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ABSTRACT
We present a new technique to study Jacobian variety decompositions using subgroups of the auto-
morphism group of the curve and the corresponding intermediate covers. In particular, this new
method allows us to produce many new examples of genera for which there is a curve with com-
pletely decomposable Jacobian. These examples greatly extend the list given by Ekedahl and Serre
of genera containing such curves, and provide more evidence for a positive answer to two questions
they asked. Additionally, we produce new examples of families of curves, all of which have completely
decomposable Jacobian varieties. These families relate to questions about special subvarieties in the
moduli space of principally polarized abelian varieties.

1. Introduction

A principally polarized abelian variety over C is called
completely decomposable if it is isogenous to a product of
elliptic curves. In [Ekedahl and Serre 93], the following
two questions are asked.

Question 1. Is it true that, for all positive integers g, there
exists a curve of genus g whose Jacobian is completely
decomposable?

Question 2. Is the set of genera for which a curve with
completely decomposable Jacobian exists infinite?

They demonstrate various curves up to genus 1297
with completely decomposable Jacobian varieties. How-
ever, there are numerous genera in that range for which
they do not produce an example of a curve with this prop-
erty.

Since their article, there has been much interest in
curves with completely decomposable Jacobian varieties,
particularly the applications of such curves to number
theory.Dimension twohas beenwidely studied; for exam-
ple, in [Earle 06] a full classification of Riemann matri-
ces of strictly completely decomposable Jacobian vari-
eties of dimension 2 is given (these are Jacobians which
are isomorphic to a product of elliptic curves). In [Kani
94], the case of completely decomposable abelian surfaces
is studied, and several other authors have also studied
these questions. See [Carocca et al. 14, Magaard et al. 09,
Nakajima 07], and [Yamauchi 07], among many others.

CONTACT AnitaM. Rojas anirojas@uchile.cl Departamento deMatemáticas, Universidad de Chile, Las Palmeras , Casilla , Ñuñoa, Santiago ,
Chile.

Additionally, in [Moonen and Oort 11, Question 6.6]
the authors ask about positive-dimensional special subva-
rieties,Z, of the closure of the Jacobian locus in themoduli
space of principally polarized abelian varieties such that
the abelian variety corresponding with the geometric
generic point of Z is isogenous to a product of elliptic
curves. In Section 3.3, we discuss examples of positive-
dimensional families of curves with completely decom-
posable Jacobians, and connections to this question.

Despite advancements in the field, the questions of
[Ekedahl and Serre 93] still remain open. Since the pub-
lication of Ekedahl and Serre’s list 20 years ago, there
have been few new examples of curves with completely
decomposable Jacobians in a genus not included on that
list. In [Yamauchi 07], the author gives a list of inte-
gers N such that the Jacobian variety J0(N) of the mod-
ular curve X0(N) has elliptic curves as Q−simple fac-
tors. These examples include three genera not previously
noted in [Ekedahl and Serre 93] for which there is a com-
pletely decomposable Jacobian variety: these are genus
113, 161, and 205 (corresponding to N = 672, 1152, and
1200, respectively). His techniques are number-theoretic
and relate to [Ekedahl and Serre 93, Section 2].

In this article, we use experimental tools to find many
examples of completely decomposable Jacobian varieties
in new genera. To find these examples, we use the action
of the automorphism groups on curves, particularly a new
approach involving known results on intermediate cover-
ings, i.e., quotients by the action of subgroups of the full
group acting on the variety.

©  Taylor & Francis
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We summarize the main results of this work in the fol-
lowing theorem. The bold numbers indicate genera which
are new in this article.

Theorem. For every g ∈ {1–29, 30, 31, 32, 33, 34–36, 37,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51–52, 53,
54, 55, 57, 58, 61, 62–64, 65, 67, 69, 71–72, 73, 79–81, 82,
85, 89, 91, 93, 95, 97, 103, 105–107, 109, 118, 121, 125,
129, 142, 145, 154, 161, 163, 193, 199, 211, 213, 217, 244,
257, 325, 433}, there is a curve of genus g with completely
decomposable Jacobian variety found using a group acting
on a curve.

In some cases, there is a family of dimension greater
than 0 with such a decomposition on the whole fam-
ily. The Theorem includes all genera previously deter-
mined except for g = 113, 205, 649, and 1297. Even for
the already known genera, most of our examples are not
the same as those found previously. Many of the examples
found in [Ekedahl and Serre 93] use the theory of mod-
ular curves. We compared the automorphism groups of
the modular curves given in [Ekedahl and Serre 93] to
the automorphism groups in our examples and they are
not equal. Genus 3 to 10, except genus 8 are in [Paulhus
08]. Genus 8may be found with a curve of automorphism
group of size 336 whose Jacobian is isogenous to E8 for
some elliptic curve E.

The previous theorem, and the approach we outline in
Section 2.2, support the possibility that Question 1 has a
positive answer, and that group actions might be the tool
to answer it. As we will see, once there is a completely
decomposable Jacobian variety in one larger genus, by
considering subgroups it is possible to also produce new
examples in lower genera. This provides a way to fill in
gaps in the data.

We describe the techniques used to decompose Jaco-
bians in Sections 2.1 and 2.2. In Section 3 we give explicit
examples in both new and old genera. Our new examples
may be found in Theorems 3.1 and 3.2. Those genera with
a family of curves of dimension greater than 0 with com-
pletely decomposable Jacobians are given in Theorem 3.3.
The computations needed to find both the old and new
examples were made using Magma [Bosma et al. 97] and
code to verify the decompositions is available at [Paulhus
and Rojas 16]. Finally, we address computational limita-
tions of our techniques in Section 4. The many examples
from the article may be useful to researchers interested
in open questions surrounding curves with completely
decomposable Jacobians.

2. Techniques

Consider a compact Riemann surface X (referred to from
nowon as a “curve”) of genus gwith a finite groupG acting

on that curve. We write the quotient curve X/G as XG and
the genus of the quotient as g0. Let the cover X → XG be
branched over r places, q1, . . . , qr ∈ XG. The signature of
the cover is the (r + 1)-tuple [g0; s1, s2, . . . , sr], where the
si are the ramification indices of the covering at the branch
points. We denote the Jacobian variety of X by JX .

2.1. The group algebra decomposition

To find many examples, we use the group action of the
automorphism groupG ofX to decompose JX . We briefly
describe the technique here for a general abelian varietyA.
More details may be found in the original article [Lange
and Recillas 04] or [Birkenhake and Lange 04, Chap. 13].

Let A be an abelian variety of dimension g with a faith-
ful action of a finite group G. There is an induced homo-
morphism ofQ-algebras

ρ : Q[G] → EndQ(A).

Any element α ∈ Q[G] defines an abelian subvariety

α(A) := Im(mρ(α)) ⊂ A,

where m is some positive integer such that mρ(α) ∈
End(A). This definition does not depend on the chosen
integerm.

Begin with the decomposition of Q[G] as a product of
simpleQ-algebras Qi

Q[G] = Q1 × · · · × Qr.

The factorsQi correspond canonically to the rational irre-
ducible representationsWi of the group G, because each
one is generated by a unit element ei ∈ Qi which may be
considered as a central idempotent ofQ[G].

The corresponding decomposition of 1 ∈ Q[G],

1 = e1 + · · · + er,

induces an isogeny, via ρ above,

e1(A)× · · · × er(A) → A (2–1)

which is given by addition. Note that the compo-
nents ei(A) are G-stable complex subtori of A with
HomG(ei(A), e j(A)) = 0 for i �= j. The decomposition
(2–1) is called the isotypical decomposition of the complex
G-abelian variety A.

The isotypical components ei(A) can be decomposed
further, using the decomposition of Qi into a product of
minimal left ideals. IfWi is the irreducible rational repre-
sentation of G corresponding to ei for every i = 1, . . . , r,
and χi is the character of Ui, one of the irreducible C-
representations associated toWi, then set

ni = dimUi

mi
,
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where mi denotes the Schur index of χi. There is a set of
primitive idempotents {πi1, . . . , πini} in Qi ⊂ Q[G] such
that

ei = πi1 + · · · + πini .

