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Abstract

Our general aim is to give sufficient conditions for robustness behavior
and convergence to the equilibrium point of linear time-varying fractional
system’s solutions. We approach this problem using as a framework a series
of recent results due to Cong et al. We establish theorems that generalize in
several ways many previously published results, including those of Cong et
al. We use the proposed theorems in control and adaptive systems, proving
convergence and robustness of such schemes, that up to date remain as
unsolved problems, showing the wide scope of applications of our results.
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1. Introduction

In recent papers [1, 2, 3, 4], Cong et al. have presented a fixed point
technique to asymptotically analyze Caputo fractional systems with α ∈
(0, 1) described by the equation

Dαx(t) = (A+Q(t))x(t), (1.1)

where we have implicitly assumed that the initial time for the derivative
t = 0, is the same that the time for the arbitrary initial condition x0 ∈ R

n.
They were able to prove ([1, Theorem 5]) that if Q : [0,∞) → R

n×n is

a continuous matrix function such that supt≥0

∫ t
0 τ

α−1||Eα,α(A, τ)[Q(t −
τ)]||dτ < 1, where Eα,α(A, t) := Eα,α(t

αA) is the two-parameter Mittag-
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Leffler function (see e.g. [6, Definition 4.2]) and if the spectrum σ(A) of
A ∈ R

n×n is such that σ(A) ⊂ {λ ∈ C \ {0} : | arg(λ)| > απ
2 }, then x is

bounded, limt→∞ x(t) = 0 and x = 0 is Lyapunov stable. Actually, they
show that instead of condition q < 1 it is enough that supt≥0 ||Q(t)|| be
small enough or limt→∞ ||Q(t)|| = 0 ([1, Theorems 7, 8]).

Under the same assumption for A and similar arguments, for the system

Dαx(t) = Ax(t) + f(x(t)), (1.2)

where f(0) = 0 and f is locally Lipschitz around the origin with L(r) such
that limr→0+ L(r) = 0 then limt→∞ ||x(t)|| = 0 for any ||x(0)|| < r0 and r0
small enough [2, Theorem 5]. Roughly speaking, one can always find an r
such that Q := L(r)I is sufficiently small, and to apply the previous results.
If A is such that σ(A) ⊂ {λ ∈ C \ {0} : | arg(λ)| < απ

2 }, they prove that
the origin x = 0 is unstable ([3, Theorem 5]). The first Lyapunov Theorem
on stability and instability follows as a corollary, i.e. for an autonomous
system Dαx = f(x(t)) with α ∈ (0, 1) the local asymptotic stability of the
origin is related to the eigenvalues of the Jacobian of f , a more general
result that the one obtained using Lyapunov approach in [8, Example 4].

The alternative approach to study convergence and stability using Lya-
punov functions ([8, 10]) presents a disadvantage: by defining those func-
tions as scalar ones, positive or negative definite restrictions on the matrix
are required to establish the sign of its fractional derivatives ([8, Example
6]).

Our contribution is first to extend the above theorems to include several
new aspects such as: a wider notion of robustness, the use of time vary-
ing linear system, a piece-wise continuity requirement, the case of α ≥ 1
and other types of derivatives, and the extension to mixed order systems.
Secondly, these extensions will be applied to robust control of fractional
system and to robust convergence of adaptive systems without modifying
the adaptive scheme but requiring conditions on the information signals,
which ample the class of them that assure error convergence to zero when
the perturbation is absent proposed in ([9]).

The paper is organized as follows: Section 2 presents the main contri-
bution of the paper, which is the generalization of the theorems just men-
tioned. Section 3 shows the usefulness of these generalizations by applying
them to determine the convergence and robustness of adaptive scheme de-
signs with fractional operators.

2. Robustness and convergence

We present theorems that extend in many aspects previous results in
the revised literature. Though the arguments mainly follow the fixed point
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technique of Cong et al, fine details are required at each argumentation.
The results have mathematical interest in itself and will show its importance
in applications in Section 3.

We will use || · ||∞ to denote L∞ norm on functions, || · || for the stan-
dard Euclidean norm on R

n and also for any matrix norm compatible with
this norm. We define the following sets which allow to classify stable and
unstable matrices

Λs
α := {λ ∈ C \ {0} : | arg(λ)| > απ

2
}, (2.1)

Λu
α := {λ ∈ C \ {0} : | arg(λ)| < απ

2
}. (2.2)

2.1. Robustness of linear time invariant fractional systems. Though
[1, Theorem 5] is presented as a robustness result, because the convergence
property is preserved when Q(t) variations occur around A, a more general
robustness condition can be stated where just the boundedness property
of solutions is preserved. The following result considers this view and, at
the same time, is a generalization to linear time varying systems of the
sufficient part of [4, Theorem 13].

Theorem 2.1. Consider the following Caputo system

Dαx(t) = (A+Q(t))x(t) + ν(t), (2.3)

where α ∈ (0, 1], x(t) ∈ R
n for all t ≥ 0, ν : [0,∞) → R

n is a bounded
continuous function and A ∈ R

n×n is such that σ(A) ⊂ Λs
α.. Let x0 ∈ R

n

be an arbitrary initial condition at the initial time of the Caputo derivative.
Suppose that Q : [0,∞) → R

n×n is a continuous matrix function such that

q := sup
t≥0

||
∫ t

0
τα−1Eα,α(A, τ)Q(t− τ)dτ || < 1. (2.4)

Then the following statements hold:
(i) x is a bounded continuous function.

(ii) If limt→∞ ||
∫ t
0 τ

α−1Eα,α(A, τ)ν(t−τ)dτ || = 0 then limt→∞ x(t) = 0.
In particular, if ν converges to zero, then limt→∞ x(t) = 0 and if ν ≡ 0 then
x = 0 is locally asymptotically stable.

