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Abstract. We study theoretically the primary and secondary instabilities undergone by the stationary
periodic patterns in the Lugiato-Lefever equation in the focusing regime. Direct numerical simulations
in a one-dimensional periodic domain show discrete changes of the periodicity of the patterns emerging
from unstable homogeneous steady states. Through continuation methods of the steady states we reveal
that the system exhibits a set of wave instability branches. The organisation of these branches suggests
the existence of an Eckhaus scenario, which is characterized in detail by means of the derivation of their
amplitude equation in the weakly nonlinear regime. The continuation in the highly nonlinear regime shows
that the furthest branches become unstable through a Hopf bifurcation.

1 Introduction

Nonlinear optics has become an active research field since
the introduction of the laser in 1960, which gave rise
to a great development of optical experimental instru-
ments. In addition, devices including all types of fiber
cavities [1], cavity metamaterials [2,3], Kerr optical fre-
quency combs [4] and liquid crystals have a wide range of
applications [5] extending from metrology to the storage or
transmission of information. Generally speaking, theoreti-
cal modelling of most of these physical systems is a compli-
cated task. A strategy to overcome this difficulty is to de-
rive a reduced model that describes the original system [6].
The Lugiato-Lefever equation (LL) [7] belongs to this class
of reduced models. It is the prototype model that accounts
for the dynamics in an externally driven cavity composed
of a medium with Kerr-type nonlinearity. A large variety
of dissipative structures have been singled out or studied
by means of the LL equation in many physical areas in
both one- and two-dimensional systems. Examples include
localised structures or cavity solitons [8], fronts [9] and pe-
riodic patterns [1,10,11]. In the one-dimensional case the
homogeneous steady solution undergoes a Turing insta-
bility giving rise to periodic patterns. Near the threshold,
the patterns are stationary and they can be approximated
by the solution of the linearized equation [7]. Hence, the
characteristic length scale of the pattern is well described
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by means of the linear stability analysis of the homo-
geneous steady state. The dynamical evolution of these
Turing rolls in the weakly nonlinear regime has been de-
scribed by means of the Ginzburg-Landau equation, which
exhibits Eckhaus instabilities [12]. The derivation of the
amplitude equation relies on an effective separation of spa-
tial scales. However, numerical simulations show that the
periodicity provided by the linear stability analysis fails to
describe the instability in a large region of the parameter
space [13].

The aim of the present paper is to study one of the
simplest aspects of this equation: the bifurcations of the
stationary patterns in a one-dimensional periodic system.
The investigation undertaken here is numerical and theo-
retical. The numerical tools used are continuation through
direct numerical integration and pseudo arc-length con-
tinuation, which permits one to follow the integrity of a
solution branch when one parameter is varied. Our nu-
merical simulations suggest that the stationary patterns
undergo abrupt changes of wavelength in the parameter
space composed by the driving strength and the detuning.
This phenomenon is called the Eckhaus instability [14].
Comparisons between both methods show an excellent
agreement. By means of the normal form procedure, we
derive a Ginzburg-Landau amplitude equation from the
original LL model. Considering the amplitude equation
obtained, we use the analysis described in [15] to predict
the occurrences of the Eckhaus instability. Close to the
primary instability, the theory predicts well the first few
transitions.

The article is organised as follows. In Section 2, we give
a short description of the LL equation and a summary
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of the results obtained using analytical techniques. Sec-
tion 3 is devoted to the numerical part of our study. We
start the section with a description of the numerical meth-
ods used and then we study the dynamical evolution of
the pattern when the detuning and injection parameters
are varied. In both cases the Eckhaus instabilities are ob-
served. In Section 4, we derive the normal form which
allows us to predict the appearance and stabilization of
the branches in the Eckhaus instability. Finally, in Sec-
tion 5, concluding remarks and discussion of our results
are provided.

2 The Lugiato-Lefever (LL) model

The Lugiato-Lefever model [7] is an equation widely used
in nonlinear optics. It describes the spatio-temporal evo-
lution of a complex field (an electric field in the optical
context). This model is derived from the Maxwell-Bloch
equations (used in bistable optical resonators) by using
the mean field approximation, the adiabatic elimination
of the atomic variables and the idealization of a purely
dispersive medium (no absorption). The solutions of the
LL model show remarkable agreement with the behaviour
of light in many optical devices.

