Author's Accepted Manuscript

A Bibliometric Analysis of Operations Research and Management Science

José M. Merigó, Jian-Bo Yang

PII: S0305-0483(16)30937-9

DOI: http://dx.doi.org/10.1016/j.omega.2016.12.004

Reference: OME1736

To appear in: Omega

Received date: 7 May 2014

Accepted date: 8 December 2016

Cite this article as: José M. Merigó and Jian-Bo Yang, A Bibliometric Analysis of Operations Research and Management Science, *Omega* http://dx.doi.org/10.1016/j.omega.2016.12.004

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

A Bibliometric Analysis of Operations Research and

Management Science

José M. Merigó^{1,2*}, Jian-Bo Yang¹

¹Alliance Manchester Business School, University of Manchester Booth Street East, M13 9SS Manchester, UK

²Department of Management Control and Information Systems, University of Chile Av. Diagonal Paraguay 257, 8330015 Santiago, Chile

*Corresponding autor at: Alliance Manchester Business School, University of Manchester Booth Street East, M13 9SS Manchester, UK. Tel.: +44 (0)161 3063495. jmerigo@fen.uchile.cl

Abstract

Bibliometric analysis is the quantitative study of bibliographic material. It provides a general picture of a research field that can be classified by papers, authors and journals. This paper presents a bibliometric overview of research published in operations research & management science in recent decades. The main objective of this study is to identify some of the most relevant research in this field and some of the newest trends according to the information found in the Web of Science database. Several classifications are made, including an analysis of the most influential journals, the two hundred most cited papers of all time and the most productive and influential authors. The results obtained are in accordance with the common wisdom, although some variations are found.

Keywords

History of OR; bibliometrics; operations research; management science; Web of Science

1. Introduction

In recent decades, the practice of operations research and management science (OR-MS) has seen a substantial increase in the scientific community. Since the official establishment of the Operations Research Society of America (ORSA) in 1952, the Operational Research Society (ORS) of the United Kingdom in 1953 and The Institute of Management Sciences (TIMS) in 1953, many important developments have

consolidated a research area that today encompasses thousands of researchers. These associations have promoted some classical journals in the field that have become the key instruments to disseminate new research contributions. The Operational Research Quarterly, founded in 1950, later became the Journal of the Operational Research Society (JORS), Operations Research (1952) and Management Science (1954).

These and other operations research associations have cooperated together through joint international conferences and associations [13]. First, the creation of the International Federation of Operational Research Societies (IFORS) in 1959 between ORSA, ORS and the French Operational Research Society (SOFRO) constituted a world entity focused on operations research which grew rapidly with the incorporation of operational research societies from a wide range of countries. Today the IFORS includes more than 30,000 individual members from 48 national societies. Another important integration process was the constitution of regional associations that encompassed a whole continent, such as the Association of European Operational Research Societies (EURO) in 1975. Similar regional associations have also been formed in other continents, including the Association of North American Operations Research Societies (NORAM), the Latin American Ibero Association on Operations Research (ALIO) and the Association of Asian-Pacific Operational Research Societies (APORS). Finally, a further key integration event occurred when the American school became a strong unified entity with the merger between ORSA and TIMS in 1995, which created the Institute for Operations Research and Management Sciences (INFORMS). INFORMS currently has approximately 10,000 individual members and sponsors thirteen leading journals in OR-MS, including the flagship journals in the field: Management Science and Operations Research.

In the literature, several papers provide general overviews regarding different fundamental topics of OR-MS. A remarkable example is the collection of papers gathered for the 50th anniversary of the Operations Research journal in 2002 and Management Science in 2004. Hopp [18] gave a general overview of key authors and topics that appeared in Management Science during this time. Some key overviews were given in a wide range of fundamental research fields of OR-MS [7,38]. Similar general overviews have also appeared in JORS [4] and in many other journals [6,34].

However, although there are many papers providing general overviews on different aspects of OR-MS, there are few papers that have analysed the state of the art from a bibliometric perspective. Some papers have partially addressed this issue, including the

general overview on multiple criteria decision making [45], OR-MS in Asia [5], OR-MS in developing countries [46], production and operations management [17,35], data envelopment analysis [22,26] and the list of 10 and 50 most influential papers published in Management Science [19] that are currently available on the webpage of Management Science. Moreover, several studies have focused on more specific issues, including the analysis of citation behaviour in OR-MS [30-33], institutions in INFORMS practice literature [14], the evaluation of OR-MS journals [8-10] and country analyses [21,37]. However, to the best of our knowledge, none of the papers has provided a general picture of the current state and evolution of OR-MS using bibliometric indicators.

Bibliometric analysis is a research field that is receiving increasing attention by the scientific community, and it is especially motivated by the fast development of computers and the internet [1]. Bibliometric analysis is becoming a fundamental methodology for analysing research, and it originated from the field of library and information science. In the literature, there are several papers providing complete bibliometric overviews in many research areas, including management [36], economics [3], health economics [44], fuzzy research [28], innovation [11,27], entrepreneurship [23], international business [12] and pricing research [24].

The aim of this paper is to provide a general overview of research performed in OR-MS over the last decades using bibliometric methods. We use the Web of Science (WoS) as the database for collecting information. The objective is to be able to identify the most productive and influential research in OR-MS and see the current evolution of the field by taking into account the most influential papers and authors. Most of the results are in accordance with common wisdom, although we find some particular situations that show how the field of OR-MS is growing, with some topics becoming very popular and highly cited, whereas some other topics do not receive an equivalent number of citations.

The paper is organized as follows. Section 2 describes the methodology used for the bibliometric analysis and the most influential journals. Section 3 analyses the most cited papers of all time in OR-MS according to WoS. Section 4 and 5 present the most productive and influential authors and institutions. Section 6 develops a general analysis by countries. Finally, Section 7 summarizes the main results and conclusions of the paper.

2. Bibliometric methods

To analyse the bibliographic information, it is necessary to select the journals that are going to be used. To be as objective as possible in this selection process, we have used the information available in the WoS database that is currently owned by Thomson & Reuters [42]. The database includes material from a wide range of research areas. Currently, it contains more than 15,000 journals and 50,000,000 papers classified in 251 subject categories and 151 subject areas. OR-MS appears in both subject category and research area as a single research field and includes a total number of 228,399 publications as of October 2012. However, this number includes 15 different types of publications, including journal articles, proceedings, notes, reviews and short communications. Therefore, to focus on the most representative pieces of research available in WoS, we only selected "journal articles" and "reviews" in the analysis, thus reducing the number of publications to 133,741. Sometimes, reviews are not considered important scientific contributions, but we have included them because they represent a strong point of view of a research topic that usually conditions future research. Most of the publications have been published in the last decade (2001-2011), representing 51.5% of the total number of publications. If we filter this information by "articles" and "reviews", the number of papers is 59,231, that is, 44.29% of the total are from the last decade.

Because WoS has a specific research category dedicated to OR-MS, it is reasonable to select all of the journals from this category. The main limitation of this approach is the differences in journal quality because some of them may have lower quality but publish more papers. As such, when making the publication count, this issue cannot be avoided, which significantly affects the authors' analysis. Therefore, we divide the latter into two parts: the most productive authors and those that are highly cited and have a minimum level of productivity in OR-MS. In general terms, however, the results generated from this study are in accordance with the perception that the leading journals and authors are mentioned by the scientific community in a wide range of places, such as at conferences, and are placed in the top positions of journal rankings, such as ABS Academic Journal Guide 2015 [41], although some exceptional variation may occur. The alternative approach was to select a lower number of journals from the category, which is usually regarded by many indicators as the leading journals, such as the Journal Citation Reports (JCR) of WoS. The main advantage of this method is that the

information found is very selective because it is limited to only publications from high-quality journals. However, the limitation is that some key research is not considered. To take into account this second approach, some additional results are provided with a special focus on specific journals.