P r o o f. Define the Lyapunov-Perron like operator as

Tx0(ξ)(t) :=Eα(t
αA)x0 +

∫ t

0
τα−1Eα,α(A, τ)Q(t − τ)ξ(t− τ)dτ

+

∫ t

0
τα−1Eα,α(A, τ)ν(t− τ)dτ,
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where Eα(t
αA) is the Mittag-Leffler function (see e.g. [6, Definition 4.1]).

Let ε > 0 arbitrary and ξ ∈ B∞(0, ε) := {ξ ∈ C([0,∞);Rn) : ||ξ||∞ ≤
ε}. Using that Eα(t

αA)x0 is bounded,
∫ t
0 τ

α−1||Eα,α(τ
αA)||dτ < ∞ since

σ(A) ⊂ Λs
α ([1, Theorem 3]), and that ν is bounded so that ||ν||∞ < ν0, we

have

||Tx0(ξ)||∞ ≤ C(ε, x0, ν0) < ∞,

where C(ε, ||x0||, ν0) is a constant term depending on the bound ν0 of func-
tion ν and on ε, ||x0||. Hence, Tx0(B∞(0, ε)) ⊂ B∞(0, C(ν0)) since the op-
erator defines a continuous function from [0,∞) → R

n by the boundedness

of its integrands. Taking ξ̃ ∈ C([0,∞), we have

||Tx0(ξ)− Tx0(ξ̃)||∞ ≤ q||ξ − ξ̃||∞.

Therefore, Tx0 restricted to the Banach space C∞ := {ξ ∈ C([0,∞);Rn) :
||ξ||∞ < ∞} is a contraction auto map, whereby it has a unique fixed point
ξ0 by the contraction mapping theorem. Since the unique continuous solu-
tion to (2.3) can be written as x(t) = Eα(t

αA)x0+
∫ t
0 τ

α−1Eα,α(A, τ)Q(t−
τ)x(t − τ)dτ +

∫ t
0 τ

α−1Eα,α(A, τ)ν(t − τ)dτ = Tx0(x)(t) (see e.g [16, §3]),
we conclude that x = ξ0, and thus, x is a bounded continuous function.

(ii) Since x(t) = Eα(A, t)x(0) +
∫ t
0 τ

α−1Eα,α(A, τ)Q(t − τ)x(t − τ)dτ

+
∫ t
0 τ

α−1Eα,α(A, τ)ν(t − τ)dτ , we obtain

||x(t)|| ≤||Eα(A, t)x(0)|| + ||
∫ t

0
τα−1Eα,α(A, τ)Q(t− τ)x(t− τ))dτ ||

+ ||
∫ t

0
τα−1Eα,α(A, τ)ν(t− τ)dτ ||.

Define ε := 1−q
2q+1 lim supt≥0 ||x(t)|| and T such that supt≥T ||x(t)|| ≤

lim supt→∞ ||x(t)||+ ε. By the part (i), ε, T exist since x is bounded. Then,

lim sup
t→∞

||x(t)|| ≤ (lim sup
t→∞

||x(t)|| + ε) sup
t≥T

||
∫ t

T
τα−1Eα,α(A, τ)Q(t − τ)dτ ||

where we use the hypothesis limt→∞
∫ t
0 τ

α−1||Eα,α(A, τ)ν(t − τ)||dτ = 0,

the facts that limt→∞ ||
∫ T
0 τα−1Eα,α(A, τ)Q(t − τ)x(t − τ))dτ || and that

since σ(A) ⊂ Λs
α, limt→∞ ||Eα(A, t)|| = 0. Using condition (2.4), we obtain

the following contradiction when lim supt→∞ ||x(t)|| 
= 0,

lim sup
t→∞

||x(t)|| ≤ lim sup
t→∞

||x(t)||2q + q2

2q + 1
< lim sup

t→∞
||x(t)||.

Therefore, lim supt→∞ ||x(t)|| = 0 and limt→∞ x(t) = 0.

Since supt≥0

∫ t
0 τ

α−1||Eα,α(A, τ)||dτ = C(α,A) < ∞ ([1, Theorem 3]),

we have τα−1||Eα,α(A, τ)|| ∈ L1, the Lebesgue space of integrable functions
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on R≥0. If ν is bounded and converges to zero, we can apply [10, Lemma 2],

to conclude that limt→∞
∫ t
0 τ

α−1||Eα,α(A, τ)||||ν(t − τ)||dτ = 0. Applying

the previous part and taking limit on 0 ≤ ||
∫ t
0 τ

α−1Eα,α(A, τ)ν(t−τ)dτ || ≤∫ t
0 τ

α−1||Eα,α(A, τ)||||ν(t − τ)||dτ we conclude limt→∞ x(t) = 0. The local
stability of x = 0 when ν ≡ 0 was proved in [1, Theorem 5]. �

Remark 2.1. (i) When ν ≡ 0 we recover [1, Theorem 5], and when
Q ≡ 0 we recover the sufficiency part of [4, Theorem 13]. Moreover, the
same arguments can be stated for complex valued solutions since C([0,∞);Cn)
and its subset C∞ are also Banach spaces.

(ii) From the form of the proof, we cannot get an estimate of the speed
of convergence of x.

The following corollary generalizes [1, Theorem 6] and [1, Theorem 8]
and shows, in its first claim, that hypothesis (2.4) is not trivial.

Corollary 2.1. Under the same hypotheses of Theorem 2.1 but using
instead of condition (2.4), that there exists T ≥ 0 such that supt≥T ||Q(t)|| <

1
C(α,A) , where C(α,A) := supt≥0

∫ t
0 τ

α−1||Eα,α(A, τ)||dτ < ∞, claims (i)

and (ii) hold. In particular, if limt→∞Q(t) = 0 claims (i) and (ii) hold.

