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a b s t r a c t 

In this paper we tackle the simulation of microstructured materials modelled as heterogeneous Cosserat media 

with both perfect and imperfect interfaces. We formulate a boundary value problem for an inclusion of one plane 

strain micropolar phase into another micropolar phase and reduce the problem to a system of boundary integral 

equations, which is subsequently solved by the boundary element method. The inclusion interface condition 

is assumed to be imperfect, which permits jumps in both displacements/microrotations and tractions/couple 

tractions, as well as a linear dependence of jumps in displacements/microrotations on continuous across the 

interface tractions/couple traction (model known in elasticity as homogeneously imperfect interface ). These features 

can be directly incorporated into the boundary element formulation. 

The BEM-results for a circular inclusion in an infinite plate are shown to be in an excellent agreement with the 

analytical solutions. The BEM-results for inclusions in finite plates are compared with the FEM-results obtained 

with FEniCS. 

© 2017 Elsevier Ltd. All rights reserved. 

1

 

b  

s

 

a  

n  

b  

a  

s  

a  

c  

b  

a  

c

o

 

b  

N  

o  

s  

s  

o  

o  

o  

[  

[

 

C  

i  

e  

m  

h

R

A

0

. Introduction 

This paper presents the first application and verification of the

oundary element method to simulate the mechanical effects of inclu-

ions with imperfect interfaces in plane micropolar elasticity. 

Modern nano-technological applications such as sensors and actu-

tors, microelecromechanical systems, electronic packaging, advanced

ano-composites call for efficient approaches to model the mechanical

ehavior of micro and nano-structured materials. Atomistic simulations

re one way forward, but these are extremely computationally expen-

ive 1 , such that multi-scale approaches are required e.g. see [2] . One

pproach to account for the multi-scale nature of materials is to build

ontinuum scale constitutive theories able to reproduce the continuum

ehavior of such nano/micro-structured materials, see e.g. [3] for an

ccount of continuum models of micro-structured materials. The mi-

ropolar theory is one such approach, which we use in this paper. 
∗ Corresponding author. 

E-mail address: eatroshchenko@ing.uchile.cl (E. Atroshchenko). 
1 Some estimates claim that it will be 80 years before the failure of one cubic centimeter 

f metal can be simulated using such approaches [1] . 
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Micropolar (also known as Cosserat) elasticity was first introduced

y the Cosserat brothers [4] and further developed by Eringen [5] ,

owacki [6] , Eremeyev [7] etc., and it is able to account for the rotation

f individual material points (differential elements). This leads to the de-

cription of a deformed state in terms of asymmetric stress and couple

tress tensors. It was shown that micropolar constitutive models, in spite

f being a continuum model, are able to replicate the experimentally-

bserved behavior of natural or engineered materials possessing micro

r nano structures [3] such as bone [8–11] , fibre-reinforced composites

12–14] , blocky and layered materials, such as rock and rock masses

15–17] , cellular materials [18,19] and many others. 

The problem of (imperfect) interfaces (also known as interphases) in

osserat matter was scarcely addressed [20] , whilst it was much more

ntensively modelled and simulated in the context of standard linear

lasticity, with or without surface effects, see e.g. [21–26] for imple-

entation aspects. It is however interesting to note that Cosserat ma-

erials have been themselves used to model the mechanical effects of

uch interphases within heterogeneous materials, as discussed in depth

n recent literature [27,28] . 

http://dx.doi.org/10.1016/j.enganabound.2017.07.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enganabound
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2017.07.023&domain=pdf
mailto:eatroshchenko@ing.uchile.cl
http://dx.doi.org/10.1016/j.enganabound.2017.07.023
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Due to the rapid development of composite materials for advanced

ngineering applications, the problem of quantifying the effects of het-

rogeneities is crucially important, in particular in cases where the in-

erfaces between the bulk/matrix and the inclusions are imperfect or

arry surface energy. 

The effects of heterogeneities/inhomogeneities have been studied

ell within the confines of Cauchy continua (classical elasticity), both

nalytically and numerically, starting from the classical Muskhelishvili ’s

roblem of a circular inclusion in an infinite plate [29] to the finite

nd boundary element analysis of multiple inclusions of various shapes,

ee for example [30–32] and crack/inclusion interactions, e.g. [33] and

ore recently [34] . 

In Cosserat elasticity, however, less work has been done and much

emains to be understood about Cosserat-heterogeneous materials. Such

fforts date back to 1976 with the work of [35] . In the 1990s significant

ork has been done on Cosserat-heterogeneous materials to study the

ffects of inclusions [36] and compute homogenized properties and their

ounds and to understand their asymptotic behavior [37–39] . An inter-

sting result of [39] is that if 𝓁 is the size of the Cosserat-heterogeneities,

 c the Cosserat intrinsic length scales and L the size of the material sam-

le, 𝓁 ≈𝓁 c ≪ L leads to a Cauchy continuum, whereas if 𝓁 c ≈ L then, the

ffective (homogenized) medium is better approximated by a Cosserat

aterial. 

More recently, work on Cosserat-heterogeneous materials has inten-

ified somewhat with the work of [40] , who provides analytical solu-

ions in plane strain and [27,28] who focus on the modelling of inter-

hases in heterogeneous materials by a non-linear Cosserat material. 

A number of analytical and numerical methods have been developed

o treat boundary value problems of micropolar elasticity. The finite

lement method remains the most common tool of numerical analysis

41–45] . 

Recently, the boundary element method [46] and [47] has been

merging as a powerful alternative due to its advantage in treating prob-

ems with non-smooth boundaries and infinite domains. For example, in

46] the dual boundary element method was applied to crack problems

n plane strain micropolar continua. 