WoS currently contains 79 journals in the OR-MS category. Some journals close to the field are not included, such as Decision Sciences, which is included in the Management category, or some INFORMS journals, such as Marketing Science and Organization Science, which are included in the categories of Business and Management, respectively. In this context, it is interesting to see the paper recently published by Tüselmann et al. [43], where it is possible to see the rankings of the main journals in business and management from a comparison perspective with OR-MS journals. To be objective, the study follows the WoS selection of journals in the OR-MS category, which is commonly regarded as one of the most influential [25]. In Table 1, we present the complete list of journals included in the OR-MS category of WoS.

Some of the journals have a general research perspective in OR-MS, although some of them are strictly focused on a specialized aspect, such as Transportation Science or the Journal of Operations Management. WoS has a special section dedicated to the analysis of journals, the JCR which analyses journals based on several criteria, although the main focus is on the last 3 years, to form the impact factor. The impact factor of a journal in year X is obtained by dividing the number of citations received by articles published in years X - 1 and X - 2 from papers published in year X, by the number of articles published in years X - 1 and X - 2. In recent years, there have been many criticisms of the impact factor. For example, it is easy to manipulate it by using selfcitations or similar techniques [15,39]. WoS has tried to solve this problem by penalizing those journals that make excessive manipulations to the impact factor, but it is clear that many other issues have to be considered when analysing the quality of a journal, including the editorial board members and the peer-review process [2]. WoS has recently introduced an alternative measure, the 5-year impact factor, which considers a period of six years in the analysis. This approach gives a more general picture by considering more years. The 5-year impact factor is similar to the classical impact factor. The difference is that the 5-year impact factor considers citations to articles published between years X - 1 and X - 5 instead of X - 1 and X - 2. However, there are still important weaknesses similar to those mentioned before [15].

Recently, a wide range of new methods has been suggested for evaluating the research quality of a set of papers from authors, institutions and journals [29]. The most popular one is the H-index [16] which evaluates a set of publications by considering the "x" number of papers that have received at least "x" citations. Therefore, if an institution or a journal has an H-index of 40, it means that it has 40 papers that have each received 40 citations or more. This measure is useful because it considers both the quality and the quantity of a set of publications. When analysing authors, institutions and countries, the H-index is extremely useful, although we may find some differences depending on the quality of journals where the papers have been published. However, it is not as easy to strike a balance between the number of publications and citations for journals because if a journal publishes a high number of papers, it may not always indicate that the journal is of a higher quality. By publishing more papers, a journal tends to become more influential, but an excessive number of papers may reduce the quality of the journal. Sometimes, a journal may decide to increase the acceptance rate to change the quality of the papers published or because it is receiving many highquality papers. In some other situations, the journal may prefer to decrease the acceptance rate to publish only papers with high-quality [40].

As explained by Podsakoff et al. [36], in the publication and citation count, WoS gives one unit for each author of a paper. Moreover, it gives one unit for each different institution or country of a paper. However, if more than one author is from the same institution or country, it only gives one unit for the institution or country. Therefore, in this context, we find a degree of asymmetry in the publication and citation count that benefits co-authorship. Nevertheless, by looking at the different results of the analysis, it is possible to analyse and classify the profile of all of the researchers to obtain a complete view of the leading authors in the field. Note that this study follows the methodology of WoS.

3. Leading journals in operations research & management science

To provide a general overview of the most influential journals, in Table 2, we present the thirty OR-MS journals with the highest H-index. Although the H-index cannot strictly reflect the quality of a journal because a high number of publications may influence the H-index, it gives an approximation that is closer to the quality as

perceived by the scientific community [6,26,41] than the results found with the impact factor.

By ranking the journals according to the H-index, Management Science and Operations Research obtain the first two positions in the ranking, as we would expect from other studies [34] and journal rankings [41]. However, by looking to the impact factor, several other journals are ranked more highly. We find that the ranking found with the H-index gets results similar to other ranking lists [43]. The Journal of Operations Management and Omega have the highest impact factor. The main reason is that these journals do not publish many papers but receive a large number of citations. By looking at the total number of citations, we find that Management Science, European Journal of Operational Research (EJOR) and Operations Research are the most cited journals. It is worth noting the increase of EJOR during the last decade. Although its average number of citations per paper over the last decade is approximately half that of Management Science, it has twice the number of total citations received for all the articles published over the same period.

4. Most cited articles in operations research & management science journals

The information found in WoS can be classified in different ways. One way is to order a set of articles by the number of citations received. Thus, we can identify those articles that have received more attention by the scientific community. In Table 3, a list of the 200 most cited articles of all time in OR-MS is presented. Instead of ranking the papers from the most cited to the 200th most cited, we have grouped the articles by journal so it is possible to see all of the papers of the same journal that are included in the list. For each article, we present the journal name, the global rank in the list, the number of citations, the title of the paper, the name of the first author, the year published and the average number of citations per year. Note that the journals are arranged in the table according to the number of papers they have in the ranking. In the case of tie, according to the sum of citations of the papers that appear in the table.

The most cited paper is the classical article on data envelopment analysis published by Charnes and Cooper in 1978 in EJOR, which has received almost 4,000 citations. Next, we find three papers with more than 2,000 citations and 12 additional ones with over 1,000 citations. In general, it is clear that the journals Management Science and

Operations Research dominate this list, with seventy seven and thirty six papers, respectively.

These 200 papers have also been classified into subareas. Each paper has been assigned to a subarea, as shown in the last column of Table 3, although it could be argued that some papers could be classified differently because they partially fit in different subareas. Table 4 analyses these subareas, indicating the number of the top 200 papers in each subarea.

Mathematical Programming is the most common subarea. Operations and Production Management and Information Systems and Technology appear in second and third place, respectively. Many of the papers could be assigned to more than one subarea. However, in this study, each paper has been assigned to one subarea to mantain the same weight for each of the papers.

5. Most productive and influential authors

Since the beginning of OR-MS, many authors have made fundamental contributions to the development of this field. In this section, the objective is to present some of these authors according to the information found in WoS in terms of the number of papers published and the number of citations received. These results include some of the most popular researchers in OR-MS. However, some other very well-known authors do not appear due to the particular nature of the ranking. For example, it is difficult to include older authors who published their research several decades ago because at that time, the number of publications included in WoS was very low. Thus, with this ranking, it is possible to identify some key researchers in OR-MS, but it is important to note that many other authors could also have appeared according to other parameters.

Regarding the method used for the ranking, it is possible to rank authors by number of publications and by number of citations. In the literature, both methods have been used in previous studies. For example, Hsieh and Chang [20] decided to rank authors by publication number. To avoid the limitations of this approach regarding the quality of journals, they added an additional list focusing only on five selected journals. Other authors, such as Podsakoff et al. [36], ranked authors by citations. In this paper, a combined method is used. First, a list is presented that includes the twenty five authors with the highest number of publications in OR-MS journals. Next, an additional list with twenty five authors is included who are ranked by the number of citations of

papers published in OR-MS journals and who has at least ten papers published in these journals. Thus, the results are flexible because they present authors who have published several articles, classical authors with many citations in OR-MS or influential authors in the nucleus of OR-MS. The results are shown in Table 5.

Because there is no method that clearly identifies the value of a journal, another approach may be used to identify influential and productive authors according to the perceived reputation of journals. By focusing on the authors of Table 5, Table 6 classifies their publications according to eight selected journals that are usually perceived among the most reputable journals in the rankings of OR-MS [43]. The aims and scope of these journals permits defining them as general journals in OR-MS. The selection process of these journals excludes journals that are specialized in a particular area of OR-MS because the objective is to view OR-MS from a general perspective.

