
Engineering Applications of Artificial Intelligence 64 (2017) 261–271

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Docode 5: Building a real-world plagiarism detection system
Gaspar Pizarro V., Juan D. Velásquez *
Universidad de Chile, Chile

a r t i c l e i n f o

Keywords:
Plagiarism detection
Software engineering
MapReduce

a b s t r a c t

Plagiarism refers to the appropriation of someone else’s ideas and expression. Its ubiquity makes it necessary to
counter it, and invites the development of commercial systems to do so. In this document we introduce Docode
5, a system for plagiarism detection that can perform analyses on the World Wide Web and on user-defined
collections, and can be used as a decision support system. Our contribution in this document is to present this
system in all its range of components, from the algorithms used in it to the user interfaces, and the issues with
deployment on a commercial scale at an algorithmic and architectural level. We ran performance tests on the
plagiarism detection algorithm showing an acceptable performance from an academic and commercial point
of view, and load tests on the deployed system, showing that we can benefit from a distributed deployment.
With this, we conclude we can adapt algorithms made for small-scale plagiarism detection to a commercial-scale
system.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Plagiarism is defined as the unauthorized use or close imitation
of the ideas and language expression of someone else and involves
representing their work as one’s own (Hannabuss, 2001). As an example
of how pervasive it can be, a study (Molina et al., 2011) found that
approximately fifty percent of students in Chile have taken information
from external sources without citation, making it necessary to take
measures for countering it. Since detection of human plagiarism is
labor-intensive (Kakkonen and Mozgovoy, 2010), this problem has
pushed efforts to automate plagiarism detection. Thus, there have been
efforts both in academic research and commercial systems for detecting
plagiarism. However, in each area the main focus is different; in
academic research, the focus is on algorithms and systems for detecting
sophisticated plagiarism cases, as can be seen in Potthast et al. (2009),
whereas in commercial systems, the focus is on user interfaces and their
impact on the process of writing good documents. For instance, the
plagiarism detection function in Turnitin (0000) is just one of their
many functionalities for helping to write good documents, and their
interfaces are polished to the end-user.

Our objective is to deploy a commercial plagiarism detection system.
When deploying on a commercial scale, there are some problems related
to massive use. These problems are related to the analysis of large
document collections and the fact that a plagiarism detection system
is meant to download documents, interacting with the World Wide

* Corresponding author.
E-mail addresses: gaspar.pizarro.v@wic.uchile.cl (G. Pizarro V), jvelasqu@dii.uchile.cl (J.D. Velásquez).

Web. So, in this paper we present Docode 5, a commercial plagiarism
detection system. We present Docode 5 from end to end, from the
algorithms used up to the user interfaces, and since we are aiming for
a commercial deployment, we show the measures we take for dealing
with the problems described above.

The rest of this document is structured as follows. Section 2 con-
tains a brief explanation and survey of the subjects this paper covers,
namely plagiarism detection, algorithms for dealing with large docu-
ment collections and plagiarism detection systems. Section 3 explains
the functionalities offered by the system and the algorithms used in it.
Section 4 shows the logical architecture of the deployed system and the
technologies used for deploying it. Section 5 shows some tests we ran
with the system to prove its performance. Section 6 shows what can be
improved in this system as a future work, and, finally, Section 7 shows
the conclusions from this work.

2. Related work

2.1. Plagiarism detection

A first survey on the subject can be found in Clough et al. (2003),
where the author discusses the forms of plagiarism, the difference
between plagiarism in natural language documents and in structured
text documents, namely computer code. An initiative to push forward

http://dx.doi.org/10.1016/j.engappai.2017.06.001
Received 29 July 2016; Received in revised form 6 April 2017; Accepted 2 June 2017
Available online 20 July 2017
0952-1976/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.engappai.2017.06.001
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2017.06.001&domain=pdf
mailto:gaspar.pizarro.v@wic.uchile.cl
mailto:jvelasqu@dii.uchile.cl
http://dx.doi.org/10.1016/j.engappai.2017.06.001

G. Pizarro V, J.D. Velásquez Engineering Applications of Artificial Intelligence 64 (2017) 261–271

research in automatic plagiarism detection was done in the PAN com-
petition from 2009 to 2014 (Potthast et al., 2009, 2010a; Stein et al.,
2011; Potthast et al., 2012, 2013, 2014; Hagen et al., 0000), which
delivered many different approaches to the task, and also delivered
datasets and an evaluation framework that can be used to compare
different plagiarism detection strategies (Potthast et al., 2010b). Prior
to 2013, the idea of plagiarism detection was done on a dataset with
an ‘‘all-versus-all’’ approach, that is, given two sets of documents, the
suspicious and the source set, the task was finding all pairs of source
and suspect which have plagiarism. From 2013 onwards, the task was
focused on plagiarism detection on the web, and decomposed into two
subtasks:

Source retrieval Given a suspicious document, the task is to find
similar documents in a collection only accessible through a search
engine (provided by the competition). The goal in this subtask is to
find the documents that are likely to have plagiarized sections with
the suspicious one, while minimizing the number of queries to the
search engine and the number of downloaded documents.

Text alignment Given a pair of documents, to find the plagiarized
sections in common between them. The goal here is what is usually
known as plagiarism detection, that is, to find only the plagiarized
sections while coping with obfuscation techniques like paraphrasing,
translation1 or summarization.

The task of plagiarism detection is also called external plagiarism
detection, because a suspicious document is analyzed against a source
document, or against a group of source documents. This is opposed to
intrinsic plagiarism detection, where the task is to detect plagiarized pas-
sages of text in a suspicious document without a reference source, that
is, to find text that ‘‘looks’’ too different to the document to be written
by the same author of the rest of the document. This work is focused on
external plagiarism detection, so when we refer to plagiarism detection,
unless stated otherwise, we mean external plagiarism detection.

Formally, as described by Stein et al. (2011), a plagiarism case
between two documents is described as a quartet 𝑠 = (𝑠𝑝𝑙𝑔 , 𝑑𝑝𝑙𝑔 , 𝑠𝑠𝑟𝑐 , 𝑑𝑠𝑟𝑐),
where a section 𝑠𝑝𝑙𝑔 of a suspicious document 𝑑𝑝𝑙𝑔 is a plagiarized
version of a section 𝑠𝑠𝑟𝑐 of a source 𝑑𝑠𝑟𝑐 . Similarly, a detection 𝑟 =
(𝑟𝑝𝑙𝑔 , 𝑑𝑝𝑙𝑔 , 𝑟𝑠𝑟𝑐 , 𝑑′𝑠𝑟𝑐), is where a discovered section 𝑟𝑝𝑙𝑔 of the suspicious
document is regarded as plagiarized from a section 𝑟𝑠𝑟𝑐 from a document
𝑑′𝑠𝑟𝑐 . With this framework in mind, we can consider the source retrieval
task as finding the right source document, that is, 𝑑′𝑠𝑟𝑐 = 𝑑𝑠𝑟𝑐 , while
the text alignment task can be described as finding the right sections
in the suspicious document, that is, 𝑠𝑝𝑙𝑔 ≈ 𝑟𝑝𝑙𝑔 . Focusing on the text
alignment subtask, we say that a plagiarism detection algorithm is
evaluated with a set 𝑆 of plagiarism cases (all with the same 𝑑𝑠𝑟𝑐 and
𝑑𝑝𝑙𝑔), and yields a set 𝑅 of detections. The quality of an algorithm can
be evaluated as an Information Retrieval task, with a modified version
of precision and recall (Potthast et al., 2010b). These measures treat
contiguous plagiarized sections as basic retrieval units, as opposed to
treating characters as basic retrieval units, for which we can use the
standard definitions of precision and recall (Potthast et al., 2009). With
the definitions of plagiarism case and detections shown before we can
define the performance measures as follows:

Precision This measure is the average fraction of each detection that
is indeed a plagiarism case.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑆,𝑅) = 1
|𝑅|

∑

𝑟∈𝑅

|

|

⋃

𝑠∈𝑆 (𝑠 ⊓ 𝑟)|
|

|𝑟|
(1)

where 𝑠 ⊓ 𝑟 is the set of overlapping characters between the case 𝑠
and the detection 𝑟. We say that r detects s if 𝑠 ⊓ 𝑟 ≠ ∅.

1 More exactly, this is using a translation engine to translate a document to a different
language, and then translating the translated document back to the original language,
which introduces differences in the document.

Recall This measure is the average fraction of each plagiarism case
that is detected.

𝑟𝑒𝑐𝑎𝑙𝑙(𝑆,𝑅) = 1
|𝑆|

∑

𝑠∈𝑆

|

|

⋃

𝑟∈𝑅(𝑠 ⊓ 𝑟)|
|

|𝑠|
(2)

Granularity This measure is the average number of detections out-
putted by the system for each actual detected plagiarized passage.

𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑆,𝑅) = 1
|𝑆𝑅|

∑

𝑠∈𝑆𝑅

|𝑅𝑠| (3)

where 𝑆𝑅 are the cases in 𝑆 that are detected in 𝑅, and 𝑅𝑠 are the
detections in 𝑅 that detect a given 𝑠 ∈ 𝑆. The optimal and minimum
value of the granularity is 1, which means that plagiarized sections
are detected exactly once, and the worst value is |𝑅|, which can be
when all the detections are of the same 𝑠 ∈ 𝑆 (which also means
a poor recall for the other cases in 𝑆). This measure does not have
an Information Retrieval equivalent, and it can somewhat measure
the ‘‘usability’’ of the algorithm, in the sense that it is preferred for
the final user to have one detection per actual case, even though the
detection can be of just one character of the actual case, than many
ones, that do not give more information than just one detection per
case.

Plagdet This measure is a combination of the above measures, which
allows comparisons between different methods.

𝑝𝑙𝑎𝑔𝑑𝑒𝑡(𝑆,𝑅) =
𝐹𝛼

𝑙𝑜𝑔2(1 + 𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑆,𝑅))
(4)

where 𝐹𝛼 is the harmonic mean of the precision and recall defined
before.

Finally, though the text alignment task was abandoned in PAN,
there have been other developments in plagiarism detection outside it.
In Gipp et al. (2014), the authors describe a mechanism for citation-
based plagiarism detection, as opposed to the character-based detection
used in most of the approaches at the PAN competition. In Abdi et al.
(2015), the authors use WordNet, a lexical database where words are
organized into sets of synonyms (Miller, 1995), to handle false positives
that may arise from the change of meaning that can happen in sentences
that have common words but are not paraphrasing. In Vani and Gupta
(2017) the authors use a genetic algorithm to extract concepts from
the document, in an attempt to handle obfuscated plagiarism. In Paul
and Jamal (2015), the authors use Semantic Role Labelling (Gildea
and Jurafsky, 2002), a technique that associates roles (like ‘‘subject’’ or
‘‘object’’) to terms in sentences, adding more information to the terms
in the documents and allowing their method to handle paraphrasing.
A comparison and categorization of many techniques for detecting
plagiarism can be found in Sahi and Gupta (2016), and an state of
the art review can be found in Meuschke and Gipp (2013), showing the
maturity of the subject.

2.2. Large document collections

First insights on scalability awareness in plagiarism detection,
though more focused on computer code, are given in Burrows et al.
(2007), where an inverted index (Baeza-Yates et al., 1999) is used
to compute similarities in a document collection in an all-versus-all
mode. This data structure is used in many of the prior-to-2013 PAN
iterations where the inverted index is used as a search engine, being
queried with fragments of the suspicious documents to get the most
likely sources. Another approach is to use an inverted index directly to
find the plagiarized document pairs, without relying on query extraction
from suspicious documents, as in Zhang et al. (2010).

Also, in Zhang et al. (2010), scalability issues are dealt with using
the MapReduce framework (Dean and Ghemawat, 2008), which can be
used to work with data that does not fit in memory by storing it on a
disk and using multiple machines to process it. Along the same lines,
this framework is used in Elsayed et al. (2008), Xu et al. (2011), Wu et
al. (2011) and Wang et al. (2010), although they are more focused on
scale than in the plagiarism detection algorithm.

262

G. Pizarro V, J.D. Velásquez Engineering Applications of Artificial Intelligence 64 (2017) 261–271

2.3. Plagiarism detection systems

A state of the art for plagiarism detection systems can be found
in Kakkonen and Mozgovoy (2010), where they also do an empirical
evaluation of some real-world commercial systems. Before that, the idea
of fully-fledged systems for plagiarism detection with an orientation
towards the user, as opposed to just algorithms, can be traced back
to Si et al. (1997), where user-oriented issues are discussed, like a
mechanism for text extraction and the idea of creating custom databases
of original documents. The idea of deploying a plagiarism detector as a
distributed system is discussed in Monostori et al. (2000), showing that
the approach can greatly improve the running time. The last version
of the system proposed in this document was created in Velásquez et
al. (2016), where architectural and technological issues are discussed in
a system that not only does plagiarism detection, but also other text
processing tasks, like intrinsic plagiarism detection (Oberreuter and
Velásquez, 2013), quotation detection and document clustering.

Since plagiarism detection has a direct application, commercial en-
gines have emerged, especially as web services. Here are some examples.

Turnitin (0000) One of the tools evaluated in Kakkonen and
Mozgovoy (2010). A platform for education, which incorporates
originality checking among its functionalities. This system uses
its originality check as part of a suite of functionalities for writing
better documents.
Grammarly (0000) A suite of tools for improving writing. One of
them is the Plagiarism Checker, which searches text on the web.
iThenticate (0000) From the same company as Turnitin, this is an
academia-oriented platform, which offers searching documents
against the web and academic repositories, such as journals and
magazines.
VeriGuide (0000) Another education-oriented platform which
can support text in English and Chinese.

