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Abstract
We find exact solutions to Maxwell equations  written in terms of four-
vector potentials in non–rotating, as well as in Gödel and Kerr spacetimes. 
We show that Maxwell equations can be reduced to two uncoupled second-
order differential equations  for combinations of the components of the 
four-vector potential. Exact electromagnetic waves solutions are written 
on given gravitational field backgrounds where they evolve. We find that in 
non–rotating spherical symmetric spacetimes, electromagnetic waves travel 
along null geodesics. However, electromagnetic waves on Gödel and Kerr 
spacetimes do not exhibit that behavior.

Keywords: electromagnetic waves, curved spacetime, non-null geodesics

1.  Introduction

The equivalence principle (EP) is one of the cornerstones of general relativity. The EP is usu-
ally invoked when the propagation of light is studied. It is important to state that the EP applies 
to point–like objects only, i.e. to objects which are completely described by their spacetime 
position. Any particle with structure experiences tidal gravitational forces which modify its 
trajectories. Therefore, one can wonder if the EP can be used to fully explain the motion of 
extended particles, such as particles with spin [1–5]. Similarly, waves are extended physical 
objects, and in addition, photons have spin, which is related to the fact that electromagnetic 
(EM) waves have different polarization states which, in general, modify their propagation. 
Therefore, when the characteristic scales of the gravitational field and the wave are compa-
rable, the EP cannot be used to fully understand wave dynamics. The applicability of the EP 

F A Asenjo and S A Hojman

Do electromagnetic waves always propagate along null geodesics?

Printed in the UK

205011

CQGRDG

© 2017 IOP Publishing Ltd

34

Class. Quantum Grav.

CQG

1361-6382

10.1088/1361-6382/aa8b48

Paper

20

1

12

Classical and Quantum Gravity

IOP

2017

1361-6382/17/205011+12$33.00  © 2017 IOP Publishing Ltd  Printed in the UK

Class. Quantum Grav. 34 (2017) 205011 (12pp) https://doi.org/10.1088/1361-6382/aa8b48

https://orcid.org/0000-0002-7085-658X
https://orcid.org/0000-0001-6281-9861
mailto:felipe.asenjo@uai.cl
mailto:sergio.hojman@uai.cl
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/aa8b48&domain=pdf&date_stamp=2017-09-27
publisher-id
doi
https://doi.org/10.1088/1361-6382/aa8b48


2

on the study of EM waves is valid only in the high-frequency limit, where EM radiation is bet-
ter described by a massless particle which travels along null geodesics than by a wave model.

To unveil the realm of validity of the EP, we study the propagation of electromagnetic 
waves on curved spacetimes. Maxwell equations are

∇αFαβ = 0 , ∇αF∗αβ = 0 ,� (1)

where ∇α stands for the covariant derivative defined for a metric gµν, and Fαβ  is the anti-
symmetric electromagnetic field tensor, while F∗αβ  is its dual. If the electromagnetic field is  
written in terms of the four-vector potentials Aα, i.e. Fαβ = gαµgβνFµν and Fµν = 
∇µAν −∇νAµ, then Fµν = ∂µAν − ∂νAµ, where ∂µ is a partial derivative. With these defini-
tions, the equations ∇αF∗αβ = 0 are identically satisfied. The equation (1) to be solved are

∂α
[√

−ggαµgβν(∂µAν − ∂νAµ)
]
= 0 ,� (2)

where gµν is the inverse metric.
We deal with test electromagnetic fields which evolve on a given gravitational background 

field. Several exact solutions for Maxwell equations in curved spacetimes have been found 
[6–11, 13, 14]. One of the most interesting solutions of equation (2), due to their physical rel-
evance, are electromagnetic waves. We take waves to be described by Aµ = ξµeiS (or its real 
part), where ξµ is the amplitude and S  the phase of the wave [15, 16]. Both are real quantities 
and, in principle, both depend on space and time. The four-wavevector of the wave is defined 
by Kµ = ∇µS = ∂µS, where K0 is identified with the frequency of the wave, whereas Ki are 
the components of the (three dimensional) wavevector. The nature of the propagation of the 
electromagnetic wave is determined by a constraint satisfied by the four dimensional wave. 
For example, in vacuum flat-spacetime KµKµ = 0, and electromagnetic radiation evolves 
along null geodesics, i.e. the wave travels with the speed of light.