To obtain a better picture regarding the authors with the highest number of papers in these selected journals, in Table 7, the analysis is focused on presenting the 30 authors with the highest number of papers in these eight selected journals. Thus, it is possible to see the most influential authors in each journal, thus allowing the reader to identify key authors for each journal. Because there is no agreement regarding the value and ranking of a journal, each reader may evaluate this list in a different way. Moreover, the list can be useful for those who are interested in a particular journal. If there is a tie, we rank the authors alphabetically. And if the tie appears in the 30th position, the column is expanded until all the tied authors are mentioned.

6. Conclusions

A general bibliometric overview of OR-MS was presented. Most of the results are in accordance with the perception of the academic community, although some interesting differences were found when looking to the numerical results obtained by the journals, the articles and the authors of the analysis. First, the American school is the most dominant in OR-MS. The USA leads the two most influential journals in the field: Management Science and Operations Research. The most popular authors come from America, such as Cooper and Charnes, and Americans have published most of the leading articles of all time. Canada has also shown very productive and influential results in this field. Second, Continental Europe has been increasing its influence with the publication of EJOR. Third, the Chinese school is much younger but already has a

strong position with several leading researchers. Finally, the British school also has a strong influence with the publication of JORS.

From the results of this study, it is possible to identify some of the most productive and influential research in OR-MS in terms of journals, papers and authors. However, an important limitation is that they only provide a general orientation, and there is a lot of good research in OR-MS that has not been included in this paper. Furthermore, there are many discussions on how to evaluate publications because the values of different journals are not equal, and the consideration of this issue may lead to significant changes in the rankings generated from this study.

Acknowledgements

We would like to thank the anonymous reviewers and the editor for valuable comments that have improved the quality of this paper. Support from the European Commission (PIEF-GA-2011-300062) and the Chilean Government (1160286) is gratefully acknowledged.

References

- [1] Bar-Ilan J. Informetrics at the beginning of the 21st century A review. Journal of Informetrics 2008;2(1):1–52.
- [2] Besancenot, D, Huynh KV, Faria JR. Search and research: the influence of editorial boards on journals' quality. Theory and Decision 2012;73(4):687–702.
- [3] Bonilla C, Merigó JM, Torres-Abad C, Economics in Latin America: A bibliometric analysis. Scientometrics 2015;105(2):1239–1252.
- [4] Brailsford S, Harper P, Shaw D. Milestones in OR. J Operational Research Society 2009;60(S):S1–S4.
- [5] Chang, PL, Hsieh PN. Bibliometric overview of operations research / management science research in Asia. Asia-Pacific J Operations Research 2008;25(2):217–41.
- [6] Cheang B, Chu SKW, Li C, Lim A. OR/MS journals evaluation based on a refined PageRank method: an updated and more comprehensive review. Scientometrics 2014;100(2):339–361.
- [7] Chopra S, Lovejoy W, Yano C. Five decades of operations management and the prospects ahead. Management Science 2004;50(1):8–14.
- [8] Donohue JM, Fox JB. A multi-method evaluation of journals in the decision and management sciences by US academics. Omega Int J Management Science 2000;28(1):17–36.

- [9] Eto H. Authorship and citation patterns in operational research journals in relation to competition and reform. Scientometrics 2000;47(1):25–42.
- [10] Eto H. Authorship and citation patterns in management science in comparison with operational research. Scientometrics 2002;53(3):337–49.
- [11] Fagerberg J, Fosaas M, Saprasert K. Innovation: Exploring the knowledge base. Research Policy 2012;41(7):1132–53.
- [12] Ferreira MP, Pinto CF, Serra FR. The transaction costs theory in international business research: A bibliometric study over three decades. Scientometrics 2014;98(3):1899–922.
- [13] Fores S, Krarup J. On the origins of OR and its institutions. Central European J Operations Research 2013;21(2):265–75.
- [14] Fricker RD. Editorial: The ninth Rothkopf ranking of universities' contributions to the INFORMS practice literature. Interfaces 2011;41(6):590–8.
- [15] Glänzel W, Moed HF. Journal impact measures in bibliometric research. Scientometrics 2002;53(2):171–93.
- [16] Hirsch JE. An index to quantify an individual's scientific research output. Proc National Academy of Sciences 2005;102(46):16569–72.
- [17] Holsapple CW, Lee-Post A. Behavior-based analysis of knowledge dissemination channels in operations management. Omega Int J Management Science 2010;38(3-4):167–78.
- [18] Hopp WJ. Fifty years of *Management Science*. Management Science 2004;50(1):1–7.
- [19] Hopp WJ. Ten most influential papers of Management Science's first fifty years. Management Science 2004;50(12):1763.
- [20] Hsieh PN, Chang PL. An assessment of world-wide research productivity in production and operations management. Int J Production Economics 2009;120(2):540–51.
- [21] Kao C. The authorship and country spread of operations research journals. Scientometrics 2009;78(3):397–407.
- [22] Lampe HW, Hilgers D. Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA. European Journal of Operational Research 2015; 240:1–21.
- [23] Landström H, Harirchi G, Aström F. Entrepreneurship: Exploring the knowledge base. Research Policy 2012;41(7):1154–81.
- [24] Leone RP, Robinson LM, Bragge J, Somervuori O. A citation and profiling analysis of pricing research from 1980 to 2010. J Business Research 2012;65(7):1010–24.
- [25] Leydesdorff L, Carley S, Rafols I. Global maps of science based on the new Web of Science categories. Scientometrics 2013;94(2):589–93.
- [26] Liu JS, Lu LYY, Lu WM, Lin BJY. Data envelopment analysis 1978-2010: A citation-based literature survey. Omega Int J Management Science 2013;41(1):3–15.
- [27] Merigó JM, Cancino C, Coronado F, Urbano D. Academic research in innovation: A country analysis. Scientometrics 2016;108(2):559–593.

- [28] Merigó JM, Gil-Lafuente AM, Yager RR. An overview of fuzzy research with bibliometric indicators. Applied Soft Computing 2015;27:420–33.
- [29] Merigó JM, Mas-Tur A, Tierno-Roig N, Ribeiro-Soriano D. A bibliometric overview of the Journal of Business Research between 1973 and 2014. Journal of Business Research 2015;68(12): 2645–2653.
- [30] Mingers J. Exploring the dynamics of journal citations: Modelling with s-curves. J Operational Research Society 2008;59(8):1013–25.
- [31] Mingers J, Burrell QL. Modeling citation behavior in management science journals. Information Processing and Management 2006;42(6):1451–64.
- [32] Mingers J, Leydesdorff L. A review of theory and practice in scientometrics. European Journal of Operational Research 2015;246:1–19.
- [33] Mingers J, Xu F. The drivers of citations in management science journals. European J Operational Research 2010;205(2):422–30.
- [34] Ormerod R, Kiossis I. OR/MS publications: Extension of the analysis of U.S. flagship journals to the United Kingdom. Operations Research 1997;45(2):178–87.
- [35] Pilkington A, Meredith J. The evolution of the intellectual structure of operations management 1980–2006: A citation/co-citation analysis. J Operations Management 2009;27(3): 185–202.
- [36] Podsakoff PM, MacKenzie SB, Podsakoff NP, Bachrach DG. Scholarly influence in the field of management: A bibliometric analysis of the determinants of university and author impact in the management literature in the past quarter century. J Management 2008;34(4):641–720.
- [37] Reisman A, Kirschnick F. The devolution of OR/MS: Implications from a statistical content analysis of papers in flagship journals. Operations Research 1994;42(4):577–88.
- [38] Smith JE, von Winterfeldt D. Decision analysis in *Management Science*. Management Science 2004;50(5):561–574.
- [39] Stonebraker JS, Gil E, Kirkwood CW, Handfield RB. Impact factor as a metric to assess journals where OM research is published. J Operations Management 2012;30(1):24–43.
- [40] Sugimoto CR, Larivière V, Ni C, Cronin B. Journal acceptance rates: A cross-disciplinary analysis of variability and relationships with journal measures. Journal of Informetrics 2013;7:897–906.
- [41] The ABS editorial board, "Academic Journal Guide 2015", the Association of Business Schools, 2015, https://steffenroth.files.wordpress.com/2015/06/abs-2015-steffen-roth-ch.pdf.
- [42] Thomson Reuters: Web of Science, http://wokinfo.com/ [accessed October 2012].
- [43] Tüeselmann H, Sinkovics RR, Pishchulov G. Towards a consolidation of worldwide journal rankings: A classification using random forests and aggregate rating via data envelopment analysis. Omega Int J Management Science 2015;51:11–23.

