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bases to displace weak bases is more dominant. However, 
if the acids and bases involved in the reaction have similar 
strengths, then the chemical driving force for the reaction 
of acids and bases is the relative hardness, hence the HSAB 
rule [1–3].

In the past, several formal proofs of Pearson’s hard/soft 
acid/base (HSAB) rule [4–11] have been put forward within 
conceptual density functional theory (c-DFT) [12–23]. (This 
has also allowed to establish the relation between the HSAB 
and other reactivity principles.) [9, 24–27]. Almost a decade 
ago, one of us showed that if the strength of acids and bases 
could be identified with the (negative) chemical potential, 
then it is possible to cast a simple, yet incredibly general, 
proof of the HSAB rule [4]. This proof shows that a double-
exchange reaction between hard and soft acids and bases of 
equal strength is always exothermic if the hard acids in the 
product are associated with hard bases and soft acids to soft 
bases. In other words, the equilibrium in the reaction shown 
below is displaced toward the formation of the products.

This proof (and also others based on the c-DFT machin-
ery) relies heavily on the precise definition of reactivity 
descriptors like the chemical potential, � [28], and chemi-
cal hardness, � [29–31]. In c-DFT, the standard approach to 
define such descriptors is to consider them as derivatives of 
the ground state energy, E, with respect to the number of 
electrons, N, namely:

(1)AhBs + AsBh = AhBh + AsBs

(2)� =
�E

�N

(3)� =
�2E

�N2

Abstract  We provide a new proof for Pearson’s hard/
soft acid/base (HSAB) principle. Unlike alternative proofs, 
we do not presuppose a simplified parabolic dependence 
on the energy of the system with respect to changes in its 
number of electrons. Instead, we use the more physically 
grounded finite-temperature formulation of the grand-canon-
ical ensemble. We show that under the usual assumptions 
regarding the chemical potentials and hardnesses of the 
involved species, the HSAB rule holds for a wide range of 
temperatures.

Keywords  Conceptual DFT · Hard/soft acid/base 
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1  Introduction

The hard/soft acid/base (HSAB) principle, as it was origi-
nally established by Pearson, affirms that all other things 
being equal, hard acids prefer binding to hard bases and 
soft acids prefer binding to soft bases [1]. Here, other things 
recall that the HSAB is a tie-breaker rule because determin-
ing the direction of reactions between acids and bases, the 
tendency for strong acids to displace weak acids and strong 

 *	 Ramón Alain Miranda‑Quintana 
	 ramirandaq@gmail.com

1	 Department of Chemistry and Chemical Biology, McMaster 
University, Hamilton, ON, Canada

2	 Departamento de Física, Facultad de Ciencias, Universidad 
de Chile, Casilla 653, Santiago, Chile

3	 Centro para el desarrollo de la Nanociencias y 
Nanotecnología, CEDENNA, Av. Ecuador 3493 Santiago, 
Chile

http://crossmark.crossref.org/dialog/?doi=10.1007/s00214-017-2167-y&domain=pdf


	 Theor Chem Acc (2017) 136:135

1 3

135  Page 2 of 6

This requires working with a model for the variation of E 
versus N, which considers the energy of systems with non-
integer numbers of electrons [32, 33]. This has motivated 
several models that interpolate the energy between states 
with integer numbers of electrons [34–36]. However, not 
all of these models can be supported on physical grounds 
[37, 38], and some of them could even be internally incon-
sistent [39]. Another standard approach, working with the 
zero-temperature formulation of the grand-canonical (GC) 
ensemble, is also not free of controversy. In this case, the 
exact E versus N behavior is given by the linear interpolation 
of Perdew et al. [40–45]. Since this model is not differenti-
able with respect to the number of electrons when N is an 
integer, and the higher order side-derivatives are zero, � and 
� are ill-defined.

One way around these problems is to work with a finite-
temperature formulation of the GC ensemble [46–58]. If 
the system of interest is in contact with a bath at T > 0, 
the energy (and other state functions) becomes a differenti-
able function of N, and all the reactivity descriptors are well 
defined. Our goal in the present work is to analyze the valid-
ity of the HSAB rule in the finite-temperature conceptual 
DFT formalism. This will closely follow the spirit of previ-
ous works devoted to the proof of the maximum hardness 
[59] and the minimum electrophilicity [56] principles.

