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KRAS Activation and over-
expression of SIRT1/BCL6
Contributes to the Pathogenesis of
e’ Endometriosis and Progesterone
e Resistance
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Endometriosis is an inflammatory condition that is associated with progesterone resistance and
cell proliferation, resulting in pain, infertility and pregnancy loss. We previously demonstrated
phosphorylation of STAT3 in eutopic endometrium of infertile women with this disorder leading to
over-expression of the oncogene BCL6 and stabilization of hypoxia-induced factor 1 alpha (HIF-1cv).
Here we report coordinated activation of KRAS and over-expression of Sirtuin 1 (SIRT1), a histone

. deacetylase and gene silencer, in the eutopic endometrium from women with endometriosis

. throughout the menstrual cycle. The mice with conditional activation of KRAS in the PGR positive cells

© reveal anincrease of SIRT1 expression in the endometrium compared to control mice. The expression
of progesterone receptor target genes including the Indian Hedgehog pathway genes are significantly
down-regulated in the mutant mice. SIRT1 co-localizes with BCL6 in the nuclei of affected individuals
and both proteins bind to and suppress the promoter of GL/1, a critical mediator of progesterone
action in the Indian Hedgehog pathway, by ChIP analysis. In eutopic endometrium, GLI1 expression
is reduced in women with endometriosis. Together, these data suggest that KRAS, SIRT1 and BCL6
are coordinately over-expressed in eutopic endometrium of women with endometriosis and likely
participate in the pathogenesis of endometriosis.

. Endometriosis is a gynecologic disorder defined by the presence of endometrial cells outside of the uterine cav-
. ity. Endometriosis adds significantly to health care costs, upwards of $22 billion dollars per year in the US!.
Symptoms of endometriosis vary widely and include dysmenorrhea, dyspareunia, noncyclic chronic pelvic pain,
and infertility, with a considerable negative impact on quality of life" 2. Endometriosis is associated with both
infertility and pelvic pain and affects about 5% of reproductive-age women and up to 50% of these are infertile®*.
. Surgical removal of ectopic lesions and/or hormonal suppression focused on reducing estrogen, such as proges-
© tins, androgens, gonadotropin-releasing hormone (GnRH) agonists, and aromatase inhibitors are the current
gold standards of therapy. However, both approaches are associated with various side effects and a high incidence
. of relapse®. Therefore, identification of mechanisms involved in the pathogenesis of endometriosis and strategic
© therapies for treatment remain critical.
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Figure 1. Endometriosis is associated with elevated serum inflammatory cytokines including (a) IL-1a, (b) IL-6
and (c) IL-17, compared to normal controls.

The eutopic endometrium of women with endometriosis exhibits inflammation, aberrant estrogen activity,
cellular proliferation and a resistance to progesterone (P4)°. The biological mechanisms linking endometriotic
lesions to these endometrial alterations remains uncertain and controversial, while P4 resistance and estrogen
dominance likely contributes to the pathophysiology and survival of ectopic lesion and contributes to infertil-
ity®”. KRAS has been proposed as a strong candidate gene in the pathophysiology of endometriosis. Activation
of KRAS in mice was associated with endometriosis-like lesions on the peritoneum and ovaries® and lesions
derived from mice with activated KRAS mutation survived longer in wild type mice’. While there is no direct link
between KRAS mutations and the risk for endometriosis in humans!?, inflammation associated events including
changes in miRNA expression in endometriosis'!, may play a role in its activation'%. We previously showed that
miRNA34b was dramatically decreased in eutopic endometrium of women with endometriosis'®. This miRNA
has been shown to have benefit in KRAS induced mouse models of other carcinomas'*. Both let-7b and miRNA
34 have been shown to target KRAS", and both miR34 and p53 can act synergistically to suppress tumor growth'®.

BCL6 (B Cell Lymphoma 6) is a transcriptional gene repressor and is necessary for B cell development and
oncogenesis'’. BCL6 has six Kriippel-type zinc finger domains and a BTB/POZ (bric-4-brac, tramtrack, broad
complex/pox virus zinc finger) domain, which can bind to transcriptional factors, including Interferon Regulatory
Factor (IRF) 4 and BCL6-associated zinc finger (BAZF)!8. BCL6 is one of the human proto-oncogenes and is asso-
ciated with an increase in cell proliferation through the repression of genes such as p53 and p300'. BCL6 DNA
binding site (TTCCT(A/C)GAA) is similar with Signal Transduction and Activators of Transcription (STAT)
factors and BCL6 can repress transcription via STAT factor binding sites and thus inhibit cytokine-induced tran-
scription®. Furthermore, BCL6 is up-regulated by STAT 3?!. STAT3 signaling is aberrantly activated in eutopic
endometrium from women with endometriosis compared to those without this disease??. Recently, we reported
that BCL6 is highly over-expressed in endometrium from women with endometriosis during the secretory phase
of the menstrual cycle compared to women without endometriosis®.

