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Abstract We present a scalable and unsupervised approach
for content-based retrieval on 3Dmodel collections. Our goal
is to represent a 3D shape as a set of discriminative local
features, which is important to maintain robustness against
deformations such as non-rigid transformations and partial
data. However, this representation brings up the problem on
how to compare two 3D models represented by feature sets.
For solving this problem, we apply the signature quadratic
form distance (SQFD), which is suitable for comparing fea-
ture sets. Using SQFD, thematching between two 3D objects
involves only their representations, so it is easy to add new
models to the collection. A key characteristic of the feature
signatures, required by the SQFD, is that the final object rep-
resentation can be easily obtained in a unsupervised manner.
Additionally, as the SQFD is an expensive distance function,
to make the system scalable we present a novel technique
to reduce the amount of features by detecting clusters of
key points on a 3D model. Thus, with smaller feature sets,
the distance calculation is more efficient. Our experiments
on a large-scale dataset show that our proposed matching
algorithm not only performs efficiently, but also its effec-
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tiveness is better than state-of-the-art matching algorithms
for 3D models.
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1 Introduction

Three-dimensional data have become an important resource
for many applications in medicine, engineering, entertain-
ment, archeology, and so on. This is because this kind of
information provides interesting characteristics which allow
us to represent real objects in a more precise manner than
other media. Similarly, the emergence of large and pub-
licly available 3D collections such as Google 3DWarehouse
brings up the need of storing and manipulating this informa-
tion in an effective way.

A key aspect in multimedia collections is the content-
based search. It aims at using the multimedia information
itself to determine the similarity between two objects. Since
associated meta-data is not always available, this search-
ing approach is suitable. Moreover, some effective methods
have been presented in the context of image searching, for
instance. However, these methods are not directly adaptable
to other media such as 3D data because it has its own char-
acteristics and analysis tools.

There are several important issues involving content-
based search. First, the goal is to provide good effectiveness
when a query is given. That is, one wants to retrieve a ranked
list of objects from the collection and expects to have sim-
ilar objects on the first rankings. Second, the search time
should be small enough to ensure a practical use of the col-
lection. Finally, the evolution of the retrieval system in time
is also important. A retrieval system should be scalable and
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dynamic. These two aspects imply that the system should
support a constant growth. This sounds logical, since the
amount of multimedia information is growing rapidly.

We are interested in content-based retrieval of 3D shape
collections. Our work consists in using local information
from shapes to describe them. Thus, unlike a global approach
where a shape corresponds to a single feature descriptor, a 3D
shape is represented by a set of local features. Local features
extracted from shapes allow us to deal with several problems
such as deformable transformations, for instance. However,
it also brings up the problem on how to effectively compare
two 3D models represented as a set of local features. So far,
manymethods have been proposed to address thematching of
3D shapes using local information. Most of them have been
proposed taking into account only the effectiveness, leaving
out other key aspects such as efficiency and scalability.

In this paper, we present a novel method to represent a
3D shape based on local features. Our method finds clusters
of key points which correspond to surface regions with an
outstanding local structure. Thus, it is possible to reduce the
number of features to represent a shape and, therefore, the
subsequent process can be efficient. In addition, we apply the
signature quadratic form distance (SQFD) [1] to compare
two sets of features. This distance has proven effective in
the image search domain [2], and we will show that it can
enhance 3D model retrieval.

In our opinion, there are several reasons why the SQFD is
suitable for our purposes. First, it is a flexible way to compare
two multimedia objects represented by feature sets. Coupled
with it, if we are able to reduce the size of the representations,
we can also get efficiency. Second, the distance is context
free as it involves just the feature signatures of the models
being compared, not the rest of the database. So, it is easy
to add new models into the collection because we just need
to extract their representations and store them. This behav-
ior would allow us to build a scalable system for dynamic
collections. Third, as SQFD treats the object representations
as a black-box feature sets, it is easy to redesign or adjust
the entire model without the need of reinventing the mech-
anism of assessing similarity. Hence, SQFD is a universal
distance for comparing object representations based on local
features.

The contribution of this paper is threefold. First, we pro-
pose the use of key points on meshes to make the local
features more discriminative. This step enables the reduc-
tion of the amount of information used in the matching. In
addition, we present a novel method to detect clusters of key
points on 3D meshes. Thus, each object will be represented
by a set of features extracted from regions. Second, we apply
the signature quadratic form distance to compare two mod-
els represented by a set of features. Finally, we evaluate our
approach and compare it with techniques from the state of the
art. It is worth mentioning that we do not include learning-

based approaches in our comparison because we focus our
attention in unsupervised retrieval techniques.

2 Related work

Three-dimensional shape retrieval has been an active research
area in recent times. As a result, many approaches have been
proposed from several perspectives. In general, techniques
are divided into global and local feature methods. On the one
hand, global methods rely on extracting information regard-
ing the whole shape such as depth views, shape histograms,
and so on. Therefore, these representations (possibly after
some numerical transformation) can be compared using a
distance function. On the other hand, local feature methods
consist of describing local portions of a 3D mesh, so the
comparison is done between feature sets. In this section, we
present a brief review about shape retrieval, with emphasis
on methods that use local features.

Initially, the proposals were intended to define a similarity
model based on the entire shape. Bustos et al. [13] defined
a similarity model where 3D objects were represented as
descriptors in high-dimensional spaces. Thus, the storage and
manipulation of these descriptors could be efficiently han-
dled with indexing structures. In addition, a comprehensive
comparison of several techniques resulted in that techniques
based on depth views were the most effective. A weak aspect
of the global methods is that they do not support non-rigid
transformations and partial retrieval. In the rest of this sec-
tion, we focus on techniques which use local features for
shape retrieval.