2 � Finite‑temperature grand‑canonical study 
of the HSAB principle

When considering nonzero temperatures, the state function 
that determines the spontaneity of a process is no longer 
the electronic energy, E, but the electronic Helmholtz free 
energy,  [12]

where S is the (electronic) entropy,

In this expression, D is the density matrix (DM) of the 
state under analysis, kB is the Boltzmann constant, and Tr 
represents the trace of the operator/matrix.

Minimizing  subject to the constraint that the number 
of electrons is held constant gives the expression for the 
equilibrium DM:

From here, we can easily see that:

(4) = E − TS

(5)S = −kBTr(D lnD)

(6)D =
exp

[
−𝛽

(
Ĥ − 𝜇N̂

)]

Tr
{
exp

[
−𝛽

(
Ĥ − 𝜇N̂

)]} ; 𝛽 =
1

kBT

(7) = 𝜇N −
1

𝛽
ln Tr

{
exp

[
−𝛽

(
Ĥ − 𝜇N̂

)]}

Working with  slightly changes the definitions of the 
chemical potential and chemical hardness [52]

�P = I − A is what Malek and Balawender called the Pear-
son hardness [57], the subindex T  in �T indicates that this 
is the “thermodynamic chemical hardnesses,” and I and A 
are the ionization energy and electron affinity, respectively. 
Notice that the second expressions appearing in Eqs. (8) and 
(9) have been obtained under the assumption that only three 
states (e.g., with M,M ± 1 electrons) are used to expand the 
trace appearing in Eq. (7) [49]. While the form of the chemi-
cal potential obtained in this way is identical to the standard 
working expression used in c-DFT, this is not the case for the 
hardness. This highlights that, in general, using three states to 
interpolate  does not give the same results as using the same 
three states to estimate the trace in Eq. (7) [55]. Nonetheless, 
in this case, the different hardness expressions are consistent 
with each other in the sense that their thermodynamic hard-
ness is a monotonic function of the Pearson hardness

The proof given in Ref. [4] can now be rephrased in terms 
of the thermodynamic chemical potential and hardness of 
Eqs. (8) and (9). This will only require another assumption, 
namely, that we can effectively express the variation of  
with respect to changes in N as:

Even though this is a valid procedure, we would like to 
present an alternative take on the HSAB principle, with 
more emphasis on the GC formalism, and that does not rely 
on the truncation of the Taylor expansion of .

The starting point will be the reaction given in Eq. (1). To 
proceed, we need to make some assumptions regarding the 
chemical potentials and harnesses of the species involved in this 
reaction. For example, we will assume that the chemical poten-
tial (strength) of all the acids (bases) is the same [4, 5, 8, 9]:

This corresponds to previously mentioned all other things 
being equal condition imposed by Pearson.

In the case of the hardness, recent arguments in favor of 
the HSAB principle only require that the hard species are 
in fact harder than the soft ones [5, 8, 25]. However, these 
studies are based on a simple parabolic model of the energy 

(8)� =
�

�N
= −

I + A

2

(9)� =
�2

�N2
=

1 + 2 exp
(
−�

�P

2

)

2 exp
(
−�

�P

2

)

(10)𝜂T(X) > 𝜂T(Y) ⇔ 𝜂P(X) > 𝜂P(Y)

(11)Δ =
�

�N
ΔN +

1

2

�2

�N2
ΔN2

(12)𝜇Ah
= 𝜇As

= 𝜇A < 𝜇Bh
= 𝜇Bs

= 𝜇B.
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with respect to the number of electrons. Here, we will be 
working with a more realistic (and, therefore, more difficult 
to manipulate) model. For this reason, we need to impose 
an extra condition on the hardnesses, which has been also 
introduced in previous HSAB proofs [4]:

Proving the HSAB principle is equivalent to show that the 
variation of the Helmholtz free energy along the reaction, 
Δrn, is negative:

As it is customary, we rewrite Δrn as:

where

Here, X denotes the Helmholtz free energy of the iso-
lated reagent X, and X(XY) denotes the Helmholtz free energy 
of the reagent X when it is placed in a bath whose electron 
chemical potential is the same as that of molecule XY. In this 
way, we are assuming that the electron-transfer effects are 
dominating the reactivity, with negligible contributions from 
electrostatic, steric, polarization, local, etc., effects.