One of the advantages of using boundary elements for inclusion

roblems, is the ability to incorporate the model of imperfect inter-

aces directly into the boundary integral formulation, keeping the lin-

ar formulation of the problem, while in the case of finite element

ethod such interface model would make the formulation nonlinear.

n this work we use the simple imperfect interface model, known as

omogeneously imperfect interface , which is characterised by tractions

nd couple traction being continuous across the interface, and propor-

ional to the jumps in displacements and out-of-plane microrotation.

his model, for a circular inclusion in a plate subjected to uni-axial ten-

ion was investigated analytically in [48] with the full solution available

n [49] . 

Another imperfect interface model, used in this work, is character-

zed by arbitrary jumps in both surface tractions/couple traction, as

ell as in displacements and out-of-plane microration. Physically, such a

odel allows to impose more general boundary conditions, while math-

matically it brings additional advantages for the problems in infinite

omain, because it enables to significantly reduce the size of the prob-

em by transferring the boundary conditions at infinity to the boundary

onditions on the inclusion interface. 

In this paper we develop a system of boundary integral equations for

n inclusion problem in plane micropolar and solve it by the boundary

lement method. We show the excellent agreement of the BEM-results

ith the analytical and FEM-solutions. We present the BEM-study of

icropolar effects on inclusions of various shapes under various loading

onditions. We demonstrate the dependence of the stress concentration

actors on material parameters, including the limiting cases, when one

aterial is nearly classical, while the second one is strongly micropolar.

hese parametric studies give a deeper insight into the mechanics of

icropolar inhomogeneities. The developed solutions can also serve as
196 
enchmark problems for further use with other analytical and numerical

ethods. 

The paper is organized as follows. In chapter 2 we formulate the

oundary value problem of an inclusion in micropolar plane strain. In

hapter 3 we derive the system of boundary integral equations. In chap-

er 4 we briefly outline the boundary element method procedure. Nu-

erical results are given in chapter 5, while chapter 6 contains discus-

ion of the results and directions of future work. 

. Mathematical formulation of an inclusion problem 

According to [5] , a plane strain deformation of a micropolar material

s described by two in-plane displacements 𝑢 1 = 𝑢 1 ( 𝒙 ) , 𝑢 2 = 𝑢 2 ( 𝒙 ) and

ne out-of-plane microrotation 𝜙3 = 𝜙3 ( 𝒙 ) , where 𝒙 = ( 𝑥 1 , 𝑥 2 ) , which we

ombine into one vector of generalized displacements: 𝒖 = ( 𝑢 1 , 𝑢 2 , 𝑢 3 ) 𝑇 
ith 𝑢 3 = 𝜙3 . In absence of body forces and couples, the equations of

quilibrium for a material described by parameters 𝜆, 𝜇, 𝜅 and 𝛾 can be

ritten as 

 ( 𝜕 𝑥 ) 𝒖 = 0 , (1)

here the matrix differential operator 𝐿 ( 𝜕 𝑥 ) = 𝐿 ( 𝜉𝛼) is given in [50] ,

51] as 

 ( 𝜉𝛼) = 

⎛ ⎜ ⎜ ⎝ 
( 𝜆 + 𝜇) 𝜉2 1 + ( 𝜇 + 𝜅)Δ ( 𝜆 + 𝜇) 𝜉1 𝜉2 𝜅𝜉2 

( 𝜆 + 𝜇) 𝜉1 𝜉2 ( 𝜆 + 𝜇) 𝜉2 2 + ( 𝜇 + 𝜅)Δ − 𝜅𝜉1 
− 𝜅𝜉2 𝜅𝜉1 𝛾Δ − 2 𝜅

⎞ ⎟ ⎟ ⎠ , (2)

ith 𝜉𝛼 = 𝜕 ∕ 𝜕 𝑥 𝛼 and Δ = 𝜕 2 ∕ 𝜕 𝑥 2 1 + 𝜕 2 ∕ 𝜕 𝑥 2 2 = 𝜉2 1 + 𝜉2 2 . 

Two tractions 𝑡 1 = 𝑡 1 ( 𝒙 ) , 𝑡 2 = 𝑡 2 ( 𝒙 ) and one couple-traction 𝑡 3 = 𝑡 3 ( 𝒙 ) ,
efined on a boundary with normal 𝒏 = ( 𝑛 1 , 𝑛 2 ) 𝑇 , are also combined into

ector 𝒕 = ( 𝑡 1 , 𝑡 2 , 𝑡 3 ) 𝑇 . By the standard definition 

 𝛼 = 𝜎𝛽𝛼𝑛 𝛽 , 𝑡 3 = 𝑚 𝛽3 𝑛 𝛽 , 𝛼, 𝛽 = 1 , 2 . (3)

here 𝜎11 , 𝜎12 , 𝜎21 , 𝜎22 are components of the asymmetric micropolar

tress tensor and m 13 , m 23 are the couple-stresses. 