Moreover, the abelian subvarieties πi j(A) are mutually
isogenous for fixed i and j = 1, . . . , ni. Call any one
of these isogenous factors Bi. Then (see [Carocca and
Rodríguez 06])

Bni
i → ei(A)

is an isogeny for every i = 1, . . . , r. Replacing the factors
in (2–1), we get an isogeny called the group algebra decom-
position of the G-abelian variety A

Bn1
1 × · · · × Bnr

r → A. (2–2)

Note that, whereas (2–1) is uniquely determined,
(2–2) is not. It depends on the choice of the πi j as well as
the choice of theBi. However, the dimension of the factors
will remain fixed regardless of these choices.

Remark 2.1. While the factors in (2–2) are not necessar-
ily easy to determine, we may compute their dimension
in the case of a Jacobian variety JX with the action of a
group G induced by the action on the corresponding Rie-
mann surface X (see [Paulhus 08] for details). Define V
to be the representation ofG onH1(X,Z)⊗Z Q. As men-
tioned at the beginning of this section, here we assume the
quotient XG has genus g0 and the cover π : X → XG has r
branch points {q1, . . . , qr} where each qi has correspond-
ingmonodromy ci ∈ G. The tuple (c1, . . . , cr) is called the
generating vector for the action [Broughton 90].

Then the character χV associated toV is

χV = 2χtriv + 2
(
g0 − 1

)
ρ〈1G〉 +

r∑
i=1

(
ρ〈1G〉 − ρ〈ci〉

)
(2–3)

[Broughton 90, Equation 2.14], where χtriv is the trivial
character on G, ρH is the induced character on G of the
trivial character of the subgroup H (when H = 〈ci〉, this
subgroup is the stabilizer, or isotropy group, of a point in
the fiber of the branch point qi), and ρ〈1G〉 is the character
of the regular representation.

According to [Lange and Rojas 12, Equation 3.4], the
dimension of a subvarietyBi corresponding to the isotypi-
cal factor (2–2) associated to the (nontrivial) rational rep-
resentationWi is

dimC Bi = mi[Ki : Q]〈χV , χi〉
2

= 〈χV ,mi[Ki : Q]χi〉
2

,

(2–4)
where χi is the character of one of the irreducible C-
representations associated to Wi; this is the character of
a complex irreducible representation decomposingWi ⊗

C, and Ki is the field extension of Q containing all values
of χi on elements of G.

It is a classical result in representation theory, see
Proposition 2.2, that

Wi ⊗ C = mi
⊕
σ∈Ki

U σ
i ,

whereUi is the complex irreducible representation afford-
ingχi. Combining this decompositionwith (2–4), we get

dimC Bi = 1
2
〈χV , ψi〉, (2–5)

where here ψi is the character of theQ-irreducible repre-
sentationWi ofG corresponding to Bi, and χV is the char-
acter defined in (2–3).

One way we find completely decomposable Jacobian
varieties is to search for curves so that the decomposition
in (2–2) gives factors Bi of dimension only 0 or 1, com-
puted via (2–5).

In practice, given a group G, we can use Magma to
compute its C-character table. Then we determine the
characters of the irreducible Q-representation using the
following result.

Proposition 2.2. [Curtis and Reiner 62, Exercise 70.30.2]
Let {χ1, . . . , χr} be the irreducible C-characters of a finite
group G. Then φ is an irreducibleQ-character if and only if
φ = mi · (χi + χσi + · · · ), where the {χσi } are the distinct
conjugates of χi, an irreducible C-character of G.

2.2. Intermediate covering decomposition

While the technique in the previous section gives us new
examples of completely decomposable Jacobians in new
genera (see Theorem 3.1), we can extend the technique by
studying decompositions of intermediate coverings of a
higher genus curve which has a known decomposition of
its corresponding Jacobian variety. This idea expands the
range of genera with completely decomposable Jacobians
which can be found using group actions. We find many
more new genera, as listed in Theorem 3.2.

To describe the technique, we begin with the following
proposition.

Proposition 2.3. [Carocca and Rodríguez 06, Proposition
5.2]Given aGalois cover X → XG, consider the group alge-
bra decomposition (2–2)

JX ∼ B
dimV1
m1

1 × · · · × B
dimVr
mr

r ,
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where Vj is a complex irreducible representation associated
to B j. If H is a subgroup of G then the group algebra decom-
position of JXH is given as

JXH ∼ B
dimVH

1
m1

1 × · · · × B
dimVH

r
mr

r , (2–6)

where VH
j is the subspace of Vj fixed by H.

By Frobenius Reciprocity, we know that

dimVj
H = 〈Vj, ρH〉, (2–7)

where 〈Vj, ρH〉 is the inner product of the characters
of these representations. Suppose X is a curve with a
known Jacobian decomposition as in (2–2), not neces-
sarily completely decomposable. Then apply the previ-
ous proposition to get a decomposition of JXH as in (2–
6), where JXH will be completely decomposable precisely
when 〈Vj, ρH〉 = 0 for all j such that dimBj > 1 for the
Bi in the decomposition of JX . We have thus proven:

Proposition 2.4. Given the conditions in the previous
proposition, assume that 〈Vj, ρH〉 = 0 for all j such that
dimBj > 1. Then the Jacobian variety of the curve XH is
completely decomposable.

Notice that even though a Jacobian variety JX may
not be completely decomposable, a Jacobian JXH of some
intermediate cover XH = X/H could decompose com-
pletely. This gives us a much richer set of curves to
search through to find completely decomposable Jaco-
bian varieties. There are numerous examples of curves in
high genus whose Jacobians decompose into many ellip-
tic curves, but may not be themselves completely decom-
posable. By applying Proposition 2.4, quotients of these
curves may then be completely decomposable.

Let us demonstrate with a couple of examples. More
details and several other examples may be found in
Section 3.2. First, a note on our notation for the rest of the
article. In most instances, we will write a specific group
as an ordered pair, where the first number is the order
of the group and the second number is its number in
the Magma or GAP database of groups of small order.
Some of the Magma code we use requires all groups to
be represented as permutation groups. Thus, throughout
the rest of the article, the numbers used to label a spe-
cific subgroup or conjugacy class of a group will be for the
group as a permutation group. Again, see [Paulhus and
Rojas 16] for code used. For the Jacobian decompositions,
when we write En × Em we are assuming that En corre-
sponds to one factor Bni

i from (2–2) and Em corresponds
to a different factor Bnj

j in (2–2). Our technique does not
rule out the possibility that these elliptic curves are in fact
isogenous.

Example 1. A complete search of genus 12 curves as listed
in [Breuer 00] using techniques from Section 2.1 gives no
example of a genus 12 curve with a completely decompos-
able Jacobian. However, we may find one as the quotient
of a higher genus curve which has a completely decom-
posable Jacobian. There is a curve X of genus 29 with the
action of G = PGL (2, 7)×C2, (where C2 is the cyclic
group of order 2) and signature [0; 2, 4, 6]. In the Magma
or GAP small group databases, this is group (672, 1254).

First we compute the Jacobian decomposition for this
curve (2–2). The Schur index of all characters of this
group is 1 and so ni in (2–2) will be the dimension of
the corresponding irreducible C-representation. For this
particular group, all irreducible C-representations have
dimensions 1, 6, 7, or 8. To compute the dimensions of
the Bi in (2–2), we must determine χV from (2–3). The
generating vector for this action is computed using mod-
ifications to [Breuer 00] as described in [Paulhus 15]. See
Section 3 for more information.

Once we have χV , it only remains to compute the irre-
ducibleQ-characters using Proposition 2.2, and the inner
product in (2–5). The four linear irreducibleC-characters
are each irreducible Q-characters, but the inner product
of eachwithχV is 0. There are six irreducibleC-characters
of degree 6. Two are also irreducible Q-characters, while
the other four form two irreducibleQ-characters in pairs
(using Proposition 2.2 they form two pairs of Galois con-
jugates). The inner product in (2–5) is 0 for all but one
of these characters—one of the irreducible C-characters
which is also an irreducible Q-character. In both degrees
7 and 8, the groupG admits four irreducibleC-characters.
All of these are also irreducibleQ-characters andwhenwe
compute the inner product as in (2–5) we get 0 for all but
one degree 7 character and all but two degree 8 characters.