2.4. Contributions of this paper

In this paper we present the next iteration of Velásquez et al. (2016),
where a suite of algorithms is presented for text analysis. However,
pitching the system to the market has shown that the main focus has to
be on external plagiarism detection, more than on other text processing
tasks, and beyond detecting subtle plagiarism cases, simply detecting the
‘‘easy’’ ones. Also, no consideration is given to big document collections,
while as described before, the size of the document collections is a
relevant issue. The contribution of Velásquez et al. (2016) to this
work is that, as our first attempt at a commercial system, it showed us
the market-related problem mentioned before, and, through the people
involved in that project, gave us insights about the general architecture
of this system and the technologies to use in it.

In this paper we present a fully-fledged plagiarism detection system
for commercial use, we describe its architecture and most important,
show the considerations we have when dealing with a large-scale
deployment, that is, when dealing with big document collections and
with the World Wide Web.

3. Proposed system

3.1. The core algorithm

The core algorithm for comparing two documents, used in all the
functionalities of the system, is based on the analysis of the shingles
of the document. The shingles (Broder, 1997) of a text, are the words
yielded by a sliding window of a determined size over the words of the
text. For instance, the shingles of size 3 of the text

this is the user interface

(a) Shingle size of 1 word

(b) Shingle size of 3 words

Fig. 1. Dotplot of two documents with reused text. The plots were shifted to make the
lines appear centered for convenience.

are the list
this is the
is the user

the user interface

First, we strip the text of punctuation and stopwords, then with
the shingles of the texts a dotplot is built, with the ‘‘suspect’’ and the
‘‘source’’ document for each axis. The dotplot (Helfman, 1996) is a
visual technique to compare two sequences 𝑠 and 𝑠′ (in this case, the
shingles of the source and the suspicious document). The axes of the
dotplot are the indices in the sequences, and the point with coordinates
(𝑖, 𝑗) in the dotplot is marked if 𝑠𝑖 = 𝑠′𝑗 . Figs. 1a and 1b show dotplots of
two documents with different shingle sizes.

Matching shingles between both documents are shown as dots in the
dotplot. Text reuse happens when the shingle 𝑛 of the suspect matches
with the shingle𝑚 of the source, and so do suspect’s (𝑛+1)-th and source’s

263

G. Pizarro V, J.D. Velásquez Engineering Applications of Artificial Intelligence 64 (2017) 261–271

(𝑚 + 1)th shingles, and so on, so plagiarized passages can be seen as
continuous diagonal lines of matching shingles. Fig. 1 shows that small
shingle sizes show more isolated coincidences, such as compound names
like ‘‘Christopher Columbus’’, which can be expected to be reused in a
group of documents about the Age of Discovery, for example, without
making a plagiarism case, while introducing noise to the plot, making it
more difficult to detect clear lines, whereas bigger shingle sizes generate
a cleaner dotplot, but can cut some of the lines. More quantitatively, in
Fig. 1a, there are 183 matching shingles, and 45.36% of them are in an
empty neighborhood, whereas in Fig. 1b there are only 62 matching
shingles, with only 1.61% of them without neighbors. As explained
before, isolated matching shingles are of little use, so it is desired for
a dotplot to have the least amount of them and having continuous lines
instead when there is text reuse.

With the preprocessing steps described before, we no longer work
with text and instead only work with the dotplot. Algorithm 1 shows
the procedure for computing the matching shingles from a dotplot used
in the system. This algorithm receives the list of dots of the dotplot, the
maximum gap allowed between plagiarism cases, which defines how
far two plagiarism cases have to be in order to be considered as just
one case, and the minimum size for a plagiarism case to be considered.
It is important to remark that this algorithm (with the preprocessing
steps) is symmetric, that is, the results are the same if the inputs are
swapped. Since we also remove stopwords in order to improve recall,
the core algorithm is language-dependent, but the set of stopwords can
be changed for other languages.

Algorithm 1 Matching documents
procedure getmatches

Require:
𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐼𝑛𝑑𝑖𝑐𝑒𝑠: List of pairs of integers
𝑚𝑎𝑥𝐺𝑎𝑝: Maximum gap between clusters, integer
𝑚𝑖𝑛𝑆𝑖𝑧𝑒: Minimum cluster size

Ensure: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠: List of lists of pairs of integers
clusters ← ∅
while 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐼𝑛𝑑𝑖𝑐𝑒𝑠 ≠ ∅ do

𝑓𝑚𝐼𝑛𝑑𝑒𝑥 ← pop first pair from 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐼𝑛𝑑𝑖𝑐𝑒𝑠
sort 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐼𝑛𝑑𝑖𝑐𝑒𝑠 according to the Chebyshev distance to

𝑓𝑚𝐼𝑛𝑑𝑒𝑥
cluster = {fmIndex};
while 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐼𝑛𝑑𝑖𝑐𝑒𝑠 ≠ ∅∧𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣(𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐼𝑛𝑑𝑖𝑐𝑒𝑠.𝑓 𝑖𝑟𝑠𝑡,

𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑙𝑎𝑠𝑡) = 1 do
Pop 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐼𝑛𝑑𝑖𝑐𝑒𝑠.𝑓 𝑖𝑟𝑠𝑡 to 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
sort 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐼𝑛𝑑𝑖𝑐𝑒𝑠 according to the Chebyshev distance

to 𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑙𝑎𝑠𝑡
end while
add 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 to 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠;

end while
Merge 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 closer than 𝑚𝑎𝑥𝐺𝑎𝑝 according to Cheby-

shev distance
Remove 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 smaller than 𝑚𝑖𝑛𝑆𝑖𝑧𝑒
return 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

end procedure

The Chebyshev distance between two matching shingle indices 𝑎 =
(𝑠𝑢𝑠𝑝𝑖, 𝑠𝑟𝑐𝑗) and 𝑏 = (𝑠𝑢𝑠𝑝𝑘, 𝑠𝑟𝑐𝑙) is defined as the distance on the axis
with the largest one, that is

𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣(𝑎, 𝑏) = 𝑚𝑎𝑥{|𝑠𝑢𝑠𝑝𝑖 − 𝑠𝑢𝑠𝑝𝑘| − |𝑠𝑟𝑐𝑘 − 𝑠𝑟𝑐𝑙|}. (5)

With this metric we can compare how close are two matching shingles
to determine if they belong to the same cluster and to determine if two
clusters are close enough to be considered a single one (which leads to
a single detection).

The maximum gap and the minimum cluster size parameters can
be tuned by applying the algorithm to a dataset and evaluating the
performance of the algorithm, with one of the performance measures

described in Section 2.1. When tuning the algorithm we have seen
that a small minimum cluster size leads to more detections, but also
more spurious ones, giving more recall but less precision, whereas a big
minimum cluster size can lead to less detections, because the minimum
case length has to be bigger to be detected, giving more precision
but less recall. Also, we have seen that a small maximum gap leads
to fragmented detections (for instance, if a few words change in the
plagiarized document, the algorithm yields two detections for just one
plagiarism case), increasing the granularity, whereas a big maximum
gap can lead to detect adjacent cases as one, with all the non-matching
text between the detections, which decreases the granularity, but also
decreases the precision of the algorithm.