- [44] Wagstaff A, Culyer AJ. Four decades of health economics through a bibliometric lens. J Health Economics 2012;31(2):406–39.
- [45] Wallenius J, Dyer JS, Fishburn PC, Steuer RE, Zionts S, Deb K. Multiple criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead. Management Science 2008;54(7):1336–49.
- [46] White L, Smith H, Currie C. OR in developing countries: A review. European J Operational Research 2011;208(1):1–11.

Tables:

Table 1. List of journals in the OR-MS	category of WoS
4OR – A Quarterly J. of Operations Research	J. of the Operations Research Society of Japan
Annals of Operations Research	M&SOM – Manufacturing & Service Operations Managem.
Applied Stochastic Models in Business	Management Science
and Industry	Material Material Control of Proceedings
Asia-Pacific J. of Operational Research	Mathematical Methods of Operations Research
Central European J. of Operations Research	Mathematical Programming
Computational Optimization and	Mathematics of Operations Research
Applications	vialientates of operations research
Computers & Operations Research	Military Operations Research
Concurrent Engineering – Research and	Naval Research Logistics
Applications	
Decision Support Systems	Networks
Discrete Event Dynamic Syst. – Theory &	Networks & Spatial Economics
Applications	
Discrete Optimization	Omega – Int. J. of Management Science
Engineering Economist Engineering Optimization	Operations Research Operations Research Letters
European J. of Industrial Engineering	Optimal Control Applications & Methods
European J. of Operational Research	Optimization
Expert Systems with Applications	Optimization and Engineering
Flexible Services and Manufacturing	Optimization Letters
Journal	•
Fuzzy Optimization and Decision Making	Optimization Methods & Software
IEEE Systems Journal	OR Spectrum
IIE Transactions	Pacific J. of Optimization
INFOR	Probability in the Engineering and Informational Sciences
INFORMS Journal on Computing	Proc. of the Institute of Mechanical Engineers. Part O – J. of
Interfaces	Risk and Reliability Production and Operations Management
Int. J. of Computer Integrated	Production Planning & Control
Manufacturing	1 Todaction 1 mining & Control
Int. J. of Information Technology and	Quality and Reliability Engineering International
Decision Making	Can if a man is an if goes a contract a
Int. J. of Production Economics	Quality Technology and Quantitative Management
Int. J. of Production Research	Queueing Systems
Int. J. of Systems Science	RAIRO – Operations Research
Int. J. of Technology Management	Reliability Engineering & Systems Safety
Int. Transactions in Operational Research	Safety Science

J. of Global Optimization

J. of Industrial and Management

Optimization

J. of Manufacturing Systems J. of Operations Management

J. of Optimization Theory and

Applications

J. of Quality Technology

J. of Scheduling

J. of Systems Engineering and Electronics

J. of Systems Science and Systems

Engineering

J. of the Operational Research Society

SORT – Statistics and Operations Research Transactions

Studies in Informatics and Control

Systems & Control Letters Systems Engineering

Technovation

Transportation Research Part B – Methodological

Transp. Res. Part E – Logistics and Transportation Review

Transportation Science

Table 2. Journal ranking according to the H-index

R	Name	TC	TP	C/P	TC11	TP11	C/P11	IF	5-IF	T200	Н
1	Management Science	216817	5760	38	33819	1432	24	1.859	3.057	77	191
2	Operations Research	123068	4529	27	12346	1018	12	1.786	2.484	36	136
3	European J. Operational Research	170335	11881	14	70004	6089	11	2.038	2.524	15	125
4	Mathematical Programming	64031	2749	23	12858	910	14	2.090	2.351	9	100
5	Systems & Control Letters	53097	3398	16	14055	1273	11	1.667	2.054	15	89
6	Int. J. Production Research	72449	6558	11	21647	3177	7	1.460	1.733	3	78
7	Mathematics of Operations Research	30642	1646	19	4631	557	8	0.899	1.264	7	75
8	J. of the Operational Research Society	53763	5139	10	10919	1684	6	0.989	1.282	4	74
9	J. Optimization Theory and	44956	4637	10	9703	1500	6	1.423	1.475	3	72
10	Applications Transportation Research Part B: Methodological	26824	1439	19	9737	653	15	2.944	3.520	2	69
11	J. Operations Management	15395	534	29	13191	469	28	4.400	7.130	1	67
12	J. Quality Technology	20763	1116	19	3710	330	11	1.520	1.650	3	67
13	Computers & Operations Research	42647	3708	12	21701	2009	11	1.909	2.374	3	66
14	Transportation Science	20706	897	23	5119	370	14	1.814	2.623	2	65
15	Networks	20597	1561	13	3083	575	5	0.645	0.949	2	61
16	Int. J. Production Economics	42116	3953	11	26305	2421	11	2.081	2.594	1	60
17	IIE Transactions	27839	2150	13	7639	931	8	1.287	1.647	0	60
18	Omega – Int. J. Management Science	24866	2198	11	9773	646	15	3.024	3.474	4	59

		A	CCEP	TED	MAN	USCI	RIPT				
19	Naval Research Logistics	23458	2315	10	3668	621	6	0.692	1.240	1	55
20	Expert Systems with Applications	39298	7376	5	34099	5474	6	1.854	2.339	0	55
21	Decision Support Systems	21566	1870	12	12848	1198	11	2.201	3.037	1	54
22	Reliability Engineering & System Safety	28650	3227	9	14962	1567	10	1.901	2.441	0	53
23	Interfaces	18428	2144	9	2726	450	6	0.845	1.016	1	52
24	Operations Research Letters	18808	2202	9	5125	1026	5	0.519	0.821	0	51
25	Annals of Operations Research	16599	2259	7	8004	1341	6	1.029	1.243	0	49
26	J. Global Optimization	16796	1558	11	7558	1084	7	1.307	1.665	3	47
27	Production and Operations Management	7621	545	14	6504	451	14	1.315	2.316	0	44
28	Int. J. of Systems Science	22744	5149	4	5156	1191	4	1.305	1.504	1	44
29	Technovation	13890	1590	9	8862	868	10	3.177	3.449	0	40
30	Safety Science	10491	1621	6	5457	946	6	1.359	1.785	0	38

Abbreviations: R = Rank; TC = Total number of citations; TP = Total number of publications (articles + reviews); C/P = Average number of citations per paper; TC11 = Total number of citations between 2001-2011; TP11 = Total number of publications between 2001-2011; TP11 = Total number of publications between 2001-2011; TP11 = Total number of papers included in the list of 200 most cited papers; TP11 = Total number of papers included in the list of 200 most cited papers; TP11 = Total number of papers included in the list of 200 most cited papers; TP11 = Total number of papers included in the list of 200 most cited papers; TP11 = Total number of papers included in the list of 200 most cited papers; TP11 = Total number of papers included in the list of 200 most cited papers; TP11 = Total number of papers included in the list of 200 most cited papers; TP11 = Total number of papers included in the list of 200 most cited papers; TP11 = Total number of papers included in the list of 200 most cited papers; TP11 = Total number of papers included in the list of 200 most cited papers; TP11 = Total number of papers included in the list of 200 most cited papers; TP11 = Total number of papers included in the list of 200 most cited papers; TP11 = Total number of papers included in the list of 200 most cited papers; TP11 = Total number of papers included in the list of 200 most cited papers.