Usually, Maxwell equation  (2) are solved using the geometrical optics approximation 
(high-frequency limit) [6, 9, 15–17], where the wavelength of the wave is considered much 
smaller than any characteristic length scale of the gravitational field in which the wave evolves. 
Using this approximation, Maxwell equation (2) are solved perturbatively, and in this approx
imation, the electromagnetic plane wave solutions are described by [15]

KµKµ = 0 , ξµKµ = 0 , ∇µ (Kµξαξα) = 0 .� (3)

The first equation  implies that plane waves follow null geodesics, whereas the second one 
shows that the wave is transverse. The third one is the photon number conservation equation. 
Despite the simplicity of solution (3), there is no guarantee that an exact solution to equa-
tion (2) will satisfy the same conditions (3) for any given gravitational field.

The purpose is this work is to show that there exist particular wave solutions to Maxwell 
equations which do not evolve along null geodesics. Wave solutions have been studied previ-
ously [7–11]. Nevertheless, these results obtained previously do not include solutions such as 
the ones we present here, i.e. Aµ = ξµeiS light waves which may propagate along non–null 
trajectories due to rotation–polarization interaction, which as far as we know, is the first time 
that have been reported in the literature (in conjunction with a companion article [12], where 
the non–null trajectory effect is due to anisotropy–polarization interaction.) In several of these 
works [9–11], the analogy of the gravitational field with a medium (with its corresponding 
susceptibility and permeability) is exhibited in an explicit way. As electromagnetic waves 
in a physical medium can travel at speeds different from the speed of light in vacuum, and 
also present effects such as dispersion or birefringence, among others, one can wonder if the 
gravitational field can also modify the nature of propagation of light on curved spacetimes. 
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Therefore, it is the purpose of this work to find out whether electromagnetic waves can prop
agate along paths which are not null geodesics, and if other effects can emerge from the cou-
pling between electromagnetism and gravity.

2.  Electromagnetic waves in non–rotating spherically symmetric spacetimes

Before proceeding to find solutions propagating in Gödel and Kerr metrics, we show how 
the null geodesics propagation of light emerges from Maxwell equation (2) in non–rotating 
spherically symmetric spacetimes.

The following solutions are exact (i.e. they are obtained without using the eikonal approx
imation or any other kind of approximation) and they show that there are EM waves that travel 
at the speed of light, independent of their scales, for some spacetime backgrounds.

Examples of these background gravitational fields are Schwarzschild, Reissner–Nordstrom 
[15], Friedmann–Robertson–Walker (FRW) [18] and wormholes [19], for instance. We con-
sider a general symmetric metric in spherical coordinates (t = x0, r, θ,φ), such that

g00 = f (t)q(r) ,
grr = h(t)b(r) ,

gθθ = h(t)r2 ,

gφφ = h(t)r2 sin2 θ ,

�

(4)

where f (t), h(t), q(r) and b(r) are (up to now) arbitrary functions of t and r respectively. All 
other metric components vanish.

We can solve equation (2) in the Weyl gauge A0 = 0 for simplicity (although they can be 
solved without imposing any gauge). The time-component of equation (2) becomes a van-
ishing curl statement and thus it can be identically solved by introducing a new field χ that 
satisfies

∂θχ = −

√
− h

fqb
r2 sin θ ∂0Ar ,

∂rχ =

√
−hb

fq
sin θ ∂0Aθ ,

� (5)

since we have chosen to deal with fields with no φ-dependence of the fields (the φ-dependence 
can be determined by studying fields which are proportional to eimφ with an arbitrary param
eter m).

Similarly, the r- and θ-components of equation (2) are identically satisfied by the relation
√
−h

f
∂0χ =

√
q
b
sin θ (∂rAθ − ∂θAr) .� (6)

Equations (5) and (6) can be combined to produce the wave equation for the χ field

−

√
−h

f
∂0

(√
−h

f
∂0χ

)
+

√
q
b
∂r

(√
q
b
∂rχ

)

+
q
r2 sin θ ∂θ

(
∂θχ

sin θ

)
= 0 .

