
Computers & Industrial Engineering 111 (2017) 216–227
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
A branch and price algorithm for a Stackelberg Security Game
http://dx.doi.org/10.1016/j.cie.2017.06.034
0360-8352/� 2017 Published by Elsevier Ltd.

⇑ Corresponding author.
E-mail addresses: fordon@dii.uchile.cl (F. Ordóñez), mlabbe@ulb.ac.be

(M. Labbé).
Felipe Lagos a, Fernando Ordóñez b,⇑, Martine Labbé c,d

aGeorgia Institute of Technology, United States
bUniversidad de Chile, Chile
cUniversité Libre de Bruxelles, Belgium
d INRIA, Lille, France
a r t i c l e i n f o

Article history:
Received 14 June 2017
Received in revised form 26 June 2017
Accepted 28 June 2017
Available online 29 June 2017

Keywords:
Column generation
Stackelberg games
Security
a b s t r a c t

Mixed integer optimization formulations are an attractive alternative to solve Stackelberg Game prob-
lems thanks to the efficiency of state of the art mixed integer algorithms. In particular, decomposition
algorithms, such as branch and price methods, make it possible to tackle instances large enough to rep-
resent games inspired in real world domians.
In this work we focus on Stackelberg Games that arise from a security application and investigate the

use of a new branch and price method to solve its mixed integer optimization formulation. We prove that
the algorithm provides upper and lower bounds on the optimal solution at every iteration and investigate
the use of stabilization heuristics. Our preliminary computational results compare this solution approach
with previous decomposition methods obtained from alternative integer programming formulations of
Stackelberg games.

� 2017 Published by Elsevier Ltd.
1. Introduction

Stackelberg games model the strategic interaction between
players, where one participant – the leader – is able to commit
to a strategy first, knowing that the remaining players – the follow-
ers – will take this strategy into account and respond in an optimal
manner. These games have been used to represent markets in
which a participant has significant market share and can commit
to a strategy (von Stackelberg, Bazin, Hill, & Urch, 2010), where
government decides tolls or capacities in a transportation network
(Labbé, Marcotte, & Savard, 1998), and of late have been used to
represent the attacker-defender interaction in security domains
(Jain et al., 2010). These games are examples of bilevel optimiza-
tion problems, which are in general non convex optimization prob-
lems that are difficult to solve.

In this work we focus on a specific class of Stackelberg games
which we refer to as Stackelberg Security Games (SSG) that arise
in security domains and have a particular payoff structure (Yin,
Korzhyk, Kiekintveld, Conitzer, & Tambe, 2010). In a SSG, the secu-
rity (or defender) behaves as the leader selecting a patrolling strat-
egy first and then, possibly many attackers act as the follower,
observing the defender’s patrolling strategy and deciding where
to attack. Such Stackelberg Security Game models have been used
in the deployment of decision support systems with specialized
algorithms in real security domain applications (Jain et al., 2010;
Pita, Tambe, Kiekintveld, Cullen, & Steigerwald, 2011; Shieh et al.,
2012).

Recent work has developed efficient integer optimization solu-
tion algorithms for different variants of the SSGs (Hochbaum, Lyu,
& Ordóñez, 2014; Jain, Kardes, Kiekintveld, Ordóñez, & Tambe,
2010; Jain, Kiekintveld, & Tambe, 2011; Jain et al., 2011;
Kiekintveld et al., 2009). In general terms these optimization prob-
lems are formulated with the defender committing to a mixed
(randomized) strategy and the attacker(s) responding with a pure
strategy after conducting surveillance of the defender’s mixed
strategy. A mixed strategy refers to a probability distribution over
the possible actions while a pure strategy corresponds to selecting
one of the possible actions. In this SSG, the defender mixed strate-
gies are probability distributions over possible patrolling strate-
gies, while the attacker’s pure strategy corresponds to selecting a
specific target to attack. In addition, the number of actions of the
defender can be exponential in size, with respect to the targets
and defense resources, due to the combinatorics of using N
resources to patrol m targets. This illustrates that to solve SSGs
we have to address mixed integer optimization problems with
exponential number of variables. Addressing the combinatorial
size of defender strategies has led to both development of branch
and price methods (Kiekintveld et al., 2009) and constraint gener-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2017.06.034&domain=pdf
http://dx.doi.org/10.1016/j.cie.2017.06.034
mailto:fordon@dii.uchile.cl
mailto:mlabbe@ulb.ac.be
http://dx.doi.org/10.1016/j.cie.2017.06.034
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

F. Lagos et al. / Computers & Industrial Engineering 111 (2017) 216–227 217
ation methods (Yang, Jiang, Tambe, & Ordóñez, 2013). There are,
however, problem instances that arise from real security applica-
tions that still challenge existing solution methods. Here we inves-
tigate a new branch and price method developed for a novel
formulation of Stackelberg games (MIPSG), introduced in
Casorrán-Amilburu, Fortz, Labbé, and Ordóñez (2017). This new
formulation has been shown to provide tighter linear relaxations
than other existing mixed integer formulations and to give the con-
vex hull of the feasible integer solutions when there is only one
follower.

We begin by introducing notation and describing the integer
optimization formulations that have been considered previously
in the next section. We also introduce the equivalent MIPSG for-
mulation. In Section 3 we present the column generation algorithm
for the solution of the linear relaxation of MIPSG, along with a
speed up that can be obtained by aggregating subproblems, and
the existence of upper and lower bounds at every iteration. We
also describe the branching strategies used in adapting this column
generation to a Branch and Price method and how to apply dual
stabilization techniques. We present our preliminary computa-
tional results in Section 4 and provide concluding remarks in
Section 5.
2. Integer optimization formulations of SSG

In a Stackelberg security game we consider that the leader is the
defender and the attacker (of possibly many types) is the follower.
We let H be the set of possible attacker types and assume that ph

corresponds to a known a priori probability distribution that the
defender is facing an attacker of type h 2 H. The attacker may
decide to attack any one of a set of targets Q. The mixed strategy
for the hth attacker is the vector of probabilities over this set of tar-
gets, which we denote as qh ¼ ðqh

j Þj2Q . The defender allocates up to

N resources to protect targets, with N < jQ j. Each resource can be
assigned to a patrol that protects multiple targets, s#Q , so the
set of feasible patrols for one resource is a set S# PðQÞ, where
PðQÞ represents the power set of Q. The defender’s pure strategies,
or joint patrols, are combinations of up to N such patrols, one for
each available resource. In addition we assume that in a joint
patrol a target is covered by at most one resource. Let X denote
the set of joint patrols, or defender strategies. A joint patrol i 2 X,

can be represented by the vector ai ¼ ½ai1; ai2; . . . ; aijQ j� 2 f0;1gjQ j

where aij represents whether or not target j is covered in strategy
i. The defender’s mixed strategy x ¼ ðxiÞi2X specifies the probabili-
ties of selecting each joint patrol i 2 X.

