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decay rate to this limit and the quasi-stationary behavior of 
the Markov chain when conditioned on the event that the 
chain does not hit the limit.
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Ξ[μ] =
∑
J⊆I

ρJ μJ ⊗ μJc .

The vector ρ = (ρJ : J ⊆ I) is a probability vector, μJ and μJc are the marginals of μ
on 

∏
i∈J Ai and 

∏
i∈Jc Ai respectively, and ⊗ means that these marginals are combined 

in an independent way.
The analysis of Ξ should give an insight in the study of the genetic composition of 

population under recombination. Genetic information is encoded in terms of sequences 
of symbols indexed by a finite set of sites. In the process of recombination the children 
sequences are derived from two parents, a subset of sites (J) is encoded with the maternal 
symbols and the complementary set (Jc) is encoded with the paternal symbols. The 
above equation expresses that the pair of sets (J, Jc) constitute a probabilistic object 
distributed according to ρ. By taking ρJ + ρJc as the weight of the binary partition 
{J, Jc} we can always consider binary partitions instead of sets.

The evolution (Ξn[μ]) has been mainly studied in the context of single cross-overs, 
that is where I = {1, .., K} and the pairs of sets (J, Jc) are of the form J = {i : i < j}, 
Jc = {i : i ≥ j}. This evolution was introduced by H. Geiringer [11], and firstly solved 
in the continuous-time case by E. Baake and M. Baake [2], where it is also supplied 
an important corpus of ideas and techniques to study the discrete-time evolution. More 
detailed discussions on some of the pioneering works, comments on other significant 
results, including [6,9,10], as well as the interpretation of the above equation in a broader 
perspective of recombination in population genetics, can be found in the introductory 
sections of references [2,4,5] and [15,16].

When studying single cross-over recombination, one the main objectives in [15] and 
[4] is to express the iterated Ξn[μ] in a simple form which allows its dynamics to be 
understood. The main tools are Möbius inversion formulae, and commutation relations 
between Ξ and recombinators, which are idempotent operators that commute, so act as 
projectors. In my view, some of the main results in this body of works are:

– Theorem 1 in [4] and Proposition 3.3 in [15], that supply a one step recursive decom-
position for Ξn in terms of the recombinators and give an expression of Ξn[μ] serving 
to the analysis of the convergence of Ξn[μ] to the distribution 

⊗
J∈D∗ μJ , where D∗

is the partition whose atoms are the nonempty intersections of the sets J, Jc with 
ρ(J) > 0;

– the construction of a Markov chain by following the ancestry of the genetic material 
of a selected individual from a population; and Theorem 3 in [4], which states a 
relation between (Ξn) and the Markov chain.

Recently, in [5], the continuous-time evolution was studied in a framework of general 
partitions other than the binary partitions {J, Jc} considered in [2,4] and [15]. It cor-
responds to study the evolution of the following transformation Ξ acting on the set of 
probability measures μ on a product measurable space 

∏
i∈I Ai,
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Ξ[μ] =
∑
δ∈G

ρδ
⊗
J∈δ

μJ .

Here G is a set of partitions of the finite set I, ρ = (ρδ : δ ∈ G) is a strictly positive 
probability vector, μJ is the marginal of μ on 

∏
i∈J Ai, and 

⊗
J∈δ μJ is the product 

measure. Its evolution was recently studied in [3].
We state our results in this general setting. The analysis is done by successive refine-

ments of the partitions in G, and a key element turns out to be the partition DG which 
is the common refinement of all the partitions in G.

In Proposition 3.2 in Section 3 we associate to the evolution (Ξn) a Markov chain 
(Yn), whose transition probabilities starting from the coarsest partition {I} give the 
decomposition Ξn[μ] =

∑
δ P(Yn = δ) ⊗K∈δ μK . The Markov chain can be seen as a 

random walk on the set of partitions with respect to operation refinement, and with the 
one-step transition law ρ. This Markov chain converges to DG, then ⊗K∈DGμK should be 
the genetic composition that one observes after a long period of time (when considering 
only recombination). One of our aims is to understand the geometric decay of the chain 
to this limit.

The main result of this work is Theorem 4.1 shown in Section 4. There, we study in 
detail the geometric decay of the Markov chain (Yn), in particular, we show that the 
geometric decay rate is η = max{Pδ,δ : δ �= DG}. In this theorem the quasi-stationary 
behavior of the chain (Yn) conditioned on not hitting the limit point ⊗J∈D(G)μJ is also 
studied. We recall that quasi-stationarity gives very precise information on the deviations 
of the behavior from the limit measure ⊗J∈DGμJ . We describe the limiting conditional 
behavior of the chain and we state a ratio limit of the probabilities of not hitting the limit 
point. This ratio limit allows us to construct the Q-chain, which is the chain that never 
hits DG , this is done in Corollary 4.4. We also show that the partitions δ∗ satisfying 
Pδ∗,δ∗ = η, are the limit points of the Q-chain. Hence, the laws ⊗K∈δ∗μK are the 
candidates to be the genetic composition of a population after a long period of time but 
when the limit ⊗K∈DGμK has not been attained.

We emphasize that our results on quasi-stationarity are not a consequence of any 
already published result in the literature of quasi-stationarity because the Markov chain 
(Yn) is not irreducible on the class of non-absorbing states, so we are not able to use 
the Perron–Frobenius theory. All these results presented here require entirely new com-
putations. Quasi-stationary distributions for finite Markov chains were studied in [8]. 
In population dynamics quasi-stationarity have been studied mostly in relation to pop-
ulation extinction, see for instance Section 2.6 in [12], and [14,7] for a wide ranging 
bibliography on the subject. We note that in this work, the absorbing state is not the 
empty population as happens when studying extinction phenomena.

In Section 2 we fix notation on partitions. In Section 3 we introduce the Markov chain 
on partitions and in Section 4 we state our main results. Examples containing explicit 
computations are developed in these sections.
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2. The recombination transformation

2.1. Partitions

Let us fix some notation on partitions on finite sets. Let I be a nonempty finite set. 
A partition δ of I is a collection of nonempty and pairwise disjoint sets that cover I. Any 
of the sets L belonging to the partition δ = {L : L ∈ δ} is called an atom of δ. We note 
by S(I) the family of partitions of I.