�

(7)

F A Asenjo and S A Hojman﻿Class. Quantum Grav. 34 (2017) 205011
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On the other hand, the φ-component of equation (2) decouples

−

√
−h

f
∂0

(√
−h

f
∂0Aφ

)
+

√
q
b
∂r

(√
q
b
∂rAφ

)

+
q
r2 sin θ ∂θ

(
∂θAφ

sin θ

)
= 0 .

� (8)
Equations (7) and (8) have the same form. In general, defining new time and radial coor-

dinates as τ =
∫

dt
√

−f/h, and ρ =
∫

dr
√

b/q, the previous equations become the flat-spa-
cetime wave equation ∂2

τAφ − ∂2
ρAφ = 0, where the Aφ solution may be written in a wave 

fashion as

Aφ = cos θ exp

(
iω

∫
dt

√
− f

h
± iω

∫
dr

√
b
q

)
,� (9)

where ω is a constant. The field χ has the same wave solution. This solution defines the wave-
vectors K0 = ω

√
−f/h, and Kr = ±ω

√
b/q, which satisfy

KµKµ = g00K2
0 + grrK2

r =
K2

0

fq
+

K2
r

hb
= 0 .� (10)

Therefore, all non–rotating spherically symmetric spacetimes have electromagnetic wave 
solutions travelling along null geodesics which are transversal waves AµKµ = 0. In gen-
eral for this case, if Aφ(t, r, θ) = cos θξ(r)eiS(t,r) is used in equation (8), where K0 = ∂tS and 
Kr = ∂rS , then for constant amplitude ξ, the wave follows null geodesics as in (10) and the 
photon number is conserved [15].

Let us consider the Schwarzschild and FRW spacetimes. The null-geodesic behavior of the 
light (10), implies that for Schwarzschild spacetime the wave dispersion relation is

K0 = ±
(

1 − 2M
r

)
Kr .� (11)

This solution corresponds to the well-known gravitational redshift effect. This dispersion rela-
tion can be written in the wave time τ as

ω =
∂S
∂τ

=
∂t
∂τ

K0 =
K0

1 − 2M/r
= ±Kr ,� (12)

from where it can be obtained that the wave moves with group velocity ∂ω/∂Kr = ±1 at the 
speed of light.

Similarly, for the FRW spacetime, the wave disperses as

K0 = ±
√

1 − kr2

a
Kr ,� (13)

which is the cosmological redshift for a Universe with curvature k = −1, 0, 1. In wave time τ, 
the wave has the dispersion relation

ω =
∂S
∂τ

=
aK0√

1 − kr2
= ±Kr ,� (14)

and in the FRW Universe the wave propagates at the speed of light ∂ω/∂Kr = ±1.

F A Asenjo and S A Hojman﻿Class. Quantum Grav. 34 (2017) 205011
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3.  Electromagnetic waves in Gödel spacetime

The Gödel metric describes a rotating Universe which features closed timelike curves. This 
metric is stationary [11, 20] and its components can be written in cartesian coordinates as

g00 = −1 = −gxx = −gzz ,

gyy = −2 + 4 exp(
√

2xΩ)− exp(2
√

2xΩ) ,

g0y =
√

2[1 − exp(
√

2xΩ)] ,

�

(15)

where Ω is a constant related to the angular velocity of the rotating universe (which reaches 
the flat spacetime limit when Ω → 0). All other metric components vanish.

