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A B S T R A C T

Docosahexaenoic acid (C22: 6n-3, DHA) is a long-chain polyunsaturated fatty acid of marine origin fundamental
for the formation and function of the nervous system, particularly the brain and the retina of humans. It has been
proposed a remarkable role of DHA during human evolution, mainly on the growth and development of the
brain. Currently, DHA is considered a critical nutrient during pregnancy and breastfeeding due their active
participation in the development of the nervous system in early life. DHA and specifically one of its derivatives
known as neuroprotectin D-1 (NPD-1), has neuroprotective properties against brain aging, neurodegenerative
diseases and injury caused after brain ischemia-reperfusion episodes. This paper discusses the importance of
DHA in the human brain given its relevance in the development of the tissue and as neuroprotective agent. It is
also included a critical view about the ways to supply this noble fatty acid to the population.

1. Introduction

Strong and wealth information have been accumulated about the
essentiality of n-6 and n-3 fatty acids since the first studies of George
and Mildred Burr in the late 1920s, demonstrating the importance of
lipids in the growth and development of the rat [1]. In the mid-1960s,
Hansen et al., regarded the essentiality of linoleic (C18: 2n-6, LA) and
alpha-linolenic (C18: 3n-3, ALA) fatty acids [2]. Later, the reports from
Bang and Dyerberg demonstrated the cardio protective role of n-3 long-
chain polyunsaturated fatty acids (C20-22; n-3, LCPUFA) from marine
origin [3]. Then, research from Bazan and Joel identified that doc-
osahexaenoic acid (C22: 6n-3, DHA) and arachidonic acid (C20: 4n-6,
AA) are accreted in significant amounts into the brain tissue [4,5]. Up
to day, multiple and robust experimental, clinical and epidemiological
evidence have been established about the health and nutritional im-
portance to humans of polyunsaturated fatty acids (PUFAs), especially
those of long-chain (20 or more carbon atoms) [6,7]. It is in this context
that in the last three decades, one of these fatty acids, DHA, has ac-
quired special interest for researchers due to their unique physico-
chemical characteristics and from the biochemical and physiological
effects resulting from the presence of the fatty acid at cellular

membranes [8]. DHA is of particular interest due to its highly un-
saturated structure (six double bonds, being the fatty acid most un-
saturated in our body) and cell location, which is mostly concentrated
at the sn-2 position of phospholipids forming cell membranes, thus
providing a great fluidity to these structures [9].

DHA is almost exclusively present in significant amount in diverse
seafood (fish, shellfish, micro- and macroalgae and even some mam-
mals). Precisely, it has been proposed that was the incorporation of
these seafoods to the human nutrition which marked a significant
turning point in human evolution [10], a process that was characterized
by the increase in size and complexity of the brain tissue and by the
development of mental, behavioral and motor skills with strong cog-
nitive components [11]. Additionally to the evolutionary importance of
DHA for our specie, its relevance is magnified during pregnancy and the
early stage of childhood where the fatty acid plays a crucial role in
brain and retinal development [12], and function, directly affecting the
cognitive function [13] and the visual acuity of child [14]. Along with
the benefits for brain and visual development, which transform DHA
into an essential fatty acid in the perinatal period, most recently several
studies have demonstrated a neuroprotective role for the fatty acid,
specifically during aging and in neurodegenerative diseases and brain
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ischemia-reperfusion episodes [15,16]. It is now accepted that neuro-
protectin D-1 (NPD-1), a structural derivative of DHA, shows significant
neuroprotective actions, particularly in the preservation of the structure
and physiology of neurons and glial cells [17]. This paper reviews the
current information, from different backgrounds, supporting the im-
portance of DHA for humans, particularly in brain development and in
the neuroprotective properties of the fatty acid, as well as how to get a
sustainable way to increase the consumption of DHA by the population.

2. DHA, diet and evolution

The strong evidence supporting the crucial role of DHA in the
evolution of our specie, mainly on the growth and physiology of the
central nervous system [18,19], was obtained by studies from fossils
indicating that the turning point in human evolution was precisely
produced after early humans began the consumption of seafood, mainly
fish, shellfish, some mammals and algae [20,21]. It is estimated that
late archaic humans (Neanderthals) consumed protein from terrestrial
hunted animals or from the remains let by other hunters such as,
wolves, hyenas and big cats. These foods contained very low fat and
were also very low in n-3 LCPUFA, in contrast to the significant con-
sumption of marine-derived foods by the considered modern humans
(from the second half of the upper Paleolithic period) [22], which
supplied significant fat high in n-3 LCPUFA. The inclusion of seafood in
the diet was coincident with the advent of the first cultures that pro-
duced ceramics, textiles and tools and practicing personal ornamenta-
tion and decoration of their cemeteries, skills which later led to the
origin of people which formed the first Asian and Mediterranean civi-
lizations [11]. Based on this background authors such as Crawford,
Cunnane and others researchers [22–25], proposed a direct link be-
tween diet and brain size, specifically on how the usual inclusion of
seafood in the diet allowed the expansion of the gray matter in the brain
cortex. This evolutionary process characterized as encephalization was
very limited and slow for Australopithecus and similar hominids but
reached an exponential growth in the last 200,000 years, particularly in
the stage were the Homo erectus was evolved to Homo sapiens [24].
Actually the human brain, compared with other species (42 species in
total) [25], has the highest amount of DHA (35–40% of total poly-
unsaturated fatty acids) and this fatty acid is mainly located at the
phospholipids forming the neuronal membranes and the retina [25,26].
A particular aspect of the growth of the human brain associated with
the intake of food from marine origin, when compared to other species,
is the size of the tissue with relation to the body size [24]. In contrast, in
other studied mammals, the brain size decreases logarithmically with
the increase of the body size [24–26].