SIRT1 is a member of the sirtuin family of proteins and homologs to the yeast Sir2 protein. Sirtuin family
proteins are Class [Il HDACs?%. SIRT1 can deacetylate both histones and non-histone proteins such as p53%. Its
deacetylation activity enables it to regulate gene transcription and implicates the influence of a variety of cellular
processes such as aging, apoptosis, inflammation, stress resistance, and metabolism?°. SIRT1 has a dual role as
oncogenic function as well as tumor suppressor?”’. According to previous reports, SIRT1 plays a role as a tumor
promoter in endometrial cancer by targeting sterol regulatory element binding protein 1 (SREBP1) and lipo-
genesis?®. Additionally, SIRT1 has an important role in the regulation of inflammatory cytokines expression in
endometriotic stromal cells? and SIRT1 has been associated with poor prognosis ovarian cancers®. However, the
role of SIRT1 in endometriosis and uterine biology has not been examined.

In this study, we investigated the levels of KRAS and SIRT1 proteins in eutopic endometrium from women
with endometriosis. The levels of SIRT1 and KRAS were compared in endometrium of women with and without
endometriosis. Using a mouse model, we investigated the potential link between KRAS activation and SIRT1
expression. We report here for the first time in endometrium, direct protein-protein interactions between SIRT1
and BCL6 in human endometrial tissue, co-localizing in the nuclei of endometriosis cases. Further, we show
that GLI1, a promoter target for both BCL6 and SIRT1, is reduced in eutopic endometrium of women with this
disease. Based on these results we suggest that aberrant overexpression of SIRT1 is driven by KRAS activation,
and co-localizes with BCL6 contributing to the phenomenon of P4 resistance through gene inactivation of the
GLII promoter.

Results

Endometriosis and Inflammation. Endometriosis is the presence of glands and stroma outside the
uterus. It is often found on the ovary and peritoneum. Endometriosis is a chronic inflammation disease. To better
understand the systemic inflammation status of endometriosis patients, we measured inflammatory cytokines in
plasma of women with and without endometriosis using a multi-plex array from Eve Technologies. Our results
revealed significant elevations in IL-1a, IL-6 and IL-17, among others (Fig. 1).

Overexpression of KRAS and SIRT1 in eutopic endometrial tissue from women with endome-
triosis. IL-6 activates JAK kinases and Ras-mediated signaling. Activation of KRAS, the key regulator of Ras/
ERK pathway, in the endometrium of mice causes ectopic lesion establishment®. KRAS appears to be dysregulated
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Figure 2. Correlation of between KRAS and SIRT1 in human endometrium with endometriosis. (a) Western
blot analysis of SIRT1 and BCL6 proteins in proliferative and secretory phases of human endometrium with
endometriosis. 3-actin was used as sample-loading control. Representative blots have been cropped to reduce
unnecessary area. Full-length blots are presented in Supplementary Fig. S2. (b) Densitometric analysis of
KRAS and SIRT1 protein levels by Western blot analysis in eutopic endometrium from proliferative and
secretory phase in women with and without endometriosis. (c) Correlation between SIRT1 and KRAS in
women with endometriosis throughout the menstrual cycle phases based on Western blot analysis (correlation
coefficient=0.4641, p=0.0009). (d and e) H-score of KRAS (d) and SIRT1 (e) expression in endometrium
from women with and without endometriosis and representative photomicrograph of immunohistochemical
staining of KRAS in endometrium from women without and with endometriosis. The results represent the
mean =+ SEM. **¥p < 0.001.

in endometriosis. To document this, we first examined the expression of KRAS in endometrium using Western
blot, using women with and without the disease. While the expression levels of KRAS did not differ between pro-
liferative (n =21) and secretory phase (n =44), the levels of KRAS were significantly higher in the endometrium
that originated in subjects with endometriosis (n =54) as compared to controls (n=11) (Fig. 2a and b). KRAS
activation is associated with overexpression of SIRT1*'. KRAS activation regulates epithelial-mesenchymal transi-
tion and cell migration through SIRT12 To better understand the finding of increased KRAS in the endometrium
of women with endometriosis, we investigated the association between KRAS activation and SIRT1 expression.
The levels of SIRT1 protein were significantly increased in the samples from women with endometriosis (n = 54)
compared with controls (n=11) (Fig. 2a and b). However, SIRT1 expression was low and unchanged during
the menstrual cycle in the control group. Figure 2c showed a significant positive correlation between KRAS and
SIRT1 proteins in the endometrium of the control and endometriosis group (Spearman correlation coefficient
r=0.6155, p <0.0001).