Both the leader and followers aim to maximize a linear utility
function that averages the rewards of every combination of pure
strategies weighted by the mixed strategies. If we let Rh

ij and Ch
ij

denote the utility received by the defender (and the hth attacker)
for having the defender conduct patrol i while the hth attacker
strikes target j, then the defender and hth attacker utilities are
given by

uDðx; ðqhÞh2HÞ ¼
X
h2H

X
i2X

X
j2Q

phxiqh
j R

h
ij

uh
Aðx;qhÞ ¼

X
i2X

X
j2Q

xiqh
j C

h
ij:

The goal is to find the optimal mixed strategy for the leader, given
the follower may know this mixed strategy when choosing its strat-
egy. Stackelberg equilibria can be of two types: strong and weak, as
described by Breton, Alj, and Haurie (1988). We use the notion of
Strong Stackelberg Equilibrium (SSE), in which the leader selects
an optimal mixed strategy based on the assumption that the
follower will choose an optimal response and will break ties in favor
of the leader. In other words, following the formal definition of a
SSE in Kiekintveld et al. (2009), a pair of strategies x and
ðqhðxÞÞh2H form a SSE if they satisfy:

1. The leader (defender) maximizes utility: uDðx; ðqhðxÞÞh2HÞ P
uDðx0; ðqhðx0ÞÞh2HÞ for any feasible x0

2. The followers (attackers) play a best response: uh
Aðx;qhðxÞÞ P

uh
Aðx;gÞfor any feasible g.

3. The follower breaks ties in favor of the leader:
uDðx; ðqhðxÞÞh2HÞ P uDðx; ð�qhÞh2HÞ for any ð�qhÞh2H that is optimal
for the followers, that is for any h; �qh 2 argmaxgu

h
Aðx;gÞ.

This can be formulated as the following bilevel optimization
problem, where e is the vector of all ones of appropriate
dimension:

max uDðx; ðqhÞh2HÞ
s:t: eTx ¼ 1; x P 0

qh ¼ argmaxgfuh
Aðx;gÞjeTg ¼ 1;g P 0g h 2 H:

Given that the inner optimization problem is a linear optimization
problem over the jQ j dimensional simplex, there always exists an
optimal pure-strategy response for the attacker, so in the integer
optimization formulations we present now we restrict our attention
to the set of pure strategies for the attacker. As we see below, the
optimality condition of the inner optimization problem can be
expressed with linear constraints and integer variables when we
make use of the fact that the followers respond with an optimal
pure strategy. Although this leads to being able to use efficient
mixed integer optimization solution procedures, the problem
remains theoretically difficult as the problem of choosing the opti-
mal strategy for the leader to commit to in a Bayesian Stackelberg
game is NP-hard (Conitzer & Sandholm, 2006).

The payoffs for agents depend only on the target attacked, the
adversary type and whether or not a defender resource is covering

the target. Let the parameter Rdh
j denote the defender’s utility, or

reward, if j 2 Q is attacked by adversary h 2 H when it is covered
by a defender resource. If j 2 Q is not covered, the defender

receives a penalty Pdh
j . Likewise, the attacker’s utilities are denoted

by a reward Rah
j when target j is attacked and not covered and pen-

alty Pahj , when j is attacked while protected. Therefore if we let j 2 i
denote when target j 2 Q is protected by patrol i 2 X, then we con-
sider the following reward structure

Rh
ij ¼

Rdh
j j 2 i

Pdh
j j R i

(
Ch
ij ¼

Pah
j j 2 i

Rahj j R i

(
:

Alternatively the strategy i can be represented by a vector

ai 2 f0;1gjQ j such that aij ¼ 1 when j 2 i or when j 2 ai. Using this
vector ai we have

Rðai jÞh :¼ Rh
ij ¼ Pdh

j þ aij Rdh
j � Pdh

j

� �
Cðai jÞh :¼ Ch

ij

¼ Rahj � aij Rahj � Pahj
� �

:

We assume adding coverage to target j 2 Q is strictly better for the

defender and worse for the attacker. That is Rdh
j > Pdh

j and Rah
j > Pahj .

Note that this does not necessarily mean zero-sum.

2.1. DOBBS and ERASER

Efficient and compact techniques for choosing the optimal
strategies for Bayesian Stackelberg games have been a topic of

218 F. Lagos et al. / Computers & Industrial Engineering 111 (2017) 216–227
active research from the work of Paruchuri, Pearce, Tambe,
Ordóñez, and Kraus (2007), Paruchuri et al. (2008). In particular,
the DOBBS problem formulation below, introduced in Paruchuri
et al. (2008), allows for a Bayesian Stackelberg game to be
expressed compactly as a single mixed integer optimization
problem.

max
X
i2X

X
h2H

X
j2Q

phzhijR
h
ij

ðDOBBSÞ
X
i2X

X
j2Q

zhij ¼ 1 8h
X
i2X

zhij ¼ qh
j 8j; h

0 6 vh �
X
i2X

Ch
ij

X
k2Q

zhik 6 ð1� qh
j ÞM 8j; h

X
j2Q

zhij ¼ xi 8i; h

zhij 2 ½0;1� 8i; j; h
qh
j 2 f0;1g 8j; h

xi 2 ½0;1� 8i
Algorithms for large-scale SSG, using branch and price and fast

upper bound generation framework are introduced in Jain et al.
(2010). That work builds these algorithms from a more compact
representation of DOBBS, which has been named as ERASER (Effi-
cient Randomized Allocation of Security Resources). This formula-
tion does not use variable zhij obtaining a formulation that uses less
variables overall but uses two sets of big M constraints. In the ERA-
SER formulation below we present the notation for the dual vari-
ables of constraints (2)–(6) in parenthesis.

max
X
h2H

phdh ð1Þ

ðERASERÞ dh �
X
i2X

xiR
h
ij 6 ð1� qh

j ÞM1 8j; h ð2Þ

ah �
X
i2X

xiC
h
ij 6 ð1� qh

j ÞM2 8j; h ð3Þ
X
i2X

xiC
h
ij 6 ah 8j; h ð4Þ

X
i2X

xi ¼ 1 ð5Þ
X
j2Q

qh
j ¼ 1 8h ð6Þ

qh
j 2 f0;1g 8j; h ð7Þ

xi P 0 8i ð8Þ
The M1 and M2 values are important for the ERASER perfor-

mance, since their value helps determine how tight the linear
relaxation is. Thus they must be chosen large enough so that the
constraint does not eliminate a feasible solution but as small as
possible to give the tightest linear relaxation. The values for M1

and M2 are as follows,

M1 ¼ max
j;h

Rdh
j �min

j;h
Pdh

j ð9Þ

M2 ¼ max
j;h

Rahj �min
j;h

Pahj ð10Þ

These values of M guarantee the problem keeps its feasible region
unchanged. We will show this in the next section for similar con-
stants in problem MIPSG.