The capacity of human brain for the biosynthesis of DHA from its
precursor ALA is very low. It has been estimated that less than 1% of
ALA consumed is converted into DHA [5], enzymatic process that oc-
curs mainly in the liver [5]. This limitation introduces a metabolic in-
ability to ensure an adequate supply of DHA to the brain, which was
probably limiting at a particular time in our evolution [27]. This fact
strengthens the hypothesis about the importance of the inclusion of
seafood in the diet of our ancestors and its relation to the significant
increase of the cortex and the total brain volume and mass, with the
subsequent development of language and the first tools used by humans
[26,27]. Living near the sea and/or lakes allowed hominids a wide
access to a variety of seafood, less complex and easy to digest than
terrestrial animal food and requiring less preparation for consumption
compared to red meat, which probably ensured an adequate supply of
high quality nutrients, mainly proteins, energy and n-3 LCPUFA [26].

3. DHA and brain development

As discussed above, DHA is the most abundant n-3 LCPUFA in the
central and peripheral nervous system, representing the major pro-
portion of PUFAs in brain and retina. This fatty acid is present in large

amounts in phospholipids of brain gray matter [28]. DHA takes an
important role in neurogenesis and synaptogenesis, particularly in fetal
development and during the first two years of life [26]. Fetal DHA
accretion occurs actively along pregnancy but is most active during the
third trimester as has been demonstrated after the supplementation of
pregnant women with fish oil (200 mg DHA/day) where it was also
observed that DHA supplementation during pregnancy limited the de-
cline in maternal DHA status during the last trimester [29]. For this
reason the nutritional status of DHA for the pre-gestational mother and
during pregnancy and lactation represents a critical step for the brain
and visual development of her child [30,31]. Neonates with higher
concentrations of DHA in umbilical plasma phospholipids have longer
gestational length in comparison to neonates with low concentration
[32]. A study in women with less than 20 weeks of pregnancy who
received 600 mg DHA/day, demonstrated a significant reduction of
preterm delivery and low-weight birth with good tolerance to supple-
mentation and no adverse effects [33]. As many other studies, this
protocol demonstrated that DHA supplementation improves the nutri-
tional status of the fatty acid both in the mother and her child because
the efficient transfer of the fatty acid through the placenta [34], by the
increase of DHA levels in maternal milk [35] and in the phospholipids
of umbilical cord blood during lactation [36]. This supplementation
should be most relevant for mothers having low ingestion of marine
foods [37]. It was demonstrated that DHA supplementation during
pregnancy increases the expression of fatty acid transport proteins and
consequently increases the transport of n-3 LCPUFA through the pla-
centa and to fetal the blood [38]. Pregnant women, who consumed fish
oil rich in DHA (2.2 g DHA/day), from the 20th week of pregnancy until
the partum, with no adverse effects, delivered children who showed
significant better visual and coordination capacity [39]. Similar results
were obtained after the supplementation of mothers with 500 mg DHA/
day along the pregnancy, which was associated with high blood DHA
levels and better cognitive development evaluated at 5.5 year-old of
child [40]. When DHA supplementation also included 5-methylte-
trahydrofolate supplementation (400 μg/day) cognitive benefits were
prolonged until 6.5 year-old [41].