To determine the cell-specific expression of KRAS and SIRT1, we performed immunohistochemical anal-
ysis in endometrium from women with and without endometriosis (Fig. 2d and e). In control women KRAS
and SIRT1 proteins were weakly detected in the stromal and epithelial cells of endometrium from the pro-
liferative phase and early, mid, and late secretory phases in women without endometriosis (n >4 per phase)
(Supplementary Fig. S1). Interestingly, the levels of KRAS protein were significantly increased in the stromal and
epithelial cells of endometrium from proliferative and secretory phase endometriosis patients (n =>52) as com-
pared to control patients (n=17) (Fig. 2d). The levels of SIRT1 were also significantly higher in both the stromal
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Figure 3. Correlation of between SIRT1 and BCL6. (a) Correlation analysis between SIRT1 and BCL6 in
human endometrium with endometriosis. (b) Immunoprecipitation (IP) analysis between SIRT1 and BCL6 in
Ishikawa cells and Human endometrium with endometriosis. Representative blots have been cropped to reduce
unnecessary area. Full-length blots are presented in Supplementary Fig. S4. (¢) Co-localization of SIRT1 and
BCL6 in the human endometrium without and with endometriosis by immunofluorescence analysis.

and epithelial cells of endometriosis patients compared to women without endometriosis (Fig. 2e). These results
argue that aberrant activation of KRAS and SIRT1 is integral to pathogenesis of endometriosis. In addition, like
BCLS6, they appear to be specific endometrial biomarkers for the diagnosis of endometriosis.

Correlation between SIRT1 and BCL6 in endometriosis. BCL6 is a transcriptional repressor involved
in B cell development and oncogenesis and known to be involved in the recruitment of SIRT1 deacetylase®’. We
previously reported over-expression of BCL6 in eutopic endometrium of infertile women with endometriosis®.
Since both proteins appear to be elevated, we analyzed the relationship between SIRT1 and BCL6 proteins in
eutopic endometrium of endometriosis patients. The levels of SIRT'1 and BCL6 were examined and compared
in eutopic endometrium using Western blot analysis. Our results showed a strong positive correlation between
SIRT1 and BCL6 levels in women with endometriosis throughout the menstrual cycle phases (n =44). Based
on the Western blot band intensity, we show a scattergram with a correlation coeflicient=0.5659, p < 0.0001,
between BCL6 and SIRT1 expression (Fig. 3a).

To determine whether SIRT1 physically interacts with BCL6, we performed immunoprecipitation with SIRT1
antibody in total protein lysates from Ishikawa human endometrial adenocarcinoma cell line and endometrium
from endometriosis patients. The immunoprecipitation result showed that endogenous SIRT1 physically interacts
with BCL6 in human endometrium (Fig. 3b). However, no BCL6 was detected within the immune-precipitate of
the IgG negative control. To determine whether SIRT1 proteins co-localize with BCL6 proteins, we performed
double immunofluorescence for SIRT1 and BCL6. The immunofluorescence results show that SIRT1 and BCL6
proteins were co-localized in endometrial epithelial cells of endometriosis patients (Fig. 3c). These finding leads
to the conclusion that these proteins may be acting in concert and contribute to the development or maintenance
of endometriosis.

Aberrant activation of SIRT1 and BCL6 expression in a baboon model of endometriosis progres-
sion. We have used primate models to study temporal sequence of events involved in endometriosis establish-
ment and progression®. To determine that SIRT1 and BCL6 proteins are overexpressed as part of endometriosis
development, we performed immunohistochemical analysis of SIRT1 and BCL6 in eutopic baboon endometrium
sequentially after the experimental induction of the disease (n =4 per time point). As in human endometrium,
the expression of SIRT1 and BCL6 proteins were not evident in the endometrium of pre-inoculation (control)
baboons. The levels of SIRT1 and BCL6 proteins were significantly increased at 9 and 15 months post-inoculation
during endometriosis progression (Fig. 4). These data suggest that the ontogeny of BCL6 and SIRT1 expression
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Figure 4. Levels of SIRT1 and BCL6 proteins during progression of endometriosis in a baboon model. (a and
b) H-score of SIRT1 (a) and BCL6 (b) expression in endometriosis baboon model induced by intraperitoneal
inoculation of menstrual endometrium during progression of endometriosis. The results represent the