The propagation of electromagnetic waves can be studied in a general fashion similar to 
the previous section. However, to explicitly show a simple solution for EM wave, we restrict 
ourselves to a particular solution of equation (2). Choosing Aµ(t, x) = Az(t, x)δµz, Maxwell 
equations reduce to

∂2
0Az +

1√
−gg00 ∂x

(√
−g∂xAz

)
= 0 ,� (16)

where g = − exp(2
√

2xΩ) is the metric determinant and g00 = 1 + 2 exp(−2
√

2xΩ)− 
4 exp(−

√
2xΩ). One can define the variable ζ = −e−

√
2xΩ/(

√
2Ω), to rewrite the equa-

tion (16) as ∂2
0Az + σ(ζ)∂2

ζAz = 0, where σ(ζ) = 2Ω2ζ2/(1 + 4Ω2ζ2 + 4
√

2Ωζ). We can see 
that the wave equation cannot be cast in a flat spacetime analogue version, and thereby, the 
null geodesic behavior of the light in Gödel spacetimes is ruled out. The function σ emerges 
as an effective wave velocity due to the spacetime rotation. To explicitly show this, let us go 
back to equation (16) and perform the wave ansatz Az(t, x) = ξ(x) exp[iωt ± iS(x)], where ξ is 
the wave amplitude and ω is a constant. The wavevectors are derivatives of the phase, K0 = ω 
and Kx = ±∂xS , which allow us to describe a transversal electromagnetic wave AµKµ ≡ 0. 
Using this ansatz, equation (16) becomes

KµKµ =
1

ξ
√
−g

∂x
(√

−g∂xξ
)

,

0 = ∂x
(√

−gKxξ
2) ,

�

(17)
where KµKµ ≡ g00ω2 + K2

x . The first equation is the dispersion relation of the wave determin-
ing the behavior of light. The second one is the photon number conservation, and it can be 
solved exactly to get

ξ =
ξ0

(−g)1/4K1/2
x

,� (18)

with arbitrary ξ0.
First, one can notice that in the high–frequency limit the amplitude variations are neglected 

compared to wave scale lengths [15]. Then, the dispersion relation (16) becomes KµKµ = 0.
However, if one tries to solve the system exactly, it can be shown that there are no consist-

ent exact solutions of the previous system with constant amplitude or with KµKµ = 0. For 
the latter case, equation (17) become three different and inconsistent conditions for the two 
variables Kx and ξ.

F A Asenjo and S A Hojman﻿Class. Quantum Grav. 34 (2017) 205011
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One can use solution (18) in the first of equation (17) to get the dispersion relation

g00ω2 + K2
x = −Ω2

2
− K′′

x

2Kx
+

3K′2
x

4K2
x

,� (19)

where ′ ≡ ∂x. From the previous exact dispersion relation, we can see that for Gödel space-
time this particular electromagnetic wave does not propagate in null geodesics. The exact 
geodesic behavior can be found by solving the differential equation (19) for Kx. This feature 
has its origin in the rotation of the spacetime, which modifies the path followed by photons. 
The null geodesic flat spacetime behavior can be obtained when Ω vanishes, as g00 → −1, 
g → −1, and Kx → ω constant.

It is illustrative to calculate the solutions of (19) in the case Ω x � 1. At second order in Ω, 
the solution to (19) is

Kx ≈ ω − 2Ω2x2ω +
3Ω2

2ω
sin2(ωx) ,� (20)

that allow us to recover the flat spacetime solution when x = 0 (the metric becomes flat at that 
point). This solution implies that

KµKµ = 3Ω2 sin2(ωx) ,� (21)

which is always positive. Thus, electromagnetic waves in a slowly rotating Gödel Universe 
propagates in space-like trajectories. This can be easily seen at small spacetime length scales 
ωx � 1, such that solution (20) simplifies to

ω ≈
(

1 +
1
2
Ω2x2

)
Kx ,� (22)

and the waves propagate with superluminal group velocity

∂ω

∂Kx
≈ 1 +

1
2
Ω2x2 � 1 ,� (23)

for 0 � Ωx � 1. This wave moves at the speed of light in the flat spacetime limit Ω → 0.
This somewhat surprising behavior of an electromagnetic wave solution stems from the 

rotational character of the spacetime under consideration. This phenomenon may be closely 
related to the fact that this metric admits closed timelike curves. Electromagnetic waves in 
Gödel spacetimes have been studied by Mashoon [11] in a general formalism. However, no 
explicit wave solutions were presented.

