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Abstract

A three-stage game is used to model interactions between users, a shipping company, and a container

port. Emphasis is placed on modelling the many services provided and priced by a port in order to
compare pricing structures and price levels, and the subsequent division of surplus between agents
under different port objectives (profit maximisation, efficiency, and second best). We find a strong

trade-off between the benefits of the shipping company and those of the port, where the access
price (a proxy for a fixed fee) is the preferred instrument to extract/inject surplus, while the other
prices induce desired behaviours downstream.
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1.0 Introduction

Along with telecommunications, maritime transport is one of the fastest growing industries,
playing a decisive role in the economic development of countries and world economies.
More than 80 per cent of all business trading uses maritime transport at some stage
(Stopford, 1997; Haralambides, 2007; UNCTAD, 2008). Surprisingly little has been
done to understand the economic interaction between the main actors involved: ports,
users, and shipping companies. This paper is an attempt at analysing and understanding
how the pricing structure of port services might be used to induce behaviour down the
market chain so that the port might achieve its goal, either some form of welfare or
profit. This is clearly of importance from a policy perspective given the size of this transport
market; from a methodological point of view, our contribution is the proposition of a full
vertical market model that includes the main technological features of port services. This, in
fact, is a necessity; only in such a model — where both the port and the shipping company
are represented — is our objective feasible.

Maritime transport is usually categorised according to how the goods are stored in the
ships (Stopford, 1997; Haralambides, 2004, 2007; Sjostrom, 2004). Bulk shipping refers to
goods directly stored in the ship and loaded using systems that are good-specific: fuel,
agricultural products, metals, chemicals, or raw materials. Liner shipping deals with
shippers who have lower volumes and that do not justify a bulk shipping operation; vessels
operate on a scheduled basis, with fixed frequencies between pairs of ports. Liner shipping
underwent a radical technological revolution in the mid-1960s with the introduction of
containers, which induced changes in vehicles and port infrastructure (Gilman and
Williams, 1976; Stopford, 1997; Haralambides, 2004, 2007; Notteboom, 2004; Sjostrom,
2004). While in terms of volume, bulk shipping is still larger than liner shipping, in
terms of value, containerised shipping is the main maritime market, with a relative partici-
pation of over 80 per cent — the largest transport market in the world. The introduction of
the container had a deep impact on the market structure, inducing the formation of
shipping companies’ alliances interacting with shippers and ports (UNCTAD, 1998).

Maritime transport is a highly complex industry where many agents participate and
interact, including shippers — firms that demand maritime transport services to move
goods to distant markets — shipping companies, and ports. Their interactions occur
along what can be seen as a supply chain: port supplies services that are essential to
shipping companies, which in turn sell the end product — transport — to users. Being at
the top of the supply chain, it is natural to assume that the port might act strategically
to induce specific behaviour on others through prices and characteristics of its services,
thus shaping the division of benefits. In other words, port decisions affect the distribution
of surplus and wealth along the chain — that is, between shipping companies, users and,
obviously, the port. Yet, despite the importance this market has for global trade, the
economic research aimed at modelling and understanding the interactions between these
agents in general, and the importance of port decisions on the whole chain in particular,
is scarce; most of the literature on maritime transport has focused on the optimisation of
processes using the tools of operations research and management.

The research on the economics of maritime transport that has been undertaken to date
can be roughly grouped in two sets. One deals with the relationship between shipping
companies and users — the lower part of the vertical chain — and the other focuses on
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the interaction between a port and shipping companies — the upper part of the vertical
chain. In the former, the emphasis has been usually placed on the importance of compe-
tition and service quality on demand (for example, Fox, 1994); while in the second, the
main focus has been on the pricing of the different services that a single port offers to
the ships. Along this second line, Kim and Kim (2007) estimate pricing structures in two
parts that meet different economic criteria for the storage service, whereas Holguı́n-Veras
and Jara-Dı́az (1999, 2006, 2010) examine optimal price structures for entrance and storage
under several assumptions on demand. However, to our knowledge, no paper has yet con-
sidered that the full set of interactions can be seen as a supply chain involving port services,
shipping companies, and users. Zan (1999) recognises a hierarchical relation in container
shipping, with ports as the market’s top players and with shipping companies above the
users, acknowledging that the market must be depicted as a two-level problem, although
his own market model does not follow this approach (in his model, port behaviour is
given). What we want to stress here is that without a vertical model it is short of impossible
to try to understand how different prices can be used to send different signals downstream,
as discussed below.

Vertical market models have been indeed used for other transport markets, particularly
air transport; see, for example, Brueckner (2002), Pels and Verhoef (2004), Zhang and
Zhang (2006), and Basso (2008). The air transport literature, however, cannot be applied
to the maritime sector by simply relabelling variables, because it has been motivated by
runway congestion, and, therefore, efforts have been devoted to model this effect and to
find an adequate way of pricing it; for short, only one price, the runway’s, has been consid-
ered.1 In our case, we pay careful attention to the technical characteristics of all relevant
services that are specific to container ports, and which are indeed priced. We thus model
and consider pricing of five different services which enables us to look not only at the
level of prices (as is the focus on the airport literature), but also at the structure of the
price vector. Particularly important is to sort out which prices are better suited to transfer
surplus without affecting (much) operational decisions, and which prices are better suited
to actually induce desired operational behaviour.