P r o o f. By the condition on σ(A), supt≥0 ||
∫ t
0 τ

α−1Eα,α(A, τ)dτ || =
C(α,A) < ∞ ([1, Theorem 3]). If supt≥0 ||Q(t)|| < 1

C(α,A) , we conclude

that condition (2.4) holds.
On the other hand, if limt→∞ ||Q(t)|| = 0, then there exists T such that

supt≥T ||
∫ t
0 τ

α−1Eα,α(A, τ)[Q(t − τ)]|| < 1. Following the reasoning of the
proof of Theorem 2.1, we have for ξ ∈ C∞

ξ(t) = Eα(A, t)x(0) +

∫ T

0
(t− τ)α−1Eα,α(A, t− τ)Q(τ)ξ(τ)dτ

+

∫ t

T
τα−1Eα,α(A, τ)Q(t− τ)ξ(t− τ)dτ +

∫ t

0
τα−1Eα,α(A, τ)ν(t − τ)dτ.

The first integral of right-hand side converges to zero by applying [11,

Property 15] since ||
∫ T
0 (t − τ)α−1Eα,α(A, t − τ)Q(τ)ξ(τ)dτ || ≤ CE

∫ T
0 (t −

τ)α−1||Q(τ)ξ(τ)||dτ . The rest follows from similar arguments of the proof
of Theorem 2.1. �

Remark 2.2. Note, for control applications, that condition (2.4) or
supt ||Q(t)|| < 1

C(α,A) depends on A (more specifically on the magnitude of
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its eigenvalues) and α. By choosing A,α we expand the range of matrices Q
assuring convergence (at least in principle, since the result is just a sufficient
statement).

2.2. Comparison property. The following result generalizes [1, Theorem
5] in the sense that matrix A can now be a time varying function and the
condition on A(·) is given as an inequality rather than an equality of type
A + Q(t). It can be seen as a comparison result generalizing that of [10,
Theorem 4].

Theorem 2.2. Consider the following Caputo system

Dαx(t) = A(t)x(t) + ν(t), (2.5)

with α ∈ (0, 1), x(t) ∈ R
n for all t ≥ 0 and ν : [0,∞) → R

n a bounded
differentiable function. Suppose that A : [0,∞) → R

n×n is a differentiable
matrix function satisfying A(t) ≤ −εI+Q(t) where I is the identity matrix,
Q : [0,∞) → R

n×n is a bounded continuous matrix function and ε > 0.
Then,

(i) If supt ||Q(t)|| < μ < ε, then the solution x is a bounded continuous
function.

(ii) If q = supt≥0 |
∫ t
0 τ

α−1Eα,α(−εtα)[λM (t − τ)]|dτ < 1, where λM (t)
is the largest eigenvalue of Q(t) and ν ≡ 0, then limt→∞ x(t) = 0.

P r o o f. (i) We have

1/2Dα[xTx] ≤ xTDαx = xTAx+ xT ν

≤ −εxTx+ xTQx+ xT ν ≤ −εxTx+ μxTx+ xT ν,

where the first inequality is due to [7, Lemma 1] which can be applied since
ν and A are bounded continuous functions, whereby x is a differentiable
function [10, Property 12].

Given that Q and ν are bounded functions, the set Ω = {x ∈ R
n|εxTx−

μxTx−xTν ≤ 0} is bounded (otherwise the positive term (ε−μ)xTx would
dominate leading to a contradiction). Whereby Ω̄ is compact and therefore
x is bounded by [10, Theorem 8].

(ii) As in part (i), we have

1/2Dα[xTx] ≤ xT (−εI +Q)x ≤ −εxTx+ λM (t)xTx.

By using Theorem 2.1 on the equation 1/2Dαy = −εy + λM (t)y, we
conclude that limt→∞ y(t) = 0, and hence by comparison [10, Lemma 1],
limt→∞ x(t) = 0. �

Remark 2.3. If ||Q|| converges to zero, then λM also does it and
applying Corollary 2.1, we have limt→∞ x = 0. Similarly if supt ||Q(t)|| <
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1
C(α,A) for an induced matrix norm (for it, the bound of the matrix norm

bounds its largest eigenvalue).

2.3. Extensions for α ≥ 1 and other types of derivatives. The start-
ing point of Cong et al. is the analytic-implicit solution of equation (1.1).
For 1 < α ≤ 2, it takes the form [12, Theorem 5.15]

x(t) = Eα(t
αA)x0 + tEα,2(t

αA)ẋ0 +

∫ t

0
τα−1Eα,α(A, τ)Q(t − τ)x(t− τ)dτ,

(2.6)
where x0, ẋ0 ∈ R

n are initial conditions associated to the function x and
its derivative, respectively.

This can be directly proved by applying the Laplace transform. More-
over, it can be generalized for any order of derivation by the same procedure.
However, for α ≥ 2, there is no condition for a stable constant matrix, since
{λ ∈ C \ {0} : | arg(λ)| > απ

2 } = ∅ for α ≥ 2.
In addition, one can verify uniqueness of the solution (see for instance

[6, Theorem 6.5], [12, Theorem 3.25] and the global version in [17]) provided
thatQ is a bounded function. Now we can formulate the following extension
to [1, Theorem 5], which is a generalization of [10, Theorem 4].

Theorem 2.3. Consider the following Caputo system

Dαx(t) = (A+Q(t))x(t) + ν(t), (2.7)

with 0 < α < 2, x : [0,∞) → R
n and ν : [0,∞) → R

n a bounded con-
tinuous function. Let x0, ẋ0 ∈ R

n be arbitrary initial conditions. Sup-
pose that Q : [0,∞) → R

n×n is a continuous matrix function such that

q = supt≥0 ||
∫ t
0 τ

α−1Eα,α(A, τ)[Q(t − τ)]dτ || < 1. Assume that A ∈ R
n×n

is such that σ(A) ⊂ Λs
α. Then,

(i) x is bounded continuous function.

(ii) If in addition limt→∞ ||
∫ t
0 τ

α−1Eα,α(A, τ)ν(t − τ)dτ || = 0 then
limt→∞ ||x(t)|| = 0. In particular, if ν converges to zero, then limt→∞ x(t) =
0 and if ν ≡ 0 then the point (x, ẋ) = (0, 0) is asymptotically stable.