The EM field invariants can be readily obtained for the Gödel case. The approximated 
solution (22), with Ωx,ωx � 1, gives rise to an electric field F0z = ∂0Az , and a magnetic field 
Fxz = ∂xAz, both describing a non-null electromagnetic field in general. With the above solu-
tion, the invariant F∗µνFµν = 0, representing a transverse wave. However, the other invariant 
FµνFµν ∝ ωΩsin[2ω(t + x)] does not vanish in general. For t + x = nπ/(2ω), with n ∈ N, 
the EM field is null. On the contrary, for 0 < t + x < π/(2ω) the EM field has a region of 
magnetic dominance, and for π/(2ω) < t + x < π/ω the region is of electric dominance. In 
the flat spacetime limit, the EM field becomes always a null field.

Because of these new results regarding wave propagation in Gödel spacetimes, it is natural 
to inquire whether propagation of electromagnetic waves in Kerr spacetime presents similar 
features.

F A Asenjo and S A Hojman﻿Class. Quantum Grav. 34 (2017) 205011
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4.  Electromagnetic waves in Kerr spacetime

The stationary Kerr metric describes a rotating black hole of mass M and effective 
angular momentum a. It has non-vanishing metric components gµµ = gµµ(r, θ) and 
gφ0 = g0φ = g0φ(r, θ), with µ = {t = x0, r, θ,φ}. Explicitly, the metric in Boyer-Lindquist 
coordinates is

g00 = −1 + 2Mr/ρ2 ,

grr = ρ2/∆ ,

gθθ = ρ2 ,

gφφ = r2 + a2 + 2Mra2 sin2 θ/ρ2 ,

g0φ = −4Mar sin2 θ/ρ2 ,

�

(24)

where ρ2 = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2. In contrast to the two previous cases, now 
the metric depends on two spatial variables. We now show below that Maxwell equation (2) 
can be solved exactly for all of the potential components (without choosing a gauge) for the 
Kerr metric.

Write the four-vector potential components for this case as Aµ(t, r, θ), with no φ-dependence, 
for simplicity. With this assumption, the time-component of Maxwell equation  (2) can be 
understood as a vanishing curl statement and may thus be solved by introducing a new field 
χ = χ(t, r, θ) such that

∂θχ = −
√
−ggrr [g00 (∂rA0 − ∂0Ar) + g0φ∂rAφ

]
,

∂rχ =
√
−ggθθ

[
g00 (∂θA0 − ∂0Aθ) + g0φ∂θAφ

]
,

�
(25)

which identically satisfies the time-component of equation (2). The introduction of the new 
field χ also allows us to solve the r and θ-components of equation (2). Both equations reduce 
to one equation, namely,

∂0χ =
√
−ggrrgθθ (∂rAθ − ∂θAr) .� (26)

Finally, the φ-component of Maxwell equations may be written as

0 =
√
−g

g00

gφφ
∂2

0Aφ + ∂r

(√
−g

grr

gφφ
∂rAφ

)

+ ∂θ

(√
−g

gθθ

gφφ
∂θAφ

)
− ∂rβ∂θχ+ ∂θβ∂rχ ,

�

(27)

where β = g0φ/g00 = −g0φ/gφφ is related to the rotation rate of the black hole. On the other 
hand, as the metric is time-independent, from equations (25) and (26) we can find an evolution 
equation for the χ field

0 =
√
−g

g00

gφφ
∂2

0χ+ ∂r

(√
−g

grr

gφφ
∂rχ

)

+ ∂θ

(√
−g

gθθ

gφφ
∂θχ

)
+ ∂rβ∂θAφ − ∂θβ∂rAφ .

�

(28)
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Now, definining the complex potential Z± = Aφ ± iχ, equations (27) and (28) can be merged 
to

0 =
√
−g

g00

gφφ
∂2

0Z± + ∂r

(√
−g

grr

gφφ
∂rZ±

)

+ ∂θ

(√
−g

gθθ

gφφ
∂θZ±

)
± i∂rβ∂θZ± ∓ i∂θβ∂rZ± .