Table 3. The two hundred most cited papers in operations research and management science

J	R	TC	Title	First Author	Year	C/Y	SA
MS	2	2311	User acceptance of computer-	F.D. Davis	1989	100	IST
			technology – A comparison of 2				
			theoretical models				
MS	4	2139	Some models for estimating technical	R.D. Banker	1984	76	DEA
			and scale inefficiencies in data				
		40-0	envelopment analysis				
MS	6	1879	Games with incomplete information	J.C. Harsanyi	1967	41	DMA
			played by "Bayesian" players, I-III. Part I. The basic model				
MS	8	1716	Organizational information	R.L. Daft	1986	66	IST
MIS	0	1710	requirements, media richness and	K.L. Dan	1960	00	151
			structural design				
MS	9	1680	Asset stock accumulation and	I. Dierickx	1989	73	FIN
			sustainability of competitive advantage		-, -,		
MS	11	1427	New product growth for model	F.M. Bass	1969	33	OPM
			consumer durables				
MS	12	1398	A theoretical extension of the	V. Venkatesh	2000	116	IST
			Technology Acceptance Model				
MS	14	1094	Information distortion in a supply chain	H.L. Lee	1997	72	OPM
MS	17	965	Dynamic version of the economic lot	H.M. Wagner	1958	17	OPM
			size model				
MS	23	838	The Lagrangian-relaxation method for	M.L. Fisher	1981	27	MP
3.40	20	705	solving integer programming-problems	A C1	1050	10) (D)
MS	28	705	Chance-constrained programming	A. Charnes	1959	13	MP

			ACCEPTED MANUSC	CRIPT			
MS	30	687	Patterns in strategy formation	H. Mintzberg	1978	20	SO
MS	32	674	Sticky information and the locus of	E. von Hippel	1994	37	IST
1.10	0 -	0,.	problem solving – implications for	zi von impper			101
			innovation				
MS	33	658	Modeling managerial behaviour –	J.D. Sterman	1989	28	DMA
1110	33	050	misperceptions of feedback in a	v.D. Sterman	1707	20	Diviri
			dynamic decision making experiment				
MS	34	649	A foundation for the study of group	G. De Sanctis	1987	25	DMA
1115	31	017	decision support systems	G. De Banens	1707	23	Diviri
MS	35	645	Conceptual-framework for the design of	W.G. Ouchi	1979	19	SO
1.10		0.0	organizational control mechanisms	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17.7		20
MS	39	615	Reducing social context cues –	L. Sproull	1986	23	IST
1.10		010	electronic mail in organizational	2. Sproun	1,00		10.1
			communication				
MS	40	612	Lead users – A source of novel product	E. von Hippel	1986	23	OPM
1.10		012	concepts	zi von impper	1,00		01111
MS	43	606	Central problems in the management of	A.H. van	1986	23	EIK
			innovation	Deven	-, -,		
MS	46	584	Development of a tool for measuring	J.E. Bailey	1983	20	IST
1.10			and analysing computer user	0.2. 2	1700	¥	10.1
			satisfaction				
MS	47	575	Managerial perspectives on risk and	J.G. March	1987	23	DMA
			risk-taking				
MS	48	571	A procedure for ranking efficient units	P. Andersen	1993	30	DEA
			in data envelopment analysis				
MS	54	535	Information technology implementation	R.B. Cooper	1990	24	IST
			research – A technological diffusion	(5)			
			approach				
MS	55	530	The shifting bottleneck procedure for	J. Adams	1988	22	OPM
			job shop scheduling				
MS	57	522	The correlates of entrepreneurship in 3	D. Miller	1983	18	EIK
			types of firms				
MS	58	521	A simplified model for portfolio	W.F. Sharpe	1963	10	FIN
			analysis	-			
MS	59	519	Quantifying the bullwhip effect in a	F. Chen	2000	43	OPM
			simple supply chain: The impact of				
			forecasting, lead times and information				
MS	61	516	An experimental application of the	N. Dalkey	1963	10	DMA
			Delphi method to the use of experts				
MS	62	514	Optimal policies for a multi-echelon	A.J. Clark	1960	9	OPM
			inventory problem				
MS	67	497	The value of information sharing in a	H.L. Lee	2000	41	OPM
			two-level supply chain				
MS	70	478	Frictionless commerce? A comparison	E.	2000	39	IST
			of Internet and conventional retailers	Brynjolfsson			
MS	72	474	Location of knowledge and the mobility	P. Almeida	1999	36	EIK
			of engineers in regional networks				
MS	76	463	Jobshop-like queuing systems	J.R. Jackson	1963	9	QT
MS	77	461	The adoption of radical and incremental	R.D. Dewar	1986	17	EIK
			innovations – An empirical analysis				
MS	78	454	A spatial model of effectiveness criteria	R.E. Quinn	1983	15	SO
			 Towards a competing values approach 				
			to organizational analysis				
MS	79	447	Bimatrix equilibrium points and	C.E. Lemke	1965	9	MP
			mathematical programming				
MS	83	439	User involvement and mis success – A	B. Ives	1984	15	IST
_			review of research				_
MS	85	437	Supply chain inventory management	G.P. Cachon	2000	36	OPM
	6.0	46.0	and the value of a shared information	.	100-		*~
MS	88	429	Paradox lost? Firm-level evidence on	E.	1996	26	IST

ACCEPTED MANUSCRIPT the returns to information systems Brynjolfsson spending MS 427 90 Timid choices and bold forecasts – A D. Kahneman 1993 22 **DMA** cognitive perspective on risk-taking MS 98 418 Reducing buyer search costs: J.Y. Bakos 1997 27 IST Implications for electronic marketplaces MS 101 417 Information technology and M.L. Markus 1988 17 **IST** organizational change - Causalstructure in theory and research MS 103 412 Control - Organizational and economic K.M. 1985 15 SO approaches Eisenhardt 408 Gambling with the house money and R.H. Thaler MS 106 1990 18 **DMA** trying to break even – The effects of prior outcomes on risky choice 400 Decision-making in a fuzzy R.E. Bellman 9 **DMA** MS 111 1970 environment MS 113 398 Linear programming under uncertainty G.B. Dantzig 1955 6 MP 114 397 Interactive approach for multi-criterion A.M. Geoffrio MS 1972 **DMA** optimization, with an application to operation of an academic departm. MS 116 393 Management misinformation systems R.L. Ackoff 1967 **IST** 125 384 Multicommodity distribution system-A.M. Geoffrio 1974 10 OPM MS design by benders decomposition 1989 MS 126 382 Strategic orientation of business N. 16 SO enterprises – The construct, Venkatraman dimensionality and measurement MS 129 380 Evaluating program and managerial A. Charnes 1981 12 DEA efficiency – An application of DEA analysis to program follow through Managerial applications of neural MS 136 365 K.Y. Tam 1992 18 FIN networks – The case of bank failure predictions 22 MS 137 363 The impact of environmental R.D. Klassen 1996 SO management on firm performance MS 138 363 Location of bank accounts to optimize G. Cornuejols 1977 10 FIN float - Analytic study of exact and approximate algorithms MS 142 355 A tabu search heuristic for the vehicle-M. Gendreau 19 **OPM** 1994 routing problem MS 145 354 Joint ventures and the option to expand B. Kogut 1991 16 SO and acquire 146 MS 353 Supply chain coordination with **OPM** G. P. Cachon 2005 50 revenue-sharing contracts: Strengths and limitations 353 MS 147 General systems theory – The skeleton K.E. Boulding 1956 6 STT of science MS 150 350 Explaining the role of user participation J. Hartwick 1994 19 IST in information system use 348 Organization strategy and structural MS 153 J.E. Ettlie 1984 12 EIK differences for radical versus incremental innovation 14 MS 155 346 Strategic decision processes in high L.J. Bourgeois 1988 **DMA** velocity environments – 4 cases in the microcomputer industry MS 159 344 Manufacturing flexibility – A strategic D. Gerwin **OPM** 1993 18 perspective MS 160 343 Adaptation on rugged landscapes D.A. Levinthal 1997 22 SO MS 342 Optimal dynamic pricing of inventories G. Gallego 1994 19 BA 161 with stochastic demand over finite horizons