When dealing with local features, the problem is to
find a compact representation for the object using a set of
descriptors. Therefore, the efforts have been concentrated
in proposing models for aggregation of local descriptors.
Table 1 presents a list of state-of-the-art techniques that used
local descriptors and the aggregation approach.

The bag-of-feature approach (BoF) is one of the most
known methods in multimedia retrieval. The method can
be divided into two steps: computation of visual words and
quantization. The first step computes a set of representative
descriptors through clustering (commonly k-means). Sub-
sequently, the quantization consists of assigning the local
descriptors of a shape to their most similar visual words. The
output is a histogram that represents a distribution of the local
features with respect to the visual words. Bronstein et al. [3]
proposed the Shape Google method using the idea of BoF.
The first step is the computation of heat kernel signatures
or scale-invariant heat kernel signatures for each vertex in
a 3D shape. Then, the authors proposed to applying a soft-
quantization to get the shape descriptors. In addition, they
proposed a spatially sensitive bag of features to take the spa-
tial relations between descriptors into account in the final
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Table 1 Techniques that use
aggregation of local descriptors
for 3D shape retrieval

Method Feature Aggregation

Shape Google [3] HKS based BoF

Weighted Heat diffusion [4] HKS based BoF

Covariance-based retrieval [5] Covariance mat. BoF

Two layer coding [6] View based VLAD

Fisher encoding [7] dFPFH Fisher encoding

Supervised sparse coding [8] HKS based Sparse coding

Locally constrained sparse coding [9] HKS based Sparse coding

Deep Shape Descriptor [10] HKS based Deep learning

Multi-modal feature fusion[11] HKS based Deep learning

Deep Shape [12] HKS based Deep learning

representation. Similarly, Abdelrahman et al. [4] proposed a
BoF approach to perform the retrieval of 3D shapes consider-
ing not only the geometric information but also the textures.
The method focuses on a new formulation of the Heat Ker-
nel Signatures to include the color as a weight in edges and
points on the surface. Likewise, Tabia et al. [5] proposed a
BoF model to work on covariance matrices. The idea behind
this technique is the use of simple local features which can
be aggregated in covariance matrices in a first level. Then, a
set of covariance matrices is considered as local descriptions
and a subsequent BoF can, therefore, be applied. In addition
to regular BoF, new variations such as VLAD [6] or Fisher
encoding [7] have been applied for 3D objects retrieval.

The sparse coding is also a method to aggregate local
descriptors. In this case, the approach is able to work in a
supervised way for finding a good set of visual words. The
sparse coding aims at finding a set of bases and linear coef-
ficients that represents the input data. The term sparse is due
to requirement of finding a few coefficients to represent a
given descriptor. Litman et al. [8] presented a supervised
sparse coding method to learn the shape dictionary based on
Heat Kernel Signatures. Once the dictionary was computed,
the sparse codes for every local descriptor were calculated
using a modified version of the classical regularized pursuit
problem. The final quantization was performed by multiply-
ing the matrix of sparse codes with a vector of area-based
weights per vertex. Similarly, Liu et al. [9] suggested to apply
sparse coding in a patch-level instead of a vertex level. The
first step is to segment the 3D shape and describe each seg-
ment with the conformal geometry signature, shape diameter
function, average geodesic distance and the scale-invariant
Heat Kernel Signature. The authors adopted a locally con-
strained approach to sparse coding in which the similarity
between the descriptor and the dictionary atom is involved.
This approach enforces the smoothness of the sparse codes
in the feature space.

Very recently, deep learning has been used for retrieval as
well. The idea behind deep learning is the definition of struc-

tured learning models that are able to abstract the low-level
input data. In this way, one can find high-level representa-
tions for the low-level data. It can be somehow considered
as an aggregation function which can be applied in local fea-
tures to make the representation more compact. Bu et al. [11]
developed an algorithm that extracts several features such as
scale-invariantHeatKernel Signatures, average geodesic dis-
tance, and view-based SIFT descriptors obtained from depth
images. Subsequently, a deep neural network is trained for
every type of feature. The last layer’s output is considered as
a feature. The final representation is the concatenated output
for each deep neural network. Similarly, Xie et al. [12] pro-
posed an auto-encoder neural network to learn a high-level
representation of multi-scale Heat Kernel Signatures. The
authors suggested creating a neural network for each scale
and the final descriptor is the concatenation of the activation
values of the hidden layers. Likewise, Fang et al. [10] trained
a many-to-one encoder neural network which forces input
from the same class to produce a unique target value. The
input for the neural network are the Eigen-shape descriptor
and Fisher-shape descriptor, obtained by applying the PCA
and Fisher analysis over the distribution of heat kernel sig-
natures in several scales.

The main disadvantage of sparse coding and deep learn-
ing techniques is the requirement of having labeled data for
the training phase. Although there are some efforts for build-
ing labeled large-scale 3D datasets (such as ShapeNet [14]
for example), there are still problems that require attention
such as unbalanced classes, intra-class variability and so
on. These problems make difficult the definition of train-
ing and test datasets and, therefore, it prevents the effective
use of learning techniques for 3D retrieval in the general
case. In this paper, we do not compare our technique against
learning-based approaches because we want to provide a fair
comparison between unsupervised methods.

From the local features perspective, it is clear that heat
kernel signatures and variations are the common choice for
current retrieval approaches. This descriptor has desirable
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properties, in particular for the problem of non-rigid shape
retrieval. In this paper, we show that the SQFD distance is an
effective complement for the aggregation of HKS descrip-
tors.

3 Background

In this section, we describe the necessary background for
the rest of the paper. Briefly, Sect. 3.1 describes the heat
kernel signature (HKS) [15], which is a useful analysis and
description tool for 3Dmeshes. In addition, Sect. 3.2 presents
the signature quadratic form distance (SQFD).