In one-dimensional systems, the LL equation reads as
follows:

∂tψ = −ψ + iη
(|ψ|2 − θ

)
ψ + i∂xxψ + F. (1)

In an optical setting, the parameters θ and F are real and
they represent the detuning and the amplitude of the light
input field, respectively. The parameter η only takes the
values ±1 and accounts for a focusing (+1) or a defocusing
(−1) nonlinearity. ψ stands for the slowly varying envelope
of the electric field within the optical cavity. The variable
t stands for the time and x for the spatial component.
We restrict ourselves to the self-focusing case (η = 1), so
that (1) becomes

∂tψ = f(ψ; θ, F ) = −(1 + iθ)ψ+ i|ψ|2ψ+ i∂xxψ+F. (2)

Writing ψ = R+ iS, equation (2) becomes

∂tR(x, t) = −R+ θS − (R2 + S2)S − ∂xxS + F,

∂tS(x, t) = −S − θR + (R2 + S2)R + ∂xxR. (3)

Let ψh be a homogeneous steady solution of the LL equa-
tion. Then, setting I0 = |ψh|2 one has:

F = Fh =
√
I0 (1 + (θ − I0)2), (4)

and

Rh =
F

1 + (I0 − θ)2
, Sh =

F (I0 − θ)
1 + (I0 − θ)2

. (5)

It results from (4) that the number of branches of the
bifurcation diagram of the homogeneous steady state is
controlled by the detuning parameter θ. Indeed, for θ <√

3 (θ >
√

3) the system is monostable (bistable).

(a)

(b)

Fig. 1. (a) Domain of stability for steady solutions of the LL
Model. On the right of the dashed line (θ =

√
3) two stable

solutions coexist. The parabola centered on θ = 1 marks the
locus where a spatial instability takes place. In the parameter
subset lying over the parabola, spatially periodic patterns are
observed. The red lines show the paths we chose to explore in
the next sections, more precisely (θ = 0.6, F ) and (θ, F = 1.2).
(b) Contour plot of |ψ(x, t∗)| at t∗ = 10 000 of the states ob-
served from direct numerical integration in the space (horizon-
tal line) over path 1 as F (vertical axis) is increased.

Linear stability analysis of the solution ψh predicts the
existence of a Turing instability with the critical wavenum-
ber kc =

√
2 − θ for I0 ≡ Ic = 1. Consequently, the bound-

ary between the stable and unstable regime is given by:

F 2 ≡ F 2
c (θ) = θ2 − 2θ + 2. (6)

Figure 1a shows this separatrix in the plane (θ, F ). Along
this curve, the marginal eigenmode can be written as:

Ψ c = w
(
Aeikcx + c.c.

)
, (7)
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where w = (θ, 2−θ)T , A is an undetermined complex con-
stant and the symbol c.c. stands for complex conjugate.
The Turing instability is a codimension-one bifurcation
which gives rise to the appearance of spatial patterns.
Along the critical curve (6), there is a codimension-two
point where the bifurcation for the amplitude A of the
patterns changes from subcritical to supercritical. This
point is found by means of an amplitude equation (see
Sect. 4). In the subcritical case of the LL model two types
of localised structures have been observed: localised pat-
terns (homoclinic snaking) and soliton-like (single-peak)
structures (see Refs. [16–19] for details).

In the following study of the LL model, we compare
direct numerical simulations, continuation of the station-
ary solutions and analytical calculations obtained from the
linear stability analysis and the amplitude equation. The
linear stability analysis is a good tool to predict wavenum-
ber selection at onset. Unfortunately, it fails to describe
the wavelength selection far from the threshold. Here, we
propose to follow this selection process in a large region of
the parameter space. More specifically, we study the evo-
lution of the patterns when F and θ are modified. For this
purpose, we have chosen two paths displayed in Figure 1a:
the path 1 (path 2) which accounts for the evolution with
respect to F (θ) for fixed θ (F ).