Given that we focus on port pricing, a second concern that may arise is whether
previous papers — those that only looked at the upper part of the chain — can make
our effort redundant. The answer again is no, and the reasons are twofold. On one hand,
because without formally modelling the downstream part of the chain, we cannot observe
changes in shipping companies’ behaviour following changes in port prices; on the other,
because not even the distribution of surplus can be well studied since, as proved by
Basso and Zhang (2008b), and Basso (2013), the condition that must occur for both
approaches — full vertical model and partial upper level model — to be equivalent is
perfect competition at the lower level among carriers, which must have constant marginal
costs. This is a strong condition unlikely to prevail in maritime transport, where high levels
of concentration are observed at ports. Without this condition, the area under the demand
curve for ports imperfectly captures shipping companies’ profits and final consumers’
surplus, making surplus distribution analysis impossible.

1A few exceptions are Basso and Zhang (2008a), who consider two prices for peak and off-peak; and Silva and

Verhoef (2013), who consider two airport prices: one per plane and one per passenger.
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The purpose of this work is to explore and compare pricing structures, and the sub-
sequent division of surplus in port containerised cargo services under different economic
objectives: maximising port profit, maximising social welfare, and maximising social
welfare subject to cover port costs. Note that social welfare in this case is associated with
an international view promoted by influential entities interested in worldwide well-being
(as UNCTAD’s declared purpose); this also obviously covers the case in which shippers
and the shipping firm are the port’s co-nationals.2 For this, we depart from previous unin-
tegrated models to propose a full vertical structure model where a single port interacts with
a single shipping company, which in turn interacts with shippers. The choice of monopoly
companies along the chain is, we believe, reasonable: on one hand, all previous upper-level
models looked at a single port and we remain in that framework; on the other hand,
including shipping companies’ competition would distract us from our goal (port price
structure), while not necessarily being more realistic — as we discuss below. In our game
agents move sequentially as follows: (i) the port selects its prices for its services of
access, berth provision, unloading, and forwarding cargo; (ii) based on these, the shipping
company determines its charges and service levels (frequency of ships and use of cranes) to
serve users; (iii) finally, taking into account the shipping company prices and transport
times, users decide on the number of containers to dispatch. In our model, operational
restrictions relating to the capacity of ships and the port’s docking site are considered, so
that congestion is a core element. Using reasonable values for all variables in the problem
— that is, values that represent an actual route — we numerically obtain the subgame
perfect Nash equilibrium, using the analytical solutions of the problem to help build
intuition.

Our results show a strong trade-off between the benefits of the liner shipping company
and those of the port, where one of the prices — the access price — is the preferred instru-
ment to extract/inject surplus, as it is the one that affects less other (marginal) decisions of
the shipping company; in other words, it works as a sort of proxy for a fixed fee. A private
port would then attempt to induce profit maximisation downstream using the rest of the
prices, while using the access price to extract those monopoly profits. In a sense, the use
of a large vector of prices enables the port to diminish the double marginalisation problem
and force surplus up the chain, although, importantly, the access price is an imperfect
substitute for the fixed-fee, since all other prices are set above marginal costs. A welfare
maximising port will, on the other hand, choose to use some prices below the relevant
cost to fight back allocative inefficiency caused by market power downstream — at the
carrier level — while using the access price to recover costs and achieve exact self-financing.
Importantly, the technical relations play a key role: if demand levels and service conditions
lead to system saturation (that is, full ships and ports), the port is able to reach maximum
social welfare making positive profit, as subsidising to increase traffic is no longer desirable.

The following section contains the formulation of the vertical market model and the
analytical developments that help finding equilibrium. Section 3 contains the numerical
application, results and comparative analysis. The final section concludes.

2Moreover, pursuing the national interest (maximising local welfare) may be better served by profit maximising

gateways, as shown by Mantin (2012), and Matsumura and Matsushima (2012), for the case of competing inter-

national airports.
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2.0 A Simple Model for Maritime Transport

2.1 Stylised facts of the maritime sector

In this part, we describe the way the container port market works nowadays, in order to
identify what the main stylised features are, and that we subsequently model. Many
economic agents interact in the maritime transport industry: shipyards, business operators,
brokers, banks, shipping operators, stevedores, land carriers, and so on. Modelling all
interactions, however, would preclude a clear understanding of relations; instead, we
choose to focus on the interactions among what we consider to be the fundamental
economic agents: users (shippers), shipping companies (carriers), and ports. Over the
years, shipping companies have become specialised in the transportation and handling of
certain kinds of cargo, according to the physical and logistical characteristics thereof.
Like shipping companies, ports have also specialised their services, developing complex
handling and storage systems for different kinds of cargo, in order to increase their own
productivity and that of the whole system (Cullinane and Khanna, 2000; Haralambides,
2004; Midoro et al., 2005).

Most ports operate under the landlord concept, where the port authority (typically a
government public entity) provides the gross infrastructure, while external agents provide
the machinery, logistics, and the management required, to carry out the necessary port
services. Within this wide range of services, there are three basic ones necessary to transfer
cargo from maritime transport to land transport, and vice versa; namely, access to/exit
from the port facility, ship loading/unloading, and cargo dispatch/reception via ground
transport.