For δ, δ′ ∈ S(I), δ′ is said to be finer than δ or δ is coarser than δ′, we note δ � δ′, 
if every atom of δ′ is contained in an atom of δ, this is an order relation. The finest 
partition is {{i} : i ∈ I}, and the coarsest one is the trivial partition {I} having a single 
atom. The common refinement between two partitions δ, δ′ ∈ S(I) is noted by δ ∨ δ′ and 
its atoms are the nonempty elements of the family of sets {L ∩ L′ : L ∈ δ, L′ ∈ δ′}. The 
operation ∨ is commutative, associative and {I} is its unit element because {I} ∨ δ = δ

for all δ ∈ S(I). One has δ � δ′ if and only if δ ∨ δ′ = δ′.
Let G be a nonempty family of partitions of I. We will associate to it the following 

sequence of families of partitions, which are the consecutive refinements with G,

∀n ≥ 1 : Gn+1 = Gn ∨ G = {D ∨ δ : δ ∈ Gn,D ∈ G}.

Since every δ ∈ Gn satisfies D ∨ δ = δ for some element D ∈ G, we have Gn ⊆ Gn+1 for 
all n ≥ 1. This sequence stabilizes in a finite number of steps, that is there exists n0 ≥ 1
such that Gn0+k = Gn0 for all k ≥ 0. Let

G+ =
⋃
n≥0

Gn = Gn0 .

Denote by DG the partition which is the common refinement of all the partitions in G, 
this is written

DG =
∨
D∈G

D.

It is the finest partition in G+, so δ � DG for all δ ∈ G+. The atoms of DG are the 
nonempty intersections 

⋂
D∈G LD, where (LD : D ∈ G) varies over all the sequences of 

atoms of the partitions in G.

Remark 2.1. DG is the unique element in G+ that satisfies DG ∨ D = DG for all D ∈ G. 
Moreover, it also holds DG ∨ δ = DG for all δ ∈ G+. That is, DG is an absorbing element 
in (G+, ∨).

Example. Let I = {1, 2, 3, 4} and take G = {δ1, δ2, δ3} with δ1 = {{I}}, δ2 =
{{1, 2}, {3, 4}}, δ3 = {{1, 3}, {2, 4}}. Then, G2 = G ∨ G = {δk ∨ δl : k, l = 1, 2, 3}. We 
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have δk∨δk = δk for k = 1, 2, 3; δ1∨δk = δk for k = 2, 3; and δ2∨δ3 = {{i} : i ∈ I} = DG

(for instance {3} = {3, 4} ∩ {1, 3}). Then, G+ = G2 = G ∪ {DG}, so the sequence (Gn)
stabilize at n0 = 2. �

Note that the trivial partition {I} belongs to G+ only when {I} ∈ G. Since we will 
require to consider {I}, we introduce

G+
0 = G+ ∪ {{I}},

and so G+
0 = G+ only when {I} ∈ G.

Let us define the following relation,

∀δ, δ′ ∈ G+
0 : δ → δ′ ⇔

[
∃D ∈ G : δ′ = δ ∨ D

]
, (1)

when this happens we say that δ is connected to δ′. By definition, δ → δ′ implies δ � δ′. 
Since for every δ ∈ G+ there exists D ∈ G such that δ ∨ D = δ, we get

∀δ ∈ G+ : δ → δ. (2)

On the other hand for δ = {I} we have

{I} → δ′ ⇔ δ′ ∈ G.

In particular, {I} → {I} if and only if {I} ∈ G.
A path between δ ∈ G+

0 and δ′ ∈ G+ is a sequence (δk : k = 1, .., r) in G+
0 with r ≥ 2, 

such that δ1 = δ, δr = δ′ and δk → δk+1 for k = 1, .., r − 1. When there exists a path 
between δ and δ′ one says that δ attains δ′. Obviously, if δ attains δ′ then δ � δ′. Notice 
that {I} attains all δ ∈ G+. We have that,

[
(δk : k = 1, .., r) is a path, δ1 = δr

]
⇒

[
δk = δ1, k = 1, .., r

]
. (3)

In other words, G+
0 endowed with the relation [δ → δ′, δ �= δ′] has no cycles.

2.2. Product probability spaces

Let us introduce a product measurable space and the set of probability measures on 
it. Let (Ai, Bi), i ∈ I, be a finite collection of measurable spaces and let 

∏
i∈I Ai be a 

product space endowed with the product σ-field ⊗i∈IBi. When all the Ai are equal we 
note Ai = A, so 

∏
i∈I Ai = AI .

Denote by PI the set of probability measures on (
∏

i∈I Ai, ⊗i∈IBi). Let J ⊆ I and 
PJ be the set of probability measures on (

∏
i∈J Ai, ⊗i∈JBi). The marginal μJ ∈ PJ of 

μ ∈ PI on J is given by,
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∀C ∈ ⊗i∈JBi : μJ(C) = μ(C ×
∏
i∈Jc

Ai) .

For J = I we have μI = μ, and we put μ∅ ≡ 1 to get consistency in all the relations 
where it will appear, in particular in product measures.

Let J, K ⊆ I, J ∩K = ∅. For μJ ∈ PJ , μK ∈ PK , we denote by μJ ⊗ μK its product 
measure. We have that ⊗ is commutative and associative, μ∅ = 1 is the unit element, and 
⊗ is stable under restriction, that is, for all J, K, M ⊆ I with J∩K = ∅ and M ⊆ J∪K,

(μJ ⊗ μK)M = μJ∩M ⊗ μK∩M . (4)

Remark 2.2. All the results of this work will be proven for product probability spaces 
(
∏

i∈I Xi, ⊗i∈IBi, μ) with I finite, but with no restriction on the finite collection 
((Xi, Bi) : i ∈ I) of measurable spaces.

Remark 2.3. In our results it is not required that the operation ⊗ is the product between 
probability measures. As it can be checked, the results can be extended to any operation 
⊗ that satisfies commutativity, associativity, μ∅ = 1 and stability under restriction (4).