�

(29)

In this way, the problem of getting the solutions to the four Maxwell equation (2), is now 
reduced to solve the two uncoupled equation (29). Different from the cases on section 2, now 
it is the variations of spacetime rotation that couples the components of the EM potential. The 
different space and time derivatives of the fields Z± can be related to the polarizations of the 
EM wave. Thus, equation (29) take into account the polarization of the wave. This implies that 
different EM polarizations can couple to the black hole rotation through the derivatives of β. If 
the spacetime is static β = 0 (as in Schwarzschild case) this effect does not appear. This fea-
ture has been previously envisaged [11], but no exact solution for a wave was presented there.

Now, to find an EM wave solution, the polarization function is written as 
Z±(t, r, θ) = ξ±(r, θ)eiωt+iS±(r,θ), where ω is a constant and ξ± is the amplitude of the wave 
(in inverse length units). Anew, the four wavevector components are defined as K0± = ω, 
Kr± = ∂rS±, Kθ± = ∂θS±, and Kφ± = 0. Also notice that

AµKµ
± = g00ωA0 + grrKr±Ar + gθθKθ±Aθ �= 0 ,� (30)

in general for Kerr spacetime and, therefore, the wave is not transverse. Using this decomposi-
tion, equation (29) gives rise to the dispersion relation
√
−g

gφφ
Kµ

±Kµ± = ∓ ∂rβKθ± ± ∂θβKr±

+
1
ξ±

∂r

(√
−g

grr

gφφ
∂rξ±

)
+

1
ξ±

∂θ

(√
−g

gθθ

gφφ
∂θξ±

)
,

�

(31)

where Kµ
±Kµ± ≡ g00ω2 + grrKr

2
± + gθθKθ

2
±. Also it gives origin to the generalized photon 

number conservation law for Kerr spacetime given by

0 = ∂r

(√
−g

grr

gφφ
Kr±

)
+ ∂θ

(√
−g

gθθ

gφφ
Kθ±

)

+

(
2
√
−g

grr

gφφ
Kr± ∓ ∂θβ

)
∂rξ±
ξ±

+

(
2
√
−g

gθθ

gφφ
Kθ± ± ∂rβ

)
∂θξ±
ξ±

,

�

(32)

which can be cast in a more appealing fashion

0 = ∂r

[(√
−g

grr

gφφ
Kr± ∓ 1

2
∂θβ

)
ξ2
±

]

+ ∂θ

[(√
−g

gθθ

gφφ
Kθ± ± 1

2
∂rβ

)
ξ2
±

]
.

�

(33)

Two important limits must be analyzed. One must notice that as β → 0, equations (32) and 
(33) reduce to the Schwarzschild case discussed in section 2, where ξ → cos θ and Kθ → 0, 
and the EM propagates in null geodesics. On the other hand, on the high-frequency limit, 
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the scale lengths of the wave amplitude and the spacetime are much larger than those of the 
EM wave, and the gradient of β and ξ are neglected in (31). This is the eikonal limit, and the 
EM wave travels on null geodesics Kµ

±Kµ± = 0, whereas the dynamics of the amplitude is 
determined by equations (32) or (33).

Nonetheless, we can show that equation (33) can be solved exactly and use it, in princi-
ple, to determine the value of KµKµ by the dynamical equations. A consistent solution of  
equation (32) (or (33)) should specify the behavior of a wave travelling on a Kerr background. 
A particular solution to equation (33) is

√
−g

grr

gφφ
Kr± ∓ 1

2
∂θβ = ∂θξ± +

λ(θ)

ξ2
±

,

√
−g

gθθ

gφφ
Kθ± ± 1

2
∂rβ = −∂rξ± ,

�

(34)

where λ is an arbitrary function of θ. This solution has the correct Schwarzschild spacetime 
limit under the choices of ξ = ξ0, β → 0, Kθ → 0 and λ = ωξ2

0/ sin θ. From equation (34) we 
are able to find a solution for the wave amplitude that can be obtained by manipulating the 
equations of that set. In general, from equation (34), we get (for a non-constant amplitude)

ξ± = λ1/3
[

2
√
−g

gθθ

gφφ
Kθ± ± ∂rβ

]1/3 [
∂r

(√
−g

grr

gφφ
Kr±

)
+ ∂θ

(√
−g

gθθ

gφφ
Kθ±

)]−1/3

.

