Tabla de Contenido

1.	\mathbf{Intr}	oducción	1
	1.1.	Motivación	1
	1.2.	Objetivos	2
		1.2.1. Objetivo general	2
		1.2.2. Objetivos específicos	2
	1.3.	Metodología	2
	1.4.	Resultados esperados	3
	1.5.	Estructura del informe	3
2.	Mar	rco Teórico	4
	2.1.	Arsénico como contaminante	4
	2.2.	Tecnologías de remoción	7
	2.3.	Sol-Arsenic	8
	2.4.	Determinación de arsénico	9
	2.5.	Nanomateriales	9
		2.5.1. Carbón activado	0
		2.5.2. Dióxido de titania	0
		2.5.3. Floculación de partículas	1
	2.6.	Fenómenos de superficie	4
		2.6.1. Adsorción de arsénico	4
		2.6.2. Foto-oxidación de arsénico	16
	2.7.	Reactores Químicos	17
		2.7.1. Reactores Fotocatalíticos	21
3.	Mor	ntaje y Metodología Experimental 2	22
	3.1.	Diseño Experimental	22
		3.1.1. Diseño Sistema Batch	22
		3.1.2. Diseño Sistema Prototipo	23
		3.1.3. Agua de Estudio	28
	3.2.	Metodología Experimental	29
		3.2.1. Experimentos en batch	29
		3.2.2. Puesta en Marcha de Prototipo	31
		3.2.3. Experimentos en Prototipo	33
		3.2.4. Determinación de Arsénico	34
	3.3.	Error de mediciones	36

4.	Análisis de Resultados	37			
	4.1. Pruebas realizadas en batch	37			
	4.1.1. Adsorción de As(III) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	37			
	4.1.2. Adsorción de $As(V)$	40			
	4.1.3. Foto-oxidación	44			
	4.2. Pruebas realizadas en prototipo	46			
	4.3. Comparación Batch-Prototipo	50			
5.	Conclusiones 5.1. Recomendaciones	52 54			
Bi	Bibliografía				
	Apéndices	57			
А.	A. Informes de análisis				

Índice de Tablas

3.1.	Número de Reynolds asociado a cada velocidad de estudio	30
3.2.	Resumen de volúmenes en cada sección	31
3.3.	Variación de temperatura para distintas operaciones del sistema	31
3.4.	Determinación de arsénico con dos técnicas y error relativo	36
4.1.	Variación de concentración de $As(III)$ en el agua en 30 minutos, antes y después	
	del cambio brusco de velocidad	40
4.2.	Diferencia de concentración de $As(V)$ en 30 minutos, antes y después del cam-	
	bio brusco de velocidad	42
4.3.	Resumen de valores obtenidos en foto-oxidación con conjunto de nanomaterial	
	y titania sola	45
4.4.	Coeficientes de ajuste para modelo cinético de primer orden de foto-oxidación	46
4.5.	Resumen de resultados en prototipo	49
4.6.	Coeficientes de regresión lineal	50