When solving these equivalent formulations, one observes that
the ERASER linear optimization relaxation is easier to solve than
DOBBS, as it has less variables, however it gives a larger integrality
gap. A branch and price method for ERASER is introduced in Jain
et al. (2010) and is shown to be efficient in practice and able to
solve large SSG problems. This algorithm will be used as a compar-
ison for the decomposition algorithm presented in this work.

A Branch and Price method is based on using a column genera-
tion method to solve the LP relaxation. In this column generation
for ERASER, the master would solve the problem considering only
a few of the defender strategies �X � X, obtaining an optimal master
primal and dual solutions. Then, the method tests whether a defen-
der strategy variable xi would enter the master problem by check-
ing if its reduced cost is positive. Given the reduced master optimal
dual variables indicated in (2)–(6), the reduced cost for strategy

i 2 X, also represented by the vector v 2 f0;1gjQ j, is as follows,

�ci ¼ �cv ¼
X
j2Q

X
h2H

Rh
ijb

h
j þ Ch

ijðah
j � rh

j Þ � d ð11Þ

¼
X
j2Q

X
h2H

Rh
j ðv jÞbh

j þ Ch
j ðv jÞðah

j � rh
j Þ � d ð12Þ

Using this reduced cost expression we can define the subprob-
lem for the ERASER’s column generation. In this case, the subprob-
lem also includes resources and patrol constraints. The branch and
price framework is used for ERASER is the same that is used for the
MIPSG model that will be presented in the next section. Thus, the
only difference between the two models implementation are the
branch and price tree nodes.

2.2. Strong integer optimization formulation

A novel equivalent formulation of this problem, a variation on
the DOBBS formulation, was introduced in Casorrán-Amilburu
et al. (2017). In contrast to ERASER, this model has tighter linear
representation but requires more variables. Below we present this
optimization problem, referred to as Model Integer Problem for
Security Games (MIPSG).

max
X
i2X

X
h2H

X
j2Q

phzhijR
h
ij ð13Þ

X
i2X

X
j2Q

zhij ¼ 1 8h ðphÞ ð14Þ

X
i2X

zhij ¼ qh
j 8j; h ðrh

j Þ ð15Þ
X
i2X

ðCh
ij � Ch

ikÞzhij P 0 8j; k; h ðah
jkÞ ð16Þ

X
j2Q

zhij ¼ xi 8i; h ðbh
i Þ ð17Þ

zhij 2 ½0;1� 8i; j; h ð18Þ

qh
j 2 f0;1g 8j; h ð19Þ

xi 2 ½0;1� 8i ð20Þ
In the above description we also give the notation for the dual vari-
ables of the linear relaxation of MIPSG for each of the four sets of
constraints. This is indicated by the variable in parenthesis on each
constraint.

The MIPSG formulation is similar to the DOBSS formulation of
Stackelberg games. The only difference between these formula-
tions is in how they represent the optimal response of the follow-
ers. In DOBBS this is done by two sets of jQ jjHj constraints, with a
big M constant, that define the value vh as the optimal reward
value for follower h. In MIPSG the characterization of the optimal

follower response is done with the jQ j2jHj constraints in (16). This
means that MIPSG is a formulation with more constraints than
DOBBS, but that does not need a big M constant.

F. Lagos et al. / Computers & Industrial Engineering 111 (2017) 216–227 219
Proposition 2.1. Problem MIPSG is equivalent to DOBBS.
Proof. Problem MIPSG and DOBBS are the same except for one
constraint. While in MIPSG the solution ðz;x;qÞ satisfiesP

i2XðCh
ij � Ch

ikÞzhij P 0 8j; k; h in DOBBS the solution ðz;x;q;vÞ satis-
fies 0 6 vh �Pi2XC

h
ij

P
k2Qz

h
ik 6 ð1� qh

j ÞM 8j; h. If qh
h ¼ 1 then the

DOBBS solution satisfies
P

k2Qz
h
ik ¼ zhih and thereforeX

i2X
Ch
ijz

h
ih ¼

X
i2X

Ch
ij

X
k2Q

zhik 6 vh 6
X
i2X

Ch
ih

X
k2Q

zhik ¼
X
i2X

Ch
ihz

h
ih;

which is equivalent to the MIPSG constraint.
Let us now consider a solution for MIPSG. If qhh ¼ 1 then let

vh :¼Pi2XC
h
ihz

h
ih. Since now we also have

P
k2Qz

h
ik ¼ zhih we have

from the MIPSG constraint that

vh ¼
X
i2X

Ch
ihz

h
ih P

X
i2X

Ch
ij

X
k2Q

zhik:

This satisfies the DOBBS constraints as the only tight right hand
inequality is the one that defines vh. h

The results in Casorrán-Amilburu et al. (2017) show that a solu-
tion that is feasible for the linear relaxation of the MIPSG formula-
tion is a feasible solution for the linear relaxation of the DOBBS
formulation. Furthermore, the linear relaxation of the MIPSG prob-
lem equals the convex hull of the feasible integer solutions when
there is only one adversary.

The total amount of defender’ strategies increase exponentially
with the number of targets and resources. Without additional fea-
sibility constraints, the size of the set of possible defender strate-

gies equals Q
N

� �
. This leads to problems that are too big to solve

in a standard computer. It is therefore necessary to find a way to
generate only the strategies that are used by the model.

3. Column generation for MIPSG

A column generation method on MIPSG aims at solving the lin-
ear relaxation of the problem by gradually considering more vari-
ables associated to the large set of defender strategies. The linear
relaxation of MIPSG relaxes the integrality constraints and consid-
ers variables that satisfy 0 6 zhij; q

h
j 2 R and xi 2 R. Note that sinceP

i2X
P

j2Qz
h
ij ¼ 1 we still have that zhij; q

h
j ; xi 2 ½0;1�. Below we give

the dual problem of the linear relaxation of the MIPSG problem,
using the dual variables identified in the statement of the MIPSG
problem:

min
X
i2H

ph ð21Þ

phRh
ij 6 ph þ rh

j þ bh
i þ

X
k2Q

ðCh
ij � Ch

ikÞah
jk 8i; j; h ð22Þ

rh
j ¼ 0 8j; h ð23ÞX

h2H
bh
i ¼ 0 8i ð24Þ

ah
jk 6 0 8j; k; h ð25Þ

In the LP relaxation of MIPSG the constraint
P

i2Xz
h
ij ¼ qh

j

becomes redundant as it defines the value of qh
j , but this variable

no longer has to be an integer variable. This fact is reflected in that
the corresponding dual variable rh