2.3. The transformation

In the sequel we fix ρ = (ρδ : δ ∈ S(I)) a probability vector on the set of partitions, so 
ρδ ≥ 0 for δ ∈ S(I) and 

∑
δ∈S(I) ρδ = 1. From now on, we note by G = {δ ∈ S(I) : ρδ > 0}

the support of ρ.

Definition 2.4. Define the following transformation Ξ : PI → PI ,

Ξ[μ] =
∑
D∈G

ρD
⊗
J∈D

μJ . �

The common refinement of partitions in G is DG =
∨

δ∈G δ. We claim that

μ =
⊗

L∈DG

μL is a fixed point for Ξ : Ξ[μ] = μ.

In fact, we have DG = DG ∨D for all D ∈ G, so μJ = ⊗L∈DG :L⊆JμL for all J ∈ D. Then, 
μ =

⊗
J∈D μJ for all D ∈ G and the claim Ξ[μ] = μ is shown.

Remark 2.5. If one redefines I (as the set of atoms of the partition DG) one can always 
assume that the atoms of DG are singletons, that is DG = {{i} : i ∈ I}. We will not do 
it because there is no substantial gain in notation.

Remark 2.6. For the meaning of Ξ[μ] in population genetics, assume ρ only gives positive 
probability to binary partitions δ = {J, Jc}. Suppose the genetic information is encoded 
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in terms of sequences of AI , with A finite, and let μ be the distribution of this genetic 
information in certain population. The maternal and paternal genetic information, are 
two random elements of this population that are noted U and V , it is assumed they are 
independent. The genetic information of the children is Z with ZJ = UJ , ZJc = VJc , 
where {J, Jc} is a random binary partition, distributed as ρ and independent of the 
genetic information of the parents U and V . It is straightforward to show that the 
distribution of the children genetic information Z, is Ξ[μ].

2.4. Example

Let I = {0, . . . , 4r − 1} be a set of 4r elements, and let A = {A, C, G, T} be the set 
of four nucleotides. Assume G = {δ1, δ2}, where

δ1 = {J, Jc} with J = {0, .., 2r − 1}, Jc = {2r, .., 4r − 1};

δ2 = {K,Kc} with K = {0, 2, .., 4r − 2}, Kc = {1, 3, ., 4r − 1}.

That is, in δ1 the set I is divided into two consecutive half segments, and in δ2 the set 
I is divided into even and odd elements. Each atom in δ1 and δ2 has 2r elements. We 
have DG = δ1 ∨ δ2 = {J ∩ K, J ∩ Kc, Jc ∩ K, Jc ∩ Kc} and each of these atoms has r
elements. The atoms of DG are easily described, for instance Jc ∩ K is constituted by 
the even elements between 2r and 4r − 1 inclusive.

Let N = {0, 1, ..}, and ν1 and ν2 be two stationary Markov probability measure on AN: 
ν1 with irreducible transition matrix Θ = (Θa,b : a, b ∈ A) starting from its stationary 
vector π = (πa : a ∈ A), and ν2 with transition matrix Θ2 starting from π. Assume 
μ is the probability measure induced by ν1 on A4r. Then, the marginals μJ and μJc

are the probability measure induced by ν1 on A2r. But the marginals μK and μKc are 
the probability measure induced by ν2 on A2r. Thus, for all L ∈ DG , μL is the induced 
probability measure by ν2 on Ar. In the case r = 1, I = {0, 1, 2, 3} has four sites, 
DG = {{i} : i ∈ I} and μ{i} = π for i ∈ I, so ⊗L∈DG = π⊗4, which is a Bernoulli 
measure.

3. The Markov chain

Let us introduce some probabilistic elements allowing to get a better insight of the 
sequence of transformations (Ξn). Let (Ω, B, P) be a probability measure and (Δj : Ω →
G : j ≥ 1) be a sequence of independent and identically distributed random variables 
with common law ρ, so

∀r ≥ 1,D1, ..,Dr ∈ G : P(Δj = Dj , j = 1, .., r) =
r∏

ρDj
.

j=1



122 S. Martínez / Advances in Applied Mathematics 91 (2017) 115–136
Let us define the following sequence of random variables (Yn : n ≥ 0). We take Y0 a 
random variable with values in G+

0 and independent of (Δj : j ≥ 1) (for instance Y0 = δ

a fixed values in G+
0 is allowed), and

Yn = Y0 ∨

⎛⎝ n∨
j=0

Δj

⎞⎠ for n ≥ 1.

The sequence (Yn : n ≥ 0) takes values in G+
0 , but Yn takes values in G+ for n ≥ 1. Thus, 

in the case {I} /∈ G we can start from Y0 = {I}, but Yn �= {I} for n ≥ 1.
From Yn+1 = Yn∨Δn+1 with Yn and Δn+1 independent, it is straightforward to show 

that (Yn : n ≥ 0) is a Markov chain. By definition its transition matrix P = (Pδ,δ′ :
δ, δ′ ∈ G+

0 ) is given by

Pδ,δ′ =
∑

D∈G:δ∨D=δ′

ρD. (5)

(Notice that 
∑

δ′∈G+ Pδ,δ′ =
∑

D∈G ρD = 1.) The matrix P can be seen as the one of a 
random walk in the set G+

0 with respect to operation ∨, and with one-step transition law 
ρ (it is a nearest neighbor random walk with respect to the oriented neighbor relation →).

From definition and (1) we get

∀δ, δ′ ∈ G+
0 : Pδ,δ′ > 0 ⇔ δ → δ′. (6)

For all δ ∈ G+ we have δ → δ (see (2)), and so Pδ,δ > 0. Also note that Pδ,δ′ > 0 implies 
δ � δ′. From (6) and (3), we get that when the chain (Yn) leaves an state δ it does never 
return to it. From Remark 2.1 we have DG ∨ D = DG for all D ∈ G and so

PDG ,DG = 1.

Hence, DG is an absorbing state for the chain (Yn). Also, Remark 2.1 implies that it is 
the unique absorbing point for the chain. Then

∀δ ∈ G+, δ �= DG : 0 < Pδ,δ < 1. (7)

Remark 3.1. Since, for all δ ∈ G+, there exists a path δ1 = {I} → . . . → δr = δ, this 
path has strictly positive probability for the Markov chain.