In all cases where the inner product is greater than 0,
it evaluates to 2, hence by (2–5) the dimension of the Bi
are all 1. Plugging all the computed values into (2–2) pro-
duces a Jacobian decomposition of X as

JX ∼ E6 × E7 × E8 × E8.

The group G has four non-normal subgroups H of
order 2. We determine (2–6) for each subgroup, comput-
ing the dimension of theVH

i by (2–7). One subgroupH is
such that the dimensions of the fixed spaces for the corre-
sponding representations from the decomposition above
are all 3. Therefore the Jacobian of the intermediate curve
XH (a genus 12 curve) decomposes as the same four ellip-
tic curves as in the decomposition of JX , each one to the
power of 3. That is,

J(XH ) ∼ E3 × E3 × E3 × E3.

Note that Ekedahl and Serre also find a genus 12 example
as a quotient of the modular curve X0(198) of genus 29
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by an involution. However, the group in our example is
too large to be the automorphism group of this modular
curve.

Example 2. Using this technique on one of our new exam-
ples from Section 2.1, we can generate another example.
ConsiderG = (720, 767) acting on a curve X of genus 61
with signature [0; 2, 6, 6]. It has a subgroup H of order 2
such thatXH has genus 30 and a completely decomposable
Jacobian. Note that Ekedahl and Serre did not construct
an example in this genus.

Example 3. Finally consider an example of a higher genus
curvewhich is not completely decomposable, but an inter-
mediate cover produces a lower genus curve which is
completely decomposable. There is a genus 101 curve
with automorphism group G = (800, 980) and signature
[0; 2, 8, 8] whose Jacobian decomposes via (2–2) as

JX ∼ E × A2 × E2 × E8 × · · · × E8︸ ︷︷ ︸
12

,

where A2 is an abelian variety of dimension 2. This group
has three subgroups H of order 2 which produce quo-
tients of genus 51. One of those three subgroups produces
a decomposition as in (2–2), where the subspace of the
factor above of dimension 2 fixed by H has dimension 0
(as computed via (2–7)), and thus we get the following
complete decomposition:

JXH ∼ E × E2 × E4 × · · · × E4︸ ︷︷ ︸
12

.

Again, Ekedahl and Serre did not construct an example in
this genus.

3. Results

In this section, we apply the techniques from Sections 2.1
and 2.2 to find completely decomposable Jacobian vari-
eties (including all the genera previously found in either
[Ekedahl and Serre 93] or [Yamauchi 07] except for g =
113, 205, 649, and 1297).

Our primary task is to find examples where the dimen-
sions in (2–2) or (2–6) above are all 0 or 1. To con-
struct our examples, we must know the automorphism
group and signature of curves in high genus.We use three
data sources for this information. In [Breuer 00] there are
complete lists of automorphism groups and signatures for
curves of a given genus up to genus 48.We use his data up
through genus 20. For genus 21–101, we use data com-
puted by [Conder 10], giving all automorphism groups of
size greater than 4(g − 1) for a given genus g (this size
condition guarantees, in particular, that g0 is 0).

Finally, for genus greater than 101, we use the ideas
described in [Conder 14] to find possible automorphism

groups corresponding to a few targeted signatures (partic-
ularly those signatures which gave us lower genus exam-
ples as in Theorem 3.1).

A group G acting on a curve with signature
[0; s1, . . . , sr] is equivalent to the existence of a sur-
jective homomorphism K � G, where K is a Fuchsian
group [Harvey 71] defined as

K = 〈x1, . . . , xr|xs11 = · · · = xsrr = x1 · · · xr = 1〉.

To find examples of large groups acting on curves of
g > 100, we use the Magma command LowIndexNor-
malSubgroup(K,n) to find all possible normal sub-
groups of the group K up to index n. The quotient of K by
these normal subgroups will be the automorphism group
of some curve. The genus only depends on the signature
and the choice of n (see [Farkas and Kra 92, page 260]).
See [Conder 14] for more details. We will see that these
large genus curves give us many new examples.

Notice that the computation of χV in (2–3) requires
knowledge of a generating vector of the action. Mod-
ifications to [Breuer 00] give us a way to compute
generating vectors if the automorphism group and
signature are already known. See [Paulhus 15] for
details.

For each of these three data sets and a fixed group G
and signature, we first compute the Jacobian decomposi-
tion as in (2–2) and, if this is completely decomposable, we
record it. Next we compute all subgroups of G and if any
of those produce a quotient of genus still without a known
example, we apply the technique of Section 2.2 to deter-
mine if this subgroup produces a completely decompos-
able intermediate cover. Note that from (2–6), if we take
a completely decomposable Jacobian of higher genus, the
Jacobian variety corresponding to any intermediate quo-
tient by any subgroup will automatically be completely
decomposable.

In our computations, as we increased the genus, we
removed from consideration all lower genera we had
already found an example for. So our examples for Section
2.2 are just a sample of such curves for a given genus
and may not represent all curves of that genus which
have decomposable Jacobians realizable through group
actions. We chose as our goal demonstrating the useful-
ness of our technique, and not performing an exhaus-
tive search of all decomposable Jacobians for any known
genus.

We divide the results into three sections: those found
through the technique in Section 2.1, those found through
the technique in Section 2.2, and thosewhich give a family
of dimension greater than 0 of completely decomposable
Jacobians of a given genus.
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3.1. Group algebra decomposition examples

The new genera, those not included in Ekedahl and Serre’s
article, found using the technique in Section 2.1 are given
here.

Theorem 3.1. Let g ∈ {36, 46, 81, 85, 91, 193, 244}.
There is a completely decomposable Jacobian variety of
dimension g. Moreover, each one corresponds to the Jaco-
bian variety of a curve of genus g with the action of a group
G as listed in Table 1. The signature for the action and the
decomposition are also listed in the table.

Proof. The proof consists of following the program out-
lined in Section 2.1. For this, we need to find appropriate
group actions for the missing genera.

In genus 36 there are, up to topological equivalence,
two curves with automorphism group PGL(2, 7) and sig-
nature [0; 2, 6, 8]. It is possible to classify actions topolog-
ically by using the action of the braid group on a generat-
ing vector for the action. We do not describe these details
here, but references are [Broughton 90], [Harvey 71], and
[Völklein 96]. A review of the principal results on this
matter and a program in Sage [Stein et al. 15], which com-
putes the nonequivalent actions, can be found in [Muñoz
14] and [Behn et al. 15].

To decompose these Jacobian varieties, we need to
determine the dimension of the Bi and the values of the ni
in (2–2). The irreducibleC-characters of this group are all
irreducible Q-characters, except for two of degree 6, and
the Schur index of all characters is one. This means the ni
are just the dimensions of the corresponding irreducible
C-representations. To compute the dimension of the Bi
wemust first compute χV as in (2–3), usingmodifications
to [Breuer 00] as described in [Paulhus 15] to determine
the generating vector. Next, we compute the inner prod-
ucts as in (2–5). The components which give a nontriv-
ial value for this inner product come from the irreducible
C-character of degree 6 which is also an irreducible Q-
character, and the two irreducibleQ-characters in each of
degrees 7 and 8.

The decomposition then follows from (2–2) and
(2–5):

JX ∼ E6 × E7 × E7 × E8 × E8.

In genus 46, there is one curve, up to topological equiv-
alence, with automorphism group (324, 69) and signature
[0; 2, 6, 18]. Again, to determine the decomposition, we
need to determine the ni and dimension of the Bi in (2–2).
Once more, the Schur index is 1 for all characters in this
group. We compute χV from (2–3) and then compute the
inner product in (2–5) with each irreducibleQ-character.

In this case, the nonzero inner products (which cor-
respond to nontrivial factors in the Jacobian decomposi-
tion) come from two separate sets of two linear irreducible
C-characters whose sums are irreducible Q-characters
(each pair is a pair of Galois conjugates), one set of two
degree 2 irreducible C-characters whose sum is also an
irreducibleQ-character, and seven of the eight irreducible
C-characters of degree 6 which are all also irreducibleQ-
characters. Again, see Proposition 2.2 for howwe compute
irreducibleQ-characters from complex character tables.