3.2. Web analysis

The main functionality of the system is the web analysis where a
document is analyzed to find reused text in common with documents
on the internet. In Fig. 2 we can see the pipeline, the steps and modules
involved in web analysis. First, text is extracted from the suspicious
document. Then, inspired by Williams et al. (2014), the queries are
generated by taking the list of nouns in the document and separating
them in groups of some size. These queries that are passed to a search
engine, which returns a list of links, each one with a snippet. In order
to minimize the number of downloads, the snippet is used to discard
results that are not likely to have matches. To do this, we take the
words of the snippet and check the fraction of them that are in the
suspicious document. If the fraction is below a threshold, the link is
discarded. The threshold, in this case, was set to 0.1, meaning that
links with snippets with less of the 1% of their words in the suspicious
document are discarded. The remaining search results are sent to the
document retriever, which retrieves the candidate sources for further
analysis. We then have a set of potential source documents, which may
or may not have matches with the suspicious document. The text of
every source candidate is extracted and detailed comparison is made
with the suspicious documents using algorithm 1 generating the final
results.

The query generator module uses the Stanford part-of-speech tag-
ger (Toutanova et al., 2003) to recognize nouns, making it dependent
on the language, but, as with the core algorithm, the language model
used by the tagger can be changed for other languages.

3.2.1. Issues with web analysis and proposed improvements
The web analysis task involves issuing requests to web pages, the

same way web crawlers do (Olston and Najork, 2010). There are sites
that are more likely to be reached by the system and, if requests are
made without any control, the system can perform (unintentionally) a
denial-of-service attack, which can end up with the system losing access
to a potential source, and causing the web analyses to be incomplete.
This can happen because there are sites that have lots of information,
and are very likely to be used for text reuse, such as Wikipedia, and
also because, in an educational environment, it is likely that similar
documents (e.g. two assignments on the same subject) can lead to
the same candidate source (regardless of actual text reuse). We use a
politeness policy of throttling the requests per unit of time. To do that,
the document retrieval module buffers every download on a per-domain
basis, that is, when it receives a url to download, it puts it in a queue
according to the url domain, then it downloads the pages from each
domain one at a time with a delay between each download, so that
the analysis does not overload a domain. Also, the document retriever
module looks up the urls in a cache database, so that web pages are
downloaded only once. This way, we deliver results as fast as possible,
while assuring the quality of the web analyses. It is important to remark
that here we assume the plagiarizable content on the web to be static, as
we currently do not have any cache refreshing strategies implemented.

264

G. Pizarro V, J.D. Velásquez Engineering Applications of Artificial Intelligence 64 (2017) 261–271

Fig. 2. Web analysis pipeline.

3.3. Custom repository analysis

The system can be used with a custom collection of source docu-
ments. Collections are defined by the user and suspicious documents can
be compared with them, by using the same pipeline as described in 3.2,
but instead of issuing queries to an online commercial search engine,
it issues the queries to an internal search engine, and retrieves the
documents from there, without downloading anything from the Internet.
Of course, no considerations about the document downloads have to be
made, since the storage is in a local network under our control.

3.4. Group analysis

When comparing a group of documents as all-versus-all (a group of
student papers for the same homework, for instance), we could use the
main method and build a matrix of document comparisons. But this
is not the most efficient method, because the documents have to be
preprocessed into shingles many times. Instead, we use a method based
on (Zhang et al., 2010), in two phases, two MapReduce jobs, one for
indexing the documents and one for analyzing them.

Algorithm 2 Indexing job
procedure map

Require:
𝑡𝑒𝑥𝑡: Text of the document, string
𝑖𝑑: Document identifier, integer

for 𝑠ℎ𝑖𝑛𝑔𝑙𝑒 ∈ getshingles(text, shingleSize) do
emit(𝑠ℎ𝑖𝑛𝑔𝑙𝑒.𝑤𝑜𝑟𝑑𝑠, (𝑖𝑑, 𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑃 𝑜𝑠))

end for
end procedure

procedure reduce
Require:

𝑠ℎ𝑖𝑛𝑔𝑙𝑒: String
𝑝𝑜𝑠𝑡𝑖𝑛𝑔𝑠: List of the form (𝑖𝑑, 𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑃 𝑜𝑠, 𝑠ℎ𝑖𝑛𝑔𝑙𝑒.𝑠𝑡𝑎𝑟𝑡, 𝑠ℎ𝑖𝑛𝑔𝑙𝑒.𝑒𝑛𝑑)

if 𝑝𝑜𝑠𝑡𝑖𝑛𝑔𝑠.𝑙𝑒𝑛𝑔𝑡ℎ ∈ [2,max_length] then
emit(𝑠ℎ𝑖𝑛𝑔𝑙𝑒, 𝑝𝑜𝑠𝑡𝑖𝑛𝑔𝑠)

end if
end procedure

Algorithm 2 shows a standard index construction, which yields
an index of the form 𝑤𝑜𝑟𝑑𝑠 ∶ [(𝑑𝑜𝑐𝐼𝑑, 𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑃 𝑜𝑠, 𝑠ℎ𝑖𝑛𝑔𝑙𝑒.𝑠𝑡𝑎𝑟𝑡,

Algorithm 3 Matching job
procedure map

Require:
𝑘𝑒𝑦: Words of the shingle, String
𝑝𝑜𝑠𝑡𝑠: List of the form (𝑖𝑑, 𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑃 𝑜𝑠)

for (𝑝𝑜𝑠𝑡𝑖, 𝑝𝑜𝑠𝑡𝑗) ∈ 𝑝𝑜𝑠𝑡𝑠 × 𝑝𝑜𝑠𝑡𝑠 do
emit((𝑝𝑜𝑠𝑡𝑖.𝑖𝑑, 𝑝𝑜𝑠𝑡𝑗 .𝑖𝑑), (𝑝𝑜𝑠𝑡𝑖.𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑃 𝑜𝑠, 𝑝𝑜𝑠𝑡𝑗 .𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑃 𝑜𝑠))

end for
end procedure

procedure reduce
Require:

(𝑡𝑒𝑥𝑡𝐼𝑑𝑖, 𝑡𝑒𝑥𝑡𝐼𝑑𝑗): pair of document ids
𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐼𝑛𝑑𝑖𝑐𝑒𝑠: List of the form (𝑝𝑜𝑠𝑡𝑖.𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑃 𝑜𝑠, 𝑝𝑜𝑠𝑡𝑗 .𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑃 𝑜𝑠)