It has been demonstrated that high plasma levels of DHA in the
mother and particularly in breast milk, directly correlate with the better
growth and development of the brain and visual system in children
[42,43]. Regarding this observation, a multivariate analysis showed
that a lower intake of DHA during pregnancy increases the risk of re-
duced visual acuity in children [44,45]. Accordingly, it has been pro-
posed that the intake of DHA during pregnancy would predict a better
visual development in infants [44]. These findings have corroborated
that supplementing mother's diet with DHA during pregnancy and
lactation, or consumption of formula enriched in DHA, helps to increase
the tissue levels of DHA in the infant with a better visual and neuro-
logical development [44], favouring in term child a better retinal de-
velopment and function [46]. Conversely, during pregnancy and/or
lactation a diet low in n-3 LCPUFA may have direct implications for the
visual and neurological development of the child [47,48]. An example
of this effect is that infants fed breast milk poor in DHA (less than
0.17% of total fatty acids, usually woman milk contains 0.3–0.4% DHA)
show lower DHA levels in erythrocytes, reduced visual acuity and re-
duced language development at 14 months post-partum compared to
infants fed breast milk containing 0.36% DHA [12,31]. A study in
pregnant women who received supplementation of DHA (400 mg/day)
from the sixteenth week of pregnancy until the delivery, showed a
significant increase in visual acuity, particularly in newborns males,
establishing that DHA supplementation possibly is the best predictor for
this indicator of nervous system development [49]. Several studies have
established a direct relationship between higher erythrocyte DHA levels
(in mother and children) and the best visual and neuronal development
of children [50–52], which in the long-term has benefits in the devel-
opment of cognitive and motor skills in these children [53]. Even,
perinatal supplementation with DHA reduced the risk of lower scores
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on IQ in children from families with very low incomes [54,55]. DHA
provided to newborn through formulas improves cortical maduration
and visual function [56]. A study carried-out with children of six
month-old who did not receive maternal milk and who were fed a
formula containing egg yolk enriched with DHA (115 mg DHA/100 g
food), showed at 12th month-old a significant increase of DHA level at
erythrocyte phospholipids (34% increase) and a better visual develop-
ment, evaluated as retinal and visual cortex maturation, observation
that established the importance of a permanent and continuous supply
of DHA during the first year of life [57]. Formulas that supply a
minimum of 0.35% DHA favor a better brain development evaluated as
Mental Development Index, especially until 4 month after delivery
[58]. In addition to early dietary intake of DHA, dietary intake of AA is
necessary for optimal brain and eye development in infants [59]. Child
who did not receive maternal milk and that must be feed with formula,
these formula must contain DHA and also AA, to avoid a lower brain
development, especially visual, feeding which can be prolonged until
39 months after birth, [60] an even until 4 year-old [61]. A study in
newborns (n = 181) of 1–9day-old randomly distributed in four groups
according to the DHA levels of formulas (DHA 0%; 0.32%; 0.64%;
0.96%, with AA 0.64% in all formulas) fed until 12th month, demon-
strated that only formulas containing DHA (in any of the three doses)
produced a better cognitive development compared to control group
(0% DHA) [13]. A significant higher capacity of memory and problem
solving were observed when preterm child with a birth weight<
1500 g were fed with human milk supplemented in DHA (32 mg/day)
and AA (31 mg/day) until discharge from the hospital i.e. during about
9 weeks [62]. Higher mental development index scores were also re-
ported from preterm child with a birth weight over 2000 g who re-
ceived formula enriched in DHA (0.05 g/100 g) and AA (0.1 g/100 g)
[63]. Another study demonstrated that the supplementation of 420 full
term newborn children with n-3 LCPUFA (daily, 250 mg of DHA and
60 mg of eicosapentaenoic acid; C20: 5n-3, EPA) from their birth until
six months, showed a significant accretion in the DHA content of ery-
throcyte phospholipids and an early development of language and
communication skills [64]. A follow-up study of preterm children (n =
107) who received non supplemented and supplemented formula with
0.5% DHA from their birth until nine months, demonstrated that girls
showed significant benefits in their capacity of alphabetization, verbal
and total intellectual coefficient and high scores in memory trials [65].
Preterm child fed formula supplied with DHA, compared with preterm
child fed formula containing no DHA, showed visual acuity and de-
velopment similar to preterm child fed maternal milk [66]. A recent
study, which included information from 28 countries, found that the
levels of DHA in breast milk contribute significantly to achieve better
performance on match tests in children from low-income families and
superior to the results obtained with children from high-income fa-
milies and/or increased spending on education and who were not
breastfed [67].

It has been shown that the presence of certain polymorphisms in
genes encoding Δ-5 and Δ-6 desaturases, enzymes responsible for the
formation of n-3 LCPUFA from the precursor ALA, are associated to
significant changes in the levels of these fatty acids, particularly DHA
[68]. For example, the presence of rs 174575 polymorphism in the gene
encoding Δ-6 desaturase enzyme in children allows higher tissue con-
centration of DHA and higher scores on IQ tests [69], a situation that
would indicate the importance of gene variations in the metabolism of
n-3 LCPUFA and a consequent beneficial effect on brain development.
Children of 9 month-old supplemented with n-3 LCPUFA with high
DHA content (supplied from fish oil) showed significant cognitive
benefits when were subjected to “free-play-tests” (evaluation of atten-
tion) and better arterial pressure at the end of infancy, indicating that n-
3 LCPUFA consumption, especially DHA, may positively influence brain
development and that cognitive and cardiovascular benefits should be
closely related [70]. Pre-scholar 4 year-old child daily supplemented
with DHA (400 mg) for 4 months have significant higher blood DHA

levels which was positively correlated with increment of punctuation
obtained for vocabulary and comprehension tests [71]. Autochthonous
Australian children (n = 409) from 3 to 13 year-old daily supplemented
with 750 mg DHA and 60 mg EPA for a period of 20 weeks exhibited a
significant increment of the scholar performance, especially those
children between 7 and 12 year-old [72]. The supplementation of fish
oil rich in DHA of 7–12 year-old children having low scholar perfor-
mance, bad conduct and attention-deficit/hyperactivity disorder, was
also associated with a better lecture capacity and learning and an im-
proved conduct with their parents, associated with an increased in DHA
level of erythrocyte phospholipids which is a valuable biomarker of
DHA tissue status [73]. However not absolute compliance about DHA
has stablished. The Scientific Opinion on the essential composition of infant
and follow-on formulae, 2014, of the European Food Safety Authority
(EFSA) Panel notes that “…there is no convincing evidence that the addi-
tion of DHA to infant and follow-on formulae has benefits beyond infancy on
any functional outcomes”. However, the proposal of the Panel to add
DHA to infant formulae and follow-on formula is based on its structural
role in the nervous tissue and the retina and its involvement in normal
brain and visual development, the need of the developing brain to ac-
cumulate large amounts of DHA in the first two years of life and the
consideration that the intake of pre-formed DHA generally results in an
erythrocyte DHA status more closely resembling that of a breast-fed
infant than is achieved with ALA alone [74].