mean + SEM. *p < 0.05 and ***p < 0.001. (c and d) Representative photomicrograph of immunohistochemical
staining of SIRT1 (c) and BCL6 (d) in the baboon endometrium of pre-inoculation and 3, 9 and 15 months
post-inoculation during endometriosis progression.
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Figure 5. Levels of SIRT1 in the KRAS activation mouse model. (a) Representative photomicrograph of
immunohistochemical staining of SIRT1 in the control and KRAS activation mouse. (b) The mRNA expression
level of P4 target genes in the uterus from control and KRAS activation mice (n =9). The results represent the
mean + SEM. *p < 0.05 and ***p < 0.001.

occur synchronously, and that they require time after initiation of endometriosis to develop. The timing of the
appearance of SIRT1 and BCL6 corresponds to the increase in inflammation seen in this model.

SIRT1 overexpression and dysregulation of PGR target genes in mice with uterine specific
KRAS activation. In order to effectively investigate the effects of KRAS activation in endometrium, mice
with loxP-Stop-loxP-Kras®?P/* (LSL-K-ras®1?P'*)3> were bred to the PGR®™ mouse (Pgre** LSL-K-ras®1?P/+
mouse)*. Introduction of the oncogenic K-ras mutation in all PGR-positive cells did not show any pathological
phenotype in the uterus®”. We investigated whether KRAS activation altered the expression of SIRT1 in the mouse
uterus using immunohistochemistry (n =3 per group). Interestingly, SIRT1 expression was highly increased in
endometrium of the mutant mice compared to control mice (Fig. 5a). We performed real-time RT-PCR to assess
the expression of PGR and its target genes in the mutant mice. Pgr expression was not changed in the mutant
mice. The mRNA expression level of P4 target genes, Fst, KIf15, Lrp2, and Calbl, were highly downregulated
in the mutant mice compared to the control mice. Interestingly, the expression of Ihh, Patchl, and Glil which
are known as P4-target and Indian Hedgehog pathway genes were significantly downregulated in the mutant
mice (Fig. 5b). These results suggest that KRAS suppresses transcriptional activity of PGR by regulating SIRT1
expression.

Transcriptional Repression of GLI1 by SIRT1 and BCL6 proteins. E2 stimulates proliferation of uter-
ine epithelial cells while P4 is inhibitory to E2-mediated proliferation of the epithelium*® **. The major pathologic
phenomenon of uterine disease is the loss of ovarian steroid hormone control over uterine epithelial cell prolif-
eration and apoptosis**~+. Resistance to P4 treatment, via loss of progesterone receptors (PGR) or its signaling
pathways, is a major hurdle in the treatment of a variety of diseases in the endometrium of women such as endo-
metriosis and endometrial cancer®®*4-*, To gain insight into the underlying molecular mechanisms of SIRT1/
BCL6 action in an epithelial cell model of endometrium, Ishikawa cells were treated with E2 + MPA and subse-
quently used Western blot analysis to examine the expression levels of BCL6 and SIRT 1. The level of BCL6 was
increased gradually after 6 hours by E2 + MPA (Fig. 6a). SIRT1 levels were consistently strong in Ishikawa cells.
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Figure 6. Regulation of GLI1 gene expression by SIRT1 and BCL6 proteins. (a) Western blot analysis of
BCL6 and SIRT1 in Ishikawa cells treated with E2 + MPA for 0, 30 min, 6, 12, and 24 hours. 3-actin was used
as sample-loading control. Representative blots have been cropped to reduce unnecessary area. Full-length
blots are presented in Supplementary Fig. S5. (b) Quantitative real time PCR analysis of GLII gene expression
in Ishikawa cells treated with E2 + MPA for 0, 6, 12, and 24 hours. (c) Map of BCL6 binding site on the GLII
promoter (Gray boxes). Negative control (N.C.) region on the GLII gene was used as negative control of
ChIP assay. Primers used in ChIP assay are presented by arrows. (d) ChIP assay using anti-SIRT1 antibody
on GLII promoter in Ishikawa cells treated with or without E2 + MPA for 24 hours. The results represent the
mean £ SEM. *p < 0.05, ¥*p < 0.01, and ***p < 0.001.