This curve, then, has a decomposition

JX ∼ E × E × E2 × E6 × E6 × E6 × E6 × E6 × E6 × E6.

In genus 81, a curve X with automorphism group
(1152, 157853) and signature [0; 2, 4, 9] has Jacobian
decomposition

JX ∼ E9 × E9 × E9 × E9 × E9 × E9 × E9 × E9 × E9.

For genus 85 there is a curveX with automorphism group
of size 2016 given as [Conder 10]〈

x, y, z|x2, z−1y−1x, y4, z6, y−1zyxz2yxy−1zy−1

× z−2xz, yz−1yz−1yz−1xy2z−1yz−1yz−2〉
and with signature [0; 2, 4, 6] which has Jacobian decom-
position

E6 × E7 × E8 × E8 × E12 × E14 × E14 × E16.

In the genus 81 case, the factors in this decomposi-
tion come from nine separate degree 9 irreducible C-
characters which are all irreducible Q-characters. In the
genus 85 case, the factors in the decomposition come from
irreducible C-characters one each of degree 6, 7, 12, and
16, and two each of degree 8 and 14. All of these characters
are irreducibleQ-characters.

For genus 91 there is a one-dimensional family of
curves with automorphism group G = (432, 686) and
signature [0; 2, 2, 2, 12]. All curves in this family are com-
pletely decomposable. Using data from [Conder 10] for
genus 91, there is no larger automorphism group which
has curves with completely decomposable Jacobians. In
particular, no curve in this family has a larger automor-
phism group.

Finally, for genus 193 there is a curve with automor-
phism group of size 5760 and signature [0; 2, 3, 10] while
in genus 244, the size of the group is 11,664 and the
signature is [0; 2, 3, 8]. Both examples were found using
the Magma command LowIndexNormalSubgroup
to determine the automorphism groups. Here is the pre-
sentation of the group for genus 193:〈
x, y, z|x2, y3, z10, z−1y−1x, xz2yz−1xzy−1z−2xzy−1z−2,

yz−1xz4yz−1xy−1z−1xy−1z−2xz4yz−1xy−1z−1xz,

z2y−1z−4xzyz−1xz2yxzyxz−1xzy−1z−3x〉,
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Table . Curves with completely decomposable Jacobians in genus greater than , using group algebra decomposition. The examples
are those we found with the largest automorphism group for that genus.

Genus Automorphism group Signature Jacobian decomposition

 (240, 189) [0; 2, 4, 6] 5, 6
 (360, 121) [0; 2, 3, 10] 5, 8
 (1092, 25) [0; 2, 3, 7] 14
 (504, 156) [0; 2, 3, 9] 7, 8
 (120, 34) [0; 3, 4, 6] 5, 5, 6
 (1344, 814) [0; 2, 3, 7] 3, 14
 (720, 766) [0; 2, 4, 5] 9, 10
 (480, 951) [0; 2, 4, 6] 5, 6, 10
 (504, 160) [0; 2, 3, 12] 1, 3, 18
 (168, 42) [0; 3, 4, 7] 3, 6, 7, 8
 (576, 1997) [0; 2, 3, 12] 1, 2, 4, 6, 12
 (660, 13) [0; 2, 3, 11] 5, 10, 11
 (1296, 2889) [0; 2, 3, 8] 2, 8, 18
 (672, 1254) [0; 2, 4, 6] 6, 7, 8, 8
 (720, 767) [0; 2, 4, 6] 5, 6, 8, 12
 (1536, 408544637) [0; 2, 3, 8] 2, 3, 12, 16
* (336, 208) [0; 2, 6, 8] 6, 7, 7, 8, 8
 (1728, 31096) [0; 2, 3, 8] 2, 3, 8, 24
 (960, 5719) [0; 2, 4, 6] 5, 6, 8, 10, 12
 (672, 1254) [0; 2, 4, 8] 6, 7, 7, 7, 8, 8
* (324, 69) [0; 2, 6, 18] 1, 1, 2, 6, . . . , 6︸ ︷︷ ︸

7

 (1920, 240996) [0; 2, 4, 5] 4, 10, 15, 20
 (588, 37) [0; 2, 6, 6] 1, 1, 6, 6, 12, 12, 12
 (1296, 3490) [0; 2, 4, 6] 3, 12, 12, 12, 16
 (1344, 11289) [0; 2, 4, 6] 6, 7, 8, 8, 12, 16
 (1440, 4605) [0; 2, 4, 6] 2, 5, 6, 8, 8, 10, 10, 12
 30721 [0; 2, 3, 8] 2, 3, 12, 24, 24
 (1728, 46270) [0; 2, 4, 6] 2, 3, 4, 4, 4, 8, 8, 12, 12, 16
* (1152, 157853) [0; 2, 4, 9] 9, . . . , 9︸ ︷︷ ︸

9

 38882 [0; 2, 3, 8] 2, 8, 8, 16, 24, 24
 40321 [0; 2, 3, 8] 8, 14, 18, 21, 24
 (432, 686) [0; 2, 2, 2, 12] 1, 2, 2, 2, 4, . . . , 4︸ ︷︷ ︸

21

 38401 [0; 2, 4, 5] 4, 10, 15, 20, 24, 24
 2592A [0; 2, 4, 6] 2, 3, 12, 12, 12, 12, 16, 16, 24
  [0; 2, 4, 6] 3, 5, 6, 8, 12, 12, 12, 15, 15, 15, 18
  [0; 2, 3, 7] 3, 14, 14, 42, 56
  [0; 2, 3, 8] 2, 3, 8, 12, 24, 24, 24, 48
 2592C [0; 2, 4, 8] 1, 2, 8, . . . , 8︸ ︷︷ ︸

8

, 16, . . . , 16︸ ︷︷ ︸
6

*  [0; 2, 3, 10] 5, 8, 15, 15, 15, 15, 30, 30, 30, 30
*  [0; 2, 3, 8] 2, 8, 8, 16, 24, 24, 36, 36, 36, 54
 12288A [0; 2, 3, 8] 2, 3, 12, 24, . . . , 24︸ ︷︷ ︸

6

, 48, 48

  [0; 2, 3, 8] 2, 3, 8, 8, 16, 24, . . . , 24︸ ︷︷ ︸
6

, 48, 48, 48

  [0; 2, 6, 6] 1, 1, 2, 2, 3, 4, 6, . . . , 6︸ ︷︷ ︸
8

, 12, . . . , 12︸ ︷︷ ︸
31
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and here is the presentation for the group of genus 244:〈
x, y, z|x2, y3, z8, z−1y−1x, zyxzyxzyxy−1z−1xy−1z−1

× xy−1z−1x, z2yxz2yxz2yxz2yxy−1xy−1z−1xzy−1z−1x
〉
.

In all cases, the Schur index is 1. �

In Table 1 we record one example of a curve with
completely decomposable Jacobian for each genus found
with the technique from Section 2.1. For completeness,
we include the genera found by Ekedahl and Serre, or
Yamauchi. For each genus, we display an example with the
largest automorphism group we found. In many, but not
all, cases, this is the largest automorphism group possi-
ble for that genus. In the table we include the automor-
phism group as well as the signature. When possible, we
denote the groups as ordered pairs where the first term is
the order of the group, and the second term is the group
identity number from theMagmaorGAPdatabases. If the
order of the group exceeds the allowable sizes for these
databases, we label the group as a number (sometimes
with a subscript). The number represents the order of the
group. If the subscript itself is a number, then the group
presentation may be found in data of Conder [Conder
10], where the subscript denotes which of the groups of
that order (and with the corresponding signature) in his
data it is. If the subscript is a letter (or if there is no sub-
script at all), the presentation of the group may be found
at [Paulhus and Rojas 15].

The final column of the table represents the decompo-
sition as a list of numbers which represent the ni from
(2–2). Again, we note that it is conceivable that distinct
elliptic curve factors in (2–2) may be isogenous. The new
examples from this technique are denoted by a *.