4. DHA and neuroprotection

DHA is a fundamental fatty acid not only for the neuronal structure,
but also for the neuronal signaling [15]. This fatty acid has been most
recently identified as a neuroprotective agent against cerebral aging,
neurodegenerative diseases and cerebrovascular diseases, especially in
the injury produced by ischemia-reperfusion episodes [15,17]. Post-
menopausal women having low blood n-3 LCPUFA levels, especially
DHA, and high levels of saturated, monounsaturated and trans fatty
acids, show increased risk to develop cerebrovascular stroke [75]. With
regard to the neuroprotective effects of DHA supplementation, possible
mechanisms for these effects have been proposed being the following
the most relevant; DHA may: i) maintain the integrity and function of
the neuronal membranes; ii) preserve neuronal signaling pathways and;
iii) significantly reduce neuronal death [8,15,17]. The exact mechan-
isms why DHA may exerts these neuroprotective effects are not yet fully
understood. However, it has been postulated that the DHA-derivative
neuroprotectin D-1 (NPD-1) would be primarily the responsible for the
neurological benefits associated to DHA protection [76]. Under normal
conditions DHA is mainly located at the phospholipids of the neuronal
membranes and not in the neuronal cytoplasm [77]. However, under
adverse conditions, such as cerebral inflammation and/or ischemia-
reperfusion episodes, DHA is released from membrane phospholipids to
the cytoplasm by the action of the enzyme phospholipase A2, being
subsequently transformed into NPD-1 by the 15-lipoxygenase enzyme
[78]. It has been observed an increase in the in situ formation of the
NPD-1 in rats subjected to experimental brain ischemia-reperfusion
episodes, and wherein the further administration of NPD-1 (400 ng per
48 h) generates a significant cerebral protection against the injury
caused by ischemia–reperfusion episodes [79]. Experimentally the
formation of NPD-1 is stimulated by various factors, highlighting; i) the
increase in oxidative stress induced by H2O2; ii) the presence of tumor
necrosis factor-alpha (TNF-α) and interleukin 1-beta (IL-1β) and; iii)
during brain ischemia-reperfusion episodes [78,80,81]. Several follow-
up studies in humans have shown that a high consumption of fish,
especially oily fish (which are important sources of DHA), is inversely
associated with the risk of stroke [82–85]. Nevertheless, there are
controversial studies about the relationship between fish consumption
and risk of stroke and cerebral infarction. In a population-based case-
control study, the risk of stroke (OR:1.95, 95% CI) and cerebral in-
farction (OR: 1.98, 95% CI) was greater in those with the highest
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quintile of fish consumption [86]. On the other side a population-based
study in women, those with higher fish intake showed 16% lower risk of
stroke in comparison with women in the lowest quintile of fish con-
sumption, especially lean fish consumption. It is concluded that fish
consumption was not associated with the risk of cerebral infarction
[87].

Currently, there is strong evidence that oxidative stress is produced
during brain aging and neurodegenerative diseases, generating a sig-
nificant peroxidation of n-3 LCPUFA in neuronal membranes [88,89].
Therefore, the uncontrolled oxidation of DHA (and possibly of AA)
would be relevant in the origin of the damage at the neuronal mem-
brane level [90]. Among neurodegenerative diseases, Alzheimer's dis-
ease particularly shows the best evidence of the benefits produced by
DHA at the molecular level, probably trough the formation of NPD-1
[91]. This metabolite has the ability to: i) reduce the generation of pro-
inflammatory cytokines: ii) reduce the formation of β-amyloid peptide,
a cytotoxic structure considered neurotoxic and oxidative stress pro-
moter which disrupts synaptogenesis and induces neuronal apoptosis;
iii) stimulate the expression of anti-apoptotic genes, and; iv) reduce the
expression of pro-apoptotic genes [92,93]. Most recently it was de-
scribed that NPD-1 favors the production of a disintegrin alpha-secre-
tase, a metalloprotease with neurogenic and neurotrophic properties
and that can inhibit the generation of β-amyloid peptide, a neurotoxic
molecule directly associated with the neurological damage of Alzhei-
mer´s disease [81,94]. Related to the intake of DHA and neuroprotec-
tion, it has been observed that individuals who have frequent con-
sumption of fatty fish and/or nutritional supplements containing n-3
LCPUFA, show a lower risk for developing neurodegenerative diseases
compared to those individuals having low intake of these fatty acids
[95,96]. Healthy older Australians (n = 391, 60–90 year-old, women
53.7% and men 46.3%) having normal cognitive skills, who received
daily 1720 mg DHA and 600 mg EPA for a period of 18 months, com-
pared with a similar control group who received a placebo of olive oil
capsules, showed a significant improvement in cognitive performance
(measured with standardized trials) and in some general indicators of
good health such as blood glucose and lipid profile [97].

The relationship between DHA and Alzheimer´s disease generated
research interest about the neuroprotective actions of the fatty acid
[98]. Framingham Heart Study stablished that increasing blood DHA
levels may reduce by 47% the risk to develop Alzheimer's disease [99].
However this is only a correlational observation that needs more ana-
lytical exploration. A recent study of 40 older Alzheimer´s patients
utilizing 13C-labelled DHA, demonstrated an important alteration of
DHA metabolism, which reaffirmed the strong relationship of DHA with
the process of neurological aging [100]. OmegAD study carried-out
with subjects diagnosed mild or moderate Alzheimer's disease (n =
204, 74±9 year-old) who consumed daily a supplement of 1.7 g DHA
+ 0.6 g EPA during 6 months, showed a consistent reduction in de-
pressive symptoms [101] toghether with an increase in apetite and
weight of patients [102]. Furthermore, a significant reduction of the
expression levels of genes involved in inflammation and neurodegen-
erative processes was observed in mononuclear leukocytes of Alzhei-
mer's disease patients in correlation with DHA and EPA increase in
plasma [103]. The same researchers also observed, derived from the
supplementation with DHA, a reduction of the levels of interleukine
(IL)-6, IL-1β and the secretion of the lipopolysacaride-induced granu-
locyte colony stimulant factor, reducing inflammation which char-
acterized Alzheimer's disease, showing the importance of the n-3
LCPUFA in the eventual prevention and/or treatment of the disease
[104]. With regard to β-amyloid peptide, the same protocol of sup-
plementation with DHA increased the plasma levels of transthyretin, a
molecule that by binding to the β-amyloid peptide may reduce the
accumulation of the toxic peptide at the brain with a direct effect in the
reduction of the progression of the pathology [105]. Strengthening
these results, it has been demonstrated that consumption of 2.3 g/day
of a n-3 fatty preparation rich in DHA (1.7 g/day), for a period of six