Together with L ( 𝜉𝛼) the boundary stress operator 𝑇 ( 𝜕 𝑥 ) = 𝑇 ( 𝜉𝛼) is
onsidered [50] , which is defined by the following equation: 

 ( 𝜉𝛼) = 

 

 

 

 

( 𝜆 + 2 𝜇 + 𝜅) 𝜉1 𝑛 1 + ( 𝜅 + 𝜇) 𝜉2 𝑛 2 𝜆𝜉2 𝑛 1 + 𝜇𝜉1 𝑛 2 𝜅𝑛 2 
𝜇𝜉2 𝑛 1 + 𝜆𝜉1 𝑛 2 ( 𝜇 + 𝜅) 𝜉1 𝑛 1 + ( 𝜆 + 2 𝜇 + 𝜅) 𝜉2 𝑛 2 − 𝜅𝑛 1 

0 0 𝛾𝜉𝛼𝑛 𝛼

⎞ ⎟ ⎟ ⎠ 
(4) 

perator T ( 𝜕 x ) is defined according to the stress strain relations and the

onstitutive equations, as given in [5] in such a way that 

 = 𝑇 ( 𝜕 𝑥 ) 𝒖 . (5)

ogether with constants 𝜆, 𝜇, 𝛾, 𝜅, we use engineering constants: G

shear modulus), 𝜈 (Poisson ’s ratio), 𝓁 (characteristic length) and N (cou-

ling number), defined in [8] . 

We consider a bounded inclusion occupying the domain S i with the

oundary 𝜕S i and inner normal 𝑛 as shown in Fig. 1 . The inclusion is

ade of homogeneous and isotropic micropolar material with elastic

onstants 𝜆i , 𝜇i , 𝜅 i , 𝛾 i . The matrix, which occupies domain S e is also ho-

ogeneous and isotropic micropolar material with elastic constants 𝜆e ,
e , 𝜅e , 𝛾e . The engineering material parameters, describing the inclusion

r the matrix are denoted as G 

i , 𝜈i , 𝓁 i , N 

i or G 

e , 𝜈e , 𝓁 e , N 

e respectively. 

Let L i ( 𝜕 x ) and L e ( 𝜕 x ) be the operator L ( 𝜕 x ) with constants 𝜆i , 𝜇i , 𝜅 i , 𝛾 i

nd 𝜆e , 𝜇e , 𝜅e , 𝛾e respectively. The boundary stress operators T i ( 𝜕 x ) and

 

e ( 𝜕 x ) are defined analogously. The displacement vector in domain S i is

enoted as u i , in domain S e as u e . The boundary tractions are defined as

 

𝑖 = 𝑇 𝑖 ( 𝜕 𝑥 ) 𝒖 𝑖 , 𝒕 𝑒 = 𝑇 𝑒 ( 𝜕 𝑥 ) 𝒖 𝑒 . (6)
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Fig. 1. Inclusion boundary value problem given by Eq. (7) . 
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The first boundary value problem for an inclusion with the imperfect

nterface, that we consider in this paper, is given as follows: 

𝐿 

𝑖 ( 𝜕 𝑥 ) 𝒖 𝑖 = 0 in 𝑆 

𝑖 , 

 

𝑒 ( 𝜕 𝑥 ) 𝒖 𝑒 = 0 in 𝑆 

𝑒 , 

𝒖 𝑒 = �̃� 𝑒 on 𝜕𝑆 

𝑒 
𝑢 , 

𝒕 𝑒 = �̃� 
𝑒 

on 𝜕𝑆 

𝑒 
𝑡 , 

𝒖 𝑒 − 𝒖 𝑖 = 𝒇 on 𝜕𝑆 

𝑖 , 

𝒕 𝑒 − 𝒕 𝑖 = 𝒈 on 𝜕𝑆 

𝑖 , (7) 

here �̃� is the generalized displacement vector, consisting of two dis-

lacements and one microrotation prescribed on Dirichlet part 𝜕𝑆 

𝑒 
𝑢 of

he outer boundary 𝜕S e and vector ̃𝒕 is the generalized traction vector,

onsisting of two tractions and one couple traction prescribed on Neu-

ann part 𝜕𝑆 

𝑒 
𝑡 of 𝜕S e . Jump in displacements and micro-rotation along

he inclusion interface is described by function 𝒇 = ( 𝑓 1 , 𝑓 2 , 𝑓 3 ) 𝑇 , while

ump in tractions and couple tractions is given by 𝒈 = ( 𝑔 1 , 𝑔 2 , 𝑔 3 ) 𝑇 . A
erfect interface is characterized by 𝒇 = {0 , 0 , 0} and 𝒈 = {0 , 0 , 0} . 

Together with the interface boundary conditions given by the last

wo equations of Eq. (7) we consider the case of so-called homoge-

eously imperfect interface characterized by continuous stresses and

umps in the normal and tangential displacements proportional to the

orresponding stress components. In micropolar elasticity two addi-

ional conditions need to be imposed, namely, continuous couple trac-

ion and jump in the microrotations proportional to the couple traction

48] . These conditions are written as: 

𝜎𝑒 
𝑛𝑛 = 𝜎𝑖 

𝑛𝑛 , 

𝜎𝑒 
𝑛𝑡 = 𝜎𝑖 

𝑛𝑡 , 

𝑚 

𝑒 
𝑛𝑧 = 𝑚 

𝑖 
𝑛𝑧 , 

𝑢 𝑒 𝑛 − 𝑢 𝑖 𝑛 = 𝜆𝑛 𝜎
𝑒 
𝑛𝑛 , 

𝑢 𝑒 𝑡 − 𝑢 𝑖 𝑡 = 𝜆𝑡 𝜎
𝑒 
𝑛𝑡 , 

𝑒 − 𝜙𝑖 = 𝜆𝜙𝑚 

𝑒 
𝑛𝑧 , (8) 

here 𝜆n , 𝜆t , 𝜆z are the interface parameters [48] . The firstenlrg three

quations are equivalent to the condition 𝒕 𝑒 = 𝒕 𝑖 , while the last three

quations we rewrite as 

 