Before the 1960s, this market was dominated by conferences or cartels among shipping
companies that served a specific trade route. On the port side, cargo handling was labour
intensive (stevedores), such that ships loading–unloading became the most time consuming
link in the transportation chain. Since the end of World War Two, trade between continents
had been growing at a pace that this system could not cope with, which led to the emergence
of the container and of the associated specialised equipment. This had a deep impact in the
industry, as its capital intensive nature pushed towards market concentration of both
shipping and cargo-handling companies; liner shipping became one of the most concen-
trated industries in the world (UNCTAD, 1998). Together with concentration, new
forms of interactions between agents have emerged in recent years. First, it is common
that shipping companies sign arrangements with ports for the exclusive use of (part of )
their facilities in the form of dedicated terminals (Haralambides et al., 2002). Second, it
has become customary in the use and promotion of confidential contracts between shipping
companies and shippers, in such a way that shippers can get discounts or benefits by
compromising a horizon-based minimum cargo to be shipped (Sjostrom, 2004); in practical
terms, this allows shipping companies to price discriminate.

2.2 Modelling

We consider a single origin–destination pair with n shippers (firms or people requesting
cargo to be shipped) and a monopolistic shipping company. We assume that the process
previous to the arrival of the containers at the home port is not influenced by the shipping
company, which only interacts with the users through the prices it charges and the waiting
time resulting from the frequency it supplies.
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As shippers look for a combination of a cheap and fast transport service, the demands
faced by the carrier are not only affected by prices, but also by the times involved in the
shipping process. We capture this through the use of a generalised price, defined as the
money price for the service, plus the monetary valuation of the time it takes to carry out
the door-to-door transport; that is:

ri = pi + VTiti, ∀i, (1)
where pi is the unit shipping charge for shipper i,VTi is the time value for i, and ti is the total
time of transport, from the moment that the cargo is received at the home port until it is
forwarded to the final destination — as depicted in Figure 1. We assume that prices for
shippers can be differentiated, based on the fact that many contracts between shippers
and carriers are confidential.

The demand xi of a daily flow of containers with cargo type i is represented as:

xi ; Fi(ri) = a− bri, ∀i = 1, . . . , n. (2)
The user benefit, perceived by each shipper (cargo type) as a result of using maritime

transport, is given by the Marshallian surplus; that is:3

UBi =
� 1

ri

Fi(z)dz, ∀i = 1, . . . , 1n. (3)

The shipping company, on the other hand, has expenses related to two items: moving
ships and paying the port for its services. In particular, the carrier will pay R for the
access price to enter the port; will pay D for each of m cranes it uses per day; will pay E
daily as a charge for occupying a docking site; and will pay Pi per hour to forward the
i-type cargo from port to destination. We denote by P the port price vector — that is, P =
R,D,E,P( ) — and let f be the sailing frequency, C0 the fuel consumption by round trip, u
each ship’s daily spending on maintenance, tc the cycle time, tu the unloading time, m the
number of cranes the carrier decides to use, and Qi the forwarding time. We can then write
the costs of the shipping company as:

CSH(x, f ,m,P) = f (C0 + utc + R+ Dm+ E( )tu) + SiPiQixi. (4)

3As transport is a derived demand, consumers’ surplus in the case of freight captures welfare variations in the

markets where the transported goods are produced and consumed. Production under competitive conditions

makes shippers’ consumer’s surplus exactly equal to total welfare variation in the originating markets, and it is

an approximation otherwise (Jara-Diaz, 1986). Imperfectly competitive conditions are studied by Basso (2013).

Figure 1
Logistical Schematics of the ‘Door-to-door’ Transport for a Container
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The shipping company’s profit is equal to:

Psh( p, x, f ,m,P) ; Si pixi − CSH(x, f ,m,P). (5)
For the (destination) port, costs are:

CP ; CMa0 + f (CD0 + (tm+ n)tu) + SiviQixi = CP(x, f ,m), (6)
where CMa0 represents fixed costs, related to depreciation and maintenance of the
container terminal, CD0 are the costs of dredging the access channel, t is the daily spending
on each (working) gantry crane, m is the number of cranes hired by the shipping company,
n is the daily cost of anchoring per ship, and vi is the daily cost of maintaining an i-type
container at port. The port profit is then:

Pp(x, f ,m,P) ; f (R− CD0 + ((D− t)m+ E − n)tu) + Si(Pi − vi)Qixi − CMa0. (7)
The social welfare function must consider the benefits of the three agents participating

in the industry; that is, shippers, shipping company and the port:

SW( p, x, f ,m,P) =Psh( p, x, f ,m,P) +Pp(x, f ,m,P) + SiUBi( p, x, f ,m)

=Si( pi − viQi)xi − f (C0 + utc + CD0 + (tm+ n)tu)

− CMa0 + Si

� 1

ri

Fi v( )dv. (8)