� (35)
It is remarkable that this amplitude solves the photon number conservation equation in Kerr 
spacetime. The same result may be gotten using equation (32). Thereby, solutions (34) and 
(35) can be used in dispersion relation (31) to finally yield
√
−g

gφφ
Kµ

±Kµ± = ∓ ∂rβKθ± ± ∂θβKr± +
1
ξ±

[
∂θ

(
β2 − g00

gφφ

)
Kr± − ∂r

(
β2 − g00

gφφ

)
Kθ±

]

∓ 1
ξ±

[
∂r

(√
−ggrr

2gφφ
∂rβ

)
+ ∂θ

(√
−ggθθ

2gφφ
∂θβ

)]
− 1

ξ3
±
∂θ

(√
−ggθθλ
gφφ

)
∓

√
−ggθθλ∂θβ

gφφξ4
±

+
2λ
ξ4
±

(
β2 − g00

gφφ

)
Kr± − 2

√
−ggθθλ2

gφφξ6
±

,

�

(36)

where the terms ξ±, ξ3
±, ξ4

± and ξ6
± in (36) must be replaced using equation (35).

We can see from the above dispersion relation that the wave has Kµ
±Kµ± �= 0, and con-

sequently the electromagnetic wave does not travel along null geodesics and exhibits birefrin-
gence. The proper behavior of the wave can be found by solving the differential equation (36) 
for S±. It is worth noting that both evolution equations for Z+ and Z− couple differently to 
the derivatives of β so, the solutions for each polarization state are different, in general. This 
effect is a direct consequence of the coupling of light polarization and the rotation of the 
central mass. In this way, light can travel along different paths at different speeds depending 
on its polarization. This an effect suggested by Mashhoon [11] and it is analogous to the well 
known Faraday rotation effect in plasmas [21]. On the other hand, this polarization-gravity 
coupling effect is intimately related with photon spin coupling to gravitational fields studied 
in [5] from a classical viewpoint.

An approximate solution can be found for slowly rotating a � 1 black holes with EM 
waves propagating in such a way that wave vectors are almost parallel to the black hole angu-
lar momentum vector. For an EM wave with constant frequency ω, the solution of equa-
tions (31) and (32), for θ ≈ 0, has an amplitude with the form
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ξ± ≈ cos θ
[
1 ∓ a η

2ω3 cos (2ω [r + 2M ln(r − 2M)])
]

,� (37)

(where η is a constant) and wave-vectors

Kr± ≈ rω
r − 2M

[
1 ± a η

ω3 cos (2ω [r + 2M ln(r − 2M)])
]

,

Kθ± ≈ 0 .
�

(38)

Notice that the solutions are different because of the polarization of the EM wave. This 
implies that the EM wave propagation is timelike or spacelike depending on the polarization

Kµ
±Kµ± ≈ ± 2ra η

ω(r − 2M)
cos (2ω [r + 2M ln(r − 2M)]) .� (39)

For a = 0, we recover the null geodesic behavior of the propagation of EM waves on a 
Schwarzschild background. On the other hand, in the eikonal limit ω → ∞ we also recover 
the null geodesic behavior Kµ

±Kµ± = 0.
Finally, the above (approximate) wave solution represents a non-null electromagnetic field 

in general, as the two EM field invariants are now proportional to a. With the assumptions 
used to obtain the solutions (37)–(39), we obtain the invariant F∗µνFµν ∝ aF(t, r), where 
F = r sin(ωY)[cos(ω(3Y − 2t)) + sin(ω(3Y − 2t))]/(ω(r − 2M)) is a function on time, 
radial distance to the black hole, and Y ≡ r + t + 2M ln(r − 2M). Similarly, the invariant 
FµνFµν ∝ aG(t, r), where G = cos(2ω(Y − t)) sin(2ωY)/(rω2(r − 2M)). In general, both 
invariants do not vanish. Under the above approximations, this non-null field implies that 
in some reference frame, the electric and magnetic fields can be parallel. This is related to 
the non-transversality of the wave (30). However, the particular behavior of the invariants 
strongly depend on the functions F  and G . For instance, when Y = nπ/ω, with n ∈ N, both 
F = 0 = G, and the EM wave becomes a null field. Otherwise, the EM field can present 
regions of electric or magnetic dominance. Lastly, in the Schwarzschild spacetime limit, the 
EM field becomes a null field always.