P r o o f. The proof is similar to the proof of Theorem 2.1. We just
indicate the points essentially different. By applying Laplace Transform
we conclude that the solution to (2.7) must satisfy the expression (2.6).
The Lyapunov-Perron operator is then defined by

Tx0,ẋ0(ξ)(t) :=Eα(t
αA)x0 + tEα,2(t

αA)ẋ0

+

∫ t

0
τα−1Eα,α(A, τ)[Q(t − τ)ξ(t− τ) + ν(t− τ)]dτ.
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By taking ξ, ξ̃ ∈ B∞(0, ε), we have ||Tx0,ẋ0(ξ)−Tx0,ẋ0(ξ̃)||∞ ≤ q||ξ−ξ̃||∞.
Since σ(A) ⊂ Λs

α the initial conditions terms are bounded, decaying to

zero ([18, Lemma 3(i)]) and ||
∫ t
0 τ

α−1Eα,α(A, τ)dτ || < ∞ ([1, Theorem 3]).
Since ν is bounded, ||Tx0,ẋ0(ξ)||∞ < ∞.

Since q < 1, Tx0,ẋ0 restricted to C∞ is a contraction auto map in a
Banach space, whereby it has a unique fixed point. Since the unique
continuous solution [6] to Dαx = (A + Q(t))x can be written as x(t) =

Eα(t
αA)x0+tEα,2(t

αA)ẋ0+
∫ t
0 τ

α−1Eα,α(A, τ)[Q(t−τ)ξ(t−τ)+ν(t−τ)]dτ
we conclude that x = ξ, whereby x is a bounded continuous function and
lim supt→∞ ||x(t)|| < ∞. �

Theorem 2.3 can be generalized to other type of fractional derivatives
provided that, by applying the Laplace transform, one has (i) L[Dαf ](s) =
sαf(s) − F (0, s) for any continuous function f where F (0, s) is an initial
condition term associated to the specific fractional derivative (hence, the
implicit solution to (2.7) can be written in Laplace domain as x(s) = (sα−
I)−1F (0, s)+ (sα− I)−1[Qx](s)), (ii) uniqueness of the continuous solution
for system (2.7) and (iii) the term L−1[F (0, s)](t) converges to zero provided
that σ(A) ⊂ Λs

α and is bounded from some T > 0. For instance, Riemann-
Liouville derivative satisfies the above conditions under mild assumptions
(see [16, §2.8] for (i), [12, §3] for (ii), and [2, Proposition 4] and null initial
conditions for (iii)).

We now extend the first Lyapunov theorem in its stability-instability
part for α > 1. It will appear as a direct consequence of a more general
result. When α < 1, the stability was proved in [2, Theorem 5] and the
instability in [3, Theorem 8]. This theorem also is more general that the
result of [18, Theorem 4], since it considers the unstable case.

Though the function h(x) = Ax + f(x) (where h(0) = 0) does not
depend on ẋ, for α > 1 the equilibrium point must consider this variable;
it cannot be calculated by just asking for those x such that h(x) = 0. By
uniqueness and closed inspection of equation (2.6) with Qx replaced by
f(x), we conclude that if (x0, ẋ0) = (0, 0) then the consistent solution is
x ≡ 0, thus (xT , ẋT )T = (0, 0)T is an equilibrium point.

Theorem 2.4. Consider the following Caputo system for 0 < α < 2

Dαx = Ax+ f(x), (2.8)

with x : [0,∞) → R
n and f : [0,∞) → R

n a locally Lipschitz function with
Lipschitz constant such that limr→0+ L(r) = 0 and f(0) = 0.

(i) If σ(A) ⊂ Λs
α then (x, ẋ) = (0, 0) is a locally asymptotically stable

equilibrium point.
(ii) If A has at least one eigenvalue in Λu

α then (x, ẋ) = (0, 0) is an
unstable equilibrium point.
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P r o o f. (i) The proof is similar to that of Theorem 2.3, provided that

supt≥0 ||
∫ t
0 τ

α−1Eα,α(A, τ)||dτ < ∞ for α > 1 and σ(A) ⊂ Λs
α.

In the scalar case
∫
|τα−1Eα,α(A, τ)|dτ < ∞ is equivalent to determine

if |τα−1Eα,α(A, τ)| ∈ L1 which was asserted in [13, Theorem 2].
Since τα−1Eα,α(A, τ) = L−1[(sαI −A)−1] and σ(A) ⊂ Λs

α, the transfer
function h(t) = cTL−1[(sαI −A)−1](t)b by [13, Theorem 2] h(t) ∈ L1 since

ĥ = L[h](s) has positive relative degree. In particular, choosing c, b as ei, ej
elements of the canonical base of Rn, it follows that every element of matrix
L−1[(sαI − A)−1] belongs to L1. Since ||A||1 = supi,j |aij| <

∑n
i,j=1 |aij |,

we have ||τα−1Eα,α(A, τ)||1 ∈ L1 (the chosen matrix norm is equivalent to
others norms such as the Frobenius norm and ||·||2, whereby it is compatible
with the standard norm on R

n).
Since ||f(x)|| ≤ L(r)||x||, we can choose a sufficiently small r so that

supt≥0

∫ t
0 τ

α−1||Eα,α(A, τ)L(r)ξ(t − τ)||dτ < 1 for ξ ∈ B∞(0, r). The rest
is similar to the proof of Theorem 2.3.

(ii) Suppose that x = 0, ẋ = 0 is an stable point. Then for all ε > 0
there exists δ such that if (xT0 , ẋ

T
0 )

T ∈ BRn(0, δ) then (xT , ẋT )T ∈ BRn(0, ε).
In particular, if (xT0 , 0

T )T ∈ BRn(0, δ) then x ∈ BRn(0, ε). By a Jordan
canonical transformation and without loss of generality, we can suppose
A a diagonal matrix of eigenvalues with its first simple eigenvalue λ1 be-
longing to Λu

α and all the rest in Λs
α. Therefore, the solution to (2.8) with

initial condition (x(0)T , ẋ(0)T ) = (x10, 0, . . . , 0) can be expressed for its first
component x1 as

x1(t) = Eα(λ1t
α)x10 +

∫ t

0
τα−1Eα,α(A, τ)f

1(x(t− τ))dτ.