A key point is to represent adequately the physical and technological relations associ-
ated to the transportation process, particularly those involving times related to the different
services (see Figure 1). First, a single type of ship characterised by its capacity K0 (in
containers) will be considered. Then an operational capacity constraint must be imposed;
that is, the carrier transport capacity has to be enough to accommodate demand:

Sixi − K0 f 4 0. (9)
Second, the total time spent by containers have four components: schedule delay at

origin; sea voyage; time at port (which comprises access time, unloading, and forwarding);
and final shipment to destination. Schedule delay at origin comprises from the beginning of
the transport chain to ship departure, and represents the time difference between the actual
and desired departure time. Thus, for each cargo i, schedule delay time at origin is
represented by LDTi (Land Delay Time), and depends only on the inverse of the sailing
frequency:

LDTi ;
di
f

∀i, 1 5 di . 0 ∀i. (10)

Sea voyage time t0v will be considered as known and fixed, since the operational speed is
constant in practice (Stopford, 1997), and the geographical distance between the ports
involved is known. Once the ships arrive at the port of destination, the shipping company
must hire the access, unloading, and forwarding services. Let us start with unloading time;
an important aspect to capture here is that as the number of cranes used increases, their
movements at the unloading site become more difficult. This congestion effect is captured
through the parameter b in the following expression for unloading time, tu:

tu(x, f ,m) ; a
Sixi
fm

+ bm, (11)
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where a are the days required for a crane to unload a container in an uncongested case (an
indicator of the technology’s performance).

Access time to the port is modelled as a deterministic queue; the number of docking sites
required by the shipping company are, by Little’s Law, equal to f · tu. We assume that the
port has a total of N0 sites and a base occupation rate of w0. The shipping company must
operate in such a way that the berthing area does not collapse. This imposes the following
constraint:

ftd(x, f ,m)
N0

+ w0 4 1 ⇔ ftu(x, f ,m) −N0(1− w0) 4 0. (12)

Thus, the access time ta is given by:

ta(x, f ,m) ;
g w0 +

f

N0

tu(x, f ,m)
( )

if ftu(x, f ,m) −N0(1− w0) 4 0

1 if not

.

⎧⎨
⎩ (13)

The constraint in equation (13) indicates that the expression is valid as long as the berth
site does not become saturated. Finally, we assume that forwarding time Qi is constant for
all types of cargo.

Now that the times involved have been introduced, an accurate expression for ‘door-to-
door’ shipping time for each kind of cargo can be calculated. From equations (10), (11), and
(13), we have that:

ti(x, f ,m) = di
f
+ t0v + gw0 + 1+ g f

N0

( )
tu(x, f ,m) +Qi, ∀i. (14)

Finally, from equations (11) and (13), we can explicitly determine the cycle time tc,
which is of central importance since it determines the necessary fleet (given by f times
tc). Cycle time is:

tc(x, f ,m) ; 2t0v + ta+ tu = 2t0v + gw0 + 1+ g f

N0

( )
tu(x, f ,m). (15)

The market process is modelled as a full information sequential game and, conse-
quently, we look for Subgame Perfect Nash Equilibrium (SPNE). The economic timing
of the game is as follows:

1. The port of destination sets prices for the different services it provides, based on its
economic objective (profits, welfare, cost recovery).

2. Based on these prices, the shipping company determines the main characteristics of its
service, which are the prices to charge each user, departure frequency from origin, and
the number of cranes to be used for unloading cargo at the destination port.

3. Finally, shippers decide how much to ship, based on the service variables directly per-
ceived from the shipping company’s operation.

As usual for sequential games, we solve it using backward induction, thus considering first
users (shippers) behaviour and obtaining their reaction function to the shipping company’s
decisions; we then move to obtain the shipping company’s reaction function to the port’s
decisions, to calculate finally optimum port prices, considering the reactions of the users
and shipping company simultaneously.
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2.2.1 Users — shipping company interaction
Each user’s demand depends on the generalised price, as defined in equation (1). The time
component depends, in turn, on the total demand (because of unloading time), as shown by
equation (14). This generates a fixed-point relationship given by:

xi = Fi pi + VTi

di
f
+ t0v + gw0 + 1+ g f

N0

( )
tu(x, f ,m) +Qi

( )( )
; Ci(x, p, f ,m)∀i. (16)

This can be written as G(x, p, f ,m) = 0, with G:R
N+ N+2( )
+ � RN defined as:

[G(x, p, f ,m)]i ; xi −Ci(x, p, f ,m), ∀i = 1, . . . , n. (17)

From equation (17), one can obtain either a function xe:RN+2
+ � RN depending on

prices, frequency, and cranes, or a function pe:RN+2
+ � RN that depends on demands,

frequency, and cranes, depending on the assumptions made for the Implicit Function
Theorem; the former will be referred to as the effective demand function, the latter being
its inverse. The existence, uniqueness, and differentiability of both functions are guaranteed
under some conditions, assumed here.4

The complete profit maximisation problem of the shipping company is given in
equation (18), and includes three constraints: enough ship capacity; enough berth sites;
and a maximum number of cranes per site, mmax:

maxp,f ,m Psh(p, xe(p, f ,m), f ,m,P)

s.t.