We claim that Pδ,δ is strictly increasing with →, that is for δ, δ′ ∈ G+
0 we have[

δ → δ′, δ �= δ′
]
⇒ Pδ,δ < Pδ′,δ′ . (8)

In fact, if D ∈ G satisfies δ = δ∨D, then it also satisfies δ′ = δ′ ∨D, and so Pδ,δ ≤ Pδ′,δ′ . 
Furthermore, there exists D0 ∈ G such that δ′ = δ∨D0, and so δ′ = δ′ ∨D0. Since δ �= δ′

we get Pδ′,δ′ ≥ Pδ,δ + ρD0 , then (8) follows.
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By abuse of notation, P denotes below the law starting from Y0 = {I} and E denotes 
its mean expected value.

Proposition 3.2. Let Y0 = {I}. For μ ∈ PI define the sequence of (random) probability 
measures

∀n ≥ 0 : μ(n) =
⊗
L∈Yn

μL .

Then,

Ξn[μ] =
∑
δ∈Gn

P(Yn = δ)
⊗
L∈δ

μL = E(μ(n)). (9)

Proof. The equality E(μ(n)) =
∑

δ∈Gn P(Yn = δ) ⊗L∈δn μL is straightforward.
Let us prove the first equality in (9), we will make it by an induction argument. We 

have Ξ0[μ] = μ, P(Y0 = {I}) = 1 and P(Y0 = δ) for δ �= {I}. Then, (9) holds for n = 0. 
From G1 = G and P(Y1 = δ) = ρδ for δ ∈ G, we get that (9) holds for n = 1.

Assume the statement is satisfied for n ≥ 1, let us show it for n + 1. We have

Ξn+1[μ] = Ξn[Ξ[μ]] =
∑
δ∈Gn

P(Yn = δ)
⊗
K∈δ

Ξ[μ]K

=
∑
δ∈Gn

P(Yn = δ)
⊗
K∈δ

(
∑
D∈G

ρD
⊗
L∈D

μL)K

=
∑
δ∈Gn

P(Yn = δ)
⊗
K∈δ

(
∑
D∈G

ρD
⊗
L∈D

μL∩K) (10)

=
∑
δ∈Gn

∑
D∈G

P(Yn = δ)ρD
⊗
K∈δ

⊗
L∈D

μL∩K

=
∑
δ∈Gn

∑
D∈G

P(Yn = δ)ρD
⊗

L∩K∈D∨δ

μL∩K .

We used μ∅ = 1 when the atoms are empty, and for stating (10) we used (4). Since 
D ∨ δ ∈ Gn+1 when δ ∈ Gn and D ∈ G, we get the decomposition,

Ξn+1[μ] =
∑

δ′∈Gn+1

(∑
δ∈Gn

∑
D∈G:D∨δ=δ′

P(Yn = δ)ρD

) ⊗
L∈δ′

μL

=
∑

δ′∈Gn+1

P(Yn+1 = δ′)
⊗
L∈δ′

μL .

Hence, the result is shown. �
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4. Quasi-stationary behavior

Let us denote by Pδ the law of (Yn) starting from Y0 = δ and by Eδ the mean expected 
value associated to Pδ. As before, P = P{I} and E = P{I}.

4.1. Hitting times

Let us define the hitting times,

∀B ⊆ G+
0 : ζB = inf{n ≥ 0 : Yn ∈ B}.

For a partition δ ∈ G+
0 we put ζδ = ζ{δ} the first time the chain hits δ. For δ = {I} we 

have P(ζ{I} = 0) = 1. The random time for hitting DG is noted,

ζ = ζDG = inf{n ≥ 0 : Yn = DG}.

Since DG is an absorbing point, then Yζ+n = DG for all n ≥ 0. So, recalling the notation 
μ(n) =

⊗
K∈Yn

μK , we have μ(ζ+n) =
⊗

L∈DG μL for n ≥ 0.
When G = {δ∗} is a singleton we get

∀n ≥ 1 : Ξn[μ] = Ξ[μ] =
⊗
L∈δ∗

μL.

Then, the evolution is trivial. Hence, in the sequel we assume

|G| ≥ 2. (11)

Our main result, which is stated and proven in next section, only requires (11) as 
unique hypothesis. This result examine ratio limits between quantities of the type 
P(ζ > n, Yn ∈ B). In the case G = {{I}, δ} with δ �= {I} the results and computa-
tions turn out to be trivial because DG = δ, P(ζ > n, Yn = {I}) = P(ζ > n) = ρn{I}. The 
case G = {{I}, δ, δ′} with δ, δ′ �= {I} will be developed in Section 4.5.

4.2. The main result

Before stating the Theorem, let us introduce the set of points connected to DG which 
are different from it,

Γ = {δ ∈ G+
0 : δ → DG , δ �= DG}. (12)

This set is nonempty and its shapes can vary drastically with G, for instance if DG ∈ G
then Γ = G+

0 \ {DG}.
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Theorem 4.1. Assume |G| ≥ 2. Then,

P(ζ < ∞) = 1. (13)

Define

η = max{Pδ,δ : δ ∈ G+
0 , δ �= DG} and F = {δ ∈ G+ : Pδ,δ = η}.

Then, η ∈ (0, 1), ∅ �= F ⊆ Γ and P(ζF < ∞) > 0.
The geometric rate of decay of P(ζ > n) is η, and satisfies,

lim
n→∞

η−n
P(ζ > n) = lim

n→∞
η−n

P(ζ > n, Yn ∈ F) = E
(
η−ζF , ζF < ∞

)
∈ (0,∞). (14)

Let

G∗
0 = G+

0 \ {DG} and P ∗ = (Pδ,δ′ : δ, δ′ ∈ G∗
0 ).

The quasi-limiting distribution on G∗
0 is given by,

∀δ ∈ F : lim
n→∞

P(Yn = δ | ζ > n) =
E
(
η−ζδ , ζδ < ∞

)
E (η−ζF , ζF < ∞) ,

∀δ ∈ G∗
0 \ F : lim

n→∞
P(Yn = δ | ζ > n) = 0. (15)

The following ratio limit relation is satisfied,

∀δ ∈ G∗
0 : lim

n→∞
Pδ(ζ > n)
P(ζ > n) = Eδ(η−ζF , ζF < ∞)

E(η−ζF , ζF < ∞) . (16)

Both ratios vanish only when Pδ(ζF < ∞) = 0. The vector

ϕ = (ϕδ : δ ∈ G∗
0 ) given by ϕδ = Eδ(η−ζF , ζF < ∞), (17)

is a right eigenvector of P ∗ with eigenvalue η (note that ϕ{I} = 1).