In addition, at this point it is necessary to clarify some
terms. Both methods (HKS and SQFD) make use of the term
signature in different meanings. In the HKS, signature is a
descriptor for a vertex on the mesh. Differently, in the SQFD,
signature is a set of features belonging to an object. To disam-
biguate them,wewill refer explicitly as heat kernel signatures
and feature signatures, respectively.

3.1 Heat kernel signatures

The heat diffusion process over a compact manifold S, pos-
sibly with boundary, is governed by the heat equation:

�Su(x, t) = −∂u(x, t)

∂t
(1)

where �S is the Laplace–Beltrami operator of S and u(., t)
is the heat distribution over S in time t .

The fundamental solution of Eq. 1 is Kt (x, y) called the
heat kernel. This is a solution with a point heat source in
x and can be considered as the amount of heat transferred
from x to y at time t with a heat source at x . For compact
manifolds, the heat kernel can be expressed using the eigen-
values and eigenvectors of the Laplace–Beltrami operator as
follows:

Kt (x, y) =
∞∑

i=0

exp(−λi t)vi(x)vi(y) (2)

whereλi is the i th eigenvalue and vi(·) is the i th eigenvector’s
entry corresponding to a given point.

Sun et al. [15] formally proved that the heat kernel is
an isometric invariant, informative, multi-scale, and stable
against perturbations on the surface. In addition, by restrict-
ing the heat kernel to the temporal domain and fixing the
spatial variables, we can obtain a representation for each
point on the manifold by computing Kt (x, x). This expres-
sion computes the heat distribution in time t for each point
in the surface. Figure 1 depicts an example on how the

Fig. 1 Heat distribution over time. The colors go from blue (low
values) to red (high values). The heat values on every point change
according to the time parameter in Kt (x, x)

Fig. 2 Heat Kernel Signatures in three different points. Note that the
heat distribution over time corresponds to the behavior shown in Fig. 1

heat distribution changes on every point over time. In prac-
tice, the heat kernel signature of a point x ∈ S is an
n-dimensional descriptor vector with each bin correspond-
ing to some value of t : hks(x) = (hks1(x), . . . , hksn(x))
where hksi (x) = Kti (x, x) (see Fig. 2).

To numerically compute the heat kernel signatures over
a mesh, we need to calculate the discrete Laplace–Beltrami
operator. In this work, we used the discretization proposed
by Belkin et al. [16]. This method computes the operator
and delivers a symmetric sparse matrix M and a diagonal
matrix A with area values associated with each vertex. Both
matrices have N × N elements, where N is the number of
vertices on themesh. Subsequently, we need to solve the gen-
eralized eigenvalue problem: Mv = λAv. Furthermore, to
compute the heat kernel signatures, we only need to approx-
imate them with a few eigenvalues and eigenvectors. So
we can solve the eigenproblem efficiently as the problem is
sparse.

A scale-invariant variation ofHKSwas proposed byBron-
stein andKokkinos in [17]. This variation, hereafter SI-HKS,
considers a series of transformations of the HKS function to
remove the dependency to scale. The coefficients of low fre-
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quency of the final Fourier transformation can be considered
as the new descriptor. In all our experiments, we only con-
sider six coefficients.

3.2 Feature signatures and signature quadratic form
distance

Generally, histogram-based descriptors aggregating local
features to vectors hX , hY ∈ Rn and the Euclidean dis-
tance are frequently used to model a similarity between two
objects X,Y . To model also correlations between histogram
bins on homogeneous domains, the Euclidean distance can
be extended to the quadratic form distance

QFDA(hX , hY ) =
√

(hX − hY )A(hX − hY )T , (3)

where A is an n×n positive-definite correlation matrix [18].
Since feature histograms are limited with a fixed number of
dimensions for all modeled objects, more flexible represen-
tations can be considered to adaptively fit to the complexity
of each object. However, the adaptability comes at the cost
of mostly incompatible representations for above-mentioned
distances. As pointed out by Beecks et al. [19], the incom-
patibility can be overcome by the signature quadratic form
distance adopting the correlation concept from the quadratic
form distance.

In our work, feature signatures are used to flexibly aggre-
gate heat kernel-based local features detected on a 3D shape.
Let object P be represented by a feature set F = { fi }, where
fi ∈ FS. FS is a feature space of an arbitrary dimension
(in our work we use Rn), and let us suppose that |F | = K .
Furthermore, we need to suppose the existence of a local
clustering of F : C1, . . . ,Cn . The feature signature SP is
defined as a set of tuples FS × R+ as follows:

SP =
{
(cPi , wP

i ), i = 1, . . . , n
}

(4)

where cPi =
∑

f ∈Ci f

|Ci | andwP
i = |Ci |

K represent the centroid of

i th cluster and a weight, respectively. Note that the size of SP

depends on the local partitioning and it is variable fromobject
to object. Thus, each feature signature may have a different
number of tuples according to the clustering process.

Given two feature signatures SP = {(cPi , wP
i ), i =

1, . . . , n} and SQ = {(cQj , w
Q
j ), j = 1, . . . ,m} and a

positive-semidefinite similarity function sim : FS × FS →
R, the signature quadratic form distance between SP and SQ

is defined as

SQFD(SP , SQ) =
√

(wP | − wQ) · Asim · (wP | − wQ)T

(5)

Fig. 3 Similarity matrix A is composed of four blocks. The intra-
dependence blocks (top left and right bottom) contain the similarity
between centroids within the signatures SP and SQ , respectively. The
inter-dependence blocks (top right and left bottom) contain the similar-
ity between centroids in SP and SQ

where the notation (wA|wB) denotes the concatenation of
weight vectors. In addition, Asim ∈ R(n+m)×(n+m) is the
similarity matrix between centroids of SP and SQ , defined
as

ai, j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sim(cPi , cPj ) if i ≤ n and j ≤ n

sim(cQi−n, c
P
j ) if i > n and j ≤ n

sim(cPi , cQj−n) if i ≤ n and j > n

sim(cQi−n, c
Q
j−n) if i > n and j > n

(6)