Six
e
i − fK0 4 0 (l)

f · tu(xe, f ,m) −N0(1− w0) 4 0 (m)
m [ {1, 2, commax}

. (18)

Solving the optimisation problem (18) yields subgame perfect equilibrium prices p*,
operation frequency f *, and number of cranes m*, all of which depend on the parameters
u of the problem and on the port price vectors P:

p∗ ; p∗ u,P( )

f ∗ ; f ∗ u,P( )

m∗ ;m∗ u,P( )

. (19)

If the effective demand xe is evaluated at the (conditional) optimal values in equation
(19), a new function (depending on P and u) is obtained, which we refer to as a derived
demand function; that is:

xe( p∗, f ∗,m∗) = xe( p∗(u,P), f ∗(u,P)∗,m∗(u,P)) ; xd(u,P). (20)

4Existence, uniqueness, and differentiability for both xe and pe will hold if:

1. G [ C1(R(2N+2),RN ).
2. Curve {(x, p, f ,m) | G(x, p, f ,m) = 0} is continuous and differentiable.

3. The matrices DG
x ; [(∂G/∂xi)(x, p, f ,m)] and DG

p ; [(∂G/∂pi)(x, p, f ,m)] are invertibles in G’s domain.
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This is the demand function— in terms of number of containers — that the port faces when
interacting with the shipping company. In other words, if the port changes one or more
prices, it will eventually see container demand react according to equation (20).

2.2.2 Shipping company — port interaction
Irrespective of the port’s objective function, the port is subject to capacity constraints
related to the berth sites, number of cranes, and forwarding area. The former two were
already considered by the shipping company. Letting E0 be the total size (in sites) of the
forwarding area and Hi be the pile height that may be formed with i-type containers, the
third constraint is as follows (see the Appendix for details):

Si

xdi Q
2
i

Hi

+ Si

xdi Qi

f dHi

4 E0. (21)

The port then chooses its price vector considering equation (21), its specific objective
function, and the fact that the (private) shipping company must, at least, cover its costs;
otherwise, it would choose not to participate in the market.

The problem that a private port solves to choose its price vector P is:

maxP Pp(xd, f d,md,P)
s.t.

Si

xdi Q
2
i

Hi

+ Si

xdi Qi

f dHi

− E0 4 0 (t)

−Psh( pd , xd, f d,md,P) 4 0 (h)

. (22)

A port that maximises social welfare subject to self-financing (second-best) solves:

maxP SW( pd, xd, f d,md,P)
s.t.

Si

xdi Q
2
i

Hi

+ Si

xdi Qi

f dHi

− E0 4 0 (t)

−Psh( pd , xd, f d,md,P) 4 0 (h)
−Pp( xd, f d,md,P) 4 0 (k)

. (23)

Finally, to maximise unrestricted welfare (the first best), the analytical problem to be solved
is identical to equation (23), disregarding the port’s cost coverage restriction.

These problems yield the optimal port prices P*, which, in turn, fully determine the
subgame perfect equilibrium by simply replacing them back into the previously obtained
subgame shipping prices, frequency and number of cranes, and then into the effective
demands.

3.0 Numerical Application and Discussion

3.1 Simulation and results

Figure 2 depicts the backward induction process we follow to solve for equilibrium. In
Step 1, the effective demand function is obtained; then, in Step 2, the shipping company-
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user interaction is solved parametrically in port prices, which yields the optimal strategy for
the shipping company (the reaction functions) and the derived demand functions faced by
the port (u represents the exogenous operational parameters). The port’s optimal prices are
finally obtained in Step 3 using the derived demands and the shipping company’s reaction
function or optimum strategy.

Next, we find the subgame perfect equilibrium numerically, taking input parameters
from various sources using as a basis the characteristics of the route between New Jersey
and Rotterdam ports, served by Maersk.5 The values are shown in Table 1.

These values were used to solve (using the procedure summarised in Figure 2) the differ-
ent port’s objectives, adding a fourth case namely a free port (that is, P ; 0), as a proxy for
a vertically integrated (or dedicated) port. The results of the numerical optimisation process

5Sources for the parameters in Table 1 include, for example, Notteboom (2006) for the demand functions, Harrison

and Figliozzi (2001) for fuel consumption, and Eisma (2005) for dredging. Technical information was obtained

also from Maersk’s, port of Rotterdam’s and APM Terminal’s web pages. For a detailed explanation of sources

and figures, see Muñoz-Figueroa (2009).

Figure 2
Backward Induction Process
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are shown in Tables 2 (port prices and port marginal costs), 3 (shipping company
decisions), 4 (benefits by agent), and 5 (system performance), for each objective of the
port. In the Appendix, the procedure for the calculation of marginal costs is shown.