By [3, Lemma 4] – a result directly deduced from [16, Theorems 1.3,
1.4] which has validity for 0 < α < 2 – we have

lim
t→∞

∫ t

0

τα−1Eα,α(λτ
α)f1(x(t− τ))

Eα(λ1tα)
dτ = λ

1−α
α

1

∫ t

0
exp(−λ

1−α
α

1 τ)f1(t− τ)dτ.

Since Eα(λ1t
α) diverges and ||x1||∞ < ε by our assumption of stability,

necessarily

x10 = −λ
1−α
α

1

∫ t

0
exp(−λ

1−α
α

1 τ)f1(x(t− τ))dτ. (2.9)

Defining

T ξ1 :=

∫ t

0
τα−1Eα,α(λτ

α)f1(ξ(t− τ))dτ

− λ
1−α
α

1 Eα(λit
α)

∫ t

0
exp(−λ

1−α
α

1 τ)f1(ξ(t− τ))dτ,
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904 J.A. Gallegos, M.A. Duarte-Mermoud

T ξi :=

∫ t

0
τα−1Eα,α(λτ

α)f i(ξ(t− τ))dτ,

for i = 2, . . . , n, we observe that the solution to (2.8) with initial condition
(x(0)T , ẋ(0)T ) = (x10, 0, . . . , 0)

T must be a fixed point of T .

Let ξ ∈ B∞(0, ε). Using, [3, Lemma 3], which has validity for 0 <
α < 2, we have ||T ξ1||∞ ≤ K(α, λ1)||f ||∞ and using part (i), we have for
i = 2, . . . , n ||T ξi||∞ ≤ C(α,A)||f ||∞. Choosing ε such that (K(α, λ1) +
C(α,A))l(ε) < 1, we have

||x||∞ = ||T x||∞ ≤ C(α,A)l(ε)||x||∞ < ||x||∞,

which is a contradiction for x10 
= 0. Then (xT , ẋT )T = (0, 0)T is an unstable
point. �

Remark 2.4. From a Taylor expansion around the origin, namely
f(x) = Jf (0) x + p(x(t)) where, f(0) = 0, p is locally Lipschitz around
the origin with Lipschitz constant such that limr→0+ L(r) = 0 since it is
a polynomial on x and Jf (x = 0) = Jf (0) the Jacobian of f at zero, we
have (First Lyapunov Theorem): if σ(Jf (0)) ⊂ Λs

α then local asymptotic
stability of the origin (x, ẋ) = (0, 0) follows and instability if at least one
eigenvalue belongs to Λu

α. We recall that even for integer order systems, the
stability cannot be asserted from this local analysis if there exist eigenvalues
such that {λ ∈ C\{0} : | arg(λ)| = απ

2 }. Note also that instability does not
necessarily imply that the solution diverges as in [4, Proposition 6], where
is proved that there exists initial conditions (holding equation (2.9)) such
that the solution remains bounded for unstable systems.

We will consider the autonomous systemsDαx = f(x) perturbed around
the equilibrium point x = 0 in its Taylor expansion. We use the concept
of locally ultimately bound equilibrium point meaning that the solutions
starting near enough of the equilibrium point remain bounded.

Corollary 2.2. Consider the Caputo system

Dαx(t) = (A+Q(t))x(t) + f(x(t)) + ν(t), (2.10)

where 0 < α < 2, x(t) ∈ Rn for all t ≥ 0, ν : [0,∞) → Rn a bounded
Lipschitz continuous function , A and f as in Theorem 2.4 and Q : [0,∞) →
R
n×n as in Theorem 2.3 (or Corollary 2.1). Then,
(i) x = 0, ẋ = 0 is a locally ultimately bound equilibrium point.

(ii) If in addition limt→∞ ||
∫ t
0 τ

α−1Eα,α(A, τ)ν(t − τ)dτ || = 0 then
limt→∞ ||x(t)|| = 0. In particular, if ν converges to zero, then x = 0, ẋ = 0
is an attractive equilibrium point and if ν ≡ 0 it is an asymptotically stable
point.

Brought to you by | Universidad de Chile
Authenticated

Download Date | 4/16/18 9:49 PM



ROBUSTNESS AND CONVERGENCE OF FRACTIONAL . . . 905

P r o o f. (i) We present the proof for 0 < α < 1 since for 1 ≤ α < 2
the analysis is similar. The Lyapunov-Perron operator is defined as

Tx0(ξ)(t) :=Eα(t
αA)x0 +

∫ t

0
τα−1Eα,α(A, τ)Q(t − τ)ξ(t− τ)dτ

+

∫ t

0
τα−1[Eα,α(A, τ)f(ξ(t− τ)) + Eα,α(A, τ)ν(t − τ)]dτ.

Let ε > 0. By taking ξ, ξ̂(t) ∈ B∞(0, ε) and using that Eα(t
αA)x0 is

bounded,
∫ t
0 τ

α−1||Eα,α(τ
αA)||dτ = C(α,A) < ∞ (since σ(A) ⊂ Λs

α) and

since by Lipschitz assumption, ||f(ξ)− f(ξ̂)||∞ ≤ L(ε)||ξ − ξ̂||∞, we have

||Tx0ξ − Tx0 ξ̂||∞ ≤ q||ξ − ξ̂||∞ + C(α,A)L(ε)||ξ − ξ̂||∞.