𝑒 − 𝒖 𝑖 = 𝑨 ( 𝒙 ) 𝒕 𝑒 , (9)

here 

 ( 𝒙 ) = 

⎛ ⎜ ⎜ ⎝ 
𝑛 2 1 𝜆𝑛 + 𝑛 2 2 𝜆𝑡 𝑛 1 𝑛 2 ( 𝜆𝑛 − 𝜆𝑡 ) 0 
𝑛 1 𝑛 2 ( 𝜆𝑛 − 𝜆𝑡 ) 𝑛 2 2 𝜆𝑛 + 𝑛 2 1 𝜆𝑡 0 

0 0 𝜆𝜙

⎞ ⎟ ⎟ ⎠ . (10)
l  

197 
herefore, the second boundary value problem that we consider in this

aper is written as 

𝐿 

𝑖 ( 𝜕 𝑥 ) 𝒖 𝑖 = 0 in 𝑆 

𝑖 , 

 

𝑒 ( 𝜕 𝑥 ) 𝒖 𝑒 = 0 in 𝑆 

𝑒 , 

𝒖 𝑒 = �̃� 𝑒 on 𝜕𝑆 

𝑒 
𝑢 , 

𝒕 𝑒 = �̃� 
𝑒 

on 𝜕𝑆 

𝑒 
𝑡 , 

𝒖 𝑒 − 𝒖 𝑖 = 𝑨 ( 𝒙 ) 𝒕 𝑒 on 𝜕𝑆 

𝑖 , 

𝒕 𝑒 = 𝒕 𝑖 on 𝜕𝑆 

𝑖 . (11) 

. Boundary integral equations. 

The boundary integral equations of plane Cosserat elasticity for an

rbitrary domain S with boundary 𝜕S and outward normal 𝑛 are formu-

ated as follows: 

1 
2 
𝑢 𝑖 ( 𝒙 ) + ∫− 

𝜕𝑆 

𝑃 𝑖𝑗 ( 𝒙 , 𝒚 ) 𝑢 𝑗 ( 𝒚 ) 𝑑𝑠 𝑦 − ∫𝜕𝑆 

𝐷 𝑖𝑗 ( 𝒙 , 𝒚 ) 𝑡 𝑗 ( 𝒚 ) 𝑑𝑠 𝑦 = 0 , 𝑖, 𝑗 = 1 , 2 , 3 . 

(12) 

here x ∈ 𝜕S is called a source point, y ∈ 𝜕S is a field point. Matrices of

undamental solutions D ij ( x , y ), P ij ( x , y ) are given in [52] . According

o their asymptotic behavior in the vicinity of 𝒙 = 𝒚 , which explained

n details in [46] , components D 11 , D 22 , D 33 have logarithmic singu-

arity, while P 12 and P 21 are singular and the corresponding integrals

re understood in the sense of Cauchy Principal Value, as indicated by

ign ∫− . 

In what follows 𝐷 

𝑖 
𝑖𝑗 
( 𝒙 , 𝒚 ) , 𝑃 𝑖 

𝑖𝑗 
( 𝒙 , 𝒚 ) denote matrices of fundamental

olutions corresponding to the inclusion, described by material param-

ters with superscript i , while 𝐷 

𝑒 
𝑖𝑗 
( 𝒙 , 𝒚 ) , 𝑃 𝑒 

𝑖𝑗 
( 𝒙 , 𝒚 ) correspond to domain

 

e . Eq. (12) can be directly prescribed for domain S e as 

1 
2 
𝑢 𝑒 𝑖 ( 𝒙 ) + ∫− 

𝜕 𝑆 𝑒 
⋃

𝜕 𝑆 𝑖 
𝑃 𝑒 𝑖𝑗 ( 𝒙 , 𝒚 ) 𝑢 

𝑒 
𝑗 ( 𝒚 ) 𝑑𝑠 𝑦 − ∫𝜕 𝑆 𝑒 

⋃
𝜕 𝑆 𝑖 

𝐷 

𝑒 
𝑖𝑗 ( 𝒙 , 𝒚 ) 𝑡 

𝑒 
𝑗 ( 𝒚 ) 𝑑𝑠 𝑦 = 0 

(13) 

or domain S i due to the inward orientation of the normal, the equation

eads as follows: 

1 
2 
𝑢 𝑖 𝑖 ( 𝒙 ) − ∫− 

𝜕𝑆 𝑖 
𝑃 𝑖 𝑖𝑗 ( 𝒙 , 𝒚 ) 𝑢 

𝑖 
𝑗 ( 𝒚 ) 𝑑𝑠 𝑦 + ∫𝜕𝑆 𝑖 

𝐷 

𝑖 
𝑖𝑗 ( 𝒙 , 𝒚 ) 𝑡 

𝑖 
𝑗 ( 𝒚 ) 𝑑𝑠 𝑦 = 0 (14)

pplying the jump boundary conditions of Eq. (7) , Eq. (14) can be re-

ritten as: 

1 
2 
𝑢 𝑒 𝑖 ( 𝒙 ) − ∫− 

𝜕𝑆 𝑖 
𝑃 𝑖 𝑖𝑗 ( 𝒙 , 𝒚 ) 𝑢 

𝑒 
𝑗 ( 𝒚 ) 𝑑𝑠 𝑦 + ∫𝜕𝑆 𝑖 

𝐷 

𝑖 
𝑖𝑗 ( 𝒙 , 𝒚 ) 𝑡 

𝑒 
𝑗 ( 𝒚 ) 𝑑𝑠 𝑦 = 𝑝 𝑖 ( 𝒙 ) , (15)

here 

 𝑖 ( 𝒙 ) = 

1 
2 
𝑓 𝑖 ( 𝒙 ) − ∫− 

𝜕𝑆 𝑖 
𝑃 𝑖 𝑖𝑗 ( 𝒙 , 𝒚 ) 𝑓 𝑗 ( 𝒚 ) 𝑑𝑠 𝑦 + ∫𝜕𝑆 𝑖 

𝐷 

𝑖 
𝑖𝑗 ( 𝒙 , 𝒚 ) 𝑔 𝑗 ( 𝒚 ) 𝑑𝑠 𝑦 . (16)

f boundary conditions of Eq. (11) are used instead of Eq. (7) , then Eq.