Given the form of Eq. (7), it is more convenient to work 
with the auxiliary function exp

(
−�Δrn

)
, so the HSAB rule 

will be valid if:

Considering again only states with MX − 1, MX, and 
MX + 1 electrons when estimating the traces, we have that

with analogous expressions holding for exp
(
−�Y

)
 and 

exp
(
−�Y(XY)

)
.

It is now easy to see that:

(13)𝜂As
= 𝜂Bs

= 𝜂s < 𝜂Bh
= 𝜂Ah

= 𝜂h.

(14)Δrn = AhBh
+AsBs

−AsBh
−AhBs

< 0

(15)Δrn = ΔAhBh
+ ΔAsBs

− ΔAsBh
− ΔAhBs

(16)ΔXY = X(XY) +Y(XY) −X −Y .

(17)exp
(
−𝛽Δrn

)
> 1.

(18)

exp
(
−�

X

)
= exp

(
−�E

M
X

X

){
1 + exp

[
�
(
A
X
+ �

X

)]

+ exp
[
−�

(
I
X
+ �

X

)]}

(19)

exp
(
−�

X(XY)

)
= exp

(
−�E

M
X

X

)
exp

[
−��

XY

(
N
X
−M

X

)]

×
{
1 + exp

[
�
(
A
X
+ �

XY

)]
+ exp

[
−�

(
I
X
+ �

XY

)]}

(20)exp
(
−�ΔXY

)
= Q1XYQ2XY

(21)Q1XY = exp
[
��XY

(
NX −MX + NY −MY

)]

(22)

Q2XY =

{
1 + exp

[
�
(
A
X
+ �

XY

)]
+ exp

[
−�

(
I
X
+ �

XY

)]

1 + exp
[
�
(
A
X
+ �

X

)]
+ exp

[
−�

(
I
X
+ �

X

)]
}

×

{
1 + exp

[
�
(
A
Y
+ �

XY

)]
+ exp

[
−�

(
I
Y
+ �

XY

)]

1 + exp
[
�
(
A
Y
+ �

X

)]
+ exp

[
−�

(
I
Y
+ �

X

)]
}

Here, �X indicates the chemical potential of species X 
when it has MX electrons (see Eq. 1). The chemical potential 
of the product, �XY, can be calculated by the condition that 
the number of electrons remains constant along the reac-
tion. If we determine the average number of electrons in a 
reactant as:

the chemical potential of XY must satisfy the following 
equation:

However, from this condition, it is easy to see that:

Equation (23) is equivalent to:

It is, however, more convenient to rewrite this equation 
using the auxiliary variables Δ�X and Δ�Y, defined as:

Then, Eq. (26) reads:

where, for notational simplicity, we have dropped the subin-
dex P to refer to the Pearson hardness. Using these variables, 
Eq. (22) can be rewritten as:

Combining Eqs. (14)–(22) and (29), we can see that prov-
ing the HSAB rule is equivalent to showing that:

(23)

NX = MX +
exp

[
�
(
AX + �

)]
− exp

[
−�

(
IX + �

)]

1 + exp
[
−�

(
IX + �

)]
+ exp

[
�
(
AX + �

)]

(24)NX + NY = MX +MY

(25)Q1XY = 1

(26)

exp
[
�
(
A
X
+ �

XY

)]
+ exp

[
�
(
A
Y
+ �

XY

)]

− exp
[
−�

(
I
X
+ �

XY

)]
− exp

[
−�

(
I
Y
+ �

XY

)]

+ 2 exp
[
�
(
A
X
+ A

Y
+ 2�

XY

)]
− 2 exp

[
−�

(
I
X
+ I

Y
+ 2�

XY

)]
= 0

(27)�XY = �X + Δ�X = �Y + Δ�Y

(28)

exp
(
−�

�
X

2

)[
exp

(
�Δ�

X

)
− exp

(
−�Δ�

X

)]

+ exp
(
−�

�
Y

2

)[
exp

(
�Δ�

Y

)
− exp

(
−�Δ�

Y

)]

+ 2 exp

[
−�

(
�
X
+ �

Y

2

)]{
exp

[
�
(
Δ�

X
+ Δ�

Y

)]