months, increases the presence of DHA at the cephaloraquideal liquid,
suggesting the existence of an active transfer of DHA across the hemato-
encephalic blood barrier [106]. There is evidence about a relationship
between APOE lipoprotein and Alzheimer's disease [107]. There are
three isoforms of the APOE lipoprotein (APOE- ε2, ε3, ε4) and subjects
having the ε4 allele show a higher risk to develop Alzheimer Disease.
Supplementation of APOE ε4 carrier subjects with DHA in high doses
before the onset of Alzheimer's disease has shown to diminish its in-
cidence [107].

Dietary supplementation with DHA (240 mg) and AA (240 mg) of
older men with diagnosed cognitive impairment proved to improve the
cognitive dysfunction associated to organic brain disease or due to
aging [108]. In a randomized, double-blind, placebo-controlled trial the
supplementation of older subjects (86±6 year-old, n = 25) with mild
cognitive impairment with DHA (supplied as phospholipids) plus mel-
atonin and tryptophan during 12 weeks produced a significant im-
provement of cognitive and olfactory skills [109]. A study conducted in
50 subjects, older than 65 years having light cognitive deterioration,
who randomly received a supplement rich in EPA (1.65 g EPA + 0.16 g
DHA, n = 17), or rich in DHA (1.55 g DHA + 0.40 g EPA, n = 15) or
ALA (2.2 g, n = 15), demonstrated that only those who consumed
higher amount of DHA (second group) exhibited a reduction of de-
pressive symptoms and risk to develop dementia [110]. Another study
with two groups of older subjects with mild cognitive decline (n = 36)
who received a supplement of fish oil rich in DHA or placebo during 12
months, demonstrated that fish oil, which was well-tolerated by the
experimental group, significantly increased cognitive functions espe-
cially memory capabilities [111]. According to this information and
strengthening the importance of DHA in preserving cognitive functions,
a study with 1111 postmenopausal women showed that erythrocyte
phospholipid DHA levels are directly correlated with hippocampal and
whole brain volume, as evaluated by nuclear magnetic resonance,
suggesting that a low level of omega-3 index (EPA+DHA) in blood cells
may signal increased risk of hippocampal atrophy [112]. Other study
with healthy subjects (55±8 year-old), who consumed 999 mg DHA
during 24 weeks, showed a significant improving of learning and
memory, thus supporting the role of DHA in the protection of brain
aging [113]. It is interesting to evaluate how DHA is provided as sup-
plement. A study with healthy subjects (n = 45) being 61–72 year-old
who consumed during 12 weeks DHA from krill oil phospholipids
(mainly as phosphatidylcholine) resulted in a significant increase in
cognitive and memory skills associated with a better brain blood flow
measured as blood oxyhemoglobin levels [114]. Also, a study with
women having 60–80 year-old who consumed DHA (800 mg/day)
mixed with lutein (12 mg/day) demonstrated a significant improve-
ment of memory and rate of learning compared to the non suppele-
mented women group [115]. DHA has not only effect in aging, as re-
cently demonstrated by a study in a group of adult young people 18–45
year-old, n = 176) who consumed a supplement of 1.16 g DHA/day,
and gained a significant improvement in memory capacity and time of
reaction to resolving problems [116]. In addition to this study, two
other studies observed important effect of DHA over the modulation of
the hemodynamic brain response. In the first study 22 healthy subjects
consumed during 12 weeks 1 g of fish oil rich in DHA or 1 g of fish oil
rich in EPA or 1 g of olive oil. Only the group who consumed DHA
exhibited a significant increase of total hemoglobin and oxygenated
hemoglobin, which is indicative of an increase of the brain blood flow,
when they were subjected to different trials to evaluate cognitive skills
[117]. The second study also demonstrated that consumption of fish oil
rich in DHA (1–2 g/day) by young individuals 18–29 year-old, n = 65)
allowed a significant increase in the concentrations of total oxyhe-
moglobin and hemoglobin, effect that is indicative of an increase of the
brain blood flow during the cognitive tasks to which the subjects were
submitted, indicating that DHA may modulate the brain hemodynamic
[118]. DHA may also participate in the preservation of cognitive skills
during aging, having a role in the visual protection. A study with
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healthy subjects (n = 74, 45–77 year-old) who daily consumed during
90 days 252 mg DHA, 60 mg EPA and 90 mg Vitamin E, demonstrated a
significant improvement of the visual capacity of the right eye [119].

