recently been achieved [52,53]. It remains
open whether it is possible to treat earthquake dynamical
states as absorbing configurations. Our analysis of seismic
dynamic critical scaling exponents supports the confirma-
tory reply.
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19. M. Domı́nguez, V. Muñoz, J.A. Valdivia, J. Geophys. Res.
119, 3585 (2014)
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Rev. E 80, 051116 (2009)
53. H. Hinrichsen, Physics 2, 96 (2009)

http://www.epj.org

	Introduction
	Statistical theory
	Data and analysis method
	Results and discussion
	Conclusion
	Author contribution statement
	References