The value θ = 0.6 in path 1 has been chosen so as to
stay in the supercritical region (θ < 41/30) where the am-
plitude equation is in quantitatively good agreement with
the solution of (2) and then the comparison between the
amplitude equation and the numerical observations can be
performed (see Sect. 4). Moreover, since path 1 is in the
monostable and supercritical case, there are no other sta-
ble solutions to which the direct numerical simulation can
converge and the computations can be easily reproduced.

For path 2, we fixed F at 1.2 in order to spot a
sufficient number of interesting phenomena without be-
ing overloaded by data, since the number of stationary
branches increases rapidly with F .

3 Numerical results

In general, the structure of the solutions of an evolution
equation like (2) can be partly captured by studying its
stationary version, which reduces to solving f(Ψ ; θ, F ) = 0
in (2). The set of stationary solutions of (2) is sought
by means of a continuation method described below. A
preliminary direct numerical integration in the same range
of parameters helps us to foresee the structure of these
stationary solutions.

Numerical continuation methods are designed to follow
a specific branch of solution over its whole range of exis-
tence, assuming that two points of the branch are already
known. In this description, we assume F to be the control
parameter while θ is fixed. The most successful method is
called Predictor-Corrector pseudo arc-length continuation
method (see for example [20] or [21]) and consists of two
distinct steps. First, a predictor step estimates a new point
of the branch in the (F,Ψ ) space from existing points.
Second, the estimation is refined through a corrector step
where the stationary version of (2): f(Ψ ; θ, F ) = 0 is trans-

formed into a system of algebraic equations using finite
differentiation. The closure of the system, which also con-
tains the control parameter as an unknown, is ensured by
fixing a hyperplane in the parameter-phase space to which
the direction of each correction step is restricted [21]. The
algebraic system is then solved by means of a Newton-type
method. In the case of large systems, matrix-free solvers
can be used [22]. These methods do not require the ex-
plicit knowledge of the Jacobian matrix involved in the
corrector step.

Continuation methods are in general more accurate
and converge faster than direct integration. In addition,
they compute unstable as well as stable solutions. The
stability of a solution is accessible through the Jacobian
matrix of f . While a branch is continued, the systematic
application of simple criteria (see [23] for details) permits
one to find and identify bifurcations or branching points.
The direction of the new branches emerging from these
points can be computed analytically in some cases [23] or
by perturbing f near the bifurcation and switching back
to the unperturbed f after the bifurcation is passed. Fi-
nally, note that numerical continuation methods do not
only find equilibrium solutions, but also limit cycles, in-
variant tori [24] and heteroclinic orbits [25]. Numerous
open source packages specialized in continuation have also
been developed during the last decades (e.g. AUTO, MAT-
CONT, COCO, pde2path).

The results obtained through the pseudo arc-length
continuation are compared with direct numerical integra-
tions. At each increment of the control parameter, the final
solution at the previous value of the parameter is taken as
the initial condition for the new computation. In this way
the solution stays on the same branch until it becomes
unstable.

For our model, we have developed direct numerical in-
tegration and continuation codes. In both, space is dis-
cretized with a sixth-order centered scheme and the di-
rect numerical integration uses an explicit fourth order
Runge Kutta method with fixed time step ofΔt = 10−2 to
approximate the temporal derivative. Periodic conditions
are used at each boundary of the domain whose length
is L = 100, using a mesh of 512 points. Numerical inte-
grations with 1024 points have also been performed and
showed similar results.