j has a value of zero.
We now outline the column generation procedure that we pro-

pose for MIPSG. We begin by solving a version of the MIPSG prob-
lem in which only a set �X � X of defender strategies are considered.
This means that variables zhij and xi with i R �X are not considered in
the master problem and assumed fixed at 0. After solving the
reduced master problem, the method looks for profitable strategies
in X n �X. To identify a profitable strategy i 2 X we should look for a
variable zhij or xi with positive reduced cost. From linear program-
ming duality we have that a positive reduced cost corresponds to
a violated dual constraint. Indeed, the process of column genera-
tion in a problem is equivalent to generating the corresponding
dual constraints in the dual problem (Bertsimas & Tsitsiklis,
1997). Therefore to identify which variables (and corresponding
strategies i 2 X) to add to the master, our method requires we iden-
tify constraints, either (22) or (24), in this dual problem that are
not being satisfied at the current dual optimal solution. Once the
new variables are added to the master, we re-optimize the master
problem until there are no violated dual constraints.

However, the generic column generation method described
above cannot be implemented as written since computing the
reduced cost of variables zhij or xi that have not been considered

in the master (that is with i R �X), we need the dual variable bh
i . This

is the dual variable corresponding to constraint (17) that is not pre-
sent in the master problem if strategy i R �X and therefore bh

i is not
defined.

We address this difficulty by introducing a related optimization
problem, which is based on the dual problem of MIPSG. Recall that

given a vector v 2 f0;1gjQ j that represents a joint patrolling

strategy, we denote Rðv jÞh ¼ Pdh
j þ v jðRdh

j � Pdh
j Þ and Cðv jÞh ¼ Rahj�

v jðRah
j � Pah

j Þ the utility of the defender and the h-th attacker if
target j is attacked. Assume a set S of individual patrols is given
and for r 2 S let tjr 2 f0;1g indicate whether patrol r covers target
j or not. Consider the following optimization problem (SUBP):

max
f ;v;e;u

X
h2H

f h ð26Þ

f h 6 phRðv jÞh � ph þMhð1� ehj Þ �
X
k2Q

ðCðv jÞh � CðvkÞhÞah
jk 8j; h ð27Þ

X
r2S

ur 6 N ð28Þ
X
j2Q

ehj ¼ 1 8h ð29Þ

X
r2S

tjrur ¼ v j 8j ð30Þ

v j 2 f0;1g; ehj 2 f0;1g; ur 2 f0;1g 8j; h; r ð31Þ

The solution vector of this problem v corresponds to a joint patrol
formed by selecting individual patrols from the set S. Let ur be a bin-
ary variable that is 1 if the schedule r 2 S is used in the strategy v
and 0 otherwise. These ur must sum up to N, which is the number
of available resources. Finally, the variable ehj is a binary variable

that enables f h ¼ maxj2Q phRðv jÞh � ph �Pk2Q ðCðv jÞh � CðvkÞhÞah
jk

n o
.

This requires the use of a large constantMh. The constant Mh should
be large enough so that when ehj ¼ 0 the constraint becomes redun-
dant, at the same time it is desirable that it be the smallest constant
that achieves this. The following result gives the best value for Mh.

Proposition 3.1. For all h 2 H, the smallest value of Mh that
guarantees constraints (27) are redundant with ehj ¼ 0 is

Mh ¼ ph max
j

Rdh
j �min

j
Pdh

j

� �

� 2jQ j min
jk
ah
jk max

j
Rahj �min

j
Pah

j

� �
ð32Þ

220 F. Lagos et al. / Computers & Industrial Engineering 111 (2017) 216–227
Proof. Recall that f h will equal minj2Q phRðv jÞh � ph�
n

P
k2Q ðCðv jÞh � CðvkÞhÞah

jkg. Then considering ehj ¼ 0 in constraint

(27), we have that an Mh that makes the constraint redundant
has to satisfy

Mh þ phRðv jÞh � ph �
X
k2Q

Ch
ij � Ch

ik

� �
ah
jk

P max
j2Q

phRðv jÞh � ph �
X
k2Q

Ch
ij � Ch

ik

� �
ah
jk

()
8j 2 Q ; h 2 H:

The Mh that satisfies this for all j 2 Q satisfies

Mh þmin
j2Q

phRðv jÞh � ph �
X
k2Q

Ch
ij � Ch

ik

� �
ah
jk

()

P max
j2Q

phRðv jÞh � ph �
X
k2Q

Ch
ij � Ch

ik

� �
ah
jk

()
:

To ensure we satisfy the above inequality, let us rearrange and
bound:

max
j

phRðv jÞh�
X
k2Q

ðCh
ij�Ch

ikÞah
jk

()
�min

j
phRðv jÞh�

X
k2Q

ðCh
ij�Ch

ikÞah
jk

()

6 phðmax
j

Rdh
j �min

j
Pdh

j Þ�2max
j

X
k2Q

ðCh
ij�Ch

ikÞah
jk

6 phðmax
j

Rdh
j �min

j
Pdh

j Þ�2jQ jmax
j

Rah
j min

jk
ah
jkþ2jQ jmax

j
max

k
Ch
ika

h
jk

n o

6 phðmax
j

Rdh
j �min

j
Pdh

j Þ�2jQ jmin
jk
ah
jk ðmax

j
Rah

j �min
j

Pahj Þ

¼Mh

h

We now show that the optimal solution to SUBP either becomes
the joint patrol that should be added to the master problem or it
proves that the column generation found the optimal solution.
The optimal solution to SUBP identifies a joint patrolling strategy

v. If the objective function �f ¼Ph2Hf
h of this solution is positive

then that strategy violates a constraint in the dual and must be
incorporated into the master problem. To prove this define
Fh
ij ¼ phRh

ij � ph �Pk2Q ðCh
ij � Ch

ikÞah
jk.

It is easy to check that if �f ¼ max
P

hf
h ¼ max

P
hF

h
j is greater

than zero, then we can not satisfy the dual. In fact,

phRh
ij 6 ph þ rh

j þ bh
i þ

X
k2Q

ðCh
ij � Ch

ikÞah
jk

phRh
ij � ph � rh

j �
X
k2Q

ðCh
ij � Ch

ikÞah
jk 6 bh

i

X
h

phRh
ij � ph � rh

j �
X
k2Q

ðCh
ij � Ch

ikÞah
jk

 !
6
X
h

bh
i

�f ¼
X
h

Fh
j 6

X
h

bh
i ¼ 0

�f 6 0

In this set of equations we are using that rh
j ¼ 0, from the dual

Eq. (23), when qh
j 2 R, i.e., when there are no integer conditions.