14) becomes 

1 
2 
𝑢 𝑒 𝑖 ( 𝒙 ) − ∫− 

𝜕𝑆 𝑖 
𝑃 𝑖 𝑖𝑗 ( 𝒙 , 𝒚 ) 𝑢 

𝑒 
𝑗 ( 𝒚 ) 𝑑𝑠 𝑦 + ∫𝜕𝑆 𝑖 

𝐷 

𝑖 
𝑖𝑗 ( 𝒙 , 𝒚 ) 𝑡 

𝑒 
𝑗 ( 𝒚 ) 𝑑𝑠 𝑦 

− 

1 
2 
𝐴 𝑖𝑗 ( 𝒙 ) 𝑡 𝑗 ( 𝒙 ) + ∫− 

𝜕𝑆 𝑖 
𝑃 𝑖 
𝑖𝑘 
( 𝒙 , 𝒚 ) 𝐴 𝑘𝑗 ( 𝒚 ) 𝑡 𝑒 𝑗 ( 𝒚 ) 𝑑𝑠 𝑦 = 0 . (17) 

hen the full system of boundary integral equations for the inclusion

roblem is given by Eq. (13) + Eq. (15) or Eq. (13) + Eq. (17) , where

 

e ( x ) and t e ( x ) are both unknown along the entire inclusion interface

S i , while on the outer boundary 𝜕S e the equations are solved for u e ( x )

n 𝜕𝑆 

𝑒 
𝑡 and for t e ( x ) on 𝜕𝑆 

𝑒 
𝑢 . 

For the discretization of these BIEs we use a classical approach with

uadratic Lagrange basis functions. For the evaluation of all weakly-

ingular integrals Telles transform [53] is used, while the singular in-

egrals are evaluated using the singularity subtraction technique (SST),

ased on the asymptotic expansions of the matrices of fundamental so-

utions, given in [46] . After the values of displacements/microrotation
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Fig. 2. Circular inclusion in an infinite plate under remote tension. 
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nd tractions/couple tractions are evaluated along the boundary, the

alues of u i , u e and t i , t e inside the inclusion domain S i and the matrix

omain S e respectively can be calculated using the micropolar analogues

f Somiglina ’s displacement and stress identities, described in [46] . The

xpressions for two more matrices of fundamental solutions, used in

omiglina ’s representation of the stresses and couple stresses inside a

omain, are provided in a ready-to-use form in [52] . 

. Numerical results 

.1. Example 1. Circular inclusion in an infinite domain under remote 

ension: perfect interface. 

In the first example we consider an infinite plate subjected to the

niform tension and containing a circular inclusion of radius a with

erfect interface, as shown in Fig. 2 . To take the full advantage of the

oundary element method for problems with infinite domains, we seek
Fig. 3. Superposition of the solutio

198 
he solution of this problem as a superposition of two solutions ( Fig. 3 ).

he first one corresponds to the problem of an infinite plate in tension,

ithout the inclusion, which is given in [54] as: 

 

𝑒 
1 = 

𝜎0 
2 𝐺 

𝑒 
(1 − 𝜈𝑒 𝑥 1 ) , 𝑢 𝑒 2 = − 

𝜎0 
2 𝐺 

𝑒 
( 𝜈𝑒 𝑥 2 ) , 𝑢 𝑒 3 = 𝜙𝑒 

3 = 0 . (18)

he second solution corresponds to the problem of an inclusion in the

nfinite domain with displacements/microrotations and stresses/couple

tresses vanishing at infinity, while on the boundary of the inclusion 

 

𝑒 
1 − 𝑢 𝑖 1 = 𝑓 1 = − 

𝜎0 
2 𝐺 

𝑒 
(1 − 𝜈𝑒 𝑥 1 ) , 

 

𝑒 
2 − 𝑢 𝑖 2 = 𝑓 2 = 

𝜎0 
2 𝐺 

𝑒 
( 𝜈𝑒 𝑥 2 ) , 

 

𝑒 
3 − 𝑢 𝑖 3 = 𝑓 3 = 0 (19) 

nd jump in tractions is given as: 

 

𝑒 
1 − 𝑡 𝑖 1 = 𝑔 1 = − 𝜎0 𝑛 1 , 

 

𝑒 
2 − 𝑡 𝑖 2 = 𝑔 2 = 0 , 

 

𝑒 
3 − 𝑡 𝑖 3 = 𝑔 3 = 0 . (20) 

herefore, for the boundary element modelling we only consider the

ircular boundary 𝜕S i with inward normal ⃗𝑛 and functions f and g given

y Eq. (19) and Eq. (20) . 