3.1 Results along path 1 (θ = 0.6, F)

Before going any further on the application of the continu-
ation method along path 1, let us observe the evolution of
the stationary Turing pattern. In Figure 1b, the result of
successive numerical integrations of (2) is presented. We
observe that the changes of the wavenumber of the pattern
are discontinuous. Far from the threshold, the state be-
comes unsteady and loses its spatial regularity simultane-
ously, entering a complex dynamical regime whose charac-
terization is out of the scope of this work. Some attempts
have been made to understand this scenario [12]. Here we
apply the pseudo arc-length continuation method detailed
above, starting from the trivial homogeneous solution
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F = R = S = 0 and increasing F . The output then con-
sists of the modulus of the spatial average ||〈Ψ 〉x|| = |〈ψ〉x|
of the solution and an integer number np = L/λ0, where
λ0 is the wavenumber of the pattern under continuation.
Figure 2a exhibits the result of these calculations. The
main feature of this figure is the multiplicity of possible
patterned solutions supported by the system. In addition,
the continuation is also able to capture the stability of
the branches found. The stability range of each branch
is drawn as a solid red curve bounded by two symbols
which represent the points where a bifurcation takes place
(� symbols for a stationary bifurcation and � symbols for
a Hopf bifurcation). The numerical integration of the LL
equation (2) along path 1 (� of Fig. 2a) shows the selec-
tion of one pattern, which changes its wavelength only
sporadically and in a discontinuous fashion, as observed
in Figure 1b.

The numerical continuation reveals the richness exhib-
ited by the spatial system. First, for F lower than the
critical value given by (6), only the homogeneous equilib-
rium exists. Second, after the critical value, a bifurcation
takes place giving birth to a patterned solution. Further
increasing of the forcing repeats this process, giving rise
to several other branches of patterned solutions. All but
the first branch are unstable when they emerge from the
homogeneous branch. The continuation of the branches
for larger values of F leads to their stabilization via a sta-
tionary bifurcation (represented by � symbols in Fig. 2a).
The resemblance between this scenario and the Eckhaus
instability [14,15] is evident. The Eckhaus instability con-
sists of a discrete jump in the wavelength of a stationary
solution (spatially periodic) when the control parameter
is varied. In our study, all the bifurcations between two
different periodic patterns appear to be of the Eckhaus
type, hence we will call them indifferently stationary or
Eckhaus bifurcations.

The branches of stationary patterns with the largest
wavenumbers lose their stability through a Hopf bifurca-
tion. Interestingly this fixes an upper limit for the station-
ary equilibria. The value of F where dynamical solutions
arise is consequently dependent on the branch that was
followed before the jump. In Figure 2a we can observe how
for F ≈ 2.2 a Hopf bifurcation destabilizes the last stable
branch of stationary patterns. Once the dynamical states
have risen, the continuation process used here no longer
provides a good description of the dynamics observed.

In addition to representing the solutions by their spa-
tial average, we display the number of wavelengths np. In
Figure 2b the region of existence for the various branches
has been depicted in the (F, np) plane. The route along
path 1 followed by the pattern calculated through suc-
cessive direct integrations of (2) (blue rhombs) shows the
correlation between the branches in Figure 2a and their
wavelength in Figure 2b.

Experimental optical observations [26] suggest that the
wavelength depends continuously on the parameter in-
stead of undergoing finite jumps at discrete locations. In
order to understand this, we note that these experiments
generally contain a huge number of wavelengths, and

(a)

(b)

Fig. 2. (a) Continuation of the steady solutions as a function
of F : all the branches presented are stationary. The primary
branch corresponds to the homogeneous solution and is or-
ange/blue when stable/unstable. The rest of the branches cor-
respond to stationary solutions differentiated from each other
by their periodicity np noted over each branch. The stable
branches have been plotted in red and the unstable ones in
black. The changes of stability take place through stationary
or Hopf bifurcations, represented by the � and � symbols re-
spectively. The � symbols represent results of direct numerical
integration following a route up. (b) Intervals of existence (red
symbols for pseudo arc-length continuation results, black line
for theory) and stability (black symbols) of the branches of pe-
riodic patterns as a function of their wavelength. In this repre-
sentation, the branches are all the horizontal lines of equation
L/λ = np(np ∈ N) lying inside the tongue. The symbols ◦ rep-
resent the value of F at which a branch begins its existence
(red) or stabilizes (black). The + symbols represent points
where a branch destabilizes (black) and disappears (red for
continuation results, black line for theory). The letters S and
H next to the destabilization points signify that the transition
occurs through a stationary or a Hopf bifurcation, respectively.
The � symbols show which branch of solutions is followed dur-
ing the route up as in (a).
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Fig. 3. (a) Part of the spectrum of the Jacobian at the bifur-
cations where the branches np = 20 (on the left, stationary bi-
furcation) and np = 21 (on the right, Hopf bifurcation) become
unstable. The spectrum is symmetric about the real axis and so
the eigenvalues with a negative imaginary part are not shown.
Insets: zoom at �(γ) = 0. (b) Destabilizing eigenmode (δR, δS)
at the same bifurcations as shown in (a). Top: for np = 20, δR
(in black) and δS are both real. Middle plot: real (solid line)
and imaginary (dots) part of δR on the branch np = 21 at the
bifurcation. Bottom: real (solid line) and imaginary (dots) part
of δS at the same location. Since eigenvectors are defined up
to a constant, the vertical axis ticks have been removed. The
middle and bottom plots have the same scaling. (c) Norm of
Fourier transform of eigenvector shown in (b) (top), associated
with np = 20, with same conventions for colors. The numbers
above each peak indicate its wavenumber.