All of our examples come from group actions, while
some of Ekedahl and Serre’s examples (and the newer
work of Yamauchi [Yamauchi 07]) use modular curves.
We checked that in the genera where examples were
obtained with modular curves in [Ekedahl and Serre 93],
our corresponding example was not a modular curve.
To determine this, we compared the size of the auto-
morphism group of modular curves of the relevant level,
which can be determined by using [Kenku and Momose
88, Theorem 0.1] and [Akbas and Singerman 90, Propo-
sition 2], with the size of the automorphism groups of our
examples. Only in g = 73 did the sizes match, and in that
case we explicitly computed the automorphism group of
X0(576) to determine that it is not the same as our exam-
ple in Table 1. Notice that our genus 26 example is the
well-known example of the curve X (11).

Many more examples were found than appear in the
article. We provide tables of all examples we found, not
just those of the largest automorphism group order, at

[Paulhus and Rojas 15]. For genus up to 20, this is a com-
plete list using this technique for all curves with g0 = 0.
For genus 21–101, this is a complete list for all curves
with automorphism group larger than 4(g − 1). For genus
beyond 101, we only list the curves found by strategic
searching, and there may be other examples for a given
genus.

3.2. Intermediate cover examples

Using the technique from Section 2.2, we obtain the fol-
lowing new examples. Notice that we found many more
new genera with this new technique.

Theorem 3.2. Let g ∈ {30, 32, 34, 35, 39, 42, 44, 48, 51,
52, 54, 58, 62–64, 67, 69, 71, 72, 79, 80, 89, 93, 95, 103,
105–107, 118, 125, 142, 154, 199, 211, 213}. There is a
completely decomposable Jacobian variety of dimension g.
Moreover, each one corresponds to the Jacobian variety of a
curve obtained as a quotient by H ≤ G of a curve of higher
genus with the action of a group G.

Proof. We give an outline of the proof for one case, and
the rest follow similarly. Also recall that in Section 2.2 we
gave examples of several other cases, with more details.

Consider the group G = (1152, 5806) acting on a
curveX of genus 73with signature [0; 2, 4, 8]. Then using
techniques as in Theorem 3.1, JX decomposes into 10 fac-
tors (each one a power of an elliptic curve),

JX ∼ E × E2 × E2 × E4 × E8 × E8 × E8 × E8 × E16 × E16.

The Schur index for all the irreducible C-characters is
1 and the first three terms in the decomposition come
from sumsof pairs of irreducibleC-characters of the given
degrees (again, by Proposition 2.2), while the remaining
factors are all from irreducible C-characters which are
also irreducibleQ-characters.

Using the technique described in Section 2.2, there is
a non-normal subgroup H of G of order 2 such that XH
has genus 35 and has a completely decomposable Jaco-
bian. Using the inner product in (2–7), dimensions of the
subspaces of the representations corresponding to the first
and third factor in JX fixed by H are all 0, while the rest
are half their values in JX . The decomposition of the Jaco-
bian variety of the genus 35 curve is as follows, where Ei
corresponds to the ith term in the decomposition of JX
above:

J(XH ) ∼ E2 × E2
4 × E4

5 × E4
6 × E4

7 × E4
8 × E8

9 × E8
10. �

In Table 2 we give one example for each genus where
we found an example through intermediate covers (but
not through group actions). We use the same convention
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Table . Examples of curves with completely decomposable Jacobians in genus greater than  using intermediate coverings.

Automorphism Subgroups Jacobian
Genus Large genus group Signature no., order decomposition

  (288, 627) [0; 2, 2, 2, 6] ,  1, . . . , 1︸ ︷︷ ︸
6

, 2, 2, 2

  (1152, 5806) [0; 2, 4, 8] ,  , , , , , , , 

  38882 [0; 2, 3, 8] ,  , , , , 

  (256, 3066) [0; 2, 2, 2, 8] ,  1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
10

  (432, 537) [0; 2, 2, 2, 4] ,  1, 2, 3, . . . , 3︸ ︷︷ ︸
8

*  (720, 767) [0; 2, 6, 6] ,  , , , , , , , 

*  23046 [0; 2, 3, 12] ,  , , , , , , 

*  (432, 682) [0; 2, 2, 2, 6] ,  1, 1, 2, . . . , 2︸ ︷︷ ︸
16

*  (1152, 5806) [0; 2, 4, 8] ,  1, 2, 4, 4, 4, 4, 8, 8

*  (1152, 157853) [0; 2, 4, 9] ,  4, . . . , 4︸ ︷︷ ︸
6

, 5, 5, 5

*  3072F [0; 2, 3, 12] ,  2, 4, . . . , 4︸ ︷︷ ︸
6

, 8, 8

*  (432, 686) [0; 2, 2, 2, 12] ,  1, 1, 2, · · · , 2︸ ︷︷ ︸
21

  (432, 686) [0; 2, 2, 2, 12] ,  1, 1, 1, 2, · · · , 2︸ ︷︷ ︸
21

  38401 [0; 2, 4, 5] ,  2, 4, 7, 10, 12, 12

*  (1728, 13293) [0; 2, 6, 6] ,  1, 1, 2, . . . , 2︸ ︷︷ ︸
7

, 4, . . . , 4︸ ︷︷ ︸
8

*  24001 [0; 3, 3, 4] ,  3, 12, 12, 12, 12

*  2592A [0; 2, 4, 6] ,  1, 1, 5, 5, 6, 6, 8, 8, 12

  (1296, 2945) [0; 2, 6, 6] ,  1, 1, 1, 2, 3, . . . , 3︸ ︷︷ ︸
6

, 6, 6, 6, 6, 6

*  (1296, 3498) [0; 2, 4, 12] ,  2, 2, 2, 4, . . . , 4︸ ︷︷ ︸
8

, 8, 8

*   [0; 2, 3, 8] ,  , , , , , , , , 

*  12288B [0; 2, 3, 8] ,  , , , , , , , , 

*   [0; 2, 3, 10] ,  1, 2, 5, 5, 5, 5, 10, 10, 10, 10

*   [0; 2, 6, 6] ,  1, 3, . . . , 3︸ ︷︷ ︸
21

*  (1728, 32233) [0; 2, 6, 6] ,  1, 1, 2, 3, 3, 3, 6, . . . , 6︸ ︷︷ ︸
9

*  (1728, 32233) [0; 2, 6, 6] ,  1, 1, 1, 2, 2, 2, 3, 3, 6, . . . , 6︸ ︷︷ ︸
9

*  (1728, 13293) [0; 2, 6, 6] ,  1, 1, 3, . . . , 3︸ ︷︷ ︸
7

, 6, . . . , 6︸ ︷︷ ︸
8

*   [0; 2, 3, 8] ,  1, 1, 4, 5, . . . , 5︸ ︷︷ ︸
6

, 12, 12, 12

*  2592D [0; 2, 4, 8] ,  1, 3, 3, 4, 4, 8, . . . , 8︸ ︷︷ ︸
8

*  2592C [0; 2, 4, 8] ,  4, . . . , 4︸ ︷︷ ︸
8

, 8, . . . , 8︸ ︷︷ ︸
6

*   [0; 2, 3, 10] ,  4, 5, 5, 5, 10, 15, 15, 15, 15

(Continued on next page)
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Table . (Continued)

Automorphism Subgroups Jacobian
Genus Large genus group Signature no., order decomposition

*   [0; 2, 2, 2, 3] ,  1, 1, 1, 1, 2, 3, 3, 3, 4, . . . , 4︸ ︷︷ ︸
12

, 6, 8, 8, 8

*   [0; 2, 2, 2, 3] ,  1, 1, 1, 1, 1, 3, 3, 3, 3, 4, . . . , 4︸ ︷︷ ︸
12

, 6, 8, 8, 8

*   [0; 2, 6, 6] ,  1, 1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
27

, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6

*   [0; 2, 6, 6] ,  1, . . . , 1︸ ︷︷ ︸
8

, 2, . . . , 2︸ ︷︷ ︸
18

, 3, 4, . . . , 4︸ ︷︷ ︸
13

, 6

*   [0; 2, 3, 8] ,  1, 2, 2, 5, 8, . . . , 8︸ ︷︷ ︸
6

, 16, 16, 16

*   [0; 2, 6, 6] ,  1, . . . , 1︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
18