5.  Discussion

DeWitt and Brehme [22] obtained in 1960 results which are similar, but not equivalent, to 
ours. They used bitensors to properly define Green’s functions to solve the scalar and Maxwell 
equations on a given general curved background. Their solutions exhibit ‘tails’ inside the light 
cone which were attributed to scattering of the scalar and Maxwell waves with the gravita-
tional field. Nevertheless, their results do neither predict the EM wave polarization–black hole 
rotation coupling nor the superluminal propagation of electromagnetic waves.

The propagation of light along null geodesics is an exact result for plane waves propagating 
in vacuum flat spacetimes [23], or an approximate geometrical optics limit for light propaga-
tion in curved spacetimes. However, we have shown that beyond this approximation, in Gödel 
and Kerr spacetimes, this behavior changes and the electromagnetic wave does not follow null 
geodesics. This is due to the rotational nature of the spacetime (i.e. non-diagonal components 
of the metric) that produce an effective anisotropic medium where the photons propagate. In 
those cases, the nature of the EM field is non-null in general for the approximated solutions 
presented in previous sections. However, a more refined calculation for the exact invariants for 
the EM waves is lacking here, and it is left for future works.

Therefore, there appears to be no single speed of light, but electromagnetic radiation 
propagates with different speeds (different KµKµ values) depending on the interaction of its 
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polarization with the gravitational background. One may still define the speed of light which 
corresponds to waves which propagate obeying KµKµ = 0. This remarkable result could have 
strong implications in astrophysics, where accurate measurements of the speed of light are 
crucial.

Yet, the more striking new idea emerges from equation  (36) for Kerr metric, where the 
importance of the light polarization in the wave propagation is explicitly shown. This new 
phenomenon also exhibits the spacelike character of the wave vectors. It is well known that 
the polarization of a wave affects its propagation properties in a medium [16, 21], but to the 
best of our knowledge, no such predictions have been reported for EM waves travelling in 
vacuum in curved spacetime. Nevertheless, the relevance of the polarization of an electro
magnetic wave in flat spacetime has been put in manifest in experiments showing that struc-
tured light waves (not plane waves) can travel in vacuum slower than speed of light [24, 25]. 
Furthermore, it has been recently observed that quantum effects produce birefringence of EM 
waves in vacuum [26].

Images of celestial objects in which black holes act as gravitational lenses might be obtained 
in the near future by using interferometers such as the GRAVITY ESO VLTI described in  
[27, 28], for instance. One way to put our prediction to test is to get images of celestial objects 
which emit both circular polarizations, so that their different propagation can be directly com-
pared by their different states of polarization. At least two different images should be obtained 
as a consequence of the different trajectories followed by waves with different kinds of polari-
zation. Long wavelengths, i.e. radio frequencies waves seem to be the best candidates to show 
such an effect.

In conclusion, the gravitational field can alter the path that an electromagnetic wave fol-
lows. For the above discussed phenomena to be significant, in general the EM wavelength 
and the curvature length scale must be comparable for the non-geodesic propagation of light. 
One can imagine that the measurements of these effects on astrophysical length scales would 
be difficult due to the very low frequencies of EM waves. However, due to the effective 
medium produced by gravity, the wave is dispersive, i.e. the relation between wavelengths 
and frequency is not trivial, and the frequency can be higher than expected. On the other hand, 
there are other effects not directly related to the frequency but to the EM wave polarization, 
such as the coupling of polarization to the black hole rotation. And there even exists a cou-
pling between polarization and the anisotropy of spacetime itself [12]. Thus, all the above is 
extremely relevant for the understanding of the evolution and interaction of electromagnetic 
fields with matter at large scales in the Universe.
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