We show the condition we need in order to determinate
whether we can terminate the column generation or not. This con-
dition is sufficient to guarantee optimality.
Proposition 3.2. If �f ¼ max
P

h2Hf
h ¼Ph2H max Fhij 6 0 for a new

strategy i in the subproblem, then there is no new column that must be
included to the master problem. This problem does not need more
columns to be solved optimally.
Proof. The first thing we should notice is the bh
i values can take

arbitrary values because their primal constraint is always feasible.
Indeed,

P
jz

h
ij ¼ xi is true for all strategy in or out of the master

problem at any iteration. Hence, if we find some arbitrary bh
i that

satisfies the dual problem for a non positive reduced cost strategy
i, then it is not necessary to include that strategy.

In fact, we know that in the dual problem we have to satisfy:

Fh
ij 6 bh

i 8j; h ð33ÞX
h2H

bh
i ¼ 0 ð34Þ

We can take an arbitrary �h 2 H and set b
�h
i such that

b
�h
i ¼ �Ph2Hnf�hg max Fh

ij, and for all remaining h 2 H n f�hg set

bh
i ¼ max Fh

ij.

These b
�h
i for strategy i satisfies:

�f ¼
X
h2H

max Fh
ij 6 0

max F
�h
ij þ

X
h2Hnf�hg

max Fh
ij 6 0

max F
�h
ij 6 b

�h
i

Using this last inequality it is easy to verify that for all j; h, the
values we have set for bh

i meets the first set of constraints in (33)
and also

P
h2Hb

h
i ¼ 0. Therefore, when �f 6 0 we have the conditions

necessary to finish the column generation. h
3.1. Upper and lower bounds

Good upper and lower bounds can help speed up the column
generation and branching process. Moreover, if we set optimality
tolerances, then having tight gaps lead to faster running times.
We therefore are interested in being able to bound well the dis-
tance between the optimal and the current solution.

Let L be the Lagrangian relaxation of MIPSG obtained by relax-
ing the adversaries best response constraint with a Lagrangian
multiplier of ah

jk. This relaxation is therefore a function of a and will
be updated every step, providing an upper bound for our problem.
Next, we could write this function as follows,

LðaÞ ¼ max
z;x

X
i2X

X
h2H

X
j2Q

phRh
ij �

X
k2Q

ðCh
ij � Ch

ikÞah
jk

 !
zhij

X
i2X

X
j2Q

zhij ¼ 1 8h
X
j2Q

zhij ¼ xi 8i; h

zhij 2 ½0;1� 8i; j; h

6
X
h2H

max
i2X;j2Q

phRh
ij �

X
k2Q

ðCh
ij � Ch

ikÞah
jk

 !

¼
X
h2H

ph þ
X
h2H

max
j2Q ;i2X

Fh
ij

F. Lagos et al. / Computers & Industrial Engineering 111 (2017) 216–227 221
The inequality in the second line is because we removed the
constraints that involved the xi variables. This further relaxed
problem gives a value greater than the LðaÞ. In this way, we know
in every iteration the optimal value is greater than

P
h2Hph and less

than
P

h2Hph þPh2Hmaxj2Q ;i2XF
h
ij, therefore, the gap is

�f ¼Ph2Hmaxj2Q ;i2XF
h
ij, the objective function of the subproblem.

This is further proof that when �f 6 0 we have found the optimal
solution using column generation.

So far, we have described how to identify new columns in our
problem when the integrality constraints of the primal are relaxed,
i.e., when qh

j 2 R. In the next subsection we discuss how to gener-
ate columns (how to conduct pricing) when branching starts.

3.2. Branching scheme

When the variable q is relaxed, we solve the master problem
and the subproblem until the optimal solution is reached. How-
ever, the q variable must be integer for the general case, so we
implement a standard branch and price scheme. At every node
we solve the relaxed problem using column generation and then,
if any of the integer variables is fractional, we branch on it.

In the dual MIPSG model presented in (21)–(25), there is a dual
variable rh

j related to the constraint that defines the qh
j primal vari-

able. If this primal variable is relaxed, the dual variable is equal to
zero. However, when we branch on qh

j , then the dual variable is no
longer zero and it should be included in the subproblem. Hence, as
we branch in the branch and price tree, some of these rh

j become
active, changing the subproblem. The termination condition for
the column generation is �f 6 0. This condition remains a valid ter-
mination condition for the column generation in branched nodes,
but the non-zero rh

j variables modify the value of �f .
The strategy we follow to implement the branch and price is

going through the tree following a depth-first search procedure,
instead of a breadth-first search along nodes. In other words, we
quickly find integer solutions, lower bounds of the problem and
then check other branches. We also identify the variables those
values are close to 0.5 in the first place, because they might be
more decisive in the objective function.

3.3. Column generation stabilization by dual price smoothing

Column generation are iterative methods that can run into con-
vergence problems when used to solve linear optimization prob-
lem. Vanderbeck (2005) listed some of the typical issues that
arise when implementing column generation methods due to the
dual variables. Among the problems they have detected are: (i)
slow convergence, a phenomenon called the tailing-off effect; (ii)
irrelevant columns generated in first iterations; (iii) restricted
master solution value keeps constant for several iterations; (iv)
dual values that change considerably from one iteration to
another; (v) Lagrangian dual bounds do not convergence
monotonically.

Some techniques have been developed in order to deal with
these undesirable converging behavior. Lübbecke and Desrosiers
(2005) described the three important methods: Weighted
Danzing-Wolfe decomposition, Trust region method and Stabiliza-
tion approach using primal and dual strategies. We will use the
third method because it has shown a good performance solving
classical problems and it is easy to implement (Pessoa, Sadykov,
Uchoa, & Vanderbeck, 2013).

A detailed description and analysis of a Stabilization approach
using a smoothing strategy is given in Pessoa et al. (2013). That
work also shows this algorithm improves the runtime for solving
classic large problems, such as Machine Scheduling, Bin Packing
and Capacitated Vehicle Routing, reducing solution time by a factor
of up to 5. They also develop a smoothing technique used for a
hybridization of column generation with sub-gradient method.
The smoothing technique in its simplest version is as follows. Let
yt be the dual solution at iteration t P 2 and 0 6 a 6 1 be a
weighting parameter, then the dual ~yt for the pricing problem for
the next iteration is

~yt ¼ aŷt þ ð1� aÞyt: ð35Þ
Here ŷ is the dual associated to the best (min/max) Lagrangian dual
solution so far. At each iteration the dual values are adjusted using
as reference the best dual solution values. This gives some stability
to the dual variables considered, preventing these dual variables
from changing radically from one iteration to the next.

In this simple smoothing scheme we can face three situations:
(i) updated duals give us a positive reduced cost column; (ii) we
get a new dual bound and improve the optimality gap; or (iii) a
mis-pricing occurs and the next iteration smoothed prices get clo-
ser to yt. A mis-pricing is when the subproblem finds a solution
with non-positive reduced cost with ŷt, but that has positive
reduced costs if we use yt. Under these conditions, the column gen-
eration method with smoothing pricing approach converges to an
optimal solution in a finite number of iterations (Pessoa et al.,
2013).