Proof. From hypothesis (11) we have G+\{DG} �= ∅, then F �= ∅ and (7) gives η ∈ (0, 1). 
We have

∀δ ∈ F : Pδ,δ + Pδ,DG = 1. (18)

In fact, let δ ∈ F and Pδ,δ′ > 0 for δ′ different from δ and DG . Then, (7) implies 
η = Pδ,δ < Pδ′,δ′ which contradicts the definition of η, so Pδ,δ′ = 0 for all δ′ /∈ F ∪{DG}.

Let us now prove F ⊆ Γ. By hypothesis, G is not a singleton so G �= {DG}, which 
implies F �= ∅. Since every δ ∈ F satisfies Pδ,δ < 1, from (18) we deduce Pδ,DG > 0, so 
δ ∈ Γ.
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From (6), relation (18) can be written,

∀ δ ∈ F : δ → δ′ ⇔
[
δ′ = δ or δ′ = DG].

Define,

β0 = max{Pδ,δ : δ ∈ G+
0 , δ �= DG , δ /∈ F}, (19)

where we put β0 = 0 if G+
0 = F ∪ {DG}. Let us prove

β0 < η. (20)

This is trivial if G+
0 = F ∪ {DG}. When G+

0 �= F ∪ {DG}, by definition of F we have 
Pδ,δ < η for all δ ∈ G+

0 \ (F ∪ {DG}), so (20) holds.
Let us show (13). As already noted, when (Yn) exits from some state it does never 

return to it. This fact together with inequality Pδ,δ < 1 for δ �= DG , give

∀δ ∈ G+
0 , δ �= DG : P(#{n : Yn = δ} < ∞) = 1.

So, since DG is an absorbing state for (Yn), we get (13): P(ζ < ∞) = P(∃n : Yn =
DG) = 1.

On the other hand, the existence of paths from {I} to F with strictly positive prob-
ability gives P(ζF < ∞) > 0.

Let us now turn to the proof of relations (14), (15) and (16). From (18) we get,

∀δ∗ ∈ F , n ≥ 0 : Pδ∗(Yn = δ∗) = Pδ∗(∀j ≤ n, Yj = δ∗) = ηn.

We have

P(ζ > n) = P(ζ > n, Yn /∈ F) + P(ζ > n, Yn ∈ F). (21)

Since every δ ∈ G+ is attained from {I}, we obtain the existence of k0 ≥ 1 such that

∀ δ∗ ∈ F : P(ζδ∗ ≤ k0) > 0.

Define α(F) := min{P(ζδ∗ ≤ k0) : δ∗ ∈ F}, so α(F) > 0. From the Markov property we 
get for all δ∗ ∈ F ,

P(ζ > n) ≥
k0∑
j=1

P(ζδ∗ = j, ζ > n) ≥
k0∑
j=1

P(ζδ∗ = j)Pδ∗(ζ > n− j) (22)

≥
k0∑

P(ζδ∗ = j)Pδ∗(Yn−j = δ∗) ≥
k0∑

P(ζδ∗ = j)ηn−j ≥ α(F)ηn.

j=1 j=1
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To analyze the first term at the right hand side of equality (21), it will useful to prove 
the following result involving the quantity β0 defined in (19).

Lemma 4.2. We have,

∀θ > 0 ∃C ′ = C ′(θ) : ∀n ≥ 0, P(∀j ≤ n : Yj /∈ F ∪ {DG}) ≤ C ′(β0 + θ)n. (23)

Proof of Lemma 4.2. Let U = G+
0 \ (F ∪ {DG}). Since Yj ∈ G+ when j ≥ 1, the result is 

trivial if G+ \ (F ∪{DG}) = ∅. So, assume this last set is nonempty, in particular U �= ∅. 
Fix δ1 = {I}. For every s ≥ 2 consider the following family of paths,

C(U, s) = {(δ1, .., δs) ∈ Us : ∀r ≤ s− 1, δr → δr+1 and δr �= δr+1}.

So, Pδr,δr+1 > 0 for all r = 1, .., s − 1, see (6). We have

P(∀j ≤ n : Yj ∈ U)

=
∑
s≥2

∑
(δ1,..,δs)∈C(U,s)

s−1∏
r=1

Pδr,δr+1

⎛⎝ ∑
k1,..,ks≥0:

∑s
r=1 kr=n−s

P kr

δr,δr

⎞⎠ .

When (δ1, .., δs) ∈ C(U, s) we have that every δk with k ≤ s satisfies Pδk,δk ≤ β0. On the 
other hand,

#{(k1, .., ks) : ∀r ≤ s, kr ≥ 0;
s∑

r=1
kr = n− s} =

(
n− 1
s

)
.

Then,

P(∀j ≤ n : Yj ∈ U) ≤
∑
s≥2

(
n− 1
s

)
βn−s

0

⎛⎝ ∑
(δ1,..,δs)∈C(U,s)

s−1∏
r=0

Pδr,δr+1

⎞⎠ .

Since a path (δ1, .., δs) ∈ C(U, s) necessarily satisfies s ≤ |I| (because the elements δr
are different and become finer when r increases), we get that C(U, s) �= ∅ implies s ≤ |I|. 
Then, the index s in the sum can be restricted to be smaller than or equal to |I|. So,

C1 =
∑
s≥2

∑
(δ1,..,δs)∈C(U,s)

s−1∏
r=0

Pδr,δr+1 =
|I|∑
s=2

∑
(δ1,..,δs)∈C(U,s)

s−1∏
r=0

Pδr,δr+1 < ∞.

On the other hand, for θ′ ∈ (0, 1) we have

C2(θ′) = max
s≤|I|

sup
(
n− 1
s

)
(1 − θ′)n−|I| < ∞.
n≥1
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Then,

P(∀j ≤ n : Yj ∈ U) ≤ C1 · C2(θ′)βn−|I|
0 /(1 − θ′)n−|I|.