Originally, Beecks et al. proposed also a coincidence and
a quadratic form model for the signature quadratic form
distance that are equivalent to the concatenation model.
In the concatenation model, vector (wP | − wQ) corre-
sponds to the difference of vectors w′P , w′Q ∈ R(n+m),
where w′P = (wP

1 , . . . , wP
n , 0n+1, . . . , 0n+m) and w′Q =

(01, . . . , 0n, w
Q
n+1, . . . , w

Q
n+m). The similarity matrix Asim

(see Fig. 3) models the correlation between particular dimen-
sions of vectors w′P and w′Q . Note that the correlation coef-
ficients ai, j help to match perceptually similar dimensions
i, j on homogeneous domains. The heat kernel signatures
are descriptions of the heat distribution on the surface of 3D
objects, where two similar objects have similar heat distrib-
utions. Therefore, it is meaningful to model the correlation
between dimensions as a similarity of two centroids corre-
sponding to heat kernel signatures. In our work, we use the
Gaussian similarity function

simg(ci , c j ) = exp(−αd2(ci , c j )), (7)

where d : FS × FS → R+
0 is a metric ground distance

function (e.g., the Euclidean distance).
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4 3D shape retrieval using local features

We propose three different approaches based on local fea-
tures and the signature quadratic form distance for 3D shape
retrieval. The three approaches heavily rely on a cluster-
ing process to determine the feature signatures. We use the
clustering algorithm proposed by Leow and Li [20]. This
algorithm uses a intra-cluster (β) and inter-cluster (δ) thresh-
old as well as the minimum number of elements per cluster
(Nm).

Briefly, the clustering method performs several iterations
on the input points. In each iteration, the algorithm looks for
groups of points whose distances are below the intra-cluster
threshold β. If a point is beyond the inter-cluster threshold
δ from any of the current clusters, the algorithm creates a
new cluster and starts a new iteration. The algorithm con-
verges after a number of iterations, when the clusters do not
change anymore. Note that the clustering algorithm is adap-
tive because the final number of clusters depends only on the
distribution of the points in the space. This flexibility is a key
ingredient for the representation power of our method, and it
is the main reason of choosing the SQFD distance to assess
the similarity.

4.1 First approach: feature signatures on all vertices

In this approach, we aim at partitioning the whole feature
space of a 3D object to define the feature signatures. Let S be
a 3D model with n vertices. We represent S as a set of heat
kernel signatures computed for each vertex on the mesh. We
call FS(S) to this representation and it is formally defined as:

FS(S) =
{

hks(vi )

‖hks(vi )‖ |vi ∈ S, i = 1, . . . , n

}
(8)

The normalization of the heat kernel signatures help us to
properly define the intra-cluster and inter-cluster thresholds
for the clustering.

Now, we can apply the clustering algorithm over FS(S).
The clustering computes a partitioning not necessarily com-
plete, as there are pointswhich do not belong to any cluster. In
this respect, each remaining heat kernel signature is assigned
to its nearest cluster. Thus, now we have a complete and dis-
joint partitioning of the feature space. Finally, we represent
S as suggested in Eq. 4.

Theheat kernel signatures aremulti-scale becausedepend-
ing of the t values, we can analyze a local or global behavior
in each vertex.We decided to use both behaviors, as they gave
good results for clustering and made our descriptors stable to
perturbations. Figure 4 shows examples of partitions under
non-rigid transformations. It follows that, using the complete
signature, the shape is better clustered and the vertices in the

Fig. 4 Colors represent the clusters using the HKS descriptors of the
entire shape. The clusters are consistent despite the non-rigid transfor-
mations. Note: the colors are arbitrary and they are only used to show
the resulting clusters in a shape

same cluster share a spatial region. In Sect. 5, we will detail
the configuration for computing the heat kernel signatures.

4.2 Second approach: feature signatures on key points

In this approach,weaimat partitioning a sub-set of the feature
space of a 3D object to define the feature signatures. The idea
behind the use of a sub-set is that the whole feature space is
not necessarily discriminative. Our hypothesis is that there is
a sub-set which is representative for each model. Therefore,
our goal is to find that sub-set and partition it, so the feature
signatures represents a partitioningof themost discriminative
features.

The task of finding such a sub-set directly from the fea-
ture space is difficult. Therefore, at this stage, we apply a
method for interest point detection on meshes. By detecting
key points on meshes, we aim to select the most relevant ver-
tices on themesh. Next, we can use the heat kernel signatures
on the key points for describing the object, thus obtaining the
required sub-set of the feature space.

Given a 3D mesh, we detect key points using the Harris
3Dmethod [21]. Briefly, thismethod extends thewell-known
Harris operator to 3Dmeshes. The idea is to represent a local
neighborhood around a vertex as an image. First, the algo-
rithm finds a local patch using an adaptive method making
it robust to geometry changes. Second, the local patch is
converted into a canonical local system using PCA to fit a
plane. Third, a quadratic surface is fitted to the local patch.
Fourth, the method takes the derivatives of the fitted surface
and it computes smoothed versions of these derivatives by
convolving gaussians with them. Finally, the Harris response
is calculated using the derivatives which are arranged in a 2
× 2 matrix as usual.

After computing the Harris responses for each vertex on
the mesh, we select the 1 % of the total number of vertices
with the highest Harris response as key points. Figure 5a
shows a 3D model with its key points.

123



Scalable 3D shape retrieval using local features. . . 1577

Fig. 5 Local features in our approach: a Harris 3D key points, b clusters of key points based on their HKS, c key points within region of interest,
and d result of multi-dimensional scaling

The justification to use a key point detector is that it allows
us to reduce the amount of information for subsequent tasks.
According to our experience, there are vertices which are not
representative and, in general, their local geometry is found in
all models. Therefore, these vertices are not suitable for dis-
criminating between models from different categories. For
example, Harris 3D, as described above, reduces the num-
ber of vertices up to a factor of 100, while maintaining the
vertices which are highly discriminative in the shapes.