The analytical solution for this problem and the detailed study of

he dependence of stress concentration on the material parameters is

iven in [48] and [49] . The finite element method used as a further ver-

fication point was implemented using the DOLFIN [55] finite element

ibrary using standard quadratic Lagrangian elements for the displace-

ents and linear Lagrangian elements for the microrotations. We used

 graded triangular mesh generated using Gmsh [56] . The code to gen-

rate all of the finite element results in this paper, is available at [57] .

ote that this standard displacement finite element formulation cannot

andle the couple-stress limiting case when 𝑁 = 1 due to a numerical

ocking effect. To mimic the effect of an infinite domain, we use a mesh

ith sides of length 20a. We use symmetry boundary conditions so that

e only have to model one-quarter of the plate. Here we show the nu-

erical results for 14 cases of the material parameters given in Table 1

nd 𝑔 = 𝐺 

𝑖 ∕ 𝐺 

𝑒 = 0 . 5 , 𝑔 = 2 . In all cases the remaining material parame-

ers were fixed at 𝜈𝑖 = 0 . 25 , 𝜈𝑒 = 1∕3 . Note, that case 1 corresponds to the

olution for classical elasticity, case 2 represents the inclusion, described

y classical elasticity, in a strongly micropolar matrix, case 3 represents

 strongly micropolar inclusion in a matrix, described by classical elas-

icity, case 4 corresponds to equal characteristic lengths, case 5 to equal
ns for the inclusion problem. 
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Table 1 

Material parameters for the study cases in ex- 

ample 1. 

𝓁 i / a N i 𝓁 e / a N e 

1 0.001 0.001 0.001 0.001 

2 0.001 0.001 1.000 0.900 

3 1.000 0.900 0.001 0.001 

4 0.750 0.500 0.750 0.750 

5 0.100 0.750 0.750 0.750 

6 0.500 0.900 1.000 0.750 

7 0.500 1.000 2.000 1.000 

Table 2 

SCF given by 𝜎𝑒 
𝜃𝜃
( 𝜋∕2) for 𝑔 = 0 . 5 . 

Analytical solution BEM FEM Error BEM 

1 1.57576 1.57540 1.57552 2 × 10 −4 

2 1.42722 1.42705 1.42797 1 × 10 −4 

3 1.57576 1.57550 1.57551 2 × 10 −4 

4 1.46478 1.46455 1.46529 2 × 10 −4 

5 1.46707 1.46689 1.46756 1 × 10 −4 

6 1.44876 1.44855 1.44926 1 × 10 −4 

7 1.35890 1.35871 – 2 × 10 −4 

Table 3 

SCF given by 𝜎𝑖 
𝜃𝜃
( 𝜋∕2) for 𝑔 = 2 . 

Analytical solution BEM FEM Error BEM 

1 1.14872 1.14864 1.14731 7 × 10 −5 

2 1.27054 1.27086 1.26864 3 × 10 −4 

3 1.14872 1.14890 1.14729 2 × 10 −4 

4 1.24128 1.24134 1.23940 5 × 10 −5 

5 1.24914 1.24907 1.24673 6 × 10 −5 

6 1.26510 1.26486 1.26229 2 × 10 −4 

7 1.38507 1.38421 – 6 × 10 −4 
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Table 4 

Interface parameters for the study cases in example 2. 

𝜆n G 
e 𝜆t G 

e 𝜆𝜙G e 

a 0.000 0.000 0.000 

b 10.00 10.00 10.00 

c 10.00 0.000 0.000 

d 0.000 10.00 0.000 

e 0.000 0.000 10.00 

f 0.000 0.000 1000. 

Fig. 4. Distribution of 𝜎𝜃𝜃( r, 𝜋/2) for 𝑔 = 0 . 5 for different values of the interface parame- 

ters. BEM-data are shown by dots, while the corresponding analytical solutions are given 

by solid lines. 

Fig. 5. Distribution of 𝜎𝜃𝜃( r, 𝜋/2) for 𝑔 = 2 for different values of the interface parameters. 

BEM-data are shown by dots, while the corresponding analytical solutions are given by 

solid lines. 
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c  
ouple numbers, case 6 represents a general variation of all material

arameters, and case 7 corresponds to the limit case of couple-stress

lasticity. In case 7, the results obtained in the present work are in an

xcellent agreement with the data from [58] . 

The stress concentration factor (SCF) is defined as 

CF = max 

{ 

𝜎𝑒 
𝜃𝜃
( 𝜋∕2) 
𝜎0 

, 
𝜎𝑖 
𝜃𝜃
( 𝜋∕2) 
𝜎0 

} 

. (21)

The results in terms of the SCFs for all study cases ( Table 1 ) are

iven in Table 2 for 𝑔 = 0 . 5 and in Table 3 for 𝑔 = 2 , where the excel-

ent agreement between the analytical solution, BEM and FEM results

s shown. In all cases, the BEM results were obtained by discretizing

he inclusion contour with 36 elements, gradually refined towards the

oints 𝜃 = ± 𝜋∕2 . The FEM results are significantly less accurate than

he BEM results, despite the significantly higher number of degrees of

reedom required. This finding adds further confirmation to the already

ell-known superiority of BEM in accurate resolution of stress concen-

rations around cracks and inclusions in standard elasticity. 

.2. Example 2. Circular inclusion in an infinite domain under remote 

ension: homogeneously imperfect interface. 

As a second example, we consider a problem of a circular inclusion in

n infinite plate subjected to a uni-axial tension. The interface between

he inclusion and the matrix is assumed to be homogeneously imper-

ect, i.e. described by Eq. (11) with three interface parameters 𝜆n , 𝜆t ,

𝜙. This problem was studied analytically in [48] . In the present work

e demonstrate the application of the boundary element method for the

articular cases of the material and interface parameters, i.e. study case

 of Table 1 , for 𝑔 = 0 . 5 , 2 the following values of the interface param-

ters given in Table 4 . The boundary conditions ( Eq. (11) ) are further

uperimposed with the solution ( Eq. (19) and Eq. (20) ) for an infinite
199 
late without a hole, which allows to only consider the inclusion inter-

ace as a boundary for the BEM-discretization. 