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← getmatches(matchingIndices, maxGap, minSize)
for 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do

emit((𝑡𝑒𝑥𝑡𝐼𝑑𝑖, 𝑡𝑒𝑥𝑡𝐼𝑑𝑗), [(cluster.start, cluster.end)])
end for

end procedure

𝑠ℎ𝑖𝑛𝑔𝑙𝑒.𝑒𝑛𝑑),…], where 𝑤𝑜𝑟𝑑𝑠 are the words of the shingle, 𝑑𝑜𝑐𝐼𝑑 is
the document identifier, 𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑃 𝑜𝑠 is the position of the shingle in
the document, and 𝑠ℎ𝑖𝑛𝑔𝑙𝑒.𝑠𝑡𝑎𝑟𝑡 and 𝑠ℎ𝑖𝑛𝑔𝑙𝑒.𝑒𝑛𝑑 are the string indices
of the shingle in the document, used later to indicate the final reused
text spans. In order to make the index manageable, we discard in the
reduce phase all shingles with only one entry, since they do not carry
information about plagiarism, while not linking any pair of documents,
and shingles whose entries have too many elements, since shingles that
are used in too many documents are likely not to be plagiarism, but
rather template text like headers and footers. The max_length parameter
was set to 100, since bigger values made the computation infeasible for
our infrastructure. Algorithm 3 shows the matching job, which uses the
index built by the indexing job as input. The map procedure generates
lists of the form (𝑑𝑜𝑐𝑖, 𝑑𝑜𝑐𝑗) ∶ [(𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑖, 𝑠ℎ𝑖𝑛𝑔𝑙𝑒𝑗),…] which link two
documents with the matching indices, which are then used with the
algorithm 1 to get the matches and the final result. With these two jobs
we can analyze a group of documents efficiently, without considerable
redundancy2 in obtaining the shingles, and in leveraging the computing

2 In the index analysis reduce procedure there might be repeated shingles, but this can
only happen when a section of a document is used more than once in another document.

265

G. Pizarro V, J.D. Velásquez Engineering Applications of Artificial Intelligence 64 (2017) 261–271

Fig. 3. Core high-level architecture.

power of a cluster of computers. It is important to remark that, since
algorithm 1 is symmetric, the results of the jobs are the same as the
ones we could obtain by building the document comparison matrix, even
though we cannot control the ordering of the pair of documents being
analyzed.

4. Architecture

The system is mainly composed of two loosely coupled subsystems,
the core and the front-end, which communicate with each other through
HTTP, with a JSON-based data exchange protocol. This makes it possible
to change the front-end or make the core available to third-party
applications.

4.1. Docode core

This is the core of the system, where the analyses are done and
the functionalities of the system are implemented. In Fig. 3 the core
architecture is shown. The core is developed as a Java Enterprise
Application, and deployed to a Glassfish server (or any JEE compatible
server for that matter), exposing an asynchronous HTTP interface, where
the core receives requests from a client, with the required data to
fulfill a request, and the core immediately returns an identifier for the
process in case of errors. The functionalities described in Sections 3.2–
3.4 are implemented in the worker nodes, WebWorker, RepoWorker,
and GroupWorker, respectively (we could say Fig. 2 is inside the
WebWorker node in Fig. 3). These nodes take the messages from a JMS
queue the front-end has put the messages in, compute the results and
send them to the Storer node, which puts the results in a database,
and then sends them to the Pusher, which sends the results back to
the client, using a callback URL. In case there is a problem sending the
results to the client, the identifier can be used to retrieve the result from
the database.

4.1.1. Technologies used in the system
There are many submodules in the system that have an open source,

or at least accessible, implementation, making it unnecessary for us
to implement them. For the text extraction, for all nodes, we use the
Tika library (Tika, 0000). The Tika library combines many other text
extraction libraries for different filetypes, and has an automatic type
detection functionality, allowing, with an unified API, for text extraction
from different filetypes, such as Adobe’s PDF and Microsoft Word’s DOC
and PPT formats. Since we want to deploy our system commercially,
it becomes necessary to make it open to the most popular document
formats.

For the WebWorker, we use Google’s Custom Search API (goo,
0000) as a search engine. This is a service provided by Google that

allows to search the web programmatically, the same way a user can
search the web through their website. We need this technology because
it is too much of an entry barrier having to implement a search engine
as good as Google’s to deploy our system. It is important to remark that
this is a paid online service, so its use involves an operational cost.

For the RepoWorker, the documents are stored in a Solr
database. Solr (0000) is a database that allows for full-text search,
something like a search engine in a group of files. Solr, in this system,
works both as a storage and a search engine for the repositories, so the
repositories can be searched and the document texts can be retrieved
from there.

For the GroupWorker, we run the MapReduce jobs with
Hadoop. Apache Hadoop (0000) is an open source implementation of
the MapReduce framework, which allows for the processing of large
datasets in clusters of computers, offering a data-redundant file system
and the machinery for distributing jobs in a cluster of computers. In a
Hadoop cluster there is usually a master machine, which distributes the
jobs and the data to process, and many slave machines, which do the
actual computation in the cluster.

4.2. Docode front-end

This module works as the user interface. Here the analyses are shown
to the end user and document repositories are managed. This module
also manages the user profiles. Currently we have two front-ends, one
for use by individuals, which offers web analyses, and one for use by
organizations (which offer the services themselves to their own people),
which offers web analyses, group comparisons and repository analyses.

4.2.1. Single user front-end
Figs. 4, 5a and 5b show the main views for the front-end. Fig. 4 shows

the dashboard, where a user can upload documents to the system, get
them analyzed and get the results. Since the back-end is asynchronous,
the front-end has to keep track of the analyses done previously, so that
the user can check the results. Fig. 5 show the views for a plagiarism
case. Fig. 5a shows the global report for one document. This report
shows for each document the global plagiarism ratio, that is, the fraction
of the words of the document that are involved in plagiarism cases, and,
for each source, the number of matches and the local plagiarism ratio,
that is, the fraction of the document involved in the plagiarism case with
that particular source. It is important to remark that the local plagiarism
rates do not necessarily add up to the global plagiarism ratio, because a
passage from a suspect can be plagiarized from more than one source.
A problem that we found with the previous version of the system was
that the measurements for plagiarism were deemed too complicated for
helping in the decision making process. In this iteration, we took care
to make the displayed rates as simple as possible, by displaying just one

266

G. Pizarro V, J.D. Velásquez Engineering Applications of Artificial Intelligence 64 (2017) 261–271

Fig. 4. Front-end dashboard.

number, the plagiarism index.3 In Fig. 5a, the ‘‘global’’ plagiarism index
is the fraction of the words of the suspicious document that are in any of
the found sources, whereas in Fig. 5b the ‘‘local’’ plagiarism index is the
fraction of the words of the suspicious document that are in one specific
source. The detections in different sources may overlap in the suspicious
document, so the local plagiarism indices do not necessarily add up
to the global plagiarism index. Also, since this system is ultimately a
decision-support system, it is up to the user to decide if the text reuse
found is really plagiarism, with all the implications this decision can
have (such as legal ones). Finally, Fig. 5b shows a detailed report for
one source. As with the previous iteration, it shows the suspect and
the source in a plain-text representation and highlights the plagiarized
passages of text, along with the local plagiarism index for the source.