Interestingly, the expression of GLII was significantly decreased after 12 hours treated with E2 + MPA (Fig. 6b).
These results suggest that E2 + MPA, a known inducer of BCLS6, results in repression of GLI1 expression.

To determine that BCL6 and SIRT1 bind to the putative GLII promoter, we performed ChIP analysis on chro-
matin from Ishikawa cells treated with E2 + MPA. Our ChIP results exhibited that both BCL6 and SIRT1 proteins
were significantly accumulated on two sites (BCL6 (A) and (B)) of GLII promoter in Ishikawa cells treated with
E2 + MPA compared to vehicle control. Interestingly, the accumulated SIRT1 protein closely parallels what BCL6
protein accumulated on GLII promoter (Fig. 6¢ and d). These results suggest that BCL6 regulates transcriptional
repression of GLII expression through direct interaction with SIRT1 in endometrial epithelial cells. Further, ele-
vated levels of SIRT1 and BCL6 in secretory phase endometrium of women with endometriosis likely accounts
for the decrease noted in GLI1 protein expression, as a sign of P4 resistance.

Attenuation of GLI1 expression in endometrium from women with endometriosis. SIRT1/
BCL6 proteins act as a transcriptional repressor of GLI effectors in the Hedgehog pathway for neurogenesis and
tumor suppression of medulloblastoma?®. Therefore, we examined GLI1 expression in eutopic endometrium from
women with (n =20) and without (n = 13) endometriosis by immunohistochemistry. Our immunohistochemis-
try analysis found that GLI1 protein levels are significantly reduced, specifically in the endometrial epithelial cells
comparing women with and without endometriosis (Fig. 7).

Discussion
KRAS, a well characterized oncogene, has been implicated in the pathogenesis of endometriosis'2. While muta-
tional changes to KRAS appears to be a pivotal change in endometriosis-related ovarian cancers*, we demon-
strate for the first time, that KRAS activation is a common finding and a key biomarker in the endometrium of
most women with endometriosis. We show that its activation is highly correlated to the over-expression of SIRT1
(member of the sirtuin family) and contributes to the upregulation of this histone deacetylase. Further, we postu-
late that inflammatory changes associated with endometriosis provide the milieu for activation of KRAS mediated
BCL6/SIRT1 complexes that participate in the early stages of P4 resistance, which contributes to infertility and a
key to the pathophysiology of endometriosis growth and pathogenesis*.

In the present study, we report that BCL6 and SIRT1 are over-expressed and co-localize in the nuclei of endo-
metrial cells from women with endometriosis. SIRT1 is a nicotinamide adenosine dinucleotide (NAD)-dependent
deacetylase that is responsible for a wide variety of vital functions in the cell by removing acetyl groups from
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Figure 7. Levels of GLI1 in endometrium from women with and without endometriosis. (a) H-score of
GLI1 expression in endometrium from women with and without endometriosis. The results represent the
mean + SEM. *p < 0.05. (b) Representative photomicrograph of immunohistochemical staining of GLI1 in
endometrium from women without and with endometriosis.

histone and non-histone proteins controlling gene expression®’. While the regulatory controls for endometrial
SIRT1 remain unknown, BCL6 is up-regulated by inflammatory stimuli including IL-6 and STAT3 activation®,
that we recently examined®?. The number of known SIRT1 targets are many and include genes involved in endo-
metrial function and P4 action, including GLI1, FOX01, PPAR~, CTIP2 (chicken ovalbumin upstream promoter
transcription factor interacting protein 2 (COUP-TFII), and p300°!.

SIRT1 has been shown to pair with other transcription factors including BCL6. BCL6 is a transcriptional
repressor involved in B cell development and oncogenesis®. We showed that BCL6 is over-expressed in eutopic
endometrium of women with endometriosis®. We report for the first time that BCL6 and SIRT1 interacting
through the IHH pathway both bind to and inactivate the GLI1 promoter. Tiberi et al. had reported similar find-
ings in the Sonic Hedgehog pathway, showing that BCL6/BCOR/SIRT1 complex suppresses growth of human
medulloblastoma cells through GLII and GLI2 repression®. Collectively, these data suggest thatBCL6/SIRT1
could influence chromatin acetylation patterns at the GLIIregulatory regions and thereby contribute to epigenetic
repression of GLI1*. Identification of these BCL6/SIRT1-recruiting factors and the mechanism of protein-protein
interaction will be of importance in future investigations.