hence the effects of discretization are far less noticeable
than in our simulations, whose domains contain a much
smaller number of wavelengths. A change in wavenum-
ber takes place each time the parameter is varied, even
slightly, which gives the impression of continuous alter-
ation of the light frequency inside the experimental device.

The set of eigenvalues γ at the transitions on the bran-
ches np = 20 (stationary bifurcation) and np = 21 (Hopf
bifurcation) are compared in Figure 3a, as well as the

Fig. 4. Contour plot of |ψ(x, t∗)| at t∗ = 10 000 of the states
observed from direct numerical integration in the space (hori-
zontal line) at F = 1.2 (path 2) and for decreasing θ (see also
� symbols in Fig. 5).

destabilizing eigenfunction in Figure 3b. The neutral mode
of eigenvalue γG = 0 on the spectra of Figure 3a is the
Goldstone mode, associated with the translational symme-
try of the LL model broken by the pattern. This mode is
present on all stationary branches and remains constant as
long as these branches exist. The mode responsible for the
transitions is never the Goldstone mode but that related to
the eigenvalues traversing the imaginary axis rightwards,
surrounded by black circles in Figure 3a. The destabiliz-
ing mode in Figure 3b contains two distinct scales: a small
scale comparable to the wavelength of the pattern and a
larger one that modulates the mode. The Fourier trans-
form of the destabilizing mode on the branch np = 20
(Fig. 3c) indeed exhibits isolated peaks at the spatial fre-
quencies L/λ = ±1,±19,±21,±39,±41, . . . This feature
seems to be shared by the critical eigenmodes at each sta-
tionary bifurcation in Figure 2 (� symbols): the mode
destabilizing the branch np contains exclusively the low
wavenumber L/λ = 1, the larger ones np ± 1, 2np ± 1, . . .
and their negative counterparts. This is characteristic of
the Eckhaus instability.

Comparison with the direct integration suggests that
the low wavenumber of the destabilizing mode is corre-
lated with the jump of wavenumber only at the lowest val-
ues of F (see Fig. 2 where the solution jumps directly from
np = 20 to np = 22). Similar results have been reported in
other contexts like experimental electroconvection [27] or
numerical simulation of Taylor vortices [28] and are hence-
forth not surprising. The type of bifurcation changes (sta-
tionary → Hopf) when the marginal eigenvalues (as well
as the corresponding eigenvector) become complex (see
Figs. 3a and 3b), inducing oscillatory dynamics.

3.2 Results along path 2 (θ, F = 1.2)

The same study is carried out along the path where only
the detuning θ varies, with a constant F = 1.2. In Figure 4,
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Fig. 5. Part of the bifurcation diagram over path 2 (θ, F = 1.2). Same conventions as in Figure 2. In addition, period-doubling and
period-tripling branching points are observed, denoted by green ◦ and orange ✩, respectively. Two direct numerical integrations
have been conducted: by increasing θ (� symbols) and by decreasing θ (� symbols). This plot displays all the branches of highest
wavenumbers and those which eventually become stable to make the comparison between simulation and continuation easier.
The remaining branches are represented in Figure 6.

θ
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Fig. 6. Part of the bifurcation diagram over path 2 (θ, F = 1.2)
that completes Figure 5. The plot shows the branches of low
wavenumber which are all unstable. They have been plotted in
black (np even) and dark green (np odd) to make them easier
to follow. Portions of the branches of Figure 5 emanating from
the branching points (◦ and ✩) appear here with dotted gray
or pink lines according to their stability.

the patterns remain stationary all along the chosen θ range
and are homogeneous at both endpoints of the θ range.