3.2 Analysis

Before analysing the results, it is important to highlight two things. First, there is the role of
the private (profit maximising) shipping company as an intermediary between users and the
port. Indeed, many of the port charges are passed-through to users, yet the fraction that is

Table 2
Optimum Port Prices for Each Port Service

Access Unloading Forwarding

R D E P1 P2

Port objective
US$

ship

US$

crane · day
US$

ship · day
US$

container · day
US$

container · day

Maximum profit 4,369,515 52,762 663,612 1,488 1,721
Second best 812,500 1,716 87,500 12 38
Maximum welfare 401,937 −88,204 −234,259 −3,003 −3,325
Free port 0 0 0 0 0
Marginal costs 46,460 [1,971; 4,980] 1,440 227 227

Table 3

Shipping Company’s Optimum Decisions and Equilibrium Demands

User 1 price User 2 price Frequency Cranes User 1 demand User 2 demand

Port objective
US$

container

US$

container

ship

day

cranes

ship

containers

day

containers

day

Maximum profit 3,627 3,932 0.1110 4 259.14 273.44
Second best 3,040 3,215 0.2391 4 513.59 543.53
Maximum welfare 2,445 2,445 0.2809 4 641.98 706.34
Free port 3,056 3,214 0.2759 4 533.50 565.17

Table 4

Benefits by Agent and Social Welfare

Shipping Company Port User 1 User 2 Social welfare

Port objective
US$

day

US$

day

US$

day

US$

day

US$

day

Maximum profit 87,785 1,407,281 167,880 186,927 1,849,857
Second best 2,228,111 0 659,447 738,569 3,626,127
Maximum welfare 6,852,735 −4,850,093 1,030,331 1,247,288 4,280,261
Free port 2,510,045 −277,016 711,558 798,556 3,743,143
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passed depends on the nature of the service hired from the port and on the flexibility of the
shipping company to react to price changes. This can be clearly seen by looking at the first-
order conditions related to the shipping company’s maximisation problem (equation 18),
which leads to the following shipping prices:

pdj = Dm+ E( ) f ∂tu
∂xj

+ PjQj + uf
∂ta

∂xj
+ ∂tu

∂xj

( )
+ l+ mf

dtu

dxj
− Si

dpei
dxj

xdi , ∀j. (24)

There are two relevant aspects to this equation. First, there is the ability of the shipping
company to transfer to each user the marginal costs of the unloading and forwarding
services induced by its own unloading capacity. Second, the fact that the access price R
does not directly appear here, implying that access price changes will induce shipping
price changes only indirectly through changes in frequencies, as can be seen from the
following equation obtained from subgame first-order conditions:

f d =
Si

dpei
df

xdi + lK0 − R− C0 − uta− Dm+ E + m+ u
( )

tu

u
∂ta

∂f
+ Dm+ E + m+ u

( ) ∂tu
∂f

. (25)

The second issue we want to highlight is that, following equations (24) and (25), the port
can induce changes both on the pricing and on the operation of the shipping company
through price manipulation. However, these are linear prices and, therefore, the port
faces a trade-off: it may use prices to induce a desired behaviour downstream, but this
will imply losing control on the flow of surpluses; or it can use prices to capture downstream
surplus, but this may imply inducing suboptimal behaviour. The typical and most extreme
example of this is the double marginalisation phenomenon that occurs in the consecutive
monopolies model. In that case, the upstream monopolist has to accept inducing sub-
optimal behaviour to the downstream monopolist in order to capture surplus because, if
it tries to induce profit maximisation downstream, it lacks an instrument to capture
those profits later. The vertical control literature teaches us that if a second non-linear
instrument — such as a fixed-fee — can be used, then things are solved for the upstream
monopolist: it can use the linear price to induce any behaviour (for example, profit maxi-
misation downstream), while using the fixed fee to capture all the surplus. It only needs to
worry about leaving the downstream firm with positive (yet arbitrarily small) profits.

The point in our case is that the port acts as an upstream monopolist but lacks the fixed-
fee instrument. However, it does have an important number of linear prices to use, which

Table 5
Shipping System’s Performance and Shipping Company Multipliers

Occupancy rate

Port objective Ship Dock Forwarding area Shipping time (days) l m

Maximum profit 1 0.909 0.533 18.8 9.174 0
Second best 0.92 0.970 0.548 16.27 0 0
Maximum welfare 1 1 0.615 16.09 85.71 4,850,961
Free port 0.83 0.978 0.508 15.84 0 0
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are linked to a number of different services that interact in complex ways. The central
question then is how these prices can be used to induce both behaviour and surplus transfer
simultaneously. We pursue this analysis now.

The results in Table 2 show that, as expected, the differences in prices across the
different objectives are very large, and every port price diminishes as the port moves
away from the maximum profit objective; some even take negative values under maximum
welfare.

The private port — an upstream monopolist in this model — is characterised by very
large values of both R and E prices: they are more than 100 times larger than the marginal
costs. In essence, in the absence of a fixed fee, the port uses both the access and dock use
prices as the best proxies. This occurs because the shipping company’s demands for access
and lay time at the port are rather inelastic, and, at the same time, higher charges on those
two services are the ones that induce fewer distortions in the pricing of the shipping
company. That these two prices are imperfect substitutes for a fixed-fee is shown by the
fact that the remaining prices are still above the corresponding marginal costs, implying
that the port still finds it optimal to sustain positive margins: the use of five linear prices
enable to diminish but not to eliminate double marginalisation. One way to check that
this is the case is to look at what happens when the port is free. In that case, the sum of
profits of the port and the shipping company is higher, but the port itself obtains negative
profits, meaning that either the port needs a fixed-fee to actually capture that surplus, or it
would need to vertically integrate.