The concept of P4 resistance in endometriosis is now well-established>>, though the underlying mechanism
has remained elusive. Several mechanisms of cellular resistance to P4 have been suggested including alterations
in progesterone receptor chaperone proteins FKBP525-63, progesterone receptor coactivator Kruppel-like factor
9 (KLF9)%, MIG-6 alterations®, progesterone coactivator Hic-5%, and direct alterations of PGR subunits®”. We
believe SIRT1/BCL6 represent a more proximal defect in endometrium of women with endometriosis that inter-
feres with early signaling of P4. As recently reviewed®®, P4 initiates a complex series of paracrine signaling steps
involving the Indian Hedgehog (IHH) expression by endometrial epithelium. GLI1 has been shown to play an
integral role in this pathway® 72

In this study, we demonstrated for the first time that SIRT1 is over-expressed in women with endometriosis
compared to controls by western blot and immunohistochemistry, correlating directly with elevated BCL6 expres-
sion. Co-localization using immunofluorescence and co-immunoprecipitation confirmed direct interaction of
SIRT1 with BCL6 in the nucleus of affected individuals. Perhaps most striking was the concurrent up-regulation
of both proteins in baboon model of endometriosis, both BCL6 and SIRT1 appearing within 9 months of induc-
tion of the disease. Animal models are useful for studying the temporal sequence of events involved in disease
establishment and progression. Autologous inoculation of autologous menstrual blood establishes endometri-
otic lesions that are histological and morphological similar to human disease. Together, these data support an
inflammatory-driven phenomenon. Interestingly, BCL6 appears to be regulated by different pathways.

We show that IL-6 as well as other inflammatory mediators are higher in women with endometriosis. In P4
resistance, the normally repressive effect of STAT5 on BCL6 appears to be reduced, while the activation of STAT3
seen in endometriosis? drives BCL6 over-expression®. SIRT1, on the other hand, is regulated by other factors.
Estrogen has been shown to increase SIRT17?, as well as inflammation-driven miRNAs”*. miRNA34 has been
shown to inhibit SIRT17° and we previously reported that miR34 levels are markedly reduced in women with
endometriosis'?, likely regulated by inflammation’®. Thus, both SIRT1 and BCL6 over-expression can be regu-
lated through inflammatory cytokines known to be present in women with endometriosis.

Furthermore and importantly, we show that KRAS activation in the mouse uterus is associated with increased
SIRT1 proteins and suppressed expression of P4 target genes including Indian hedgehog pathway genes. P4 resist-
ance implies a decreased responsiveness of target tissue to bioavailable P477, and such an impaired P4 response is
seen in the endometrium of women with endometriosis’. P4 resistance is associated with early secretory phase
deficiency, early pregnancy loss, or infertility due to endometriosis. Understanding the molecular mechanisms of
P4 resistance is critical to developing better therapeutic approaches to infertility and endometriosis. Therefore,
our results suggest KRAS activation causes P4 resistant through SIRT1 in endometrium.

In summary, this is the first time that non-mutated KRAS activation has been shown to be strongly corre-
lated with endometrium-associated endometriosis and that this activation triggers specific changes in histone
deacetylase, SIRT1 which we postulate is a key driver of P4 resistance. SIRT1 is highly expressed in the endome-
trium of patients with endometriosis and appears to be an excellent biomarker in endometrium of women with
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this disorder. Transcriptional repression of GLI1 relies on recruitment of SIRT1 and BCL6 onto the promoter.
These studies identify a primary mechanism of inflammatory dysfunction that contributes to the pathogenesis of
endometriosis and may have a role in infertility and pregnancy loss associated with this disease. A lack of defined
pathways has hampered the development of targeted pharmacological approaches that might benefit women with
this disease. These novel findings regarding coordinated expression of SIRT1 and KRAS and the colocalization of
BCL6 and SIRT1may improve treatment options for this enigmatic disease.