Once we have a set of key points, we need to compute
the feature signatures for the 3D models. Let P be a 3D
model with n vertices. Let FS(P) be the feature space of P
as defined in Eq. 8. After the detection step, we have a set
of vertices IP(P) = {v|v ∈ P} with m key points. So the
feature sub-set induced by the set of key points is defined as

FSIP(P) =
{

hks(v)

‖hks(v)‖ |v ∈ IP(P)

}
(9)

The final step is to apply the clustering algorithm over the
set FSIP(P). Then, we proceed in a similar way as described
in the previous section.

In addition to represent a 3Dmodel with themost discrim-
inative features, the use of key points allows us to reduce
the computations in two ways. First, we need to compute
less heat kernel signatures. Second, the clustering algorithm
obviously takes less time. This issue is important because it
is possible to improve the effectiveness while improving the
efficiency. Figure 5b presents a 3D model and its key points
after clustering. Vertices with the same color correspond to
key points in the same cluster.

4.3 Third approach: feature signatures on clusters of
key points

We noted that key points detected by the Harris 3D method
tend to cluster, that is, they are placed in discriminative
regions of the 3D object. For example, this can be observed in

Fig. 5a. Thus, we investigated the possibility of taking advan-
tage of this fact. For example, by finding regions with high
concentration of key points, we are able to discard the iso-
lated ones, as key points not belonging to any cluster could
be noise on the mesh. By discarding them, we ensure that
these points do not interfere in the matching process.

For this approach, we need to find clusters in the geodesic
space of a surface. The geodesic distance between two points
on a mesh is the shortest distance between these points going
through points on the mesh. We use geodesic distances to
perform the clustering becausewewant that the local descrip-
tors are invariant to non-rigid transformations. In this work,
we used the fast marching algorithm proposed by Kimmel
et al. [22] to compute geodesic distances.

For detecting the regions of interest on a mesh, we trans-
form the set of detected key points under the geodesic metric
into a new 2D Euclidean space using the multi-dimensional
scaling method (MDS). This method transforms a set of
points into a low-dimensional space preserving a metric
defined in the original set. Commonly, it is used for visual-
ization of high-dimensional spaces. We propose using MDS
because with this method the distances between points in the
projected space correspond as close as possible to the dis-
tances in the original space. We mapped to two dimensions
because it facilitates choosing a centroid for the clustering.
This is important because the centroid defines the geodesic
region (i.e., cluster) of a group of key points.We alsomapped
to two dimensions because geodesic distances are measured
on a 2D manifold embedded in a 3D space. Thus, we expect
that distances in the projected 2D space are good approx-
imations of the original geodesic distances. In this paper,
we use the SMACOF algorithm for computing the multi-
dimensional scaling [23].

After the MDS step, we obtain a set of 2D points which
approximates the geodesic distances in an Euclidean sense.
So, we apply the clustering algorithm for detecting clusters
of key points. Note that the clustering algorithm discards
points not belonging to any cluster (noisy key points). Finally,
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Fig. 6 Clusters of key points detected on several 3D shapes

each region is composed by the interest points inside the
region. It is worth noting that one could have directly used
a clustering algorithm like k-medoids in the geodesic space.
The disadvantages of such an approach are that k-medoids
would not allow us to discard noisy key points, and it would
require that the center of each cluster is an actual key point.
We do not have these restrictions by first mapping the key
points using MDS and then performing the clustering.

Once having the set of detected regions, we proceed to
describe them. Let R be the set of regions, with |R| = n,
from a shape P . Each region contains a set of key points
which are inside the region. Then, we compute the heat ker-
nel signature for each point. At this stage, we have a set of
regions represented by the normalized descriptors of their
corresponding key points. Finally, we compute a feature sig-
nature for the 3D object, where each region is represented by
a unique descriptor and a weight as in Eq. 4. In the feature
signature, the element cPi is the average of the normalized
heat kernel signatures in the region, and the weight wP

i is
proportional to the number of elements in Ri with respect to
the total number of key points after the clustering process.

Figure 5c shows a 3D shape with key points belonging
to the same cluster. In addition, Fig. 5d shows the result of
applying the multi-dimensional scaling over the key points.
Colors in Fig. 5d correspond to colors in Fig. 5c. We present
additional results of our technique for finding clusters of key
points in Fig. 6.

The guarantee of our method to obtain meaningful mid-
scale features is the evidence found in a previous study [24].
In that paper,we showed that regions computed fromagglom-

erations of small-scale features are highly repeatable. The
experiments even revealed that strong local deformations can
be overcome by detecting the regions that contain many local
protrusions.

5 Effectiveness evaluation

In this section, we present the dataset and the experimental
results obtained to evaluate the effectiveness of our method.
Experimental results are divided into two parts. First, we
evaluate the three presented approaches and the applicationof
the SQFD. Second, we compare our technique with methods
from the state of the art. Our experiments ran on aworkstation
Intel Core 2 Duo 3.0 Ghz and 4 GB RAM. To evaluate our
experiments, we used common retrieval measures such as
precision–recall graphs, R-precision, nearest neighbor, and
mean average precision (MAP).

5.1 Dataset

We built a dataset containing deformable shapes from two
commonlyuseddatasets for shape retrieval tasks: theTOSCA
dataset [25] and the Sumner dataset [26]. The complete
dataset has 310 models in 16 classes ranging from human
models to different kinds of animals. We discarded classes
with less than three models per class within the TOSCA
dataset, as they could bias the results. In addition, in the
Sumner dataset, we discarded models that are the product
of collapse animations, as they do not necessarily rep-
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resent deformable shapes. Furthermore, all models were
pre-processed to have approximately 10,000 vertices and sur-
face area of 1.0.