As for path 1, we compare the results of the numerical
integration with those of the continuation in the bifurca-
tion diagram presented in Figures 5 and 6. The diagram
has been split into two for the sake of legibility. The bifur-
cation diagram obtained in Figures 5 and 6 exhibits many

similarities with its counterpart along path 1 (Eckhaus bi-
furcations, multistability, Hopf bifurcations leading to un-
steady states) but fundamental differences need also to be
mentioned. The homogeneous branch destabilizes at a sec-
ond threshold θ ≈ 1.664, where the bifurcation is subcrit-
ical and multi stability is observed between the homoge-
neous state and stationary patterns. Period-doubling and
period-tripling branching points absent from Figure 2a
appear in Figures 5 and 6 but they are never located on
the stable part of any branch, at least for this value of F .
For this reason we name them branching points, not bifur-
cations. We also observe that the period-doubling points
always terminate the branch with long (double) wave-
length. In contrast, the long (triple) wavelength branch
is continued at each side of the period-tripling branching
point. In fact, the continuation method shows that at the
period-doubling branching points the solution travels back
the long-wavelength branch taking the shape of a pattern
which is translated by half a wavelength in comparison
to the solution travelling forth the branch, as shown in
Figure 7 left. Both solutions are exactly equivalent and
consequently they have the same norm |〈ψ〉x|. In con-
trast, continuing a branch further period-tripling points
leads to other solutions that cannot be superposed to the
initial ones up to a translation (see Fig. 7 left, at each
side of the dotted line). These results suggest that the
period-doubling branching points would support pitchfork
bifurcations, whereas the period-tripling branching points
would be associated to transcritical bifurcations. Also, the
branches characterized by the wavenumbers np ∈ [5, 12]
appear at two distinct locations, which was not the case
over path 1. Again, the direct integrations (both upwards
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Fig. 7. (a) Special branches of Figures 5 and 6 associated
with a period-doubling (np = 11, left) and a period-tripling
(np = 7, right) branching point. (b) Corresponding space arc-
length diagrams following the branches np = 7 (top) and np =
11 (bottom). The period-doubling and period-tripling point
positions are highlighted by the dashed red lines. The minimal
and maximal arc lengths correspond to the points shown as
symbol � and symbol �, respectively, in (a).

and downwards) lend support to the results stemming
from the continuation.

4 Analytical prediction of the Eckhaus
instability

The aim of this section is to provide an analytic interpre-
tation to the wavenumber selection process observed by
the continuation technique. For this purpose we use the
same strategy as in [12]. The first stage consists of the
derivation of the order parameter equation governing the
dynamical behavior in the weakly nonlinear regime, which
will be used to study the Eckhaus instability, leading to
the determination of the selected wavenumber. Following
the guidelines of [15], the whole analysis is performed on
the equation which governs the dynamics of the ampli-
tude A of the patterns. These patterns are approximated
by (7) according to the linear analysis. The amplitude
equation can be derived in the vicinity of the instability
by means of a weakly nonlinear analysis. We use a normal

form procedure [6,29]. Since this amplitude equation is de-
rived from (3) and admits solutions of the form (7), it must
be phase-invariant and possess the symmetry x → −x.
Hence, we know a priori that the equation will have the
form

∂tA = φC1A+ C3|A|2A+ Cs∂xxA, (8)

where all the coefficients C are real and φ 
 1 repre-
sents the small deviation of the control parameter from
the critical point. In this section we use F as our control
parameter, the critical value is given by (6).