First and second-best ports face a specific task which is to reduce the allocative ineffi-
ciencies caused by the shipping company, a monopoly that exercises market power through
distorted choices of price, frequency, and use of cranes. The way to overcome these dead-
weight losses is by inducing the shipping company to offer smaller prices and better service;
in order to achieve this, the port has to subsidise the shipping company by artificially redu-
cing its marginal costs through lower port prices. Indeed, in a simple two-layer chain and
with only one upper level price, the welfare maximising level for that price will be below
marginal cost and, depending on the severity of market power, might end up being
below zero; this reduces downstream costs, inducing larger output, up to the efficient
level. This intuition explains why for the first-best case, four out of five port prices are
negative. But why does R remain positive? The issue here is technological: low forwarding
and unloading prices increase demand, as desired, but both the ships and the dock end up
working at capacity. The way the port deals with the threat of overflowing — given the
capacity it features — is by charging more per ship that enters; that is, by increasing R
above marginal cost.

The second best-port has to tackle two additional constraints in its quest to restore
efficiency. First, it is not allowed to charge negative prices, a reasonable real-life constraint;
second, it has to cover costs. Income made through a somewhat large R, though, is not
enough to compensate the losses generated by prices equal to zero in the rest of the services.
What the port does then is something similar to what a private port does: it uses R to draw
more income and cover costs — doubling what the first-best port charges — but it also finds
it optimal to use the other prices to some extent. Note that, as opposed to Ramsey pricing,
where an optimal (positive) departure from marginal cost pricing can be calculated, here
marginal costs are not the efficient charges but something below that, as the first-best
shows and for the reasons explained above.
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The analysis of the second-best case strengthens the conclusion regarding the role that R
can play. On the one hand, we can see that R is indeed an imperfect substitute for a fixed-
fee, because if the port could use one, it would be able to achieve cost recovery while
charging zero in all other prices. However, as for the private port, R is far from being a
useless tool: it enables capturing enough income so that, with the help of the other (smaller)
port charges, frequency increases by 115.4 per cent and final prices for both user types
diminish. These two effects together make equilibrium demands go up by nearly
100 per cent, which yields an important increase in welfare — as can be seen from
Table 4: social welfare almost doubles.

Yet, how good is the second-best under these circumstances? Note first that for
maximum profit, port prices explain half of the shipping charges; and for second-best,
they mean only about 2 per cent — an improvement indeed. But under maximum welfare
port prices actually represent a subsidy of about 60 per cent, a quite different outcome. This
is reflected in the fact that the second-best only achieves 85 per cent of the first-best welfare
level. And although the first-best might be an unattainable benchmark due to the required
subsidies, what is interesting is the fact that a free port achieves higher social welfare than
the second-best port. This means that the relatively small losses of the port are more than
compensated by the increase in profits experienced by the shipping company, plus the gain
in users’ welfare. This suggests that vertical integration could be convenient — that is, a
dedicated terminal where the shipping company owns the concession. This would not
only increase profits for the company, but also would increase users’ welfare.

Regarding the use of the different facilities involved in the process, Table 5 shows that,
first, the dock is increasingly used as welfare increases because (as seen earlier) frequency
increases. For maximum welfare, both the dock and the ship are used to maximum capacity
because the combination of price and frequency experienced by the users makes demand
high enough to saturate the system. As the ship and the port are operating at capacity,
the corresponding multipliers in the shipping company optimisation problem (Step 2) are
different from zero, but the dock multiplier is much larger than that of the ship. This
means that an external increase in dock capacity would be more profitable for the shipping
company than an external increase in ship size; this is due to the negative port prices that
make it profitable for the shipping company to be able to unload more containers at the
port. Lastly, as the port departs from profit maximising, total shipping time shortens,
although the shortest time is achieved under the free port policy due to the low occupancy
of the ships.

Time value is an inherent characteristic of users that may be related to their partici-
pation in international trade, reflecting the potential value goods have to the principal
customer. So, what is the importance of users’ time values in the market equilibrium?
The role these elements play can be seen first by observing from Table 3 that the shipping
company charges the lowest prices to the user with the largest time value, something that
might look counter-intuitive. The explanation lies in that both users experience the same
shipping time; thus the company may charge more for the less time-sensitive cargo (user
2). This very argument explains the pricing structure for the forwarding service: since the
port knows that the shipping company will transfer these charges to the users, it is a
useful tool to extract surplus from these latter agents. This only reflects the power held
by the port because it is able to directly draw surplus from both the shipping company
and the users, making use of its prices.
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To explore further the role of values of time, we make the experiment of continuously
decreasing them. Results show that shipping charges increase relative to the base case for
both users, which is consistent with the observation that optimal prices are larger for the
user with the smaller value of time. A most important result is that when time values are
small enough, the welfare maximising port makes no losses — that is, first and second-
best pricing coincide. The explanation is simple: smaller values of time mean smaller
full-prices, which imply more demand, ceteris paribus. However, because in the first-best,
both the ships and the mooring site work at capacity, high prices are needed to keep the
port from overflowing. Those high prices enable port cost recovery under welfare
maximisation.