, 3, 4, . . . , 4︸ ︷︷ ︸
13

, 6

*   [0; 2, 3, 8] ,  , , , , , , , , , 

*  12288B [0; 2, 3, 8] ,  , , , , , , , , , 

*   [0; 2, 6, 6] ,  1, 1, 2, . . . , 2︸ ︷︷ ︸
8

, 4, . . . , 4︸ ︷︷ ︸
31

*   [0; 2, 3, 8] ,  1, 1, 3, 3, 8, 11, . . . , 11︸ ︷︷ ︸
6

, 24, 24, 24

   [0; 2, 3, 8] ,  1, 4, 4, 8, 12, . . . , 12︸ ︷︷ ︸
6

, 24, 24, 24

*   [0; 2, 6, 6] ,  1, 1, 2, 3, 3, 3, 6, . . . , 6︸ ︷︷ ︸
31

*   [0; 2, 6, 6] ,  1, 1, 2, 3, . . . , 3︸ ︷︷ ︸
7

, 6, . . . , 6︸ ︷︷ ︸
31

*   [0; 2, 6, 6] ,  1, 1, 1, 2, 2, 2, 3, . . . , 3︸ ︷︷ ︸
6

, 6, . . . , 6︸ ︷︷ ︸
31

*   [0; 2, 6, 6] ,  1, 1, 1, 2, 3, . . . , 3︸ ︷︷ ︸
6

, 4, 4, 6, . . . , 6︸ ︷︷ ︸
31

for labeling groups as in Table 1. Again, complete lists
of data we found are at [Paulhus and Rojas 15]. In this
table we also include the genus of the intermediate cover,
the genus and automorphism group and signature for the
larger curve, the subgroup size and number for the corre-
sponding subgroupH (labeled as Magma does, and recall
our convention of converting all groups to permutation
groups), and the decomposition of the quotient curve. For
ease of notation, we group all factors from (2–2) of the
same dimension together, although they may not be in
that order, nor correspond to the order of the decomposi-
tion of the high genus curve. For instance, if the decompo-
sition is given as E2 × E4 × E2, we denote this as 2, 2, 4.

There are some genera (up to 500) on Ekedahl and
Serre’s list for which the technique in Section 2.1 cannot
identify a curve with completely decomposable Jacobian,
and which do not appear in Table 1. The set of such gen-
era is {12, 18, 20, 23, 27, 40, 45, 47, 53, 217}. All these
examplesmay be generated using our second technique of
intermediate covers from Proposition 2.4. We also collect

this data in Table 2. Again, our new examples are denoted
with a ∗.

3.3. Examples of families

Recall from the proof of Theorem 3.1 that the only com-
pletely decomposable Jacobian varieties of dimension 91
discovered using the group algebra technique are a one-
dimensional family of curves (so using the group algebra
technique only, there is no curve with an automorphism
group corresponding to a dimension 0 family in genus 91
having a completely decomposable Jacobian). There are
several known examples of families of completely decom-
posable Jacobians in low genus (see [Frediani et al. 15],
[Lange and Rojas 12, Section 4], [Paulhus 08]), and, as we
mentioned in the introduction, in [Moonen and Oort 11]
the authors asked for examples of special subvarieties such
that the generic point is completely decomposable. Our
techniques provide a way of finding families where one
can look for examples to answer their question.
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Here we highlight the genera where we find a one-
dimensional (or higher) family of completely decompos-
able Jacobians of that genus.We elaborate on the question
in [Moonen and Oort 11] after the theorem.

Theorem 3.3. Let g ∈ {11–19, 21–29, 31, 33–35, 37, 40,
41, 43–47, 49, 52, 53, 55, 57, 61, 65, 57, 69, 73, 82, 91, 93,
95, 97, 109, 129, 145, 193}. Then there is a dimension one
(or larger) family of completely decomposable Jacobians of
curves of genus g which can be found using the techniques
from Sections 2.1 and 2.2.

Proof. Again,we only demonstratewith a couple of exam-
ples. The rest follow in the same way via data listed in
Table 3 for those genera found through the technique
in Section 2.1, and Table 4 for those found through the
technique in Section 2.2. In these tables, for each genus
we only give an example of the largest automorphism
group we found which leads to a completely decompos-
able Jacobian (and the highest dimensional family, if that
is not the same). Again, for genus greater than 20, we only
searched groups of order greater than 4(g − 1), so there
may be other examples of higher dimensional families
with completely decomposable Jacobians. All other exam-
ples we found appear in the data at [Paulhus and Rojas
15]. For completeness, we have added all examples for
genus 3 through 10 curves in the Appendix, only includ-
ing those corresponding to the action of the full automor-
phism group [Ries 93]. This data includes many previ-
ously known examples.

There is a family of curves of genus 73 with the action
of the group (432, 682) with signature [0; 2, 2, 2, 6] (see
the data at [Paulhus and Rojas 15]). Since this curve is
completely decomposable, all quotients by correspond-
ing subgroups H will also be completely decomposable.
In particular, this group has a subgroup of order 2 which
gives a new example for genus 34.

There are several different group actions on curves
of genus 49 giving one-dimensional families of com-
pletely decomposable Jacobians. For instance, the group
(256, 3066) acts with signature [0; 2, 2, 2, 8] and has a
subgroup of order 2 which forms a quotient of genus
23, and the group (288, 627) acting with signature
[0; 2, 2, 2, 6] has a subgroup of order 4 which forms a
quotient of genus 12. �

Using notation from earlier in the article, let G be
a finite group acting on a curve of genus g with sig-
nature m = [0; s1, . . . , sr], and generating vector θ =
(c1, . . . , cr). For a fixed pair (m, θ ), by moving the
branch points of the covering in P1 one obtains an
(r −3)-dimensional family of such coverings, and a cor-
responding family of Jacobians J (G,m, θ ) of the same

dimension. For references, see [Frediani et al. 15] or
[Völklein 96].

LetHg be the Siegel upper half space of complex g × g
symmetric matrices with positive definite imaginary part.
The real symplectic group Sp(2g,R) acts transitively on
Hg by (

A B
C D

)
∗ Z = (A + ZC)−1(B + ZD).

This action, when considering elements in Sp(2g,Z),
identifies Riemannmatrices corresponding to isomorphic
principally polarized abelian varieties ([Rodríguez 14],
[Birkenhake and Lange 04]). HenceAg = Sp(2g,Z) \ Hg
is a complex analytic space which parametrizes isomor-
phism classes of principally polarized abelian varieties
of dimension g. From the analytic point of view, it cor-
responds to the moduli space of principally polarized
abelian varieties over C of dimension g.

If a subvariety ofAg is the image of one orbit of an alge-
braic subgroup of Sp(2g,R) under this action, thenwe say
the subvariety is a special subvariety. Special subvarieties
have some interesting geometric properties. For instance,
special points, i.e., special subvarieties of dimension zero,
correspond to varieties of CM-type, which are varieties
with interesting endomorphism rings. For details, we refer
the reader to [Moonen and Oort 11] and [Frediani et al.
15].

Denote by Z(G,m, θ ) the closure of the family
J (G,m, θ ) in Ag. It is a (r − 3)-dimensional subvariety
of Ag. The goal is to determine if it is a special subvari-
ety of Ag. In [Frediani et al. 15, Thms. 1.4, 3.9, Lemma
3.8], there is a nice characterization of when Z(G,m, θ )
is a special subvariety. Their criterion is as follows: if
JX ∈ J (G,m, θ ) is one of the Jacobians in the family
corresponding to one covering X → X/G ∼= P1, consider
the symplectic representation ρ : G → Sp(2g,Z) of G
induced by the action of G in the lattice of JX , or equiv-
alently induced by the action of G in the first homology
group H1(X,Z) (see [Behn et al. 13] for details). Let HG

g
be the set of fixed points of G in Hg, and denote by N
the dimension of the irreducible component containing
J (G,m, θ ) in HG

g . Both the isomorphism class of ρ and
the dimension N depend only on the fixed pair (m, θ )
for G, not on the particular element JX , nor the partic-
ular covering X → P1, of the family. If the dimension N
equals the dimension of J (G,m, θ ), which is r − 3, then
Z(G,m, θ ) is a special subvariety of Ag that is contained
in the closure of the Torelli locus Tg, and which intersects
the (open) Torelli (or Jacobian) locus T 0

g nontrivially.
Given a pair (m, θ ) for a fixedG, using [Behn et al. 13]

one can find the dimension of HG
g , although it is compu-

tationally expensive and it is not easy to find the dimen-
sion of the specific irreducible component containing the
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Table . Examples of families of completely decomposable curves found through the group algebra method.