In order to compute the spatial derivatives, we have
assumed the existence of two spatial scales (one for the
pattern and a slower one for the amplitude). We carry
out the aforementioned analysis by setting the following
change of variables:

(R,S) = (Rh, Sh)c + U [1,0,0] + U [2,0,0] + · · ·

+ U [1,1,0] + · · · + U [1,0,1] + U [1,0,2] + · · · (9)

where (Rh, Sh)c is the homogeneous solution at the crit-
ical point and the right hand side of this expression cor-
responds to a polynomial series in 3 variables [m,n, p]
standing for the orders of the amplitude, the unfolding pa-
rameter and the spatial derivatives ([O(|A|m), O(φn), ∂p

x])
respectively. Substituting (9) into (3), setting F = Fc + φ
and solving this problem order by order, we find the coef-
ficients

C1 = 2
Fc

(θ − 2)2
, Cs = 2(2 − θ),

C3 =
4
9

(30θ − 41)F 2
c

(θ2 − 2)2
. (10)

These coefficients are in good agreement with previous ob-
servations [7,16]. At (θcd2 = 41/30, Fc(θcd2)) C3 vanishes,
leading to a co-dimension 2 point where the bifurcation
passes from sub- to super-critical. In the particular case
of the path 1, the bifurcation is super-critical (C3 < 0) and
takes place in the direction of increasing forcing (C1 > 0).

All the terms involved in (8) must be of the same or-
der to play a significant role in the dynamics. Hence, the
following scaling laws must be satisfied

A ∼ φ1/2, ∂t ∼ φ ∼ ∂xx. (11)

Moreover, defining

τ = |C3|t, ξ =

√
|C3|x
Cs

, (12)

equation (8) becomes the Ginzburg-Landau equation

∂τA
′ = μA′ + sign(C3)|A′|2A′ + ∂ξξA

′, (13)
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where A′(τ, ξ) = A(t, x) and μ = φC1/|C3|. At θ = 0.6,
sign(C3) = −1 and then we can directly apply the analysis
of [15] to predict the values of F where new branches ap-
pear and stabilize. These predictions should work as long
as (8) describes the amplitude.

In the following, we use three results of [15] applied
to our case. In order to be clear and concise, we present
the same equation containing first the results for (13) and
then their counterpart that matches with (8).

First, there exists a family of patterns born unstable
and in a super-critical way from the homogeneous branch.
In a domain of size L′, these patterns have a wavelength
k′ = k′c + Q′ where k′c is the critical wavenumber of the
infinite system (13) and Q′ is such that k′ = 2lπ/L′, l ∈
Z (the prime is associated to the rescaled system (13);
the same variables without primes are linked with the LL
model). Such a branch appears at

μl =
C1

|C3|φ = Q′2, Fl = Fc +
Cs

C1

(
2πl
L

− kc

)2

. (14)

Second, given an integer l and the associated number Q′,
a branch becomes stable at:

μl,stab = 3Q′2 −
( π
L′

)2

,

Fl,stab = Fc +
Cs

C1

(

3
(

2πl
L

− kc

)2

− 1
2

(
2π
L

)2
)

. (15)

Finally, given an integer l and the associated number Q′,
a branch has an amplitude given by

A′
l =

√
μ−Q′2, Al =

√
−φC1 + CsQ2

C3
. (16)

The estimates for Fl from (14) and Fl,stab from (15) for
the Ginzburg-Landau equation are compared with our nu-
merical results for the LL model in Figure 8a.

We compare the amplitude of the patterns obtained
from LL with the amplitudes stemming from the normal
form. The results are shown in Figure 8b. We deduce A
from the norm of a given simulated pattern l by taking
its Discrete Fourier Transform with respect to x, extract-
ing the component of wavenumber k = kc + Q from the
series and dividing it by ||w|| (see Eq. (7)). It seems that
the results for A from the Ginzburg-Landau equation and
from the simulations of the LL equation fit well close to
the threshold. Nonetheless, they move rapidly apart from
each other.

The Ginzburg-Landau equation (8) is used to approx-
imate the LL model (2) near Fc, but it possesses prop-
erties that are not shared by (2). First, solutions of (8)
characterized by the wavenumbers kc + Q and kc − Q
have the same amplitude according to (8). Second, the
branches of solutions of (8) are all parabolas; thus for a
fixed wavenumber, A should be a monotonically increas-
ing function of φ. In contrast, our numerical calculations
show that there is a strong asymmetry between the pat-
terned solutions of wavenumbers k < kc and k > kc in the

L
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L
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F 
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(a)
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0.12
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0.16
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21

2219,
18,
20

21
22

18
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(b)

Fig. 8. (a) Values of Fl (◦ and lines) and Fl,stab (∗) for each
branch np. Comparison between the simulated LL model (black
symbols, same as ◦ in Fig. 2b) and its Ginzburg-Landau ap-
proximation (red symbols, see Eqs. (14) and (15)). (b) Am-
plitude of the pattern A as a function of F . Comparison be-
tween the branches of the Ginzburg-Landau approximation
(red dashed curves, see (16)) and the LL model (black lines).
All branches are labelled by their np value.