By taking ξ̂ = 0, we get ||Tx0(ξ)||∞ ≤ C(ν0)+qε+C(α,A)L(ε)ε,. Thus,
Tx0(B∞(0, ε)) ⊂ B∞(0, C(ν0)). Since limr→0+ L(r) = 0, we can choose a
sufficiently small ε < 1 so that μ = q + C(α,A)L(ε) < 1 and Tx0 is a
contraction auto map, whereby it has a unique fixed point ξ0. Since the
unique solution toDαx = F (t, x) := (A+Q(t))x+f(x(t))+ν(t) (uniqueness
follows from Lipschitz continuity of F in the second variable) can be written

as x(t) = Eα(t
αA)x0 +

∫ t
0 τ

α−1Eα,α(A, τ)[Q(t − τ)ξ(t− τ) + f(x(t− τ)) +
ν(t− τ)]dτ , we conclude that x = ξ0 when x0 ∈ BRn(0, ε), whereby x is a
bounded continuous function.

(ii) It is similar to the proof of Theorem 2.1(ii) and hence omitted. �

We state the following linearization result, which, based in reference
[2, Section 1] where the literature is carefully revised, have been applied
without a rigorous proof.

Corollary 2.3. Consider the following Caputo system

Dαx = f(x, t), (2.11)

where 0 < α < 2, f(x, t) an smooth function such that f(0, ·) ≡ 0 and
limt→∞ f(x, t) = g(x) with g(0) = 0 and the Jacobian of g satisfying
σ(Jg(0)) ⊂ Λs

α. Then x = 0 is locally asymptotically stable.

P r o o f. Using that limt→∞ f(x, t) = g(x) and that f(0, ·) ≡ 0, the
local expansion around x = 0 of f must hold that f(x, t) = (Jg(0) +
Q(t))x + q(x(t)) + ν(x(t)) where Q, ν vanish asymptotically and q is such
that g(x) = Jg(0)x + q(x) for a sufficiently small x. The rest follows from
applying Corollary 2.2(ii) �

As an example of function holding Corollary 2.3 consider f(x, t) =
g(x) + u(t)h(x) where u(t) → 0 as t → ∞, and σ(Jg(0)) ⊂ Λs

α.
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906 J.A. Gallegos, M.A. Duarte-Mermoud

Example 2.1. Local robust control of non linear system. Consider
the system

Dαx = f(x, u)

where 0 < α < 2, f is a smooth function with f(0, ·) = 0 and u = Kx with
K constant matrix to be determined. By Taylor expansion around x = 0,
f(x, u) = Jx(0, 0)x + Ju(0, 0)u + p(x), where J is the Jacobian of f and p
is a polynomial. If the pair (Jf (0, 0), Ju(0, 0)) is controllable, there exists
KA such that for any A, Jf (0, 0) + Ju(0, 0)KA = A. Choosing A such that
σ(A) ⊂ Λs

α, then Corollary 2.2 implies that the control u = KAx is robust
for any initial condition sufficiently close to x = 0.

2.4. Extensions for piece-wise continuous functions. The function
Q(t) had been required to be a continuous function. We extend the results
for the case when Q(t) is only piece-wise continuous, namely there exist
intervals [Ti, Ti+1) for i ∈ N such that Q(t) is continuous in [Ti, Ti+1).
This problem is relevant in switching systems; for instance Q(t) could be a
constant matrix in [Ti, Ti+1).

Theorem 2.5. Consider the Caputo system of (2.7) with the same
requirement of Theorem 2.3 but now ν,Q are allowed to be piece-wise
continuous function. Then, x is a bounded continuous function. If in

addition limt→∞ ||
∫ t
0 τ

α−1Eα,α(A, τ)ν(t−τ)dτ || = 0, then limt→∞ ||x(t)|| =
0. In particular, if ν converges to zero, then limt→∞ ||x(t)|| = 0 and if ν ≡ 0
then the point (x, ẋ) = (0, 0) is asymptotically stable.

P r o o f. The proof is similar that of Theorem 2.3 if the solution to
(2.7), with piece-wise continuous functions ν,Q, (i) can be expressed in
terms of Eα functions and (ii) is the unique continuous function satisfying
the given initial condition.

Part (i) follows by applying Laplace transform, since it also applies
on piece-wise continuous functions. The resultant expression is the same

as (2.6) plus the extra term
∫ t
0 (t − τ)α−1Eα,α(A, t − τ)ν(τ)dτ due to the

perturbation.
For (ii), let ν ≡ 0. If x0 = 0, ẋ0 = 0 then there is a unique solution x ≡ 0

in the first interval [T0, T1) since it is indistinguishable of the continuous
case ([12, Theorem 3.25]) and x ≡ 0 satisfies both, the initial condition and
the equation for Caputo derivative. Then one has x(T−

1 ) = 0, ẋ0(T
−
1 ) = 0 as

initial conditions, which implies the solution x ≡ 0 in the second interval.
Recursively one has as solution x ≡ 0. A contraction map argument on
the operator, defined in the space of the continuous functions, T (ξ)(t) :=∫ s
Ti
τα−1Eα,α(A, τ)Q(t−τ)ξ(t−τ)dτ proves that the solution x ≡ 0 is unique
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in C[Ti, s) for all i ∈ N where s is such that ||
∫ s
Ti
τα−1Eα,α(A, τ)Q(t −

τ)dτ || < 1. Recursively, one can extend for the total interval C[Ti, Ti+1).

Suppose now that there exists x 
= y in C[0, T ) with x(0) = y(0) such
that Dαx = (A + Q(t))x + ν and Dαy = (A + Q(t))y + ν. Therefore,
Dα(x− y) = (A+Q(t))(x− y) with (x− y)(0) = 0, which gives as solution
x − y ≡ 0. We conclude that the assumption x − y 
= 0 is a contradiction
and thus, the continuous solution is unique. �

2.5. Mixed order systems. In the previous results, the same order of
derivation was used for each component of vector function x in its defin-
ing equation. We present now the generalization when different orders of
derivation for each component of vector x are allowed.