Methods

Human endometrial tissue samples.  The study has been approved by Institutional Review Committee
of Michigan State University, Greenville Health System and University of North Carolina, and written informed
consent was obtained from all participants. All methods were performed in accordance with the relevant guide-
lines and regulations. The human endometrial samples were collected from Michigan State University’s Center for
Women'’s Health Research Female Reproductive Tract Biorepository (Grand Rapids, MI), the Greenville Hospital
System (Greenville, SC), and the University of North Carolina (Chapel Hill, NC). Samples were collected as
previously reported*> 7% %, Briefly, we used eutopic endometrium derived from women with endometriosis and
compared it to endometrium from women that did not have endometriosis. Subjects reported regular cycles
and were between the ages of 18 and 45. We confirmed the presence of disease at the time of laparoscopy in the
endometriosis group. Women who were laparoscopically negative for this disease were placed into the control
group. For control eutopic endometrium, 21 samples were collected from the proliferative (n = 5) and secretory
phase (n=16) for Western blot analysis and 23 samples were collected from the proliferative (n=6) and secretory
(n=17) phase for immunohistochemistry analysis. For endometriosis eutopic endometrium, 54 samples were
collected from the proliferative (n = 16) and secretory (n = 38) phase for Western blot analysis and 57 samples
were collected for immunohistochemistry analysis. Use of an intrauterine device (IUD) or hormonal therapies
in the 3 months preceding surgery was exclusionary for this study. Histologic dating of endometrial samples was
performed by a board certified pathologist (DPS).

Animals and tissue collection. All the experimental mice were maintained in a designated animal care
facility according to Michigan State University’s Institutional Guidelines for the care and use of laboratory ani-
mals. All animal procedures were approved by the Institutional Animal Care and Use Committee of Michigan
State University. All animal experiments were performed in accordance with the relevant guidelines and regu-
lations. Kras conditional activated mice were generated by crossing Pgre®'* with LSL-K-ras®?P'+ mice (Pgree/+
LSL-K-ras®12P/+)3536_ For the study, female control (LSL-K-ras®>?+ and Pgre®'*) mice were used.

Cytokine measurements. Plasma samples obtained from endometriosis patients and healthy controls
were evaluated using a laser bead technology based commercial multiplex assay for the cytokine analysis by Eve
Tech (Eve Technologies, Calgary, AB, Canada). Briefly, color-coded polystyrene beads were coupled with capture
antibodies for each respective target cytokine. After washing twice with 100 uL of wash buffer, 50 uL of sample
was added to each well. Following 1-hour incubation, wells were washed 3 times with 100 uL of wash buffer
prior to adding 25 uL of detection antibody. 50 uL of streptavidin-PE was added to each well and was incubated
for 10 minutes. Beads were re-suspended in 125 uL of assay buffer and the plate was read using Bio Plex 200
Suspension Array System. Fluorescent intensity signals in direct proportion to protein bound to specific ana-
lyte beads were analyzed. Observed concentration for each target analyte was calculated against standard curve
regression.

Baboon endometrium samples. The endometriosis baboon animal model is reviewed and approved by
the Institutional Animal Care and Use Committees (IACUCs) of both the University of Illinois at Chicago and
Michigan State University. Endometriosis is induced by intraperitoneal inoculation of menstrual endometrium
on two consecutive menstrual cycles and harvested using laparotomy via endometriectomy from five female
baboons as previously described®’. Laparotomies were performed at 3, 9, and 15 months post-inoculation to har-
vest the eutopic endometrial tissues and these endometrial tissues were used for immunohistochemistry analysis.

Western blot analysis. Western blot analyses were performed as described previously®2. Briefly, eutopic
endometrial tissues were lysed with lysis buffer (150 mM NaCl, 10 mM Tris-HCI (pH 7.4), 2.5mM EDTA, 0.125%
Nonidet P-40 (vol/vol), a protease inhibitor cocktail (Roche, Indianapolis, IN) and a phosphatase inhibitor cock-
tail (Sigma Aldrich, St. Louis, MO). Equal amounts of total protein (20 ug) were separated on SDS-polyacrylamide
gel electrophoresis and transferred onto polyvinylidene difluoride membrane (Millipore Corp., Bedford, MA).
Membrane was blocked with 0.5% Casein in phosphate buffered saline (PBS) and incubated with antibodies
against SIRT1 (9475; Cell Signaling, Danvers, MA), BCL6 (561520; BD Pharmingen, San Jose, CA), and 3-actin
(sc1616; Santa Cruz Biotechnology, Santa Cruz, CA). Immunoreactivity was visualized by autoradiography and
band intensity was determined by relative densitometry using Image] (National Institute of Health), and normal-
ized against the bands obtained for 3-actin.