The results for both 𝜎𝑒 
𝜃𝜃
( 𝜋∕2)∕ 𝜎0 and 𝜎𝑖 

𝜃𝜃
( 𝜋∕2)∕ 𝜎0 are given in Table 5 .

he results in Table 5 were obtained with 68 elements (612 DOFs) for

he discretization of the circle. In all cases a good agreement with the

nalytical solutions is achieved, with the error within 0.05%. 

As it can be observed in Table 5 for 𝑔 = 0 . 5 the maximum stress at

oint 𝜃 = 𝜋∕2 is always observed in the matrix, while for 𝑔 = 2 . 0 the

aximum stress is observed either in the inclusion, or in the matrix,

epending on the values of the interface parameters. Note, that some

alues of the interface parameters lead to almost no stress concentration

case c) at point 𝜃 = 𝜋∕2 . 
In Figs. 4 and 5 the distribution of 𝜎𝜃𝜃( r )/ 𝜎0 for various values of

he interface parameters is plotted along 𝜃 = 𝜋∕2 , which demonstrate a

ood agreement between the BEM-results and the analytical solution. It

an be seen, that the stress distribution is much more dependent on the
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Table 5 

Values of 𝜎𝑒 
𝜃𝜃
( 𝜋∕2)∕ 𝜎0 , 𝜎𝑖 

𝜃𝜃
( 𝜋∕2)∕ 𝜎0 for 𝑔 = 0 . 5 , 𝑔 = 2 . 0 and various values of interface parameters. The num- 

bers in parentheses is the error in comparison with the analytical solution. 

a) g = 0.5 b) g = 2 

𝜎𝑒 
𝜃𝜃
( 𝜋∕2)∕ 𝜎0 𝜎𝑖 

𝜃𝜃
( 𝜋∕2)∕ 𝜎0 𝜎𝑒 

𝜃𝜃
( 𝜋∕2)∕ 𝜎0 𝜎𝑖 

𝜃𝜃
( 𝜋∕2)∕ 𝜎0 

a 1.44898 (0.02 %) 0.64667 (0.009 %) a 0.65396 (0.003 %) 1.26511 (0.0008 %) 

b 2.20480 (0.008 %) 0.06604 (0.01 %) b 2.19958 (0.002 %) 0.06960 (0.0006 %) 

c 1.59208 (0.02 %) 0.49783 (0.008 %) c 0.90642 (0.01 %) 1.04033 (0.001 %) 

d 1.79991 (0.008 %) 0.36191 (0.05 %) d 1.43881 (0.006 %) 0.58924 (0.01 %) 

e 1.45798 (0.02 %) 0.64976 (0.009 %) e 0.64292 (0.003 %) 1.23772 (0.0008 %) 

f 1.45875 (0.02 %) 0.65002 (0.009 %) f 0.64257 (0.003 %) 1.23685 ( < 0.0001 %) 

Table 6 

SCF given by 𝜎
( 𝑒 ) 
𝜃𝜃
( 𝜋∕2) for 𝑔 = 0 . 5 and various ratios of L / a . 

Study cases 𝐿 ∕ 𝑎 = 1 . 1 𝐿 ∕ 𝑎 = 1 . 5 Study cases 𝐿 ∕ 𝑎 = 3 . 0 

BEM FEM Δ BEM FEM Δ BEM FEM Δ

1. 1.926 1.923 2 × 10 −3 1.760 1.756 2 × 10 −3 1.680 1.675 3 × 10 −3 

2. 2.242 2.240 9 × 10 −4 1.678 1.676 1 × 10 −3 1.478 1.476 1 × 10 −3 

3. 2.038 2.036 1 × 10 −3 1.805 1.802 1 × 10 −3 1.683 1.679 2 × 10 −3 

4. 2.196 2.214 2 × 10 −2 1.687 1.688 6 × 10 −4 1.522 1.521 7 × 10 −4 

5. 2.142 2.140 1 × 10 −3 1.687 1.685 1 × 10 −3 1.526 1.523 2 × 10 −3 

6. 2.135 2.132 9 × 10 −3 1.677 1.674 2 × 10 −3 1.502 1.498 3 × 10 −3 

7. 2.157 – – 1.644 – – 1.410 – –

Fig. 6. Circular inclusion in the finite plate. 

p  

a  

j  

i

4

u

 

i  

F  

t  

c  

fi  

T

Δ  

I  

c  

4

Fig. 7. Inclusion of complex shape. 
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arameters 𝜆n and 𝜆t (cases b, c, d), characterizing bonds in the radial

nd circumferential directions, than on the parameter 𝜆𝜙, characterizing

ump in the microrotation. The detailed parametric study of this problem

s done in [48] . 

.3. Example 3. Circular inclusion with perfect interface in a finite plate 

nder uni-axial tension. 

In the third example, we consider a circular inclusion with perfect

nterface in a finite plate of size 2 L ×2 L subjected to the uniaxial tension,

ig. 6 . We consider the same 14 study cases, as in the first example, but

his time, we vary the ratio of L / a . The results in terms of the stress con-

entration factors are shown in Tables 6 and 7 in comparison with the

nite element solution [bitbucketlink]. (mesh size, convergence study).

he difference between two results is defined as 

= 

SCF BEM 

− SCF FEM 

SCF FEM 

(22)

t ’s interesting to note, that in the case of 𝑔 = 2 . 0 and 𝑎 ∕ 𝐿 = 1 . 1 no stress

oncentration occurs for some values of material parameters (cases 2,

, and 7). 
200 
.4. Example 4. Inclusion of complex shape with perfect interface in a 

quare plate. 