A fixed a gives a smoothing scheme that convergences after
some iterations. A better approach considers an auto-adaptive a,
which increases and decreases as upper-lower bound gap changes.
In Pessoa et al. (2013) they propose an algorithm for this adaptive
method, which is based on a sub-gradient information and a mis-
pricing sequence for a given initial a.

Algorithm 1. Sub-gradient routine.

222 F. Lagos et al. / Computers & Industrial Engineering 111 (2017) 216–227
Algorithm 2. Mis-pricing sequence.
In Algorithm 1, we use functions for increasing and decreasing
a. These functions are as follows,

f incðatÞ ¼ at þ ð1� atÞ � 0:1 ð36Þ

f decðatÞ ¼
at
1:1 if at 2 0:5;1½ Þ
maxf0;at � ð1� atÞ � 0:1g otherwise

(
ð37Þ

The vector gt is the sub-gradient for a given dual yt ¼ ½p;a�
solution. This vector is computed as follows,

gtyt ¼
X
h2H

Mhð1� ehj Þ � ph � P
k2Q

Cðv jÞh � CðvkÞh
� �

ah
jk

()
ð38Þ

where the values of ehj and v j for gt are those we find through the
subproblem at iteration t.

3.4. Greedy algorithm for subproblem

On one hand, the master problem solution for the leader corre-
sponds to the best mixed strategy using available schedules. On the
other hand, the subproblem finds the best schedule to include for a
new column using the dual values from master problem. Since the
number of resources is limited, it seems natural to solve this sub-
problem with a greedy heuristic. Those targets with the highest
value (from duals) for the objective function should probably be
picked for the new column. Algorithm 4 describes this greedy
heuristic in detail.

We use this algorithm as an additional speed up subroutine for
the column generation. First, we solve the Greedy Algorithm, if the
column we find has a positive reduced cost, then we add it to Mas-
ter problem. If not, then we try with SUBP described in Section 3,
this optimization problem must be used for checking optimality
at the last step.

In the Greedy algorithm, we try all the schedules over set of
feasible schedules S and we keep in the new strategy only those
with the highest reduced cost. We repeat this process until no
more resources can be assigned. Finally, we return the best
strategy and its reduced cost. The algorithm we implement is
Algorithm 3.
Algorithm 3. Column Generation Greedy.
Algorithm 4. Greedy subroutine.
4. Computational results

We randomly generate a set of instances to be solved for each
solution method. The base algorithms considered are the branch
and price methods for the MIPSG and the ERASER formulations
of the problem, we refer to these solution algorithms as MIPSG-C

Table 2
Computational results summary.

Algorithm Problems solved (%) Nodes

MIPS G-C 87.6 1
ERASER-C 94.2 138
GREEDY 85.4 1
STAB 86.4 1

F. Lagos et al. / Computers & Industrial Engineering 111 (2017) 216–227 223
and ERASER-C, respectively. The ERASER-C algorithm is the state of
the art benchmark from prior work (Jain et al., 2010). In addition
we solve each instance using the greedy subroutine and the stabi-
lization approach presented above to attempt to speed up the col-
umn generation step when solving the MIPSG formulation. We
refer to these as GREEDY and STAB, respectively. In summary we
present computational results to compare four solution methods:
ERASER-C, MIPSG-C, GREEDY and STAB over randomly generated
instances.

We generate random instances by sampling rewards and penal-
ties for the leader and the attacker and also by generating a ran-
dom set of initial patrols or schedules for each instance. We
generate reward values using a log-normal distribution because
this guarantees that the reward is positive. Furthermore the log-
normal distribution depends on two parameters l and r that can
be used to adjust the distribution. If X � Log-normalðl;rÞ then
X ¼ elþrZ with Z a standard normal distribution. We set
l ¼ 3:107304 and r ¼ 1:268636 so that the coefficient of variation

CVX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er2 � 1

p
¼ 2 and the mean is EðXÞ ¼ elþr2=2 ¼ 50. Penalties

are generated in a similar way but with a negative log-normal. This
guarantees that the penalty is always less than the reward for
every attacker and defender. The set of available schedules is sam-
pled from a discrete random variable in a way we do not have
repeated schedules. We have seen that a coefficient of variation
of 2 corresponds to a large input variability.

Our instances consider 1 adversary, and as a base case 70 differ-
ent zones or targets, 5 police resources to be allocated, 600 individ-
ual schedules that each police resource can choose from with each
of these schedules covering 5 targets. We conduct sensitivity anal-
ysis on these problem parameters by varying them as indicated in
Table 1, base case is indicated by bold:

For each combination of the first three problem parameters we
generate 25 random problem instances also selecting randomly the
value of targets per schedule. We vary one of the first three param-
eters at a time and remove repeated instances. This gives a total of
500 problem instances that are solved by the four solution algo-
rithms. To solve each instance we use CPLEX 12.4 with a runtime
limit set to 2 h.
4.1. Algorithm comparison

The first thing to note is that no algorithm is able to solve all of
the 500 random problem instances in the 2 h time limit. In Table 2
we present the total percentage of problems solved and the num-
ber of nodes in the branch and price tree used for each of the four
solution algorithms considered MIPSG-C, ERASER-C, GREEDY and
STAB. Methods that use MIPSG as base model only need one node
in B&P tree because the linear relaxation of this problem with one
adversary gives the integer solution. ERASER needs to branch more
because the big M formulation gives a larger integrality gap. Over-
all the ERASER-C algorithm is able to solve the most instances,
which suggest that it is more efficient. In what follows we present
detailed results to understand for which problem parameters one
algorithm is preferable over the other.

The number of columns generated in the B&P method indicates
the amount of work that is needed to solve a problem. In Table 3
we show the average number of columns generated by each algo-
rithm for different number of resources. The remaining problem
Table 1
Problem parameters considered in computational results. Base case is in bold.

Number of targets 50, 60, 70, 80, 90, 100
Defender resources 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Number of schedules 200, 400, 600, 800, 1000
Targets covered per schedule 2, 3, 4, 5
parameters are fixed at the base case: 70 targets, 600 feasible
schedules and 5 targets covered by schedule. We present results
for 2, 4, 6, 8 and 10 resources.

The average number of columns that are generated are compa-
rable for all algorithms and varies with the number of resources.
The results suggest that instances with a large number of resources
require less columns and are thus easier to solve. ERASER-C does
very well with few resources as well. Finally, STAB reduces the
number of columns generated by MIPSG-C for all cases with
resources greater than 4. GREEDY does not seem to reduce the
number of columns generated.