Theorem 2.6. Let Dαx(t) be a vector of components Dαixi(t) where
0 < αi < 2 for i = 1, . . . , n and x(t) ∈ R

n for all t ≥ 0. Consider the
Caputo system

Dαx(t) = (A+Q(t))x(t) + f(x(t)) + ν(t), (2.12)

where ν : [0,∞) → R
n is a bounded piece-wise continuous function and Q :

[0,∞) → R
n×n is a piece-wise continuous with limt→∞Q(t) = 0. Suppose

that A,Q(t) ∈ R
n×n are triangular matrices (without loss of generality,

lower triangular both) such that

σ(A) ⊂ {λ ∈ C \ {0} : | arg(λ)| > αMπ

2
}, (2.13)

where αM = maxi{αi}. fi for any i = 1, . . . , n are locally Lipschitz con-
tinuous with respect to xi around the origin, uniformly with respect to the
other variables, with Lipschitz constant Li such that limr→0+ Li(r) = 0 for
the neighborhood around the origin B(0, r) and such that f(0) = 0.

(i) Suppose f(x) ≡ 0. Then, x is a bounded continuous function and if
ν converges to zero, x converges to zero.

(ii) Suppose ν ≡ 0 and fi = fi(x1, . . . , xi) for any i = 1, . . . , n. Then, x
converges to zero.

P r o o f. Since the diagonal of A are its eigenvalues, a recursive ap-
plication of Theorem 2.1 (Corollary 2.1) for the scalar equation in each xi
for i = 1, . . . , n yields the desired result for the (i) part and a recursive
application of Theorem 2.6 yields the desired result for (ii) part. �

Remark 2.5. Theorem 2.7(i) is the extension of the BIBO stability re-
sult [13, Theorem 1] for non commensurate systems. From Theorem 2.7(ii)
one can obtains the corresponding first Lyapunov theorem for mixed order
systems, using similar arguments as those used in the proof of Theorem
2.4.
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3. Robustness and convergence of fractional adaptive schemes

In [9], it was stressed the importance in optimal control and/or identi-
fication adaptive problems of the Fractional Error Model of Type I defined
by the following system of equations{

e = φTw + ν,

Dαφ = −γew = −γwwTφ− γwν,
(3.1)

whereDαφ is a vector of components Dαiφi with αi ∈ (0, 2) for i = 1, . . . , n,
e : [0,∞) → R is a measure of the adaptation error, w : [0,∞) → R

n

is the information signal, φ : [0,∞) → R
n is the parameter error and

ν : [0,∞) → R is a bounded perturbation function due to noise, imperfect
modeling and/or initial conditions terms. γ > 0 is an scalar or matrix
parameter to be suitably chosen to handle the speed of convergence. The
parameter α turns out to be a relevant degree of freedom for optimization
purposes ([9, §5]). Without loss of generality, it is assumed that w is

bounded since it can be normalized by using γ (e.g. γ := γ′
1+wTw

). For

simplicity, we will assume γ = 1.
Since w is bounded, the robust adaptation objective will be reached,

namely limt→∞ e = 0 when ν ≡ 0 and e bounded if ν is bounded, if condi-
tions on w are such that φ converges to zero or remains bounded, respec-
tively. The results of Section 2 (Theorem 2.1 or Theorem 2.2 in particular)
imply this if we are able to express w as

− w(t)wT (t) ≤ A+Q(t), (3.2)
with Q satisfying (2.4) (or supt>T ||Q(s)|| small enough) and a suitable
matrix A. The set of w is allowed to be piece-wise continuous by Theorem
2.5 (cf. [9, Theorem 2, Lemma 3]) where differentiability on w was required
when ν ≡ 0). By applying Theorem 2.3 and Remark 2.4, we can extend
the fractional adjustment to α ≥ 1 whereas in [9] it was proved only for
α ∈ (0, 1] when ν ≡ 0. We remark that since the choice of the order
of derivation on the adjustment parameters law is a relevant variable of
optimization [9, Example 5], the established theorems effectively ample the
tools for the designer of adaptive schemes.

3.1. Ideal case: ν ≡ 0. Note first that if A is chosen with negative real
eigenvalues (e.g. A = −εI for ε > 0), then σ(A) ⊂ Λs

α for any α ∈ (0, 2).

For the scalar case, condition (3.2) takes the form w2 ≥ a+ q(t) where
a > 0. If w2 = ε then we choose a = ε and q = 0. If limt→∞w2(t) = ε we
choose a = ε and q = w2 − ε. If w2 = sin2 t, given that sin2 t > ε ’most of
the time’ if ε > 0 is small enough, we define a = ε and q(t) zero everywhere
but on small intervals where it takes the value w2 − ε whereby |q| < ε but
a point of null measure (q piece wise continuous).
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The above examples are persistently exciting signals i.e. functions w

such that there exist T0 > 0 and ε > 0 satisfying
∫ t+T0

t wwT dτ ≥ εT0I
for any t ≥ 0 where I is the identity matrix. It is known that for α = 1,
these signals make to converge φ to zero (see e.g. [15, §1]). Note that any
0 < ε < ε and the same T0 > 0 is a valid choice. It appears natural to try
to write them as w(t)wT (t) ≥ εI + Q(t) where Q(t) vanishes in [t, t + T0]
or w(t)wT (t) − εI (with norm less or equal than ε). To satisfy condition
(3.2), we require to choose a small enough ε > 0 such that εC(α,−εI) < 1,
which must exist since Eα,α(t, A) is polynomial in A (see e.g. [16, Equation
(1.56)]), C(α, 0) = 0 and C(α,−εI) < ∞.

Indeed, if there exists a sufficiently small ε < 1 such that C(α,−εI) =

supt≥0

∫ t
0 ||τα−1Eα,α(−ταεI)||dτ < 1 then any non negative almost periodic

function p = p(t) of amplitude ε is such that
∫ t
0 ||τα−1Eα,α(−ταεI)||p(t −

τ)dτ < 1 for every t. If for every ε > 0, C(α,−εI) > 1 then we can choose
ε < 1/C(α,−εI), whereby εC(α,−εI) < 1. Taking, ||Q(t)|| ≤ p(t), we have
Q holds condition (2.4). Hence, for any persistently exciting w, we have
that φ and e = φTw converge to zero.