In the forth example, we consider an inclusion with perfect interface

n a square plate of size 2 L ×2 L subjected to the boundary conditions

 Fig. 7 ): 

 1 = 𝑢 2 = 𝜙 = 0 at 𝑥 = − 𝐿, 

𝑡 1 = 𝜎0 , 𝑡 2 = 𝑡 3 = 0 at 𝑥 = 𝐿. 
(23) 

he size of the plate is set to 𝐿 = 2 mm and the shape of the inclusion is

iven in the polar coordinates, associated with the point (0, 0) as 

 ( 𝜃) = 1 + 0 . 5 sin (5( 𝜃 + 𝜋∕4)) (mm) . (24)

ext, in order to illustrate the influence of the micropolar material con-

tants on the deformation, we compare the numerical results for 8 sets
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Table 7 

SCF given by 𝜎
( 𝑖 ) 
𝜃𝜃
( 𝜋∕2) for 𝑔 = 2 . 0 and various ratios of L / a . 

Study case 𝐿 ∕ 𝑎 = 1 . 1 𝐿 ∕ 𝑎 = 1 . 5 𝐿 ∕ 𝑎 = 3 . 0 

BEM FEM Δ BEM FEM Δ BEM FEM Δ

1. 1.107 1.106 9 × 10 −4 1.149 1.148 9 × 10 −4 1.111 1.111 1 × 10 −4 

2. 0.952 0.953 1 × 10 −3 1.138 1.138 1 × 10 −4 1.237 1.236 8 × 10 −4 

3. 1.048 1.048 1 × 10 −4 1.089 1.089 1 × 10 −4 1.104 1.104 1 × 10 −4 

4. 0.976 0.962 1 × 10 −2 1.144 1.139 4 × 10 −3 1.209 1.203 5 × 10 −3 

5. 1.037 1.037 1 × 10 −4 1.166 1.164 2 × 10 −3 1.217 1.216 8 × 10 −4 

6. 1.012 1.012 1 × 10 −4 1.160 1.159 9 × 10 −4 1.235 1.234 8 × 10 −4 

7. 0.993 – – 1.178 – – 1.342 – –

Fig. 8. Deformed contours for study cases ( Eq. (25) ). 

Fig. 9. Distribution of the normal and resultant stresses along the inclusion interface for 𝑔 = 0 . 5 for study cases ( Eq. (25) ). 

Fig. 10. Distribution of the normal and resultant stresses along the inclusion interface for 𝑔 = 2 . 0 for study cases ( Eq. (25) ). 
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f parameters: 

) 𝓁 𝑖 = 0 . 001 mm , 𝑁 

𝑖 = 0 . 001 , 𝓁 𝑒 = 0 . 001 mm , 𝑁 

𝑒 = 0 . 001 , 

) 𝓁 𝑖 = 0 . 1 mm , 𝑁 

𝑖 = 0 . 25 , 𝓁 𝑒 = 0 . 5 mm , 𝑁 

𝑒 = 0 . 75 , 

) 𝓁 𝑖 = 0 . 9 mm , 𝑁 

𝑖 = 0 . 75 , 𝓁 𝑒 = 0 . 1 mm , 𝑁 

𝑒 = 0 . 9 , 

) 𝓁 𝑖 = 0 . 5 mm , 𝑁 

𝑖 = 1 . 0 , 𝓁 𝑒 = 0 . 75 mm , 𝑁 

𝑒 = 1 . 0 , 

(25) 
201 
n each case 𝑔 = 0 . 5 , 2 . 0 and the remaining parameters were fixed to 𝜈𝑖 =
 . 25 , 𝜈𝑒 = 1∕3 . First, the (exaggerated) deformed contours are shown in

ig. 8 (a), 8 (b), where it can be seen that the influence of the chosen

icropolar constants on deformation is slightly greater in the case of

 = 0 . 5 . 
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Next, the distribution of the normal and resultant stresses defined as

𝑛𝑛 = 𝑡 1 𝑛 1 + 𝑡 2 𝑛 2 , 𝜎𝑟𝑒𝑠 = ( 𝑡 2 1 + 𝑡 2 2 ) 
1∕2 . (26)

long the contour of the inclusion is shown in Fig. 9 (a) and 9 (b),

ig. 10 (a) and 10 (b), where it can be seen that the micropolar effects

n peak stresses (at positions 𝜃1 , ... 𝜃6 ) are greater for stiffer inclusions.

owever, the detailed parametric study of interface failures is a subject

f future studies. 

. Conclusion 

In this paper the system of boundary integral equations for an in-

lusion problem in plane micropolar elasticity with imperfect inter-

aces was formulated and subsequently solved by the boundary element

ethod. The boundary element method is shown to be an efficient tool

or numerical analysis of boundary value problems with perfect and im-

erfect interfaces. For a problem with imperfect interface it is shown

hat the jump conditions can be directly incorporated into the boundary

ntegral equations. 

The results presented in this paper can be further used for analy-

is of interface failure and crack heterogeneity interaction in Cosserat

edium, which is the topic of ongoing work of our team. Another in-

eresting research direction consists in establishing guaranteed homoge-

ization bounds for Cosserat-heterogeneous materials using modern ap-

roaches based on stochastic mechanics such as [59] . 

upplementary material 

FEniCS code to produce the finite element method results can be

ound at [57] . 
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