4.2.2. Front-end for organizations
The single-user front-end described in Section 4.2.1 is the ‘‘lite’’ ver-

sion of the system, offered to the public. The front-end for organizations
is the ‘‘full’’ version of the system. In the full version an administrator
can manage privileges for users and, most important, they can use the
other functionalities of the system, namely the repository analysis and
the group analysis. Since, as said in Section 3.3, the two workflows
(web and repository analyses) are quite similar, the views are similar to
Fig. 5. Thus, we show that, with this modular architecture, we can have
a core which does the real job, and more than one view to show it in,
allowing us to eventually make other workflows for new types of users
(see Fig. 6).

5. Experiments

5.1. The core algorithm

We tested the algorithm 1 with an internal corpus of documents in
Spanish and the non-obfuscated portion of the PAN-PC-13 (Potthast et
al., 2013) test corpus, in English. The corpus for Spanish is very small,

3 Translated to Spanish to índice de plagio in Fig. 5.

(a) Global report for a document.

(b) Detailed report for a source.

Fig. 5. Report for a repository analysis.

Table 1
Performance of the document matching algorithm with an internal corpus.

Precision Recall Granularity Plagdet score

0.99 0.90 1.00 0.94

with 20 plagiarism cases, but has exactly what we need to evaluate
for our commercial deployment, whereas the PAN-PC-13 corpus is a
well-established corpus for plagiarism detection evaluation, with 1000
plagiarism cases (the subset we use). The results are shown in Tables 1
and 2. The performance measures used are the ones defined in Potthast
et al. (2010b).

5.2. Group analysis

For these tests, we run a cluster of 5 Amazon EC2 machines, each
one with 4 GiB of RAM. 2 CPU cores, with 1 master machine, and 4
slave machines. The corpus used for these experiments was made of the
PAN-PC-13 corpus (4995 documents), a corpus we know has plagiarism
cases in it, as well as articles from the English version of Wikipedia. First,
we tested the impact of adding more nodes to the cluster, starting with
only 2 slave nodes up to 4 slave nodes (making full use of the cluster),
with a 40168-document collection. The results are shown in Fig. 7.

In order to show the performance of the jobs in the cluster, we run
the algorithms with a growing collection of documents, starting with

267

G. Pizarro V, J.D. Velásquez Engineering Applications of Artificial Intelligence 64 (2017) 261–271

(a) Global report for a document.

(b) Detailed report for a source.

Fig. 6. Report for a repository analysis.

Table 2
Performance of the document matching algorithm with the non-obfuscated part of PAN-PC-13, comparing each measure with the
best and the worst of Potthast et al. (2013).

Precision Recall Granularity Plagdet score

Best 0.985 (Jayapal, 2012) 1.00 (Oberreuter et al., 2014) 1 a 0.94 (Oberreuter et al., 2014)
Docode 5 0.881 0.99 1.03 0.91
Baseline 0.88

a 15 of the 19 submissions tested in Potthast et al. (2013) reached this granularity, so, for the sake of space, we omit them.

a base collection made of the PAN-PC-13 corpus (4995 documents),
and then we add documents from the English Wikipedia, up to 90 000
documents. That is, we measured the time for our algorithm for group
analysis 10 times on the PAN-PC-13 corpus, and then added about
10 000 documents from Wikipedia to the group, measured the time
to process the new 10 times, and so on, up to the 90 000 documents.
Also, we measured how the index expanded, that is, how many different
shingles were registered in the index, and how many plagiarism cases
were detected as we analyzed more and more documents. The results
are shown in Fig. 8.

5.3. Discussion

In Tables 1 and 2 we can see that the performance of the core
algorithm (the one the other functionalities of the system are based on)
is over 90%, which makes it fit for our commercial purpose, while also
validating it with a standard dataset. We can expect the performance of
the system to be slightly higher in our dataset than in a standard dataset,
because the main focus of the system is satisfying our commercial
requirements for plagiarism, expressed in the internal dataset.

Fig. 7 we see that the algorithm can leverage the computing power
of a cluster, giving a result in less time with more running nodes. In

268

G. Pizarro V, J.D. Velásquez Engineering Applications of Artificial Intelligence 64 (2017) 261–271

(a) Elapsed times of the matching and indexing jobs vs. number of running
nodes.

(b) Total elapsed times for the group analysis jobs vs. number of running nodes.

Fig. 7. Impact of number of nodes in the running time of the group analysis algorithms.

Fig. 8a we see that in collections with fewer than 40,000 documents,
the majority of the running time of the analysis is in the indexing job,
whereas with bigger collections the majority of the cost is given by
the matching job. Looking to the points in Fig. 8c we can see that,
with the collection used in the experiments, the batch of documents
added between the 40,000 and 50,000 document increments, lead to
more plagiarism cases than the other batches we add. This shows that
the amount of work the matching job does depends on the number of
plagiarism cases in the collection.

A problem we found was that with document collections that are
too big there are some plagiarism cases that are ignored. This can be
caused by the restriction imposed on the length of the index entries (the
max_length parameter in Algorithm 2). When more and more documents
are added to the collection, some entries in the index exceed the
max_length parameter, getting them removed from it and causing some
plagiarism cases to be ignored. Finally, the larger standard deviations
in the bigger collection analyses in Fig. 8b suggest that the cluster can
be tuned to get better performance times.

6. Future work

Though, as shown, the overall architecture of the system is robust
enough to do a commercial deployment, most of the modules of the
system could be improved.

(a) Elapsed times of the matching and indexing jobs vs. number of documents.

(b) Total elapsed times for the group analysis jobs vs. number of documents.

(c) Number of entries in the index and number of plagiarism cases vs. number
of documents.

Fig. 8. Impact of number of documents in the running time of the group analysis
algorithms.

In the text extraction module, we are using the Tika library in all
functionalities of the system. This parser has some problems dealing
with PDF files and it does not extract structure from the files, thereby
introducing noise to the matching algorithm. Improving the parser

269

G. Pizarro V, J.D. Velásquez Engineering Applications of Artificial Intelligence 64 (2017) 261–271

to recognize structure in documents would allow the core algorithm
and the query generator to get better results, improving the overall
performance of the system.

The front-end presents its results in an effective way, but this could
be improved by showing the results in the documents themselves instead
of in a plain text representation, thus improving the usability to the
system.

The strategy for query extraction, though is good enough to find
source documents when there is plagiarism, issues too many useless
queries to the search engine, so better strategies could be analyzed, in
the sense that fewer queries could cover more text of the document.
Also, we need to study the impact of issuing fewer queries (with any
parameter-dependent strategy) in the recall of the system, in order to
find the minimum number of queries required to find a certain recall.
This way we could reach an acceptable compromise between the number
of queries per document (which become an operational cost) and the
recall of the system. This way we could start to reduce the operating
costs of the system.