LL model (2). In (2), the patterned branches terminate
on the homogeneous state if F is sufficiently increased,
as shown in Figure 8b. We even observe that the real
part R of the solutions of (2) undergoes a rapid change
of sign, which implies that A is better approximated com-
puting it from S than from R. The branches of solutions
of (2) for wavenumbers lower than kc return very early to-
wards the homogeneous branch. As a result, they present
worse agreement than their counterparts with k > kc.
These qualitative differences between the solutions of the
LL model and those of the normal form approximation
may disappear if terms with higher powers of |A| and
higher derivatives ∂p

x are included in the normal form. Fi-
nally, note that the value of stabilization of the branches
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according to the Ginzburg-Landau model (red stars in
Fig. 8) is slightly below the marginal curve of the LL
equations (black line) for np ∈ [17, 19], and hence is not
meaningful since a branch cannot undergo a bifurcation
when it does not yet exist. At the threshold, np = 19, this
phenomenon is characteristic of the Eckhaus instability
in finite domains and has been discovered in [15]. Here,
the same phenomenon occurs at np = 17 and np = 18;
its cause is the asymmetry of the LL model with respect
to kc.

5 Discussion

The aim of our investigation was to describe the suc-
cessive bifurcations undergone by a solution of (2) be-
fore it became unsteady. In this direction, the contin-
uation provided a cobweb that consists of numerous
branches of static solutions each characterized by its
wavenumber. The transitions between these branches oc-
curs through Eckhaus instabilities as the parameter is
changed. Eckhaus instabilities have been reported in sim-
ilar systems (e.g. [30]). Dynamical states arise after one
of these branches destabilizes through a Hopf bifurcation.
This phenomenon occurs at large F values. These results
have important implications. Given the length of the sys-
tem, we can predict numerically where the transition be-
tween branches will take place as well as the upper limit for
the stability of the stationary states. Besides, by moving
back and forth the control parameter it must be possible to
control the wavenumber following the various paths in the
cobweb (cf. Fig. 2a) of branches. These numerical predic-
tions can be investigated experimentally. Furthermore, the
coexistence of several stable branches suggests the possible
presence of mixed modes [31] (fronts connecting patterns
with two distinct wave-numbers). These features can be
the subject of a future investigation.

The amplitude equation (8) describes the dynamics
only locally and does not account for the temporal oscil-
lations. In order to present oscillations the coefficients C
in (8) should be allowed to be complex, but this would
violate the symmetries inherited from (2). Consequently,
we know the normal form will work quantitatively in the
vicinity of the instability (it matches the first three in-
stabilities (cf. Fig. 8a)) but only qualitatively as we go
away from the instability, and eventually deviates entirely
from the behavior of the L-L equation. Since the normal
form fails to predict the Hopf bifurcations, proposing an
amended equation is an open question.

As a final remark, the dynamical states emerge due to
a Hopf bifurcation and it is therefore natural to assume
that these oscillations will play a fundamental role in the
complex dynamics observed for larger values of the forc-
ing. Actually, in [32] quasiperiodicity has been proposed
as the route towards chaos. This has been studied [33]
in a system which displays essentially the same features
as (2), including an Eckhaus scenario. For these reasons,
the most intriguing open question is whether the mecha-
nism of destabilisation, which starts with an Eckhaus sce-
nario followed by a Hopf bifurcation and the later appear-

ance of several frequencies ending in a spatio-temporal
chaotic behaviour, is the right route in this system. If the
route is the same here as in [33], then it is possible to pro-
pose that it is a robust mechanism for destabilisation of
extended systems in nature.
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