			ACCEPTED MANUSO	CRIPT			
MS	162	339	The digitization of word of mouth: Promise and challenges of online	C. Dellarocas	2003	37	IST
MS	167	335	feedback mechanisms Manufacturing strategy, environmental uncertainty and performance – A path analytic model	P.M. Swamidass	1987	13	OPM
MS	168	334	A heuristic program for locating warehouses	A.A. Kuehn	1963	6	OPM
MS	169	333	Empirical evaluation of the revised technology acceptance model	B. Szajna	1996	20	IST
MS	177	323	Product development decisions: A review of the literature	V. Krishnan	2001	29	OPM
MS	179	322	Finding K shortest loopless paths in a network	J.Y. Yen	1971	7	GRT
MS	180	321	A fast taboo search algorithm for the job shop problem	E. Nowicki	1996	20	BA
MS	184	318	Value of information in capacitated supply chains	S. Gavirneni	1999	24	IST
MS	189	315	Interactive programming method for solving multiple criteria problem	S. Zionts	1976	8	DMA
MS	190	315	Program for research on management information systems	R.O. Mason	1973	8	IST
MS	192	313	The strength of weak ties you can trust: The mediating role of trust in effective knowledge transfer	D.Z. Levin	2004	39	EIK
MS	193	313	Patents and innovation – An empirical study	E. Mansfield	1986	12	EIK
MS OR	200 15	310 1091	The truck dispatching problem Effective heuristic algorithm for travelling-salesman problem	G.B. Dantzig S. Lin	1959 1973	5 27	MP MP
OR	20	889	A proof for the queuing formula – L = Lambda-W	J.D.C. Little	1961	17	QT
OR	26	774	Scheduling of vehicles from central depot to number of delivery points	G. Clarke	1964	16	TR
OR	29	694	Shock-waves on the highway	P.I. Richards	1956	12	TR
OR	31	678	Regret in decision-making under uncertainty	D.E. Bell	1982	22	DMA
OR	36	630	Optimum locations of switching centers + absolute centers + medians of graph	S.L. Hakimi	1964	13	GRT
OR	37	625	Algorithms for the vehicle-routing and scheduling problems with the time window constraints	M.M. Solomon	1987	25	TR
OR	38	620	Decomposition principles for linear- programs	G.B. Dantzig	1960	11	MP
OR	50	564	A linear-programming approach to the cutting-stock problem	P.C. Gilmore	1961	11	MP
OR	63	512	Optimization by simulated annealing – An experimental evaluation 1: Graph partitioning	D.S. Johnson	1989	22	MP
OR	64	512	Generalized Lagrange multiplier method for solving problems of optimum allocation of resources	H. Everett	1963	10	MP
OR	65	509	Sequencing with earliness and tardiness penalties – A review	K.R. Baker	1990	23	OPM
OR	73	474	Optimum preventive maintenance policies	R. Barlow	1960	9	OPM
OR	89	429	Dual-based procedure for uncapacitated facility location	D. Erlenkotter	1978	12	OPM
OR	93	424	Traveling-salesman problem and minimum spanning trees	M. Held	1970	10	MP

			ACCEPTED MANUSC	RIPT			
OR	94	423	Branch-and-price: Column generation for solving huge integer programs	C. Barnhart	1998	30	MP
OR	96	420	Survey of scheduling rules	S.S. Panwalkar	1977	12	SCH
OR	99	418	Poisson arrivals see time averages	R.W. Wolff	1982	13	QT
OR	104	412	Minimizing a submodular function on a lattice	D.M. Topkis	1978	12	MP
OR	110	401	Branch and bound methods – A survey	E.L. Lawler	1966	8	MP
OR	118	390	Deterministic equivalents for optimizing and satisficing under chance constraints	A. Charnes	1963	7	MP
OR	119	390	A linear programming approach to the cutting stock problem 2	P.C. Gilmore	1963	7	MP
OR	123	385	Networks of waiting lines	J.R. Jackson	1957	7	MP
OR	130	379	Optimal lot sizing, process quality improvement and setup cost reduction	E.L. Porteus	1986	14	OPM
OR	135	366	Evaluating influence diagrams	R.D. Shachter	1986	14	STT
OR	140	361	Robust optimization of large scale systems	J.M. Mulvey	1995	21	MP
OR	143	355	An additive algorithm for solving linear programs with 0-1 variables	E. Balas	1965	7	MP
OR	149	351	Pricing and the newsvendor problem: A review with extensions	N.C. Petruzzi	1999	27	BA
OR	157	346	Location of emergency service facilities	C. Toregas	1971	8	BA
OR	172	329	Parallel sequencing and assembly line problems	T.C. Hu	1961	6	SCH
OR	175	326	Metric – A multi-echelon technique for recoverable IETM control	C.C. Sherbroo	1968	7	OPM
OR	181	320	Job shop scheduling by simulated annealing	P.J.M. van Laarhoven	1992	16	SCH
OR	183	319	Closed queuing systems with exponential servers	W.J. Gordon	1967	7	QT
OR	185	317	Multistage cutting stock problems of 2 and more dimensions	P.C. Gilmore	1965	6	MP
OR	187	316	Solving large-scale zero-one linear- programming problems	H. Crowder	1983	10	MP
OR	198	311	Optimum distribution of switching centers in a communication network and some related graph theoretic	S.L. Hakimi	1965	6	GRT
EJOR	1	3947	problem Measuring efficiency of decision- making units	A. Charnes	1978	116	DEA
EJOR	49	567	How to make a decision – The analytic hierarchy process	T.L. Saaty	1990	25	DMA
EJOR	66	501	Benchmarks for basic scheduling problems	E. Taillard	1993	26	SCH
EJOR	80	445	Quantitative models for reverse logistics: A review	M. Fleischmann	1997	29	OPM
EJOR	81	443	Efficiency of financial institutions: International survey and directions for future research	A.N. Berger	1997	29	FIN
EJOR	92	426	Vendor selection criteria and methods	C.A. Weber	1991	20	DMA
EJOR	102	415	Variable neighbourhood search: Principles and applications	P. Hansen	2001	37	GM
EJOR	105	408	Applications of the extent analysis method on fuzzy AHP	D.Y. Chang	1996	25	DMA
EJOR	121	387	Resource constrained project scheduling: Notation, classification, models and methods	P. Brucker	1999	29	SCH
EJOR	133	374	How to select and how to rank projects - The PROMETHEE method	J.P. Brans	1986	14	DMA