5.2 Implementation issues

To compute the descriptors, we first computed the Laplace–
Beltrami operator. Then, we computed the 300 largest
eigenvalues and their associated eigenvectors. The dimen-
sion of the resulting heat kernel signatures was 100, that is,
we took 100 values for t in the interval [tmin, tmax] where

tmin = log |(4 log 10)/λ300| and

tmax = log |(4 log 10)/λ2|

With respect to the Harris 3D key points, we used adaptive
neighborhoodswith size 0.01 of the diagonal of the bounding
box of the model. In addition, we set k = 0.04 and we took
the 1 % of vertices with the highest response as key points.

In addition, it is worthmentioning howwe used the dataset
for obtaining the results. We computed the feature signatures
for each model in the dataset. Next, we simulated a content-
based system in which each model of the collection was
presented as query. Thus, we re-computed the feature sig-
natures for each query and retrieved a ranked list applying
the proposed methods. The queried shape was removed for
the collection before searching. All our evaluations consider
the average effectiveness and efficiency.

5.3 Results

In this section, we present the obtained results of the
three proposed approaches: feature signatures on all vertices
(SQFD-All), feature signatures onkeypoints (SQFD-IP), and
feature signatures on clusters of key points (SQFD-Cluster).
Table 2 shows the configuration of parameters for the clus-
tering used for each method.

To decide the best configuration for the SQFD, we
experimentedwith the ground distance and theGaussian sim-
ilarity function (which has proven to be effective in image
retrieval [19]) using the SQFD-Cluster approach as baseline.
The results can be seen in Fig. 7 and Table 3. For the rest
of the experiments, we use the L2 distance and the Gaussian
similarity function with α = 0.9.

Table 2 Clustering parameters for each proposed technique

Method β δ Nm Iter

SQFD-All 0.1 0.2 30 10

SQFD-IP 0.1 0.2 10 10

SQFD-Cluster 0.1 0.2 10 10
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Fig. 7 Recall–precision plots for each variant regarding the ground
distance for the SQFD

Table 3 Evaluation measures for the several ground distances applied
on SQFD-Cluster

Ground distance NN RP MAP

L1 0.9607 0.8715 0.8984

L2 0.9651 0.9068 0.9253

L∞ 0.9738 0.8951 0.9221

Bold values show the best result per measure
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Fig. 8 Recall–precision plots for each of our proposed methods

Figure 8 shows the recall–precision plots for each variant
of our method. From the figure, it is clear that SQFD-Cluster
outperforms the other two variants, which systematically
drop after recall 0.5. However, it is difficult to figure out
which is the best between SQFD-All and SQFD-IP. For that
reason, Table 4 presents a summary of the results with the
other criteria. The variant SQFD-IP is slightly better than
SQFD-All taking into account the ranking list (RP andMAP).
However, for the nearest neighbor measure, SQFD-All is as
good as SQFD-Cluster.

The SQFD-Cluster variant shows an interesting improve-
ment with respect to SQFD-All and SQFD-IP. In our opinion,
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Table 4 Evaluation measures on our approaches

Method NN RP MAP

SQFD-All 0.9651 0.8423 0.8906

SQFD-IP 0.9476 0.8491 0.8941

SQFD-Cluster 0.9651 0.9068 0.9253

Bold values show the best result per measure

Table 5 First column: average number of feature signatures, second
column: average time for extracting the feature signatures to a query
object, third column: average time for computing the SQFD from the
query object to all shapes in the collection

Method Num. Feat. Sig. (s) Dist. (s)

SQFD-All 14 1.1623 0.1103

SQFD-IP 5 0.3093 0.0148

SQFD-Cluster 9 1.0333 0.0511

there are two reasons for this behavior. First, SQFD-Cluster
considers spatial information for obtaining the feature sig-
natures. The process of detecting the cluster of key points
ensures that the signatures represent similar and close local
features. Second, despite SQFD-IP is applied on key points,
the clustering is still done in the feature space, that is,
there could be key points representing different parts of a
model belonging to the same feature signature. Therefore,
SQFD-Cluster combines the information contained in local
descriptors, while effectively represents a spatial region of
the mesh by regarding their proximity.

Next, we present results regarding the query time. Table 5
shows the average time for extracting the feature signa-
tures from a query, and subsequently applying the SQFD
for obtaining the distance to all shapes within the collection.
In addition, we report the average number of features per
signature for each variant.

The scenario of query time is favorable to SQFD-IP. Obvi-
ously, this method considers a reduced number of descriptors
in the clustering, so the computation of the feature signatures
is fast. In addition, as it contains the least average number
of signatures, the SQFD is computed quickly. In contrast,
SQFD-All tookmore time due to the large number of descrip-
tors (one per vertex) used in the clustering. On the other
hand, SQFD-Cluster took a considerable time to compute
the signatures. This is because this variant considers addi-
tional tasks such as calculation of geodesic distances and
multi-dimensional scaling. Therefore, the use of some vari-
ant depends on the application and the required efficiency or
effectiveness.

5.4 Comparison with state-of-the-art methods

Our method was also compared to methods from the state
of the art. We chose two representative techniques: bag-

of-feature approach with heat kernel signatures (similar in
spirit to the Shape Google technique proposed by Bronstein
et al. [3]), and ShapeDNA which is an effective global tech-
nique for deformable shapes. Following, we briefly describe
each technique and present the parameter configuration.

– Bag-of-features for local aggregation Bronstein et al. [3]
proposed to use a bag-of-feature approach with heat ker-
nel signatures extracted from a shape. In this work, we
used vocabulary sizes of 32 (BoF 32) and 48 (BoF 48)
calculated via k-means clustering.