In the case of an increase in time values, full-prices increase ceteris paribus, making
demand smaller; this opens space for prices to decrease, at least up to the point where
they induce usage at capacity. Overall, prices and service levels adjust, but there are no
relevant additional insights.

4.0 Conclusions

The full set of interactions involving port services, shipping companies, and users has been
represented in a game theoretical model, explicitly representing transport technology that
captures congestion effects caused by ships’ capacity and ports’ docking site. The purpose
is to explore and compare pricing structures and the subsequent division of surplus in port
containerised cargo services under different economic objectives: maximising port profit,
maximising social welfare, and maximising social welfare subject to cover port costs.

A vertical structure model where agents move sequentially is set to represent inter-
actions between users and the shipping company, and between the shipping company
and the port. The port selects its prices for access, berth provision, unloading, and
forwarding cargo; a monopolistic shipping company sets its charges, frequency of ships,
and use of cranes to serve users; users decide on the number of containers to dispatch,
taking into account the shipping company prices and transport times. Using actual repre-
sentative values for all variables in the problem, the subgame perfect Nash equilibrium is
obtained for each case.

Results reveal a marked trade-off between the benefits of the liner shipping company
and those of the port. The access price is the preferred instrument to extract/inject surplus,
as it is the one that affects less other (marginal) decisions of the shipping company; in other
words, it works as a sort of proxy for a fixed fee. A private port then attempts to induce
maximum profits downstream using the rest of the prices, while using the access price to
extract those profits, thus diminishing the double marginalisation problem and forcing
surplus up the chain. The access price, though, is an imperfect substitute for the fixed
fee, and, therefore, the other four prices remain above marginal cost. A welfare maximising
port will choose prices below marginal costs to fight back allocative inefficiency caused by
market power downstream — at the carrier level — while using the access price to either
recover costs (if self-financing is imposed) or to control the use of port capacity. The
technical relations play a key role: when the level of demand and service conditions lead
to a system saturation (that is, full ships and ports), the port might be able to reach
maximum social welfare making positive profit, as subsidising to increase traffic is no
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longer desirable. The free port — that is, a dedicated terminal where the shipping company
owns the concession — is shown to be an interesting case that may yield higher social
welfare than second-best, increasing both profit for the company and users’ welfare,
which makes the case of a dedicated terminal or vertical integration superior to a public
port that has to self-finance.

The vertical maritime transport model presented here could be used as a basis to move
forward in various directions. One is to consider inter and intra port competition, which
would bring into the picture horizontal strategic interactions. Also, the introduction of
demand and cost uncertainty would be a necessary element if investment paths become
part of the analysis. As seen here, frequency plays a multi-faceted role, which suggests
that introducing different types of ships could be an interesting addition to the model as
well. Finally, we have explored here the use of prices as a mechanism to distribute surplus,
but this could be achieved by other means that should be explored as well, such as the
analysis of vertical arrangements, as previously examined in the air literature (see Yang
et al., 2015; and references therein).
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Appendix

Derivation of the forwarding area constraint

Each ship that arrives at port will unload ki = xi/f i-type containers in the forwarding
area, and each of these containers will remain Qi days, inducing the use of kiQi/Hi sites
in the forwarding area. Besides, if the forwarding time Qi is greater than the time elapsed
between consecutive ship arrivals, T = 1/f , the space requirements for i-type containers are
larger than the kiQi/Hi sites per ship. These will be captured by the floor function of the
ratio between dwell time Qi and inter-arrival time T; in that case, the space requirement
of the i-type cargo is ⌈Qi/T⌉kiQi/Hi, and the total space use in the forwarding area is
equal to:

Si

kiQi

Hi

Qi

T

⌈ ⌉
= Si⌈Qi f ⌉

kiQi

Hi

= Si

⌈Qi f ⌉
f

xiQi

Hi

.
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Finally, we use that ⌈a⌉ 4 a+ 1 to write the space constraint as:

Si Qi +
1

f

( )
xiQi

Hi

= Si

xiQ
2
i

Hi

+ Si

xiQi

fHi

4 E0,

where E0 is the capacity (in sites) of the forwarding area.

Calculation of port marginal costs

The port cost function given by equation (6) can be separated into five parts:

CP(x1, x2, f ,m) = CMa0 + fCD0

︷︸︸︷CP0

+ fmttu
︷︸︸︷CP1

+ f ntu
︷︸︸︷CP2

+SiviQixi
︷︸︸︷CP3

.

We then have to associate each port charge to a service. Note that both R and E are charges
per ship, while D is a charge per crane, and P1 and P2 are charges per container. We there-
fore calculate marginal costs as follows:

∂(CP0 + CP1)
∂f

⇒ MgCR,

∂CP1

∂m
⇒ MgCD,

∂CP2

∂f
⇒ MgCE,

∂CP

∂xi
⇒ MgCPi

, ∀i.

It immediately follows that both MgCR and MgCE are constant, given the functional form
for tu, since tu+ f (∂tu/∂f ) = bm. Also, MgCPi

are constant, since both vi and Qi are.
Finally:

MgCD = f t tu+m
∂tu

∂m

( )
= f t a

Sixi
fm

+ 2bm

( )
,

being the only variable marginal cost.
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