Índice de Ilustraciones

2.1.	Estructuras de As(III) y As(V). Fuente: Henke and Hutchison (2009) \ldots	4
2.2.	Comportamiento del As para distintas combinaciones de ORP=potencial de	
	oxidación reducción (Eh) y pH. Fuente: Jones (2007)	5
2.3.	Distribución de As documentado en aguas subterráneas en el mundo. Áreas	
	en azul son lagos. Fuente: Smedley and Kinniburgh (2001)	6
2.4.	Arsénico en aguas naturales del norte de Chile. Fuente: Pedreros (2010)	6
2.5.	Nanopartículas de TiO_2 diseñada. Fuente: García (2016)	11
2.6.	Viscosidad y tasa de deformación, dependencia de coloides de TiO_2 a diferentes	
	ϕ . Fuente: Tseng and Lin (2003)	12
2.7.	Relación entre viscosidad y velocidad de corte para diferentes temperaturas,	
	$20^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$, $70^{\circ}C$ de arriba hacia abajo. Fuente: Yang et al.	
	(2001)	13
2.8.	Éfecto del pH en la viscosidad. pH 1.19, pH 1.80, pH 3.70, pH5.04, pH 6.50,	
	pH 8.71, pH 9.09. Fuente: Yang et al. (2001)	13
2.9.	Conglomerados con bajo y alto contenido de CA. Fuente: Araña et al. (2003)	14
2.10.	. Esquema de fotocatalisis heterogénea con TiO_2 . Fuente: Litter et al. (2009) .	17
2.11.	Reactor batch. Fuente: Trambouze and Euzen (2004)	18
2.12.	Rango de viscosidad de uso de varios tipos de agitador. Fuente: Trambouze	
	and Euzen (2004)	19
2.13.	Reactor tubular continuo. Fuente: Trambouze and Euzen (2004)	19
2.14.	Perfiles de velocidad para varios regímenes de escurrimiento en tubería $\ .\ .$	20
3.1.	Sistema batch	22
3.2.	Fotorreactor, simulador solar	23
3.3.	Foto de equipo Sol-Arsenic elaborado, sistema prototipo	24
3.4.	Esquema del sistema prototipo, conexiones enumeradas	24
3.5.	Estanque con sus conexiones	25
3.6.	Perfil transversal de sección fotocatalítica.	26
3.7.	Bomba peristáltica y motor	26
3.8.	Curva de potencia de la bomba. Fuente: Folleto de bomba DFCa ProMinent	27
3.9.	Sistema de impulsión de la bomba. Fuente: Folleto de bomba DFCa ProMinent	27
3.10.	Intercambiador de calor	27
3.11.	Curvas de seguimiento de temperatura con la inclusión de nuevos dispositivos	32
3.12.	. Curva de relación frecuencia de operación de la bomba con caudal, velocidad	
	en línea y n° de Reynolds	32

3.13.	Curva de calibración de concentración de arsénico (V) y medida de absorbancia para el espectrofotómetro ubicado en Laboratorio de Calidad de Aguas de Universidad de Chile. Fuente: García (2016)	35
4.1.	Curva de concentración de As(III) en el agua para distintos Reynolds y cambio brusco en el minuto 90	38
4.2.	Relación entre $\%$ de adsorción en el minuto 90 y número de Reynolds $\ .$	39
4.3.	Curva de porcentaje de adsorción de As(III) en el conjunto de nanomaterial para distintos Reynolds y cambio brusco en el minuto 90	39
4.4.	Curva de concentración de $As(V)$ en el agua para distintos Reynolds y cambio	1.0
4 5	brusco en el minuto 90	40
4.5.	Curva de porcentaje de adsorcion de $As(V)$ en el conjunto de nanomaterial	11
4.6	para distintos Reynolds y cambio brusco en el minuto 90 $\ldots \ldots \ldots \ldots$	41
4.0.	brusco en el minuto 90, en carbón activado	42
4.7.	Curva de concentración de $As(V)$ en el agua para distintos Reynolds y cambio	
	brusco en el minuto 90, en dióxido de titania	43
4.8.	Curva de foto-oxidación en conjunto de nanomaterial	44
4.9.	Curva de foto-oxidación en TiO_2	45
4.10.	Ajuste lineal para cinética de primer orden de foto-oxidación	46
4.11.	Curva de porcentaje de adsorción de As total en conjunto de nanomaterial y	
	titania sola	47
4.12.	Curva de foto-oxidación de arsénico en conjunto de nanomaterial, para Re=12255,	
	sin colector	48
4.13.	Curva de foto-oxidación de arsénico en conjunto de nanomaterial, para Re=12255,	40
	con colector	48
4.14.	Curva de foto-oxidación de arsenico en conjunto de nanomaterial, para Re=1295	10
	con colector	49
4.15.	Ajuste lineal para cinética de primer orden de foto-oxidación	49
4.10.	para los 3 casos de estudio	50
A.1.	Informe de medición de muestras ICP	60
A.2.	Informe de medición de muestras ICP	61