– ShapeDNAReuter et al. [27] proposed a descriptor invari-
ant to deformable shapes. The method computes the
Laplace–Beltrami operator for a shape, and subsequently,
it performs an Eigen-decomposition. A few of the eigen-
values with the lowest magnitude are considered as
descriptor for the whole shape. In this work, we consider
10 eigenvalues for each shape.

Figure 9 shows the recall–precision plots of our method
and the aforementioned techniques. In addition, Table 6
presents results with other criteria. Clearly, SQFD-Cluster
outperforms BoF and Shape DNA methods.

With respect to the query time, Table 7 shows the average
query time for computing a ranked list from the collection.
Note that in the rest of this section, we provide results for
naïve implementation of feature signatures extraction and
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Fig. 9 Recall–precision plots comparing ourmethodwith state-of-the-
art methods

Table 6 Evaluation measures of the compared methods

Method NN RP MAP

ShapeDNA 0.9301 0.8559 0.8906

BoF 32 0.9576 0.8721 0.9010

BoF 48 0.9476 0.8500 0.8827

SQFD-Cluster 0.9651 0.9068 0.9253

Bold values show the best result per measure
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Table 7 Query time for each compared method

Method Query time

ShapeDNA 0.0014

BoF 32 0.5468

BoF 48 0.6551

SQFD-Cluster 1.0844

querying using simple sequential scan. A scalable implemen-
tation of our approach is discussed in the next section.

As can be seen, ShapeDNA is the fastest method, as it
considers only to apply a distance function (for instance, L2)
between descriptors. On the other hand, SQFD-Cluster takes
approximately twice the time taken by BoF methods. Obvi-
ously, most of the time taken by BoF is to compute the bag
of features, and subsequently to perform the distance com-
putations. With respect to SQFD-Cluster, there is a trade-off
between effectiveness and efficiency. Of course, one could
use SQFD-Cluster to gain effectiveness at cost of efficiency
issues. However, if the efficiency is a matter, SQFD-IP is a
good choice too. This variant is the fastest of our proposed
method and its MAP is only slightly below than BoF-32
effectiveness.

There are two remarkable aspects with respect to effi-
ciency. First, BoF requires to construct a visual vocabulary.
This phase is performed off-line and considers a clustering
task over the complete set of descriptors of a dataset. In
our experiments, this process took approximately two hours.
In contrast, our proposals do not require any kind of pre-
processing tasks. Second, there is a concern regarding the
efficiency in memory. BoF requires to store the complete set
of descriptors in memory for clustering. In this paper, we
used 310 models with approximately 10,000 descriptors per
model, so the number of descriptors is approximately 3.1 M.
Each descriptor was represented by 100 float numbers, so the
clustering process needed 2.3 GB of memory. Although in
our experiments it was possible to meet this memory require-
ment, clearly it is an issue when the collection grows.

Finally, we claim that our methods can be potentially used
for large collections due to the high effectiveness, and their
efficiency is good in memory and comparable in time. In
addition, our methods allow us to have a dynamic system,
where new models can be easily added into the system.

6 Scalability evaluation

The representation of 3D objects by feature signatures can
bring benefits in terms of effectiveness; however, such repre-
sentation requires also a more complex similarity function.
Sincewemodel the similarity by the signature quadratic form

distance that has quadratic time complexity (depending on
the number of tuples in feature signatures), the retrieval sys-
tem cannot rely on a simple sequential search of the database.
During the last decade, there have been proposed several
approaches to efficiently process similarity queries when
using models based on feature signatures and the SQFD.
The approaches rely either on exact [28,29] or approximate
[30] search strategies.Wedonot consider approximate search
strategies as they trade precision for effectiveness and in such
cases the ShapeDNA method could provide better trade-off.
In our work, we focus on exact search strategies employing
an index suitable for SQFD.

6.1 Metric space approach

Since SQFD was proved to be a metric distance, the metric
space model of database indexing can be used to speedup the
similarity search tasks over large datasets of feature signa-
tures [28]. Generally, the metric space properties (identity,
positiveness, symmetry, triangle inequality) of any distance
function can be used for efficient similarity search under
that distance. More specifically, using metric properties tight
lower bounds of SQFD can be cheaply determined (instead
of computing the original expensive distance) and used to
filter a majority of the irrelevant feature signatures while
searching. Let U be the universe of valid feature signatures,
and let δ denote the SQFD distance. Given feature signa-
tures o, p, q ∈ U and their precomputed SQFD distances
δ(o, p), δ(q, p), the distance betweenobjectso andq is lower
bounded by expression LB�(δ(o, q)) = |δ(o, p)− δ(q, p)|.
As a consequence, if (q, r) represents a range query and
LB�(δ(o, q)) > r , then object o can be safely filtered with-
out the explicit evaluation of expensive distance δ(o, q).

Let S ⊂ U be a set of objects, and let P ⊂ S be a set
of reference objects (so called pivots). The lower bounding
technique requires an indexing phase of S, where distances
between database objects oi ∈ S and the reference objects
p j ∈ P have to be evaluated and organized in an indexing
structure. Although there have been designed many met-
ric indexing techniques employing lower bounding, in this
paper, we demonstrate scalability of our new models using a
simple yet efficient structure called Pivot Table [31].

In the Pivot Table index, the whole distance matrix
between all database objects and all pivots is precomputed
and stored. When using Pivot Table to efficiently process a
similarity query, first the distances between query object and
all pivots have to be evaluated. Then the lower bound distance
between each database object oi and query object q is eval-
uated as LB�(δ(oi , q)) = max∀p j∈P |δ(oi , p j ) − δ(q, p j )|.
The lower bound distance can be used directly to improve
efficiency of range queries; however, k-NN queries with
unknown initial query radius require more sophisticated
query processing strategies. The strategies try to find the
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Fig. 10 PivotTable k-NN search efficiency for SQFD-All-6d feature
signatures. The top plots show the percentage between PivotTable time
and sequential search time. The bottom plots show the percentage

between distance calculations with PivotTable and the distance calcu-
lation with sequential search. Low values of percentage is better

best candidates from the database as soon as possible and
thus to update/decrease the actual query radius more rapidly.
In our experiments, we use the strategy that sorts the data-
base objects in ascending order according to their lower
bound distance to the query object. More details about the
Pivot Table index can be found in Navarro [31] and Mico
et al. [32].