			ACCEPTED MANUS	CRIPT			
EJOR	139	362	Coordinated supply chain management	D.J. Thomas	1996	22	OPM
EJOR	163	337	Rough sets theory for multicriteria decision analysis	S. Greco	2001	30	DMA
EJOR	165	337	A typology of cutting and packing problems	H. Dyckhoff	1990	15	GM
EJOR	196	311	Scheduling with batching: A review	C.N. Potts	2000	25	SCH
EJOR	197	311	The vehicle routing problem – An	G. Laporte	1992	15	TR
LJOK	1)/	311	overview of exact and approximate algorithms	G. Laporte	1772	13	IK
SCL	41	612	Linearization by output injection and non-linear observers	A.J. Krener	1983	21	STT
SCL	52	546	A stabilization algorithm for a class of uncertain linear-systems	I.R. Petersen	1987	21	STT
SCL	71	476	Adapted solution of a backward stochastic differential equation	E. Pardoux	1990	21	GM
SCL	74	468	State-space formulas for all stabilizing controllers that satisfy an H infinity-norm bound and relations to risk sensitivity	K. Glover	1988	19	STT
SCL	82	439	A new discrete-time robust stability conditions	M.C. de Oliveira	1999	33	STT
SCL	107	407	On characterizations of the input-to- space stability property	E.D. Sontag	1995	23	STT
SCL	112	399	Robust control of a class of uncertain nonlinear systems	Y.Y. Wang	1992	19	STT
SCL	115	393	Gain scheduling via linear fractional transformations	A. Packard	1994	21	SCH
SCL	132	375	Fast linear iterations for distributed averaging	L. Xiao	2004	46	STT
SCL	144	354	Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays	Y. He	2004	44	STT
SCL	151	349	A universal construction of artstein theorem on nonlinear stabilization	E.D. Sontag	1989	15	STT
SCL	152	348	New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems	E. Fridman	2001	31	STT
SCL	174	326	Control problems of grey systems	J.L. Deng	1982	10	STT
SCL	176	324	Sliding mode control of a discrete system	K. Furuta	1990	14	STT
SCL	194	312	On the Kalman-Yakubovich-Popov lemma	A. Rantzer	1996	19	STT
MP	16	1058	On the limited memory BFGS method for large-scale optimization	D.C. Liu	1989	46	MP
MP	21	880	Finite-dimensional variational inequality and nonlinear complimentary problems – A survey of theory	P.T. Harker	1990	40	MP
MP	24	825	Restart procedures for conjugate gradient method	M.J.D. Powell	1977	23	MP
MP	51	550	A nonsmooth version of Newton method	L. Qi	1993	28	MP
MP	91	426	On the implementation of an interior point filter line-search algorithm for large-scale nonlinear programming	A. Wachter	2006	71	MP
MP	122	386	Benchmarking optimization software with performance profiles	E.D. Dolan	2002	38	MP
MP	141	359	An outer approximation algorithm for a class of mixed integer nonlinear programs	M.A. Duran	1986	13	MP
MP	166	336	Some numerical experiments with	J.C. Gilbert	1989	14	MP

			AGGEL LED MAITOGG				
			variable-storage quasi-Newton				
MD	100	220	algorithms	W.C.D. :1	1075	0	MD
MP	182	320	Optimally conditioned optimization	W.C. Davidon	1975	8	MP
MOD	10	027	algorithms without line searches Optimal auction design	D.D. Mayanaan	1001	20	DMA
MOR MOR	18 75	927 465	Cooling schedules for optimal	R.B. Myerson	1981	29	DMA SCH
MOR	13	403	annealing	B. Hajek	1988	19	эсп
MOR	95	421	Strongly regular generalized equations	S.M. Robinson	1980	13	MP
MOR	97	419	Robust convex optimization	A. Ben-Tal	1998	29	MP
MOR	108	407	Minimization by random search	F.J. Solis	1981	13	MP
MOR	100	107	techniques	1.3. 50115	1701	13	1711
MOR	127	381	Convergence analysis of some	L.Q. Qi	1993	20	GM
			algorithms for solving nonsmooth				
			equations				
MOR	195	312	Integer programming with a fixed	H.W. Lenstra	1983	10	MP
			number of variables				
JORS	7	1720	Rate control for communication	F.P. Kelly	1998	122	IST
			networks: shadow prices, proportional				
			fairness and stability				
ORQ	44	592	Combination of forecasts	J.M. Bates	1969	13	BA
JORS	56	529	OR library – Distributing test problems	J.E. Beasley	1990	24	IST
IODG	170	222	by electronic mail	D.I. A.1.60	1070		OTH
JORS	178	323	Future of operational research is past	R.L. Ackoff	1979	9	OTH
Omega	42	611	A heuristic algorithm for the M-machine, N-job flowshop sequencing	M. Nawaz	1983	21	OPM
			problem				
Omega	68	492	Dynamic model of process and product	J.M. Utterback	1975	13	EIK
Officga	00	7/2	innovation	J.M. Otterback	1773	13	Liix
Omega	148	351	E-commerce: The role of familiarity	D. Gefen	2000	29	IST
omega.	1.0	001	and trust	2.00.00.	_000		101
Omega	186	316	A review of scheduling research	A. Allahverdi	1999	24	SCH
· ·			involving setup considerations				
JGO	3	2273	Differential evolution – A simple and	R. Storn	1997	151	MP
			efficient heuristic for global				
			optimization over continuous spaces				
JGO	60	517	Greedy randomized adaptive search	T.A. Feo	1995	30	MP
			procedures				
JGO	69	483	Efficient global optimization of	D.R. Jones	1998	34	MP
COD	10	90.4	expensive black-box functions	E Cl	1006	2.4	MD
COR	19	894	Future paths for integer programming	F. Glover	1986	34	MP
COR	45	591	and links to artificial intelligence Special issue – Routing and scheduling	L. Bodin	1983	20	TR
COK	43	391	of vehicles and crews – the state of the	L. Dodin	1703	20	110
			art				
COR	53	535	Variable neighbourhood search	N. Mladenovic	1997	35	MP
RAIRO	13	1164	Existence, uniqueness and	F. Brezzi	1974	30	MP
			approximation of saddle point problem				
			arising from Lagrangian multipliers				
RAIRO	86	432	Approximation by finite element	P. Clement	1975	11	GM
			functions using local regularization				
RAIRO	158	345	Conforming and non-conforming finite	M. Crouzeix	1973	8	GM
			elements methods for solving stationary				
TOTAL	22	0.61	stokes equations I	W.C	1005	2.1) (D
JOTA	22	861	Thermodynamical approach to the	V. Cerny	1985	31	MP
			travelling salesman problem – An				
JOTA	84	438	efficient simulation algorithm Globally convergent method for	S.P. Han	1977	12	MP
JUIA	04	436	nonlinear programming	S.F. Häll	17//	12	WIP
JOTA	154	347	Lipschitzian optimization without the	D.R. Jones	1993	18	MP
001/1	157	517	Lipschitz constant	2.11. 001100	1773	10	1711

			ACCEPTED MANUS	CRIPT			
JQT	25	792	Simultaneous optimization of several response variables	G. Derringer	1980	24	MP
JQT	87	431	Process capability indexes	V.E. Kane	1986	16	OPM
JQT	173	327	Off-line quality-control, parameter design, and the Taguchi method	R.N. Kackar	1985	12	OPM
IJPR	128	381	A state of the art survey of dispatching rules for manufacturing job shop operations	J.H. Blackstone	1982	12	OPM
IJPR	171	332	Machine component grouping in production-flow analy-sis – An approach using a rank order clustering-algorithm	J.R. King	1980	10	OPM
IJPR	199	310	CONWIP – A pull alternative to Kanban	M.L. Spearman	1990	14	OPM
TR-B	100	417	The cell transmission model – A dynamic representation of highway traffic consistent with the hydrodynamic theory	C.F. Daganzo	1994	23	TR
TR-B	170	333	The cell transmission model 2: Network traffic	C.F. Daganzo	1995	19	TR
Netw.	109	404	A survey of gossiping and broadcasting in communication networks	S.M. Hedetniemi	1988	16	IST
Netw.	156	346	Steiner problem in networks – A survey	P. Winter	1987	13	GRT
TS	134	368	Network design and transportation planning – Models and algorithms	T.L. Magnanti	1984	13	TR
TS	188	315	Traffic equilibrium and variational-inequalities	S. Dafermos	1980	9	TR
Inter.	131	378	The analytic hierarchy process – A survey of the method and its applications	F. Zahedi	1986	14	DMA
NRL	191	314	Survey of maintenance models – Control and surveillance of deteriorating systems	W.P. Pierskalla	1976	8	OPM
BEJMS	5	1957	Theory of economic regulation	G.J. Stigler	1971	47	OTH
OMS	10	1585	Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones	J.F. Sturm	1999	121	MP
IJSS	27	708	Operations on fuzzy numbers	D. Dubois	1978	20	GM
IJPE	117	391	Supply chain design and analysis: Models and methods	B.M. Beamon	1998	27	OPM
QS	124	384	A storage model with self-similar input	I. Norros	1994	21	QT
DSS	120	389	A survey of trust and reputation systems	A. Josang	2007	77	IST
JOM	164	337	for online service provision Arcs of integration: an international study of supply chain strategies	M.T. Frohlich	2001	30	OPM

Abbreviations: J = Journal name; R = Rank; TC = Total number of citations; <math>C/Y = Citations per year; SA = Subarea (the full name of the abbreviations are available in Table 4).