3.2. Perturbed case: ν 
= 0. We first show that there exist bounded
destabilizing perturbations justifying why it is worth to design robust schemes.
Consider the scalar case and the following system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
e = φw + ν

Dαφ = −ew

w = e

ν = 1.

Consider 0 < α ≤ 1. Since Dαφ(t) = − 1
(1−φ)2 ≤ 0 for all t ≥ 0,

either φ is bounded or diverges to −∞. However if a < φ(t) < b for
some a, b ∈ R then c < Dαφ < d < 0 for negative numbers c, d ∈ R.
By α-integrating Dαφ < d we obtain a contradiction since φ converges
and in particular it is bounded at infinity. Then φ diverges to −∞ and
limt→∞ e = limt→∞ ν

1−φ = 0 (note that w is bounded).

Therefore, ν ≡ 1 is a bounded destabilizing perturbation when w = e.
Note that w is not persistently exciting since limt→∞w(t) = 0. A similar
construction was done in [15, §III.2] but for the integer Error Model of
Type II applied in adaptive control problem.

When α = 1, w is persistently exciting and ν ≡ 0, it was proved
in [14] that φ converges exponentially to zero. Hence, the state transi-
tion matrix Φ(t, t0) also converges exponentially to zero (recall that φ(t) =
Φ(t, t0)φ(t0)) and the solution to (3.1) can be written as
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φ(t) = Φ(t, t0)φ(t0)−
∫ t

0
Φ(t− τ, t0)ν(τ)w(τ)dτ, (3.3)

where νw is bounded since ν,w are bounded, the integral term of (3.3) is
bounded, whereby φ is bounded. We postulate for the system

Dαx(t) = A(t)x(t),

a matrix function Φ(t) so that x(t) = Φ(t)x(0) for any x(0) ∈ R
n; as

Caputo derivative is initialized at t = 0, there is no need to use Φ(t, t0)
since t0 = 0 is fixed. By α−differentianting x(t) = Φ(t)x(0) and given
that x(0) is arbitrary, function Φ(t) must satisfies DαΦ(t) = A(t)Φ(t) with
Φ(0) = I, the identity matrix. With this matrix one postulates as solution
to the system

Dαx(t) = A(t)x(t) + f(x(t), t),

the expression (generalizing (3.3) for α < 1)

x(t) = Φ(t)x(0) + Iα[Φ(t− ·)f(x(·), ·)](t). (3.4)

By taking Caputo α-derivative of (3.4) and using that DαIα[g(·)](t) =
g(t) for any g continuous function [6, Theorem 3.7], we obtain Dαx(t) =
A(t)x(t) + f(x, t). By uniqueness of the solution, we conclude that (3.4)
is the solution. However, in the revised literature there is no condition to
estimate the speed of convergence so to have Φ(t) ∈ L1 (see Remark 2.1(ii)).
In the proof of [10, Theorem 2] an estimate for the speed of convergence
of x can be deduced but it is not enough to conclude that Φ(t) ∈ L1 and
in [5, Lemma 3.1] non negative Lyapunov exponent were stated for linear
time varying Caputo fractional systems.

If w is persistently exciting or such that (3.2) holds. Then for bounded
perturbation ν in the error measurement, we have that the solution to
equation (3.1) remains bounded by applying Theorem 2.1 or Theorem 2.2
since νw is a bounded function, which gives a robustness result for adaptive
schemes without modifying the adaptive laws, and moreover, guaranteeing
that for decaying to zero disturbances their properties remains unchanged,
that is φ converges to zero.

3.3. Error Model of Type II. This model is defined by the system{
Dαe = Ae+ φTw + ν,

Dβφ = −ew,
(3.5)

where e, v : [0,∞) → R
n, w, v : [0,∞) → R

m and α, β are seen as vectors
of non negative components. In [9], implicit conditions were established
for the convergence to zero of e when α = β ≤ 1. Defining x = (eT , φT )T ,
γ = (αT , βT )T , system (3.5) is equivalent to
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Dγx =

[
A wT

−w 0

]
x+

[
ν
0

]
.

To apply the theorems of §2 guaranteeing convergence to zero of (e, φ)
if ν ≡ 0 and boundedness of (e, φ) if ν is bounded, we must write[

A wT (t)
−w(t) 0

]
≥ Λ +Q(t), (3.6)

for suitable Λ andQ. If, for example w, e are scalars, w = w0 
= 0 a constant

and A = −a < 0, then we can take Λ :=

[
−a w0

−w0 0

]
(its characteristic

polynomial is λ2+aλ+w2
0) and Q = 0. If w = w0+ q(t) where q converges

to zero or it is small enough, we define Λ+Q :=

[
−a w0

−w0 0

]
+

[
0 q
q 0

]
. Note

that ||Q(t)||F = |q(t)|||
[
0 1
1 0

]
||F = 2|q(t)| and condition supt≥T ||Q(t)|| <

1
C(α,A) means ||q||∞ small enough.

When α = 1, ν ≡ 0 and w is such that for all t > 0 and for all constant

unit vector u ∈ R
n there exists T0, ε with |

∫ t+T0

t uTw(τ)dτ | ≥ εT0, the
system is exponentially stable, whereby if ν is bounded x is bounded (see
e.g. [15]). It seems natural to look into the set of functions w. Note
that this condition implies that we can project w(t) = ±εu + q(t) where

q(t) is such that
∫ t+T0

t uT q(t)dτ ≥ 0. Then, we can write Λ + Q(t) =[
−a ±εuT

∓εu −μI

]
+

[
0 qT

−q μI

]
, where μ > 0 is chosen small enough. The

conditions for Q are similar as in §3.1.
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