Hence, by taking θ′ ∈ (0, 1) such that β0/(1 − θ′) < β0 + θ we get that the constant

C ′ = (β0 + θ)−|I|C1 · C2(θ′) < ∞

makes the job in (23). �
Continuation with the proof of Theorem 4.1.

From (20) we can fix θ > 0 such that β0 + θ < η. Hence, from (22) and (23) we find

P(Yn /∈ F | ζ > n) ≤ C ′′ ((β0 + θ)/η)n → 0 as n → ∞,

with C ′′ = C ′/α(F). Therefore,

lim
n→∞

P(Yn ∈ F | ζ > n) = 1. (24)

Let us examine the second term at the right hand side of equality (21). For every δ∗ ∈ F
we have

P(ζ > n, Yn = δ∗) =
n∑

j=1
P(ζ > n, ζδ∗ = j)

=
n∑

j=1
P(ζδ∗ = j)Pδ∗(ζ > n− j)

=
n∑

j=1
P(ζδ∗ = j)ηn−j = ηn

⎛⎝ n∑
j=1

η−j
P(ζδ∗ = j)

⎞⎠ .

Since

P(ζδ∗ = j) ≤ P(ζF = j)

≤ P(∀n ≤ j − 1 : Yn /∈ F ∪ {DG}) ≤ C ′(β0 + θ)j−1,

and β0 + ε < η, we get 
∑∞

j=1 η
−j

P(ζδ∗ = j) < ∞. Hence,

∀δ∗ ∈ F : lim
n→∞

η−n
P(ζ > n, Yn = δ∗) =

∞∑
j=1

η−j
P(ζδ∗ = j) (25)

= E
(
η−ζδ∗ , ζδ∗ < ∞

)
< ∞.
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Now, for δ∗ ∈ F we have

ζδ∗ < ∞ ⇒
[
ζF < ∞ and ∀δ′ ∈ F \ {δ∗}, ζδ′ = ∞

]
.

Then, for j finite,

{ζF = j} =
⋃

δ∗∈F
{ζδ∗ = j}

and the union is disjoint. So, η−ζF1ζF<∞ =
∑

δ∗∈F η−ζδ∗1ζδ∗<∞. Hence,

E
(
η−ζF , ζF < ∞

)
=

∑
δ∗∈F

E
(
η−ζδ∗ , ζδ∗ < ∞

)
< ∞. (26)

Then, from (25) we deduce

lim
n→∞

η−n
P(ζ > n, Yn ∈ F) = E

(
η−ζF , ζF < ∞

)
. (27)

Therefore, from relations (25) and (27), we get (15). Also (15) and (26) give

∑
δ∈F

lim
n→∞

P(Yn = δ | ζ > n) = 1
E (η−ζF , ζF < ∞)

∑
δ∈F

E
(
η−ζδ , ζδ < ∞

)
= 1,

and so the quasi-limiting distribution (15) is a distribution (there is no loss of mass).
Now, relation (14) is a consequence of relations (24) and (27) because they imply

lim
n→∞

η−n
P(ζ > n) = lim

n→∞
η−n

P(ζ > n, Yn ∈ F)

= E(η−ζF , ζF < ∞) ∈ (0,∞).

Let us show (16). First, assume δ is such that Pδ(ζF < ∞) > 0, that is there exists a 
path with strictly positive probability from δ to some nonempty subset of F . A similar 
proof as the one showing (14) gives

lim
n→∞

η−n
Pδ(ζ > n) = Eδ(η−ζF , ζF < ∞) ∈ (0,∞), (28)

so (16) is satisfied. Now, let Pδ(ζF < ∞) = 0. Then, Eδ(η−ζF , ζF < ∞) = 0 and in (16)
we have Eδ(η−ζF , ζF < ∞)/E(η−ζF , ζF < ∞) = 0. We claim that in this case we also 
have lim

n→∞
Pδ(ζ > n)/P(ζ > n) = 0. In fact Pδ(ζF < ∞) = 0 implies

(β0 + θ)−n
Pδ(ζ > n) = (β0 + θ)−n

Pδ(ζ > n, ζF > n)

= (β0 + θ)−n
P(∀j ≤ n : Yj /∈ (F ∪ {DG}) < ∞.

Since lim η−n
P(ζ > n) > 0 and β0 + θ < η, the claim follows and (16) is shown.
n→∞
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The last statement to be proven is that ϕ defined in (17) is a right eigenvector of P ∗

with eigenvalue η. First take δ ∈ F . We have Pδ(ζF = 0) = 1 and so ϕδ = Eδ(η−ζF , ζF <

∞) = 1. From (18) and Pδ,δ = η we get

(P ∗ϕ)δ =
∑

δ′:δ′ �=DG ,δ→δ′

Pδ,δ′Eδ′(η−ζF , ζF < ∞) = Pδ,δ = η = η ϕδ.

Now, let δ be such that Pδ(ζF < ∞) = 0, so ϕδ = 0. Then Pδ,δ′ > 0 implies Pδ′(ζF <

∞) = 0 and so (P ∗ϕ)δ = 0 = η ϕδ.
Now take δ /∈ F with Pδ(ζF < ∞) > 0. From the Markov property we get,

ϕδ = Eδ(η−ζF , ζF < ∞) =
∑

δ′:δ′ �=DG ,δ→δ′

Eδ(η−ζF , ζF < ∞, Y1 = δ′)

=
∑

δ′:δ′ �=DG ,δ→δ′

Pδ,δ′ η
−1

Eδ′(η−ζF , ζF < ∞) = η−1 (P ∗ϕ)δ.

Notice that (28) gives ϕδ ∈ (0, ∞). Then, the result is shown, and this finishes the proof 
of the theorem. �
Remark 4.3. Let R = (Rk,l : k, l ∈ K) be a stochastic matrix defined on a finite set K. 
Define the relation

k ↪→ l ⇔
[
Rk,l > 0, k �= l

]
,

which is the graph of connections defined by R except by loops. Assume that (K, ↪→)
has no cycles and k ↪→ l implies Rk,k < Rl,l. (Note that the matrix P defined on G+

0 by 
(5) satisfies these properties, this follows from (6), (3) and (8)). One of the referees has 
observed that Theorem 4.1 can be extended for the Markov chain defined by a matrix 
R that satisfy the above conditions on the graph of connections.