Maybe one of the most interesting actions referred to DHA is those
observed in students submitted to stressing situations (such as ex-
amination). A daily consumption of 1.5–1.8 g of DHA significantly re-
duces hostility and by 30% plasma levels of epinephrine [120]. Another
interesting observation is that patients with schizophrenia show low
level of DHA in plasma and erythrocyte phospholipids [121]. Patients
with schizophrenia who received EPA during 12 weeks complementary
to the pharmacological treatment of the disease showed increased DHA
in erythrocyte phospholipids. However this increase was less than ex-
pected and was accompanied by an increase in ALA levels, which can be
explained by a high metabolic use of DHA and/or a defect in bio-
synthesis or in incorporation of the DHA into membrane phospholipids
[122]. A recent study where patients with schizophrenia received EPA
toghether with vitamins C and E along with the pharmacological
treatment, showed a reduction of the psychotic episodies and a sig-
nificant increase of DHA plasma levels demonstrating a relationship
between DHA metabolism and the antioxidant status of patients pro-
vided by vitamins C and E [123]. Phenylketonuric patients (n = 21,
9–25 year-old) daily supplemented with DHA (10 mg/kg) normalized
erythrocyte DHA levels and improved clinical signals of fine motricity
[124]. Another aspect about DHA and its neuroprotective effects has
been demonstrated in subjects with autism, to whom supplementing
with DHA (40 mg/capsule) and AA (40 mg/capsule) with daily doses of
6 capsules during 16 weeks produced a better regulation of brain sig-
nals and important improvement in the social integration of these pa-
tients [125]. An interesting aspect of DHA supplementation was ob-
served in epileptic patients who received capsules containing 1000 mg
fish oil (171 mg EPA, 112 mg DHA). It was observed a reduction of
phospholipid degradation in brain neurons, a high level of phospholi-
pids in membrane of neuronal vesicles and a general improvement of
brain metabolism [126]. Positive effect of DHA supplementation as
neuroprotector was also observed in episodes of headache. A dietary
intervention of 56 individuals demonstrated that consumption of food
rich in n-3 LCPUFA, especially DHA, reduced episodes of headache and
significantly increased plasma levels of metabolic products of EPA (18-
hydroxy-eicosapentaenoic acid) and DHA (17-hydroxy-docosahex-
aenoic acid) [127]. The almost exclusive effect of DHA compared to
EPA and AA is aborded in two recent communications. In a study
performed in C57BL/6 J mice with hipoxia-ischemia brain injury, re-
searchers assayed the effect of DHA-enriched triglycerides or EPA-en-
riched triglycerides in neuroprotection. They found that the supple-
mentation with DHA but not with EPA administrated in same doses
(0.375 g n-3 /kg/dose) had a protective effect against hypoxia-ischemia
brain injury, reducing oxidative damage and improving neurological
outcomes assessed at 24 h and 8 weeks after brain injury [128]. Sup-
plementing murine hippocampal HT22 nerve cells with DHA or AA, it
was found that DHA supplementation had an indirect antioxidant effect
in HT22 cells, increasing the expression of genes encoding for anti-
oxidant proteins. However supplementation with AA did not showed
any antioxidant effect and also worsened the composition of fatty acids
of the cells increasing AA level and decreasing EPA and DHA levels
[129].

5. Intake of n-3 PUFA and n-3 LCPUFA and nutritional relevance of
DHA

Despite the several studies that supported the nutritional and me-
tabolic significance of n-3 PUFA, until the early 1980s there were some
doubts about the real importance of these fatty acids, particularly about
the essentiality of ALA, the precursor of n-3 LCPUFA. This doubt was
dispelled after the first report on deficiency of ALA recorded in 1982,
related to the case of a 6 year-old girl who had undergone surgical
resection of part of her small intestine, who received total parenteral

nutrition (75.9% LA and 0.66% ALA). After five months receiving
parenteral nutrition, the girl presented neurological disorders, parti-
cularly numbness in his extremities, paresthesia and difficulty for
walking, leg pain and blurred vision. However, when the parenteral
formula was replaced for a formula with higher content of ALA (42.4%
LA and 6.9% ALA), the neurological disorders were totally reversed
[130]. Based on this case report, Holman and coworkers stated that
ALA was an essential fatty acid and the minimum dose for preventing
the symptoms caused by ALA deficiency was estimated to be in the
range of 0.5–0.6% of total energy intake [130]. Subsequently, a study
done with institutionalized elderly patients who received formula based
on corn oil (61% LA and 0.5% ALA) through nasogastric feeding,
showed they did not develop the neurological alterations observed in
the 6 year-old girl, but developed dermatological disorders, particularly
dermatitis and flaky skin, together with very low levels of circulating
EPA and DHA. However, when 0.3% ALA was added to the formula, the
skin symptoms were resolved in four weeks along with normalization in
plasma levels of EPA and DHA [131]. Based on these results, re-
searchers argued that for older adults the lowest daily intake of ALA
should be 0.2–0.3% of the energy/day and for EPA plus DHA should be
0.1–0.2% of the energy/day, indicating that in absence of EPA and DHA
the endogenous biosynthesis of these fatty acids from ALA is sig-
nificantly increased [132]. Based on these data and in relation to the
importance of DHA in the nervous system, particularly the brain and
retina, currently there is relative agreement that humans are only able
to transform 1% of ingested ALA into DHA, this conversion being more
efficient and critical during the first years of life [133]. After the de-
livery, breast milk is the only food that provides all the essential nu-
trients for the newborn, with the contribution of necessary n-3 and n-6
LCPUFA to ensure optimal brain development, thus acquiring particular
importance the maternal nutrition during pregnancy and lactation
[134–136]. Fig. 1 shows the metabolic steps for the biosynthesis of DHA
and other fatty acids intermediates.