Finally, the main problem with the system currently is that it is
dependent on a commercial search engine and the web in general,
which involves, as said before, operational costs and also ties our system
to the stability of the network, so if our internet connection becomes
unstable, our service quality becomes unstable. With this in mind, future
efforts have to be made to achieve independence from the web content.
That can be done in two phases; first, we would have to crawl web
pages in order to have them before they are needed for analysis, thus
making the system more reliable and independent from the original
content providers. Finally, we would have to build a search engine with
the crawled web pages, making the system independent of the search
engine, and considerably reducing the operating costs of the system.

7. Conclusions

In this paper we have presented Docode 5, a system for plagiarism
detection, and we have shown the problems when dealing with big
document collections and when dealing with the World Wide Web. We
have shown that we can take an algorithm for two-document plagiarism
detection and adapt it for doing all-versus-all document comparisons,
and also that we can make a system for plagiarism detection on the
web that can take into account its own impact on it, maintaining the
quality of the performed analyses. We have shown our system from end
to end, and all the components integrated for it, showing how we can use
our components, along with other external implementations, to make a
fully-fledged plagiarism detection system.

Finally, it is important to remark, as said before, that this is a decision
support system, and, no matter how good the algorithms are, or how
good the performance of the system is, this system can only be used as a
tool, and the user is the one who has the final decision on a plagiarism
case.

Acknowledgments

This work was supported partially by the Millennium Institute on
Complex Engineering Systems (ICM: P-05-004-F, CONICYT: FBO16).

References

Apache Solr -, URL http://lucene.apache.org/solr/ (accessed: 13.06.17).
Apache Tika - Apache Tika URL https://tika.apache.org/ (accessed: 13.06.17).
Abdi, A., Idris, N., Alguliyev, R.M., Aliguliyev, R.M., 2015. PDLK: Plagiarism detection

using linguistic knowledge. Expert Syst. Appl. 42 (22), 8936–8946.
Baeza-Yates, R., Ribeiro-Neto, B., et al., 1999. Modern information retrieval, Vol. 463.

ACM press New York.
Broder, A.Z., 1997. On the resemblance and containment of documents. In: Compression

and Complexity of Sequences 1997. Proceedings. IEEE, pp. 21–29.
Burrows, S., Tahaghoghi, S.M., Zobel, J., 2007. Efficient plagiarism detection for large

code repositories. Softw. Pract. Exp. 37 (2), 151–176.

Clough, P., et al. 2003. Old and new challenges in automatic plagiarism detection,
in: National Plagiarism Advisory Service, Citeseer, 2003; URL http://ir.shef.ac.uk/
cloughie/index.html.

Custom Search — Google Developers URL https://developers.google.com/custom-search/
(accessed: 13.06.17).

Dean, J., Ghemawat, S., 2008. MapReduce: simplified data processing on large clusters.
Commun. ACM 51 (1), 107–113.

Elsayed, T., Lin, J., Oard, D.W., 2008. Pairwise document similarity in large collections
with MapReduce. In: Proceedings of the 46th Annual Meeting of the Association
for Computational Linguistics on Human Language Technologies: Short Papers.
Association for Computational Linguistics, pp. 265–268.

Gildea, D., Jurafsky, D., 2002. Automatic labeling of semantic roles. Comput. Linguist.
28 (3), 245–288.

Grammarly - plagiarism checker URL https://www.grammarly.com/plagiarism-checker
(accessed: 13.06.17).

Gipp, B., Meuschke, N., Breitinger, C., 2014. Citation-based plagiarism detection: Prac-
ticability on a large-scale scientific corpus. J. Assoc. Informat. Sci. Technol. 65 (8),
1527–1540.

Hagen, M., Potthast, M., Stein, B., Source Retrieval for Plagiarism Detection from Large
Web Corpora: Recent Approaches.

Hannabuss, S., 2001. Contested texts: issues of plagiarism. Lib. Manag. 22 (6/7), 311–318.
Helfman, J., 1996. Dotplot patterns: a literal look at pattern languages. TAPOS 2 (1),

31–41.
iThenticate URL http://www.ithenticate.com/ (accessed: 13.06.17).
Jayapal, A., 2012. Similarity overlap metric and greedy string tiling at pan 2012:

Plagiarism detection, in: CLEF (Online Working Notes/Labs/Workshop).
Kakkonen, T., Mozgovoy, M., 2010. Hermetic and web plagiarism detection systems for

student essays—an evaluation of the state-of-the-art. J. Educ. Comput. Res. 42 (2),
135–159.

Meuschke, N., Gipp, B., 2013. State-of-the-art in detecting academic plagiarism. Int. J.
Educ. Integr. 9 (1).

Miller, G.A., 1995. WordNet: a lexical database for English. Commun. ACM 38 (11), 39–
41.

Molina, F., Velásquez, J.D., Rıos, S., Calfucoy, P.A., Cociña, M., 2011. El fenómeno
del plagio en documentos digitales: un análisis de la situación actual en el sistema
educacional chileno. Rev. Ing. Sistemas XXV.

Monostori, K., Zaslavsky, A., Schmidt, H., 2000. Document overlap detection system for
distributed digital libraries. In: Proceedings of the Fifth ACM Conference on Digital
Libraries. ACM, pp. 226–227.

Oberreuter, G., Carrillo-Cisneros, D., Scherson, I.D., Velásquez, J.D., 2014. Submission to
the 4th International Competition on Plagiarism Detection, Notebook Papers of PAN
CLEF.

Oberreuter, G., Velásquez, J.D., 2013. Text mining applied to plagiarism detection: The
use of words for detecting deviations in the writing style. Expert Syst. Appl. 40 (9),
3756–3763.

Olston, C., Najork, M., 2010. Web crawling. Found. Trends Inf. Retr. 4 (3), 175–246.
Paul, M., Jamal, S., 2015. An improved SRL based plagiarism detection technique using

sentence ranking. Procedia Comput. Sci. 46, 223–230.
Potthast, M., Barrón-cedeño, A., Eiselt, A., Stein, B., Rosso, P., 2010a. Overview of the 2nd

international competition on plagiarism detection, in: In Proceedings of the SEPLN’10
Workshop on Uncovering Plagiarism, Authorship and Social Software Misuse.

Potthast, M., Gollub, T., Hagen, M., Graßegger, J., Kiesel, J., Michel, M., Oberländer, A.,
Tippmann, M., Barrón-Cedeño, A., Gupta, P., Rosso, P., Stein, B., 2012. Overview of
the 4th International Competition on Plagiarism Detection, in: P. Forner, J. Karlgren,
C. Womser-Hacker, (Eds.), Working Notes Papers of the CLEF 2012 Evaluation
Labs ISSN: 2038-4963, ISBN: 978-88-904810-3-1 URL http://www.clef-initiative.eu/
publication/working-notes.

Potthast, M., Gollub, T., Hagen, M., Tippmann, M., Kiesel, J., Rosso, P., Stamatatos,
E., Stein, B., 2013. Overview of the 5th International Competition on Plagiarism
Detection, in: P. Forner, R. Navigli, D. Tufis, (Eds.), Working Notes Papers of the
CLEF 2013 Evaluation Labs, ISSN:2038-4963, ISBN: 978-88-904810-3-1 URL http:
//www.clef-initiative.eu/publication/working-notes.