6.2 Experimental results

The experiments are based on the dataset of the SHREC’15
Track: scalability of non-rigid shape retrieval [33]. The
dataset consists of more than 90,000 3D objects, from which
229 are annotated and classified. For our experiments we
selected 80,000 3D objects from the dataset, including all
229 annotated objects. The annotated objects were used as
query objects. At each query. the actually considered query

object was removed from the database before performing
it.

As we now want to study the scalability issue, for this
experiment we only consider the SQFD-All approach, which
was the approach that computes a descriptor for each vertex
on the mesh. As the dimensionality of the descriptors is an
important parameter for studying the scalability of the tech-
niques, we extracted two different sets of feature signatures
from all the 3D objects:

– SQFD-All-100d signatures: consist of 100-dimensional
centroids (high dimensionality). The local descriptors are
heat kernel signatures which were computed following
the same guidelines as Sect. 5.2.

– SQFD-All-6d signatures: consist of six-dimensional cen-
troids (low dimensionality). The local descriptors are
Scale-invariant Heat Kernel Signatures as described by
Bronstein and Kokkinos [17].
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Fig. 11 PivotTable k-NN search efficiency for SQFD-All-100d fea-
ture signatures. The top plots show the percentage between PivotTable
time and sequential search time. The bottom plots show the percentage

between distance calculations with PivotTable and the distance calcu-
lation with sequential search. Low values of percentage is better

For each set, we have investigated the effect of the SQFD
α parameter (see Sect. 3.2) on precision, considering just the
annotated objects. For all the experiments in this section, we
use the Gaussian similarity function for the SQFD. Whereas
for SQFD-All-6d the optimal value was α = 64, for SQFD-
All-100d the optimal valuewasα = 8.As reported byBeecks
et al. [28] in the image retrieval domain, the optimal value of
α often results in high intrinsic dimensionality that negatively
affects the performance of metric indexes. We have observed
similar behavior in our experiments: using lower values of
α results in slightly worse effectiveness but also in lower
intrinsic dimensionality. Therefore, we have considered also
values α = 32 for SQFD-All-6d and α = 4 for SQFD-All-
100d feature signatures.

For SQFD-All-6d feature signatures, the sequential search
took on average about 370 ms and for SQFD-All-100d fea-
ture signatures, the sequential search took on average about
1990 ms. To create variants of metric PivotTables, we have

randomly selected sets of pivots. Although a high number
of pivots improve the filtering power of PivotTable, it also
increases the lower bound calculation time. Therefore, we
have considered different numbers of pivots for the Pivot-
Table: 5, 10, 20, 40 and 80. In the experiments, we have
investigated the efficiency of the kNN search, where k ranged
from 1 to 64. The experiments were run on a 64-bit Windows
Server 2008 R2 Standard with Intel Xeon CPU X5660, 2.8
GHz.

Figure 10 shows the performance of PivotTable index on
SQFD-All-6d feature signatures. The figure shows that the
number of pivots and the parameter α affect the efficiency of
the retrieval. We may observe that for queries with lower k,
lower number of pivots is sufficient. For queries with higher
k (i.e., with higher radius), the filtering power of PivotTable
decreases. In such cases, the higher number of pivots can help
to better estimate the lower bounds and thus to better estimate
the real query radius and filter more non-relevant objects.
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We may observe similar effect also for distance spaces with
higher intrinsic dimensionality (α = 64), where higher num-
ber of pivots improves efficiency. Note also the difference
between time and distance calculations. Whereas distance
calculations decrease with higher number of pivots (in the
bottom line), the time considering also lower bound estima-
tion overhead shows worse results for cheap queries (e.g., for
k = 1). Since the SQFDdistance is less expensive for SQFD-
All-6d feature signatures, the retrieval time can be reduced
just to 15–20% of the sequential search time for queries with
k ≤ 16 (speed-up factor >5×).

Figure 11 shows the efficiency results of k-NN search for
SQFD-All-100d feature signatures. The general observations
are similar as for SQFD-All-6d feature signatures. Since the
SQFD distance is more expensive for SQFD-All-100d fea-
ture signatures, the PivotTable overhead is less significant
than the number of distance computations. We may observe
that the retrieval time can be reduced up to 3–5 % of the
sequential search for queries with k ≤ 16 (speed-up factor
>20×).

We conclude that even the simple PivotTable index can
be used to significantly speed up k-NN search with our new
descriptors and the SQFD distance.

7 Conclusions

In this paper, we presented a novel approach for 3D shape
retrieval using local features. Our method to find clusters of
key points has shown to have a positive impact in retrieval.
This fact can be noted in the high effectiveness achieved by
the variant SQFD-Cluster. Likewise, the SQFD has proven to
be effective in our framework. So the comparison of two 3D
objects represented as a set of features can be addressed effi-
cientlywith this distance. In addition, the use of theSQFDhas
enabled the possibility to implement our method in dynamic
collections, hence making a retrieval system scalable.

An important aspect of our results is that, depending of
the requirements for a retrieval system, our method offers
several characteristics. On the one hand, if we are interested
in the retrieval results, SQFD-Cluster can be used because of
its high effectiveness. On the other hand, if we are interested
in the query time, SQFD-IP performed better in this case.
Anyway, our approach (in its different variants) performed
better than state-of-the-art methods. Finally, we also show
how to make the method scalable using a Pivot Table, taking
advantage of the fact that the SQFD is a metric distance.
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