The extension works as follows. Fix some k0 ∈ K. Assume Rk0,k0 �= 1. Then, since 
there is no cycles, if k0 ↪→ k1.. ↪→ kr is a path then all the points are different, so 
r ≤ |K|. Let U(k0) be the set of maximal paths starting from k0 (maximal means that 
they cannot be extended by a path k0 ↪→ k1.. ↪→ kr ↪→ kr+1). If k0 ↪→ k1.. ↪→ kr is one 
of these maximal paths, we necessarily have Rkr,kr

= 1 (in the contrary the path could 
be extended), so the terminal points of the maximal paths in U(k0) are absorbing points 
for R. Let A(k0) be the set of all the absorbing points that can be attained from k0 and 
K(k0) be the set of all the points that can be attained from k0 and which are not in 
A(k0). Then, a similar proof as that of Theorem 4.1 allows to show that

η(k0) = max{Rk,k : k ∈ K(k0)}

is the geometric decay rate of the hitting time of A(w0) when the Markov chain starts 
from k0. Also, in this more general frame, the quasi-limiting behavior and the ratio limit 
result can be formulated and proved similarly as in Theorem 4.1,
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4.3. The Q-chain

The results in Theorem 4.1 allow us to describe the Q-chain, which in our case is 
the Markov chain that avoids the singleton {⊗L∈DGμL}. The Q-chain was introduced 
in [1] for branching processes. Other developments on Q-chains, including finite Markov 
chains, can be found in [7]. For the next result we recall that G∗

0 = G+
0 \ {DG}.

Corollary 4.4. For all δi ∈ G∗
0 , i = 1, .., k, the following limit exists

lim
n→∞

P(Yi = δi, i = 1, .., j | ζ > n),

and it vanishes if some δi satisfies Pδi(ζF < ∞) = 0.
Denote by ∂F the class of partitions that can attain F , that is

∂F = {δ ∈ G∗
0 : Pδ(ζF < ∞) > 0}.

Then, the matrix Q = (Qδ,δ′ : δ, δ′ ∈ ∂F ) given by

Qδ,δ′ = η−1 Pδ,δ′
Eδ′(ηζF , ζF < ∞)
Eδ(ηζF , ζF < ∞) , (29)

is an stochastic matrix on ∂F , and it is satisfied

∀δi ∈ ∂F , i = 0, .., j : lim
n→∞

Pδ0(Yi = δi, i = 1, .., j | ζ > n) =
j−1∏
i=0

Qδi,δi+1 . (30)

So, Q is the transition matrix of the Markov chain that never hits ⊗L∈DGμL and

∀δ ∈ F : Qδ,δ = 1 and ∀δ ∈ ∂F \ F : Qδ,δ < 1. (31)

That is, the elements in F are the unique absorbing points of the chain Q.

Proof. Let us prove that Q is an stochastic matrix. Let ϕ be the right eigenvector of P ∗

with eigenvalue η given in (17). The component ϕδ vanishes when Pδ(ζF < ∞) = 0. Let 
δ ∈ ∂F , so ϕδ > 0. We have Pδ,δ′ = 0 if δ � δ′ and

Pδ′(ζF < ∞) = 0 implies ϕδ′

ϕδ
= Eδ′(ηζF , ζF < ∞)

Eδ(ηζF , ζF < ∞) = 0.

Then, since ϕ is a right eigenvector with eigenvalue η we get

∑
′

Qδ,δ′ = η−1

( ∑
′

Pδ,δ′
ϕδ′

ϕδ

)
= η−1

(
ηϕδ

ϕδ

)
= 1.
δ ∈∂F δ ∈∂F
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From the Markov property we obtain for n > j,

P(Yi = δi, i = 1, .., j | ζ > n) = P(Yi = δi, i = 1, .., j)
Pδj (ζ > n− j)

P(ζ > n) .

Now we use the ratio limit result (16). This limit vanishes if Pδj (ζF < ∞) = 0 and 
it also vanishes when Pδi(ζF < ∞) = 0 for some i < j because Pδi,δi+1 > 0 implies 
Pδi+1(ζF < ∞) = 0. When δi ∈ ∂F for i = 0, .., j, relation (16) gives

lim
n→∞

Pδ0(Yi = δi, i = 1, .., j | ζ > n)

= lim
n→∞

Pδ0(Yi = δi, i = 1, .., j)
Pδj (ζ > n− j)
Pδ0(ζ > n)

= Pδ0(Yi = δi, i = 1, .., j)
ϕδj

ϕδ0

η−j (32)

=
j−1∏
l=0

(
η−1Pδl,δl+1

ϕδl+1

ϕδl

)
.

In (32) we used lim
n→∞

P(ζ > n −j)/P(ζ > n) = η−j , which is a consequence of (14). Then, 
relation (30) is proven.

The diagonal terms of Q satisfy

Qδ,δ′ = η−1 Pδ,δ. (33)

By definition of η we get Qδ,δ = 1 for all δ ∈ F and Qδ,δ < 1 when δ ∈ ∂F \ F . Then, 
the result follows. �
Remark 4.5. Hence, once the Q-chain hits one of the states in F it remains in it forever. 
So, the partitions in F will be candidates for the points one observes if, after a long 
time has elapsed, the chain has not attained DG . From (29), we get Qδ,δ′ > 0 implies 
Pδ,δ′ > 0. Then, from (6) we find

Qδ,δ′ > 0 ⇒ δ → δ′. (34)

On the other hand, from (33) and (8) we get[
δ → δ′, δ �= δ′

]
⇒ Qδ,δ < Qδ′,δ′ . (35)

Therefore, from relations (31), (34) and (35), we can apply the techniques developed in 
Theorem 4.1 for the Q-chain whose set of limit points is F (which is not necessarily a 
singleton). From (33), the geometric decay rate of the chain Q to the limit points F is 
given by
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η′ = max{Qδ,δ : δ ∈ ∂F \ F} = η−1 max{Pδ,δ : δ ∈ ∂F \ F}.