In Figs. 1–3 we have plotted the average solution time for each
algorithm. When a method is not able to solve an instance within
the given time limit, we consider the maximum time of 2 h. In each
plot we present sensibility with respect to one parameter, keeping
the rest in the base case. In Fig. 1 we see the solution times as a
function of the number of resources; in Fig. 2 as a function of the
number of schedules; finally in Fig. 3 as a function of the number
of targets. The running time increases more for ERASER-C than
for the algorithms that tackle the MIPSG formulation. For large
number of resources (8 and 10) the runtime for MIPSG-C and
GREEDY is smaller than when there is less resources. The increase
in number of resources does create a significant difference
betweenMIPSG-C and the speed-up methods, showing comparable
runtimes regardless of the number of resources. The runtimes of
MIPSG-C is close to 5 times smaller than the runtimes for
ERASER-C when there are many resources. Fig. 2 shows that the
algorithms that tackle the MIPSG formulation increase slightly as
the number of schedules that form the possible joint patrols
increases. ERASER-C is more sensitive showing a significant
increase as the number of schedules goes from 600 to 1000. For
the instances with schedules from 600 to 1000 ERASER-C has more
than 50% runtime than MIPSG-C. The speedup alternatives
(GREEDY and STAB) give comparable runtimes to MIPSG-C. Finally,
in Fig. 3 we see that all four solution algorithms increase their run-
time as the number of targets increase. In particular the runtimes
increase significantly when the targets go from 70 to 80. Again
MIPS-G shows a slightly better runtime than ERASER-C and a com-
parable performance when compared to GREEDY and STAB.

4.2. MIPSG column generation results

Fig. 4 shows how the number of targets affects the runtime for
MIPSG-C. We have made this analysis showing separately the
result for each number of targets per schedule (T/S). The other
parameters, schedules and resources, are the same as base case.
From this plot, first we see that as we increase the number of tar-
gets, the running time increases for all target to schedule values.
Note that this relation is not linear, which is consistent with the
combinatorial nature of the problem. An instance with too many
targets is hard to solve even when we have a limited number of
schedules and resources, in the base case set to 600 and 5,
respectively. We can also see that the T/S impacts the solution
time, a 2 T/S instance is easier to solve than a 5 T/S instance. We
can see a direct relation between T/S and runtime. An explanation
for this is that the number of T/S of an instance is related to how
flexible it is to cover targets. The case with 2 T/S assigns patrols

Table 3
Average number of generated columns. Targets 70, schedules 600, targets/schedule 5.

Resources MIPSG-C ERASER-C GREEDY STAB

2 484 115 578 487
4 482 401 367 406
6 734 886 639 680
8 158 388 209 120
10 115 140 118 54

Fig. 1. Running time versus number of resources.

Fig. 2. Running time versus number of schedules.

Fig. 3. Running time versus number of targets.

224 F. Lagos et al. / Computers & Industrial Engineering 111 (2017) 216–227
to resources that more easily can be combined to protect targets of
interest.

In Fig. 5 we show the average runtime for each resource number
and T/S value. The number of resources represents how many
schedules can be in the same strategy. It is not clear how the num-
ber of resources impacts on time, but the extreme values, 1 and 10,
seem to be faster to solve than the values in the middle, for exam-
ple 5 or 6. Finally, in Fig. 6 we have runtime versus number of
available schedules and T/S, there is no clear dependency of the
runtime on the number of schedules, as in all the plots that sepa-
rate results for each T/S value se see that there is a tendency to
increase solution time as the number of T/S increases.

Fig. 4. Running time versus number of targets and T/S for MIPSG-C.

Fig. 5. Running time versus number of resources and T/S for MIPSG-C.

Fig. 6. Running time versus number of schedules and T/S for MIPSG-C.

F. Lagos et al. / Computers & Industrial Engineering 111 (2017) 216–227 225
4.3. MIPSG stabilization

For MIPSG model it is critical to find useful speedup strategies
for the column generation to be able to reduce the overall runtime.
When dual values vary substantially from one iteration to the next,
we probably generate irrelevant columns as Vanderbeck has estab-
lished (Vanderbeck, 2005). The dual stabilization method we
implemented addresses this issue directly. Fig. 7 shows the upper
and lower bounds for an instance, where we observe that STAB, the
stabilization procedure that smoothes the dual variables, has a
more monotonic behavior. In this case, we not only have a
smoother curve but also the method finishes in fewer iterations,
about 45 versus 50. In addition, note that the lower bound is
affected, the STAB bound reaches a higher value faster than
MIPSG-C bound. The graph however shows that there still is some
variability and the rate of convergence, although smaller is compa-
rable to the un-stabilized case. This improved performance has not
translated to a significant runtime reduction as can be seen from
the aggregate results presented earlier. Further work is needed to
check whether other stabilization methods could lead to better
performance.
5. Conclusions

In this paper we have introduced a column generation method
to solve a novel mixed integer formulation of Stackelberg Security
Games. Decomposition methods are key to be able to solve ever
larger problem instances and strong formulations, such as MIPSG,
provide good opportunities to develop efficient algorithms. That
said, even if the linear relaxation problems of MIPSG yield better
integrality gaps than other existing formulations, the relaxations
of MIPSG turn out to be challenging to solve due to the large num-
ber of variables in the formulation.

Fig. 7. Example of stabilization procedure (STAB) on convergence of column generation.

226 F. Lagos et al. / Computers & Industrial Engineering 111 (2017) 216–227
A standard column generation model would not work for this
MIPSG problem, as the reduced cost of candidate variables depend
on undefined dual variables. We circumvent this challenge by for-
mulating a related problem to replace the standard column gener-
ation subproblem, and use this to generate candidate joint
strategies and to detect optimality. We are able to obtain upper
and lower bounds at every iteration. Furthermore we explore
methods to speed up the column generation approach, including
greedy heuristics to solve the subproblem SUBP, or dual smoothing
techniques.

Problem structure in SSG can be exploited to create a polyno-
mial mixed integer formulation for SSG when defender strategies
consist of all patrols that deploy N resources on jQ j targets. The
approach is based on a formulation of the frequency with which
each target is protected and the fact that there are no patrol feasi-
bility constraints allows to obtain an implementable solution strat-
egy from this optimal frequency, (Kiekintveld et al., 2009). In the
game considered in this work however, joint strategies are con-
structed from a given set of fixed patrolling alternatives. This
makes it impossible to use the polynomial reformulation forcing
the use of exact decomposition algorithms.

Our preliminary computational results evaluate the efficiency
of the column generation method presented, as well as the greedy
heuristic and the stabilization by dual price smoothing. Further-
more we contrast these results with ERASER, a state of the art
column generation method, built on a different mixed integer for-
mulation. We note that ERASER branches more than the branch
and price method proposed for MIPSG, ERASER also generates
more columns as the number of resources increases. However
since each linear relaxation for ERASER is easier to solve, it
remains a competitive solution alternative. Our computational
results show that MIPSG-C exhibits a significantly smaller run-
time when either the number of resources or the number of
schedules increases.