Genus Automorphism group Signature Jacobian decomposition

 (, ) [0; 2, 2, 2, 2, 6] 1, 1, 1, 2, 2, 2, 2

(, ) [0; 2, 2, 2, 12] , , , , 

 (, ) [0; 2, 2, 2, 3] , , , 

(, ) [0; 2, 2, 2, 2, 2] , , , , , , , , 

 (, ) [0; 2, 2, 4, 6] , , , , , 

 (, ) [0; 2, 2, 2, 2, 6] 1, 1, 2, . . . , 2︸ ︷︷ ︸
7

 (, ) [0; 2, 2, 2, 3] 2, 3, 6, 6

(, ) [0; 2, 2, 2, 2, 2] 1, 1, 1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
6

 (, ) [0; 2, 2, 2, 4] , , , , 

(, ) [0; 2, 2, 2, 2, 2] 1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
8

 (, ) [0; 2, 2, 2, 3] 2, 2, 3, 4, 6, 8

 (, ) [0; 2, 2, 2, 3] 2, 2, 2, 4, 6, 6, 6

 (, ) [0; 2, 2, 2, 12] 1, 2, 2, 2, 4, . . . , 4︸ ︷︷ ︸
6

 (, ) [0; 2, 2, 2, 3] 3, 3, 3, 8, 8, 8

 (, ) [0; 2, 2, 2, 3] 2, 2, 2, 3, 4, 6, 6, 12

 (, ) [0; 2, 2, 2, 3] 2, 2, 3, 3, 6, 6, 9, 9, 9

 (, ) [0; 2, 2, 2, 4] 1, 3, 3, 6, . . . , 6︸ ︷︷ ︸
8

 (, ) [0; 2, 2, 2, 12] 1, 2, . . . , 2︸ ︷︷ ︸
6

, 4, . . . , 4︸ ︷︷ ︸
12

 (, ) [0; 2, 2, 2, 3] 2, 3, 3, 3, 6, 8, . . . , 8︸ ︷︷ ︸
6

 (, ) [0; 2, 2, 2, 4] 1, 2, 2, 4, . . . , 4︸ ︷︷ ︸
9

, 8, 8, 8, 8

 (, ) [0; 2, 2, 2, 3] 2, 2, 2, 4, 6, . . . , 6︸ ︷︷ ︸
6

, 12, 12, 12

 (, ) [0; 2, 2, 2, 12] 1, 2, 2, 2, 4, . . . , 4︸ ︷︷ ︸
21

 (, ) [0; 2, 2, 2, 3] 2, 2, 3, 3, 3, 6, 6, 6, 6, 8, 8, 8, 8, 12, 16

 (, ) [0; 2, 2, 2, 3] 2, 2, 2, 3, 4, 6, . . . , 6︸ ︷︷ ︸
8

, 12, 12, 12, 12

  [0; 2, 2, 2, 3] 2, 3, 3, 3, 6, 6, 6, 6, 6, 8, 8, 12, . . . , 12︸ ︷︷ ︸
6

 (, ) [0; 2, 2, 2, 3] 2, 2, 3, 3, 3, 6, . . . , 6︸ ︷︷ ︸
8

, 12, . . . , 12︸ ︷︷ ︸
7

  [0; 2, 2, 2, 3] 2, 2, 3, 3, 3, 6, 6, 6, 6, 8, . . . , 8︸ ︷︷ ︸
12

, 12, 16, 16, 16

family considered, unlessHG
g is irreducible (which can be

determined using Magma). Nevertheless, useful code is
provided in [Frediani et al. 15] which can compute the
dimension N for low genus examples.

Our Table 3 contains examples of families found using
group actions, so we can apply the criterion of [Frediani
et al. 15] to determine if they correspond to special

subvarieties. We remark that these families could corre-
spond to special subvarieties even if they do not satisfy the
criterion. Moreover, in Table 4, we give examples of fam-
ilies of completely decomposable Jacobian varieties aris-
ing from intermediate coverings, in which case the crite-
rion of [Frediani et al. 15] cannot be directly applied, since
one has here X → X/H → X/G ∼= P1, where the last
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Table . Families of completely decomposable curves found through the intermediate cover method.

Automorphism Subgroup Jacobian
Genus Large genus group Signature no., order decomposition

  (288, 627) [0; 2, 2, 2, 6] ,  , , , , , , , 
  (1728, 46119) [0; 2, 2, 2, 3] ,  1, . . . , 1︸ ︷︷ ︸

11

, 3

  (1728, 46119) [0; 2, 2, 2, 3] ,  1, . . . , 1︸ ︷︷ ︸
11

, 2, 2, 3

   [0; 2, 2, 2, 3] ,  1, . . . , 1︸ ︷︷ ︸
7

, 2, . . . , 2︸ ︷︷ ︸
7

   [0; 2, 2, 2, 3] ,  1, . . . , 1︸ ︷︷ ︸
7

, 2, . . . , 2︸ ︷︷ ︸
6

, 3

  (256, 3066) [0; 2, 2, 2, 8] ,  1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
10

  (288, 627) [0; 2, 2, 2, 6] ,  1, . . . , 1︸ ︷︷ ︸
8

, 2, . . . , 2︸ ︷︷ ︸
8

  (1296, 2940) [0; 2, 2, 2, 3] ,  1, . . . , 1︸ ︷︷ ︸
7

, 2, 2, 2, 2, 2, 3, 3, 3

  (432, 537) [0; 2, 2, 2, 4] ,  1, 2, 3, . . . , 3︸ ︷︷ ︸
8

  (1152, 157665) [0; 2, 2, 2, 3] ,  1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
8

, 4, 6

   [0; 2, 2, 2, 3] ,  1, . . . , 1︸ ︷︷ ︸
7

, 2, . . . , 2︸ ︷︷ ︸
13

  (432, 682) [0; 2, 2, 2, 6] ,  1, 1, 2, . . . , 2︸ ︷︷ ︸
16

  (1728, 46119) [0; 2, 2, 2, 3] ,  1, . . . , 1︸ ︷︷ ︸
10

, 2, 2, 2, 3, 4, 4, 4, 4

  (972, 474) [0; 2, 2, 2, 3] ,  1, 1, 2, 3, . . . , 3︸ ︷︷ ︸
6

, 6, 6, 6

   [0; 2, 2, 2, 3] ,  1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
7

, 4, . . . , 4︸ ︷︷ ︸
6

   [0; 2, 2, 2, 3] ,  , , , , , , , , , , , , , 

  (432, 686) [0; 2, 2, 2, 12] ,  1, 1, 2, · · · , 2︸ ︷︷ ︸
21

  (432, 686) [0; 2, 2, 2, 12] ,  1, 1, 1, 2, · · · , 2︸ ︷︷ ︸
21

  (1296, 2940) [0; 2, 2, 2, 3] ,  1, 1, 1, 2, · · · , 2︸ ︷︷ ︸
8

, 3, 6, 6, 6, 6

  (1152, 157665) [0; 2, 2, 2, 3] ,  1, 1, 1, 1, 1, 3, 3, 3, 3, 4, 4, 4, 4, 6, 8

  (1296, 2940) [0; 2, 2, 2, 3] ,  1, 1, 1, 2, 2, 3, . . . , 3︸ ︷︷ ︸
7

, 6, 6, 6, 6

  (1296, 2940) [0; 2, 2, 2, 3] ,  1, 1, 1, 2, 3, . . . , 3︸ ︷︷ ︸
8

, 6, 6, 6, 6

   [0; 2, 2, 2, 3] ,  1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
16

, 4, 6, 6, 6

  (1728, 46119) [0; 2, 2, 2, 3] ,  1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 6, . . . , 6︸ ︷︷ ︸
7

  (1728, 46119) [0; 2, 2, 2, 3] ,  1, 1, 1, 1, 2, 3, . . . , 3︸ ︷︷ ︸
7

, 6, . . . , 6︸ ︷︷ ︸
7

   [0; 2, 2, 2, 3] ,  1, 1, 1, 1, 2, 3, 3, 3, 4, . . . , 4︸ ︷︷ ︸
12

, 6, 8, 8, 8

   [0; 2, 2, 2, 3] ,  1, 1, 1, 1, 1, 3, 3, 3, 3, 4, . . . , 4︸ ︷︷ ︸
12

, 6, 8, 8, 8
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covering of P1 is not (in general) Galois. It is a work in
progress to adjust the criterion to this situation.