Immunohistochemistry and immunofluorescence analyses. Immunohistochemistry and immuno-
fluorescence analysis were performed as previously described?. The paraffin-embedded endometrial tissues were
blocked with 10% normal serum in PBS (pH 7.5) and then incubated with antibodies against SIRT1 (9475 for
IHC and 8469 for IF, Cell Signaling), BCL6 (14895, Cell Signaling), KRAS (ab55391, Abcam) and GLI1 (5c20687;
Santa Cruz Biotechnology). For immunohistochemistry, sections were incubated with secondary antibody con-
jugated to horseradish peroxidase (Vector Laboratories, Burlingame, CA). Immunoreactivity was detected using
the Vectastain Elite DAB kit (DAB-Vector Laboratories, Burlingame, CA) and counterstained with hematoxylin.
A semi-quantitative grading system (H-score) was used to compare the immunohistochemical staining intensities
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as previously described®. For immunofluorescence, the sections were exposed to primary antibodies overnight at
4°C and secondary antibodies (Alexa Fluor 488-conjugated anti-rabbit IgG (Invitrogen, Grand Island, NY) and
Alexa Fluor 594-conjugated anti-mouse IgG (Invitrogen) for 2 hour at room temperature. 4,6-diamidino-2-phe-
nylindole (DAPI; Vector Laboratories) was used to enable nuclear visualization. The IgG antibody was intended
for use as a negative control with SIRT1 and BCL6 proteins in the women endometrium (Supplementary Fig. S3).

Immunoprecipitation analysis. Immunoprecipitation analysis were performed as previously described®.
Protein lysates were immunoprecipitated with anti-SIRT1 (Cell Signaling) antibodies with protein A-agarose
(Pierce Biotechnology, Rockford, IL) overnight at 4 °C. Immunocomplexes were subjected to Western blot analy-
sis using anti-BCL6 (561520, BD Pharmingen) and anti-SIRT1 antibodies (Cell Signaling) antibodies.

Cell culture and treatment. Ishikawa cells, epithelial cells of human endometrial adenocarcinoma, were
maintained in Dulbecco’s Modified Eagle’s Medium with F12 (Gibco, Grand Island, NY) containing 10% fetal
bovine serum (FBS; Gibco) and 1% penicillin streptomycin (P/S; Gibco) at 37 °C in 5% CO,. Ishikawa cells were
pre-treated with 10 nM estradiol (E2, Sigma-Aldrich, St. Louis, MO) for 1 day and restored. After 2 days, these
cells were treated with E2 + 1 pM medroxyprogesterone acetate (MPA; Sigma-Aldrich) and then incubated for the
indicated time. All experiments were performed in triplicate.

RNA isolation and quantitative real-time PCR. Total RNA was isolated from mouse uterine tissues
or Ishikawa cell pellets using the RNeasy purification kit (Qiagen, Valencia, CA) according to the manufactur-
er’s instructions. Then, cDNA were synthesized using quantitative PCR random hexamers and MMLV Reverse
Transcriptase (Invitrogen Crop., Carlsbad, CA). The expression levels of GLI1 (TagMan 00494654) were meas-
ured by quantitative real-time PCR using RT-PCR Universal Master Mix reagent (Applied Biosystems, Foster
City, CA) according to the manufacturer’s instructions. mnRNA quantities were normalized against the house-
keeping gene, 18S RNA using ABI rRNA control reagents.

Chromatinimmunoprecipitation (ChIP). ChIP analysis was conducted by Active Motif (Carlsbad,
CA) using Ishikawa cells treated with vehicle or E2 + MPA for 24 hours. ChIP assays were performed as pre-
viously described®. Briefly, 100 pg of chromatin from Ishkawa cells were immunoprecipitated by 4 jig of anti-
bodies against BCL6 (BD Pharmingen). Eluted DNA was amplified with specific primers using SYBR Green
Supermix (Bio-Rad Laboratories, Inc., Hercules, CA). Primers used in PCR were as follows: BCL6 A (forward:
5'-GTCCTGGGGGTGCAATAAG-3'; reverse: 5-CCCCTCACCTCCCTTCTATT-3’), BCL6 B (forward:
5/-ACTGACCTTCCACACCCAAG-3/; reverse: 5-GGAGGAAGCATGACAAGGAA-3'), and negative control
(N.C.) (forward: 5'-CCTATCCCACCCCTTCACCA-3'; reverse: 5-TAGCCTGCCCACCTCAGGAT-3'). The
resulting signals were normalized to input activity.

Statistical analysis. Statistical analyses were performed using the Student’s t-test for data with only two
groups. For data containing more than two groups, we performed an analysis of variance (ANOVA) test and
analyzed by Tukey or Bonferroni test for pairwise t-test. All data are presented as means + SEM. p < 0.05 was con-
sidered statistically significant. All statistical analyses were performed using the Instat package from GraphPad
(San Diego, CA).
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