− exp
[
−�

(
Δ�

X
+ Δ�

Y

)]}
= 0

(29)

Q2XY =

⎡
⎢⎢⎢⎣

1 + exp
�
−�

�
X

2

��
exp

�
�Δ�

X

�
+ exp

�
−�Δ�

X

��

1 + 2 exp
�
−�

�
X

2

�
⎤⎥⎥⎥⎦

×

⎡⎢⎢⎢⎣

1 + exp
�
−�

�
Y

2

��
exp

�
�Δ�

Y

�
+ exp

�
−�Δ�

Y

��

1 + 2 exp
�
−�

�
Y

2

�
⎤⎥⎥⎥⎦

(30)Q2 =
qhhqss

qhsqsh
> 1
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where

and

In principle, we know all the parameters entering 
Eq. (30), except for the Δ����

X�

 variables, to which now we 

turn our attention. It is easy to see that if X and Y have the 
same hardness (as it is the case in compounds AhBh and AsBs),  
then Δ���

Y�
= −Δ���

X�

 will be a solution to Eq. (28). Thus, 

following Eq. (27):

But from Eq. (12):

Then, the numerator of Eq. (30) simplifies to:

If we now consider the reagents in Eq. (1) (e.g., species 
with mixed hardnesses), we can see that if Δ�X = x and 
Δ�Y = −y are solutions to Eq. (28) with hardnesses �X = a 
and �Y = b, then Δ�X = y and Δ�Y = −x are the correspond-
ing solutions when the hardnesses are �X = b and �Y = a. In 
the present context, this implies that:

Thus, taking Δ𝜇hs
Ah

= x > 0 and Δ𝜇hs
Bs
= −y < 0, the 

denominator of Eq. (30) reads:

Then, Q2 > 1 if:

(31)

q��� =

[
1 + exp

(
−�

��

2

)[
exp

(
�Δ����

A�

)
+ exp

(
−�Δ����

A�

)]]

×

[
1 + exp

(
−�

���

2

)[
exp

(
�Δ����

B��

)
+ exp

(
−�Δ����

B��

)]]

(32)Δ����

X�
= �X�Y��

− �X�
.

(33)Δ���

X�
=

�Y�
− �X�

2

(34)Δ�hh
Ah

= Δ�ss
As

= −Δ�hh
Bh

= −Δ�ss
Bs

=
�B − �A

2
≡ r

(35)

qhhqss =

⎧⎪⎨⎪⎩

�
1 + exp

�
−�

�h

2

��
exp (�r) + exp (−�r)

��
×

�
1 + exp

�
−�

�s

2

��
exp (�r) + exp (−�r)

��
⎫⎪⎬⎪⎭

2

(36)
Δ����

Y��
= −Δ����

X��

Δ����

X�
= −Δ����

Y�

(37)

qhsqsh =

⎧⎪⎨⎪⎩

�
1 + exp

�
−�

�h

2

��
exp (�x) + exp (−�x)

��
×

�
1 + exp

�
−�

�s

2

��
exp (�y) + exp (−�y)

��
⎫⎪⎬⎪⎭

2

Since |m| > |n| ⇒ exp (𝛽m) + exp (−𝛽m) > exp (𝛽n)+

exp (−�n), this inequality will be immediately true if r > x 
and r > y. However, since:

this will never be the case, and we need to go further with 
the proof.

Before continuing, and for more clarity, let us rewrite 
Eq. (28) with the present variables:

In this form, it is easy to see that 𝜂h > 𝜂s ⇒ x > y.
Expanding the numerator and denominator of Eq. (38), 

and subtracting the latter from the former, we obtain:

with:

According to Eq. (40), we can rewrite R2 as:

(38)

⎡
⎢⎢⎢⎣

1 + exp
�
−𝛽

𝜂h

2

��
exp (𝛽r) + exp (−𝛽r)

�

1 + exp
�
−𝛽

𝜂h

2

��
exp (𝛽x) + exp (−𝛽x)

�
⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

1 + exp
�
−𝛽

𝜂s

2

��
exp (𝛽r) + exp (−𝛽r)

�

1 + exp
�
−𝛽

𝜂s

2

��
exp (𝛽y) + exp (−𝛽y)