Tissue DHA levels of women are higher than men, probably due to
increased capacity to synthesize DHA from ALA due to oestrogenic
stimuli of desaturase and elongase enzymes [137]. The relative content
of DHA in human milk varies significantly in different populations,
being values from 0.1% to up 1% of the total fatty acids present in
human milk, variation primarily explained by the eating of fish or other
seafood or from land animals that have been fed fishmeal and/or fish
oil, such as chickens, turkeys and pigs [31,138]. It is noteworthy that in
the past three decades the levels of DHA in breast milk has been sig-
nificantly reduced in the general western population due, mainly, to the
low consumption of foods considered good sources of DHA, among
which are fatty fish (or blue fish), being tuna, mackerel, codfish,
salmon, sardine and anchovy, the most important [139]. During preg-
nancy the minimal recommended ingestion of DHA according Food and

Fig. 1. Metabolic pathways for the formation of n-6 and n-3 fatty acids from precursors in
humans.

F. Echeverría et al. Prostaglandins, Leukotrienes and Essential Fatty Acids 124 (2017) 1–10

5



Agriculture Organization (FAO) is 200 mg/day [140], but there is no
universal consensus because it is difficult to obtain this ingestion due
the multiple reasons discussed in the next section. However, when
pregnant women are advised or received dietary counseling about the
physiological relevance of DHA, it is possible to observe a significant
increase in the consumption of those foods and/or supplements that
provide such important n-3 LCPUFA [141]. Dietary counseling about
the benefits of fish consumption during pregnancy, increases the con-
sume n-3 LCPUFA in the diet [142]. Food and Agriculture Organization
(FAO) and many researchers have established that the benefits of fish
consumption rich in n-3 LCPUFA may overcome the possible negative
effects of low metal or other organic contaminants eventually present in
these foods [143,144]. A weekly consumption of two portions of fish
rich in DHA, such as salmon, tuna, anchovy or mackerel, may con-
tribute significantly to reach the minimal recommendation for the fatty
acid during pregnancy, also increasing DHA levels of umbilical blood
[145,146]. Low ingestion of foods which naturally provide DHA (such
as fatty or blue fish) during pregnancy is critical to obtain enough levels
of the fatty acid which is reflected in low levels of DHA in umbilical
blood [147]. Trans fatty acid ingestion may also interfere with the
availability of n-3 LCPUFA, such as DHA, to the mother and her child
[148]. Policies to develop strategies to increase DHA consumption to
the population, especially to pregnant and nursing women are actually
of high priority. The ratio n6/n3 PUFAs is also important for the cog-
nition and brain development. Higher levels of n-3 PUFAs in colostrum
are positively associated with infant mental development, as well as a
higher ratio n-3/n-6 PUFAs [149]. Furthermore, levels of LA in colos-
trum are negatively associated with child cognitive scores at ages 2 and
3 years, independently of breastfeeding duration [150].

Many models for these strategies can be designed. As an example,
pregnant women who consumed DHA-rich eggs (135 mg DHA/egg),
compared to pregnant women that similarly consumed non enriched-
eggs (18 mg DHA/egg), showed higher erythrocyte and umbilical cord
DHA levels [151]. Pregnant women who consumed a cereal-bar en-
riched with DHA (300 mg DHA/bar) delivered babies showing in-
creased visual acuity until four month post partum [152], also showing
a significant better capacity to resolve problems [153] and an improved
organization of their dream [154]. Recommendations to increase fish
consumption are counteracted by the fear about metal contamination of
these foods, indeed many health professional recommended to avoid or
reduce fish consumption, especially to pregnant women. Fish avail-
ability to some population is also difficulted by the high price compared
to other foods, therefore policies to increase fish consumption result in
low success. An effort to increase DHA availability to pregnant and
nursing women was developed in Chile. A product named “Purita
Mamá”, a powder milk substitute formula which is freely distributed to
pregnant women who are controlled at the National Health Service, was
supplemented with microencapsulated fish oil, allowing the providing
of 60 mg DHA by portion (200 mL) of the reconstituted product. De-
spite some organoleptic problems, because the reconstituted product
developed some uncomfortable smell that it is not accepted for some
mothers, the formula has proved to increase DHA content of breast milk
[155]. New version of the product which has been currently developed
is expected to overcome this organoleptic limitation, transforming the
formula in an inexpensive way (the product is distributed by the Na-
tional Health Service with no cost for mothers) to increase DHA
availability for the Chilean pregnant and nursing population [156,157].