We note that there remains a challenge on how to solve the lin-
ear relaxations for the MIPSG problem faster. Our computational
results show slight improvements from using both the Greedy
heuristic and the stabilization procedure, but further work is nec-
essary to make these speedup methods beneficial overall. Being
able to more efficiently solve the linear relaxations of MIPSG can
help construct an efficient large scale algorithm for Stackelberg
games as a column generation on MIPSG solves far fewer linear
relaxation problem.
Acknowledgement

Research was supported by CONICYT through Fondecyt grant
1140807 and the Complex Engineering Systems Institute, ISCI
(CONICYT: FB0816). The research of third author has been sup-
ported by the Interuniversity Attraction Poles Programme P7/36
‘‘COMEX: combinatorial optimization metaheuristics & exact
methods” of the Belgian Science Policy Office.
References

Bertsimas, D., & Tsitsiklis, J. (1997). Introduction to linear optimization. Athena
Scientific.

Breton, M., Alj, A., & Haurie, A. (1988). Sequential Stackelberg equilibria in two-
person games. Journal of Optimization Theory and Applications, 59(1), 71–97.

Casorrán-Amilburu, C., Fortz, B., Labbé, M., & Ordóñez, F. (2017). A study of general
and security Stackelberg game formulations. Working paper. Département
d’Informatique, Université Libre de Bruxelles.

Conitzer, V., & Sandholm, T. (2006). Computing the optimal strategy to commit to.
In: Proc. of the 7th ACM conference on electronic commerce (pp. 82–90).

Hochbaum, D. S., Lyu, C., & Ordóñez, F. (2014). Security routing games with
multivehicle chinese postman problem. Networks, 64(3), 181–191.

Jain, M., Kardes, E., Kiekintveld, C., Ordóñez, F., & Tambe, M. (2010). Security games
with arbitrary schedules: A branch and price approach. In: Proc. of the 24th AAAI
conference on artificial intelligence (pp. 792–797).

Jain, M., Kiekintveld, C., & Tambe, M. (2011). Quality-bounded solutions for finite
bayesian Stackelberg games: Scaling up. In: Proc. of the 10th international
conference on autonomous agents and multiagent systems (AAMAS).

Jain, M., Korzhyk, D., Vanek, O., Pechoucek, M., Conitzer, V., & Tambe, M. (2011). A
double oracle algorithm for zero-sum security games on graphs. In: Proc. of the
10th international conference on autonomous agents and multiagent systems
(AAMAS).

Jain, M., Tsai, J., Pita, J., Kiekintveld, C., Rathi, S., Tambe, M., et al. (2010). Software
assistants for randomized patrol planning for the LAX airport police and the
federal air marshal service. Interfaces, 40, 267–290.

Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Tambe, M., & Ordóñez, F. (2009). Computing
optimal randomized resource allocations for massive security games. In: Proc. of
the 8th international conference on autonomous agents and multiagent systems
(AAMAS) (pp. 689–696).

Labbé, M., Marcotte, P., & Savard, G. (1998). A bilevel model of taxation and its
application to optimal highway pricing. Management Science, 44(12-part 1),
1608–1622.

Lübbecke, M. E., & Desrosiers, J. (2005). Selected topics in column generation.
Operations Research, 53(6), 1007–1023.

Paruchuri, P., Pearce, J. P., Tambe, M., Ordóñez, F., & Kraus, S. (2007). An efficient
heuristic approach for security against multiple adversaries. In: Proc. of the 6th
international conference on autonomous agents and multiagent systems (AAMAS)
(pp. 311–318).

Paruchuri, P., Pearce, J. P., Marecki, J., Tambe, M., Ordóñez, F., & Kraus, S. (2008).
Playing games with security: An efficient exact algorithm for Bayesian
Stackelberg games. In: Proc. of the 7th international conference on autonomous
agents and multiagent systems (AAMAS) (pp. 895–902).

http://refhub.elsevier.com/S0360-8352(17)30286-3/h0005
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0005
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0010
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0010
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0025
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0025
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0045
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0045
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0045
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0055
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0055
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0055
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0060
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0060

F. Lagos et al. / Computers & Industrial Engineering 111 (2017) 216–227 227
Pessoa, A., Sadykov, R., Uchoa, E., & Vanderbeck, F. (2013). In-out separation and
column generation stabilization by dual price smoothing. In Experimental
algorithms (pp. 354–365). Springer.

Pita, J., Tambe, M., Kiekintveld, C., Cullen, S., & Steigerwald, E. (2011). GUARDS –
game theoretic security allocation on a national scale. In: Proc. of the 10th
international conference on autonomous agents and multiagent systems (AAMAS)
(pp. 37–44).

Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., . . ., & Meyer, G. (2012).
PROTECT: A deployed game theoretic system to protect the ports of the United
States. In: Proc. of the 11th international conference on autonomous agents and
multiagent systems (AAMAS).
Vanderbeck, F. (2005). Implementing mixed integer column generation. In Column
generation (pp. 331–358). Springer.

von Stackelberg, H., Bazin, D., Hill, R., & Urch, L. (2010). Market structure and
equilibrium. Berlin Heidelberg: Springer.

Yang, R., Jiang, A.X., Tambe, M., & Ordóñez, F. (2013). Scaling-up security games
with boundedly rational adversaries: A cutting-plane approach. In: Proc. of the
24nd international joint conference on artificial intelligence (IJCAI).

Yin, Z., Korzhyk, D., Kiekintveld, C., Conitzer, V., & Tambe, M. (2010). Stackelberg vs.
Nash in security games: Interchangeability, equivalence, and uniqueness. In:
Proc. of the 9th international conference on autonomous agents and multiagent
systems (AAMAS) (pp. 1139–1146).

http://refhub.elsevier.com/S0360-8352(17)30286-3/h0075
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0075
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0075
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0090
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0090
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0095
http://refhub.elsevier.com/S0360-8352(17)30286-3/h0095

	A branch and price algorithm for a Stackelberg Security Game
	1 Introduction
	2 Integer optimization formulations of SSG
	2.1 DOBBS and ERASER
	2.2 Strong integer optimization formulation

	3 Column generation for MIPSG
	3.1 Upper and lower bounds
	3.2 Branching scheme
	3.3 Column generation stabilization by dual price smoothing
	3.4 Greedy algorithm for subproblem

	4 Computational results
	4.1 Algorithm comparison
	4.2 MIPSG column generation results
	4.3 MIPSG stabilization

	5 Conclusions
	Acknowledgement
	References