We show with one example how the families in Table 3
correspond to special subvarieties. Let G be the alternat-
ing group A4, acting on a curve of genus 4 with signature
m = [0; 2, 3, 3, 3]. We have then a one-dimensional fam-
ily J of Jacobians. Using [Behn et al. 13] we determine
that the dimension of HG

4 is also 1. Therefore, according
to [Frediani et al. 15], the closure Z of J is a special sub-
variety ofA4 contained in T4 and such that Z ∩ T 0

4 �= ∅.
Using the group algebra decomposition (2–2), we con-

clude that the elements in J (hence in HG
4 ) decompose

as E × E3
1 (see the Appendix). Therefore this illustrates

a special case of [Moonen and Oort 11, Question 6.6].
Notice that E corresponds to an irreducible representa-
tion ϕ of G such that G/ ker(ϕ) ∼= Z/3Z, hence E has the
action of the cyclic group of order 3 and thus it is fixed
along the family. This family is one of the special subvari-
eties found in [Frediani et al. 15, Table 2].

4. Complications

The techniques described above do not necessarily yield
the finest decomposition. In (2–2), it is possible that the
Bi may decompose further. Thus there may be exam-
ples using a finer decomposition which fill other gaps in
Ekedahl and Serre’s list. Moreover, it is also possible that
Bi ∼ Bj even if i �= j in (2–2). In this case, we are exhibit-
ing more factors than is necessary up to isogeny.

Computationally, finding automorphism groups
and signatures in high genus is resource heavy. The
memory requirements for the Magma command
LowIndexNormalSubgroups limit our ability to
use this command to find other examples in higher
genus, or to fill remaining gaps using the intermediate
cover technique. For example, because of computational
constraints we could not find examples in genus 649 and
1297 as Ekedahl and Serre do. We are optimistic that,
given sufficient computational resources, the techniques
we describe above could produce numerous additional
new examples.

Appendix

In Table A.1 we provide all examples of families of curves
for genus 3–10 which have completely decomposable
Jacobians. These were found by searching all Breuer’s data
for these genera, and then removing those groups that
were not the full automorphism group for the given family
[Ries 93]. Some of the examples in this table were known
before [Frediani et al. 15].

Table A.. Family of completely decomposable curves found
through group algebra method for genus –.

Genus
Automorphism

group Signature
Jacobian

decomposition

 (4, 2) [0; 2, 2, 2, 2, 2, 2] , , 

(6, 1) [0; 2, 2, 2, 2, 3] , 

(8, 2) [0; 2, 2, 4, 4] , , 

(8, 5) [0; 2, 2, 2, 2, 2] , , 

(12, 4) [0; 2, 2, 2, 6] , 

(16, 11) [0; 2, 2, 2, 4] , 

(16, 13) [0; 2, 2, 2, 4] , 

(18, 3) [0; 2, 2, 2, 2, 2] , 

(24, 12) [0; 2, 2, 2, 3] 

 (8, 3) [0; 2, 2, 2, 2, 4] , , 

(12, 3) [0, 2, 3, 3, 3] , 

(12, 4) [0; 2, 2, 3, 6] , 

(12, 4) [0; 2, 2, 2, 2, 2] , , 

(24, 12) [0; 2, 2, 2, 4] , 

(36, 10) [0; 2, 2, 2, 3] , 

 (8, 5) [0; 2, 2, 2, 2, 2, 2] , , , , 

(12, 4) [0; 2, 2, 2, 2, 3] , , 

(16, 3) [0; 2, 2, 4, 4] , , 

(16, 11) [0; 2, 2, 2, 2, 2] , , , 

(16, 11) [0; 2, 2, 2, 2, 2] , , 

(16, 14) [0; 2, 2, 2, 2, 2] , , , , 

(24, 8) [0; 2, 2, 2, 6] , , 

(24, 14) [0; 2, 2, 2, 6] , , 

(32, 27) [0; 2, 2, 2, 4] , , 

(32, 28) [0; 2, 2, 2, 4] , , 

(32, 43) [0; 2, 2, 2, 4] , 

(48, 48) [0; 2, 2, 2, 3] , 

 (12, 4) [0; 2, 2, 2, 2, 6] , , , 

(24, 12) [0; 2, 2, 3, 4] , 

 (8, 5) [0; 2, 2, 2, 2, 2, 2, 2] , , , , , , 

(16, 11) [0; 2, 2, 2, 2, 4] , , , , 

(18, 4) [0; 2, 2, 2, 2, 3] , , , 

(24, 13) [0; 2, 2, 3, 6] , , 

(24, 14) [0; 2, 2, 2, 2, 2] , , , , 

(32, 43) [0; 2, 2, 2, 8] , , 

(36, 10) [0; 2, 2, 2, 6] , , 

(48, 38) [0; 2, 2, 2, 4] , , 

(48, 48) [0; 2, 2, 2, 4] , , 

 (24, 12) [0; 2, 3, 3, 4] , , 

 (16, 11) [0; 2, 2, 2, 2, 2, 2] , , , , , , 

(16, 14) [0; 2, 2, 2, 2, 2, 2] , , , , , , , , 

(24, 14) [0; 2, 2, 2, 2, 3] , , , , 

(32, 6) [0; 2, 2, 4, 4] , , , 

(32, 27) [0; 2, 2, 2, 2, 2] , , , , , 

(32, 34) [0; 2, 2, 2, 2, 2] , , , , 

(32, 43) [0; 2, 2, 2, 2, 2] , , , , 

(32, 46) [0; 2, 2, 2, 2, 2] , , , , , , 

(Contiuned on next page)
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Table A.. (Continued)

Genus
Automorphism

group Signature
Jacobian

decomposition

(32, 49) [0; 2, 2, 2, 2, 2] , , , , , 

(48, 38) [0; 2, 2, 2, 6] , , , 

(48, 43) [0; 2, 2, 2, 6] , , , , 

(48, 48) [0; 2, 2, 2, 6] , , 

(64, 73) [0; 2, 2, 2, 4] , , , , 

(64, 128) [0; 2, 2, 2, 4] , , , 

(64, 134) [0; 2, 2, 2, 4] , , , 

(64, 135) [0; 2, 2, 2, 4] , , , 

(64, 138) [0; 2, 2, 2, 4] , , , 

(64, 140) [0; 2, 2, 2, 4] , , , 

(64, 177) [0; 2, 2, 2, 4] , , 

(96, 193) [0; 2, 2, 2, 3] , , 

(96, 227) [0; 2, 2, 2, 3] , , 

 (36, 10) [0; 2, 2, 3, 6] , , , 

(36, 13) [0; 2, 2, 3, 6] , , , , 

(36, 10) [0; 2, 2, 2, 2, 2] , , , , 

(36, 13) [0; 2, 2, 2, 2, 2] , , , , , 

(48, 29) [0; 2, 2, 2, 8] , , , 

(72, 15) [0; 2, 2, 2, 4] , , 

(72, 40) [0; 2, 2, 2, 4] , , 

(72, 43) [0; 2, 2, 2, 4] , , 

(108, 17) [0; 2, 2, 2, 3] , , 

(108, 40) [0; 2, 2, 2, 3] , , , 
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