Potthast, M., Hagen, M., Beyer, A., Busse, M., Tippmann, M., Rosso, P., Stein, B.,
2014. Overview of the 6th International Competition on Plagiarism Detection, in:
L. Cappellato, N. Ferro, M. Halvey, W. Kraaij, (Eds.), Working Notes Papers of the
CLEF 2014 Evaluation Labs, CEUR Workshop Proceedings, CLEF and CEUR-WS.org.
ISSN: 1613-0073 URL http://www.clef-initiative.eu/publication/working-notes.

Potthast, M., Stein, B., Barrón-Cedeño, A., Rosso, P., 2010b. An evaluation framework
for plagiarism detection, in: Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, Association for Computational Linguistics, pp.
997–1005.

Potthast, M., Stein, B., Eiselt, A., universität Weimar, B., Barrón-cedeño, A., Rosso, P.,
2009. Overview of the 1st International competition on plagielarism detection, in:
SEPLN 2009 Workshop on Uncovering Plagiarism, Authorship, and Social Software
Misuse PAN 09, CEUR-WS. Org, pp. 1–9.

Sahi, M., Gupta, V., 2016. Efficiency comparison of various plagiarism detection tech-
niques. In: International Conference on Electrical, Electronics, and Optimization
Techniques (ICEEOT). IEEE, pp. 2974–2978.

270

http://lucene.apache.org/solr/
https://tika.apache.org/
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb3
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb3
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb3
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb3
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb3
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb3
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb3
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb3
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb3
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb3
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb3
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb4
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb4
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb4
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb4
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb4
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb4
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb4
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb4
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb4
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb4
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb4
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb4
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb4
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb5
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb6
http://ir.shef.ac.uk/cloughie/index.html
http://ir.shef.ac.uk/cloughie/index.html
http://ir.shef.ac.uk/cloughie/index.html
https://developers.google.com/custom-search/
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb9
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb10
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb11
https://www.grammarly.com/plagiarism-checker
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb13
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb15
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb15
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb15
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb15
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb15
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb15
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb15
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb15
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb15
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb15
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb16
http://www.ithenticate.com/
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb19
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb20
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb21
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb22
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb23
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb25
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb26
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb26
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb26
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb26
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb26
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb26
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb26
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb26
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb26
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb26
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb27
http://www.clef-initiative.eu/publication/working-notes
http://www.clef-initiative.eu/publication/working-notes
http://www.clef-initiative.eu/publication/working-notes
http://www.clef-initiative.eu/publication/working-notes
http://www.clef-initiative.eu/publication/working-notes
http://www.clef-initiative.eu/publication/working-notes
http://www.clef-initiative.eu/publication/working-notes
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb34

G. Pizarro V, J.D. Velásquez Engineering Applications of Artificial Intelligence 64 (2017) 261–271

Si, A., Leong, H.V., Lau, R.W., 1997. Check: a document plagiarism detection system.
In: Proceedings of the 1997 ACM Symposium on Applied Computing. ACM, pp. 70–
77.

Stein, B., Barrón Cedeño, L.A., Eiselt, A., Potthast, M., Rosso, P., 2011. Overview of the 3rd
International Competition on Plagiarism Detection, in: CEUR Workshop Proceedings,
CEUR Workshop Proceedings.

Toutanova, K., Klein, D., Manning, C.D., Singer, Y., 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology-Volume 1. Association for Computational Linguistics,
pp. 173–180.

Turnitin - technology to improve student writing, URL http://turnitin.com/ (accessed:
13.06.17).

Vani, K., Gupta, D., 2017. Detection of idea plagiarism using syntax–Semantic concept
extractions with genetic algorithm. Expert Syst. Appl. 73, 11–26.

Velásquez, J.D., Covacevich, Y., Molina, F., Marrese-Taylor, E., Rodríguez, C., Bravo-
Marquez, F., 2016. DOCODE 3.0 (DOcument COpy DEtector): A system for plagiarism
detection by applying an information fusion process from multiple documental data
sources. Inf. Fusion 27, 64–75.

VeriGuide - Plagiarism Detection and Document Analysis URL http://veriguide1.cse.cuhk.
edu.hk/portal/plagiarism_detection/index.jsp (accessed: 13.06.17).

Wang, C., Wang, J., Lin, X., Wang, W., Wang, H., Li, H., Tian, W., Xu, J., Li, R., 2010.
MapDupReducer: detecting near duplicates over massive datasets. In: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data. ACM,
pp. 1119–1122.

Welcome to Apache ™ Hadoop® URL http://hadoop.apache.org/ (accessed: 13.06.17).
Williams, K., Chen, H.-H., Giles, C., 2014. Supervised Ranking for Plagiarism Source

Retrieval—Notebook for PAN at CLEF 2014, in: L. Cappellato, N. Ferro, M. Halvey, W.
Kraaij, (Eds.), CLEF 2014 Evaluation Labs and Workshop — Working Notes Papers,
15-18 September, Sheffield, UK, CEUR-WS.org ISSN: 1613-0073.

Wu, Y., Zhang, Q., Huang, X., 2011. Efficient near-duplicate detection for Q&A forum, in:
IJCNLP pp. 1001–1009.

Xu, F., Zhu, Q., Li, P., 2011. Detecting text similarity over chinese research papers
using mapreduce. In: Software Engineering, Artificial Intelligence, 2011 12th ACIS
International Conference on Networking and Parallel/Distributed Computing (SNPD).
IEEE, pp. 197–202.

Zhang, Q., Zhang, Y., Yu, H., Huang, X., 2010. Efficient partial-duplicate detection
based on sequence matching. In: Proceedings of the 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, pp. 675–
682.

271

http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb35
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb37
http://turnitin.com/
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb39
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb40
http://veriguide1.cse.cuhk.edu.hk/portal/plagiarism%5Fdetection/index.jsp
http://veriguide1.cse.cuhk.edu.hk/portal/plagiarism%5Fdetection/index.jsp
http://veriguide1.cse.cuhk.edu.hk/portal/plagiarism%5Fdetection/index.jsp
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb42
http://hadoop.apache.org/
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb46
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47
http://refhub.elsevier.com/S0952-1976(17)30120-3/sb47

	Docode 5: Building a real-world plagiarism detection system
	Introduction
	Related work
	Plagiarism detection
	Large document collections
	Plagiarism detection systems
	Contributions of this paper

	Proposed system
	The core algorithm
	Web analysis
	Issues with web analysis and proposed improvements

	Custom repository analysis
	Group analysis

	Architecture
	Docode core
	Technologies used in the system

	Docode front-end
	Single user front-end
	Front-end for organizations

	Experiments
	The core algorithm
	Group analysis
	Discussion

	Future work
	Conclusions
	Acknowledgments
	References