6. Dietary sources of DHA

Traditionally the best way to ingest DHA is through the consump-
tion of sea foods. However some concerns have been aroused because of
the presence of heavy metals (mercury, lead, cadmium) and organic
material (polychlorinated biphenyls, PCBs) in some fish, especially
those captured at the north hemisphere [158,159]. Health professionals
(Medical and Nutritionist) now currently recommend pregnant women

to reduce or avoid the consumption of fish and shellfish due this pos-
sible and not even present contamination. However, other alternatives
are available to nutritionally supply DHA [160]. Fish oil is another
alternative to obtain DHA and also EPA. These oils, which are obtained
by cooking and pressing pelagic fish (mackerel, sardine, anchovy, etc.)
can be highly deodorized, stabilized to oxidation and stripped from
contaminants and even of cholesterol. These highly refined oils can be
consumed as capsules or micro-encapsulated and most recently nano-
encapsulated, allowing its incorporation to a wide variety of food ma-
trices (milk, juices, cereals, etc.) [161]. Fish oil can be also separated
into its forming fatty acids through chemical or enzymatic hydrolysis
and by molecular distillation and concentrated in DHA (up to 80%).
The fatty acid can be transformed into ethyl ester or transformed again
into triglycerides with high concentration of DHA. Some algae and
microalgae are a renewable alternative to obtain DHA. Species such as
Crypthecodinium, Mortierella and Schizochytrium can be artificially cul-
tivated in industrial bioreactors producing oils high in triglycerides
containing DHA [162]. These cellular products, which are odorless and
free from contaminants, are now available to be incorporated into
different food matrices, especially to infant formulas. Phospholipids
from marine origin containing DHA are another alternative [163]. Krill
(Euphausia superba), a small crustacean of the Antarctic zooplankton is
captured to obtain meal and oil. The oil has a high content of phos-
pholipids rich in DHA [164] and it also contains astaxanthin, a car-
otenoid with strong antioxidant and anti-inflammatory properties
[165]. However, in the near future the capture of krill will be restricted
because ecological demands. Krill is the main food of wales and other
marine animals. Marine phospholipids can also be obtained from fish
meal or from the remains of processed fish from aquaculture. This novel
procedure, not yet industrially available, consists in the treatment of
fish meal or the remains of farmed fish with industrial proteases. These
enzymes destroy the proteins of cellular membranes allowing the re-
lease of phospholipids which are the main lipid components of these
structures, which can be further separated by solvents and purified at
different degrees [166]. Another dietary source of DHA is hen egg yolk
which its DHA content depends on the hen's diet. Considering that
eating eggs is more affordable than eating fish, hen egg yolk with
phospholipids enriched in DHA may be a good option to increase DHA
consumption in general population [167,168]. In plasma, DHA is pre-
sent in nonesterified form and esterified to lysophosphatydilcholine
pools in similar amounts. Even though there is a preferential uptake by
the brain of DHA esterified in lysophosphatydilcholine, this is not the
major mechanism by which DHA is incorporated into the brain. Under
normal conditions, nonesterified DHA is the major plasma pool sup-
plying the brain with DHA [169,170]. Fig. 2 summarizes the supply of
the DHA to humans through the food chain.

Fig. 2. Natural origin of DHA in the food chain.
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7. Conclusions and perspectives

The important physical-chemical features of DHA, i.e., high un-
saturation and very low melting point (−20 °C) give the fatty acid their
biological functions as major structural component of membrane of
neuronal and glial cells, acquiring both a structural and a functional
role in these brain cells. In recent decades, many studies have reported
the important biochemical and nutritional functions of this fatty acid,
particularly in the brain, highlighting the possible involvement of DHA
in the evolution of the human brain that sets us apart from other pri-
mates. The adequate supply of DHA throughout life, particularly during
pregnancy, lactation and adulthood, is essential to promote proper
brain development in utero and early life and preservation of brain
tissue during aging. During pregnancy and lactation period DHA con-
sumed from sea foods or from supplementation would produce im-
portant benefits in newborns, especially in cognitive and visual func-
tions [9,31,48,136], whereas a high intake of DHA during aging may
help to prevent cognitive decline [8,60,65], possibly through NDP-1 or
other derivatives of DHA having an important neuroprotective function
[17,76]. Additionally, several recent studies have established the im-
portance of an adequate supply of DHA in infants and children and the
benefits seen in school performance [171–173]. DHA and AA are both
fundamental for brain development and function. Nevertheless, a low
n-6/n-3 PUFAs ratio is critical for brain development and structural
integrity, being the balance in the brain between n-6 and n-3 PUFA
close to 1:1 [139]. A diet with high intake of LA compromises DHA
accretion in the developing brain increasing brain levels of AA. On the
contrary, higher dietary DHA intake favors brain DHA accretion [174].
A dietary approach to diminish n-6/n-3 PUFAs ratio could be lowering
dietary intake of LA. In a randomized cross-over study in men, the re-
placement of vegetable oils high in LA with oils low in LA, while
maintaining constant ALA, reduced AA:EPA ratio, however, LA intake
was not associate with AA nor DHA levels in plasma phospholipids
[175]. At the same time, increasing dietary ALA consumption has a
positive effect in plasma and erythrocyte levels of EPA but not showing
a concomitant increment in DHA levels in plasma and erythrocytes
[176].

The low supply of DHA that today is provided by western diet has
stimulated the development of foods and/or nutraceuticals of different
presentations and content of DHA, the effort directed to obtain in-
gredients feasible to be utilized as sources of DHA achieving the in-
corporation of the fatty acid into diverse alimentary matrices [177]. As
discussed above, nowadays are available marine oils rich in DHA or
derived from krill or microalgae [178–180]. Micro- and nano-en-
capsulation of oils rich in DHA has allowed the incorporation of this
fatty acid into various food matrices, particularly milk and dairy pro-
ducts, juices, bread, cookies, etc [177]. These new technological de-
velopments emerge as viable alternatives to increase the consumption
of this indispensable nutrient in the population, particularly to those
individual most vulnerable, such as pregnant women, nursing mothers,
children, and senior groups [169]. An outline of the different forms to

incorporate DHA into our body and the benefits derived from such
supplementation is shown in Fig. 3.
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