The quasi-limiting behavior and ratio limit results can be stated similarly. Moreover, we 
can apply to the chain Q that avoids F the same construction as that used for P and 
{DG} in Corollary 4.4. Obviously we require that ∂F \ F has more than two points in 
order that this to be non trivial. This will give another (Q-)chain whose limit points will 
compose the set of partitions δ in ∂F \F that maximizes Pδ,δ. This last construction can 
be also iterated similarly.

4.4. A class of quasi-stationary distributions

Let us give an explicit class of quasi-stationary distributions, that must be compared 
with the irreducible case where there is a unique quasi-stationary distribution.

Let ν = (νδ : δ ∈ G∗
0 ) be a probability measure on G∗

0 . If necessary, ν will be identified 
with its extension on G+

0 with νDG = 0. We say that ν is supported by some subset 
G̃ ⊆ G∗

0 if ν(G̃) = 1. We denote by ν′ the row vector associated to ν.

Proposition 4.6. Every probability measure ν on G∗
0 supported on F satisfies ν′P ∗ = η ν′

and it is a quasi-stationary distribution, that is it satisfies

∀n ≥ 1, ∀δ ∈ G∗
0 : Pν(Yn = δ | ζ > n) = νδ. (36)

Proof. With the above notation and by using (18) we get,

(ν′P ∗)δ = Pδ,δ νδ = η νδ,

so ν′P ∗ = ην′. By iteration we find ν′P ∗n = ηn ν′. Note that this is equivalent to

(ν′P ∗n)δ = Pν(Yn = δ) = Pν(∀j ≤ n Yj = δ) = ηn ν′δ.

Now

Pν(ζ > n) =
∑
δ∈F

(ν′P ∗n)δ = ηn

(∑
δ∈F

νδ

)
= ηn.

Hence, relation (36) is proven. �
4.5. Example

Let δ1 = {I} and δ2, δ3 be two different partitions and different from δ1. Let ρ be 
the probability vector on the set of partitions such that ρδ1 ≥ 0, ρδ2 > 0, ρδ3 > 0, and 
ρδ1 + ρδ2 + ρδ3 = 1. Then G = {δ2, δ3} if ρδ1 = 0 or G = {δ1, δ2, δ3} if ρδ1 > 0. The 
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partition δ4 = δ2 ∨ δ3 is strictly finer than δ2 and δ3 because these last partitions are 
different. We have DG = δ4 and G+ = G ∪ {δ4}.

Denote a = ρδ1 , b = ρδ2 , c = ρδ3 . Then, a + b + c = 1, a ≥ 0 and b, c > 0. To write the 
matrix P we order the states in the obvious way, identifying k with δk for k = 1, 2, 3, 4. 
So, the matrix P is

P =

⎛⎜⎜⎜⎝
a b c 0
0 a + b 0 c

0 0 a + c b

0 0 0 1

⎞⎟⎟⎟⎠ ,

because Pδ1,δk = ρδk for k = 1, 2, 3; Pδ2,δ2 = ρδ1+ρδ2 , Pδ2,δ4 = ρδ3 ; and Pδ3,δ3 = ρδ1+ρδ3 , 
Pδ3,δ4 = ρδ2 .

We have Γ = {δ2, δ3} because these are the unique partitions δ such that δ → DG and 
δ �= DG (see (12)). The geometric decay rate of convergence to DG is η = max{a +b, a +c}. 
If b > c then F = {δ2}, if b < c then F = {δ3} and when b = c, then F = {δ2, δ3}.

Let us assume a > 0 so G = {δ1, δ2, δ3} (the case a = 0 is easier to analyze). The 
restriction P ∗ of P to G∗

0 = {δ1, δ2, δ3} is the substochastic matrix,

P ∗ =

⎛⎜⎝ a b c

0 a + b 0
0 0 a + c

⎞⎟⎠ .

By induction, the iterates P ∗n have the form

P ∗n =

⎛⎜⎝ an αn βn

0 (a + b)n 0
0 0 (a + c)n

⎞⎟⎠ ,

where αn and βn satisfy:

αn+1 = aαn + b(a + b)n, α1 = b and βn+1 = aβn + c(a + c)n, β1 = c.

This gives αn =
∑n

j=1 a
j−1b(a + b)n−j and βn =

∑n
j=1 a

j−1c(a + c)n−j .
We have

P(ζ > n) = an + αn + βn = an +
n∑

j=1
aj−1(b(a + b)n−j + c(a + c)n−j).

Note that aj−1b = P(ζδ2 = j) and aj−1c = P(ζδ3 = j). Let us assume b = c, so η = (a +b)
and F = {δ2, δ3} (the cases b > c or b < c can be analyzed in a similar way). For k = 2, 3
we have
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P(Yn = δk) =
n∑

j=1
P(ζδk = j, ζ > n) =

n∑
j=1

aj−1b(a + b)n−j ,

and so,

P(Yn = δk | ζ > n) =
∑n

j=1 ba
j−1(a + b)n−j

an + 2
∑n

j=1 a
j−1b(a + b)n−j

.

This converges to 1/2 when n → ∞ because a < a + b.
From (16), the right eigenvector ϕ is given by

ϕ = (ϕδ1 , ϕδ2 , ϕδ3) with ϕδk = lim
n→∞

Pδk(ζ > n)
Pδ1(ζ > n) , k = 1, 2, 3.

So, ϕδ1 = 1. Let k = 2, 3, from Pδk(ζ > n) = (a + b)n we get

ϕδk = lim
n→∞

(a + b)n

an + 2
∑n

j=1 a
j−1b(a + b)n−j

= 1
2
∑∞

j=1 a
j−1b(a + b)−j

= 1
2 ,

because b
a+b

∑∞
j=0

(
a

a+b

)j

= 1. Then the Q-matrix is

Q =

⎛⎜⎝ a/(a + b) b/(2(a + b)) b/(2(a + b))
0 1 0
0 0 1

⎞⎟⎠ .

Moreover, in agreement with Proposition 4.6, any vector of the form (0, x, y) is a left 
eigenvector of P ∗ with eigenvalue η = a +b. It can be checked that the right eigenvectors 
associated to η are of the form (x + y, x, y).
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