�
⎤
⎥⎥⎥⎦
> 1

(39)x + y = 2r

(40)

exp
(
−�

�h

2

)[
exp (�x) − exp (−�x)

]

+ exp
(
−�

�s

2

)[
exp (−�y) − exp (�y)

]
+ 2 exp

[
−�

(
�h + �s

2

)]

{
exp

[
�(x − y)

]
− exp

[
−�(x − y)

]}
= 0

(41)
√
qhhqss −

√
qhsqsh = R1 − R2

(42)

R1 = exp
[
�

(
r −

�s

2

)]
+ exp

[
−�

(�s
2
+ r

)]
+ exp

[
�

(
r −

�h

2

)]

+ 2 exp

[
−�

(
�h + �s

2

)]
+ exp

[
−�

(
r +

�h

2

)]

(43)

R2 = exp
[
�

(
y −

�s

2

)]
+ exp

[
−�

(�s
2
+ y

)]

+ exp
[
�

(
x −

�h

2

)]
+ exp

[
�

(
x − y −

�h + �s

2

)]

+ exp
[
−�

(�h
2

+ x

)]
+ exp

[
�

(
y − x −

�h + �s

2

)]

(44)

R2 =2 exp
[
�

(
y −

�s

2

)]
+ exp

[
−�

(�h
2

+ x

)]

+ 3 exp

[
�

(
y − x −

�h + �s

2

)]
− exp

[
�

(
x − y −

�h + �s

2
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Up to this point, we have been working with an arbitrary 
temperature. However, the presence of the exponential func-
tions in our working expressions implies that the vast major-
ity of the processes in which we apply the HSAB rule can 
be considered to occur at very low temperatures. Then, we 
could formally take the limit � → ∞ in Eqs. (42) and (44). 
We must take into account that, since r, x, y, �h, and �s are 
greater than 0, all the exponentials with a − 1 common factor 
in their arguments will tend to 0 more rapidly than the others 
when � increases. Therefore, they can be eliminated in the 0 
temperature limit version of the above equations. Since, as 
previously noted, x > y, this same argument can be applied 
to neglect the term exp

[
�

(
y − x −

�h+�s

2

)]
. After these sim-

plifications, we obtain the following expression:

Now, we just have to notice that:

Then, since in the � → ∞ (or, equivalently, in the T → 0)  
limit the final two terms tend to 0, we have:

Subsequently, substituting this in Eqs. (41) and (30) is 
enough to see that Q2 > 1, which completes the proof of the 
HSAB rule. We remark that this result only holds for suf-
ficiently “low” temperatures, but according to recent results, 
this means temperatures up to 104 K [49, 60].

3 � Conclusions

The previous discussion shows how to derive the HSAB rule 
within the finite-temperature GC formalism. This approach 
bypasses the need to consider the quadratic model for the 
energy as a function of electron number, thereby providing a 
stronger support for the validity of this principle. This work 
is close in spirit to recent developments on the foundations 
of c-DFT, where it has been argued about the convenience 
of extending the traditional zero-temperature descriptors to 
finite temperatures in a way that preserves their physical 
meaning [55]. The key ingredient is the definition of these 
descriptors as derivatives of the Helmholtz free energy.

On the other hand, we showed that we need to be more 
careful about the underlying conditions for which the HSAB 
rule holds. For example, we noticed that for sufficiently high 
temperatures, this principle may not hold. This is in line with 

(45)
R1 − R2 = exp

[
�

(
r −

�s

2

)]
+ exp

[
�

(
r −

�h

2

)]

+ exp

[
�

(
x − y −

�h + �s

2

)]
− 2 exp

[
�

(
y −

�s

2

)]

(46)

(
R1 − R2

)
exp

[
−𝛽

(
r −

𝜂s

2

)]
> 1 + exp

[
𝛽

(𝜂s − 𝜂h

2

)]

− 2 exp
[
𝛽

(
y − x

2

)]

(47)R1 − R2 > 0

previous findings regarding the validity of the maximum 
hardness and minimum electrophilicity principles. As in 
these previous cases, we remark the convenience of defin-
ing the finite-temperature descriptors using the Helmholtz 
free energy instead of the (internal) energy, as this preserves 
the physical meaning of their zero-temperature counterparts.
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