Journal abbreviations: BEJMS = Bell Economic J. of Management Sciences; COR = Computers & Operations Research; DSS = Decision Support Systems; EJOR = European J. of Operational Research; Inter. = Interfaces; IJPE = Int. J. of Production Economics; IJPR = Int. J. of Productions Research; IJSS = Int. J. of Systems Science; JGO = J. of Global Optimization; JOM = J. of Operations Management; JOTA = J. of Optimization Theory and Applications; JORS = J. of the Operational Research Society (ORQ = Operational Research Quarterly); JQT = J. of Quality Technology; MS = Management Science; MP = Mathematical Programming; MOR = Mathematics of Operations Research; NRL = Naval Research Logistics; Netw. = Networks; Omega = Omega - Int. J. of Management Science; OR = Operations Research; OMS = Optimization Methods & Software; QS = Queueing Systems; RAIRO = RAIRO

Operations Research; SCL = Systems & Control Letters; TR-B = Transportation Research Part B – Methodological; TS = Transportation Science.

Table 4. Number of papers of Table 3 in each OR-MS subarea

Rank	Abbreviation	Subarea	Number of Papers
1	MP	Mathematical Programming	45
2	OPM	Operations and Production Management	32
3	IST	Information Systems and Technology	23
4	DMA	Decision Making and Analysis	19
5	STT	System Theory and Thinking	15
6	SCH	Scheduling	9
7	TR	Transportation Research	9
8	EIK	Entrepreneurship, Innovation and Knowledge	8
9	SO	Strategy and Organizations	8
10	GM	General Mathematics	7
11	BA	Business Analytics (Other Topics)	5
12	FIN	Finance	5
13	QT	Queuing Theory	5
14	DEA	Data Envelopment Analysis	4
15	GRT	Graph Theory	4
16	ОТН	Other Topics	2

 $\textbf{Table 5.} \ \textbf{The most productive and influential authors in OR-MS}$

The	The most productive authors according to the total number of papers in OR-MS										
R	Name	Country	TP-OR	TC-OR	TP-10	TC-10	TP	TC	H-index		
1	G Laporte	Canada	279	6779	150	2000	299	7486	42		
2	TCE Cheng	China	275	4338	158	2236	407	6564	33		
3	HD Sherali	USA	184	2143	79	512	225	2939	25		
4	O Berman	Canada	161	1506	80	558	171	1645	21		
5	Z Drezner	USA	142	2213	65	563	169	2580	22		
6	KL Teo	Australia	138	1012	62	527	387	2991	19		
7	F Glover	USA	135	4330	42	440	183	5640	35		
8	CY Lee	China	134	3312	67	546	168	3474	30		
9	SK Goyal	Canada	131	2153	45	621	197	3342	26		
10	SP Sethi	USA	128	1978	52	584	221	3350	23		
11	W Whitt	USA	120	2821	37	430	204	5987	30		
12	DC Montgomery	USA	117	2885	58	729	162	3169	26		
13	M Fukushima	Japan	115	1958	52	630	170	2812	24		
14	XQ Yang	China	115	1349	80	730	154	1862	22		
15	PM Pardalos	USA	112	1770	71	722	188	3005	23		
16	SY Wang	China	111	1082	83	834	155	1528	18		
17	M Gendreau	Canada	105	3466	56	924	133	3870	31		
18	A Gunasekaran	USA	105	1977	36	1192	132	2444	22		
19	JC Yao	China	105	1471	86	882	312	4241	22		
20	GL Nemhauser	USA	104	3215	35	390	144	3802	28		
21	G Levitin	Israel	101	995	77	523	113	1559	17		
22	FTS Chan	China	98	1061	70	906	194	2078	18		
23	JG Shanthikumar	USA	97	1485	13	82	152	2733	22		

	ACCEPTED MANUSCRIPT												
24	JND Gupta	USA	96	2203	35	365	99	2393	25				
25	WB Powell	USA	96	1676	29	284	111	1974	25				
The most influential authors according to the total number of citations in OR-MS													
1	WW Cooper	USA	88	9881	10	172	169	11929	28				
2	A Charnes	USA	83	9456	-	-	191	11744	24				
3	HL Lee	USA	73	5438	9	345	99	7211	33				
4	RD Banker	USA	35	4335	13	299	98	5716	22				
5	ML Fisher	USA	35	3532	5	113	53	4354	24				
6	CF Daganzo	USA	95	3184	35	545	117	3435	29				
7	A Federgruen	USA	78	3011	16	432	104	3492	31				
8	D Bertsimas	USA	90	2431	39	1051	125	2926	26				
9	TL Saaty	USA	36	2309	10	231	139	4980	17				
10	PT Harker	USA	39	2276	5	165	76	2902	22				
11	GP Cachon	USA	26	2080	20	776	36	2169	17				
12	GB Dantzig	USA	27	2018	-	-	84	3638	14				
13	JS Dyer	USA	38	1893	6	93	112	2245	18				
14	JDC Little	USA	20	1880	2	6	53	2547	15				
15	GR Bitran	USA	44	1734	2	20	48	1757	25				
16	HM Wagner	USA	36	1705	2	41	109	2414	17				
17	E Brynjolfsson	USA	13	1676	4	16	51	3896	9				
18	MJD Powell	UK	22	1619	4	133	81	8738	15				
19	SC Graves	USA	37	1610	9	152	93	2194	17				
20	WD Cook	Canada	93	1590	37	474	100	1706	22				
21	RL Keeney	USA	47	1548	10	122	117	2880	21				
22	S Zionts	USA	50	1406	6	81	76	1515	18				
23	PC Fishburn	USA	52	1352	2	65	403	6581	19				
24	JB Orlin	USA	70	1249	26	248	116	2117	20				
25	RL Winkler	USA	35	1122	9	61	143	3669	17				

Abbreviations: R = Rank; TP-OR = Total number of publications in OR-MS; TC-OR = Total number of citations to the author's work that was published on the area of OR-MS; TP-10 = Total number of publications in OR-MS between 2002-2011; TC-10 = Total number of citations to the author's publications in the area of OR-MS between 2002-2011; TP = Total publications; TC = Total citations.

Table 6. The most productive and influential authors, with publications counts in eight selected OR-MS journals

R	Name	MS	OR	EJOR	JORS	Omega	COR	MOR	MP	Other	Total
1	G Laporte	1	20	54	47	1	41	-	2	113	279
2	TCE Cheng	1	2	48	21	10	37	-	-	156	275
3	HD Sherali	7	14	14	9	4	10	1	15	110	184
4	O Berman	2	5	31	14	-	19	-	-	90	161
5	Z Drezner	3	5	22	24	1	13	1	1	72	142
6	KL Teo	1	-	9	1	-	-	1	-	126	138
7	F Glover	11	17	22	3	2	10	-	10	60	135
8	CY Lee	4	5	16	2	-	13	1	-	93	134
9	SK Goyal	2	1	27	16	-	-	-	-	85	131
10	SP Sethi	7	13	13	3	-	-	5	-	87	128
11	W Whitt	25	33	-	1	-	-	11	-	51	120
12	DC Montgomery	-	-	1	-	-	-	-	-	118	119
13	M Fukushima	-	2	8	-	-	-	3	16	86	115
14	XQ Yang	1	1	16	1	-	-	4	2	90	115
15	PM Pardalos	-	-	4	-	-	12	1	5	90	112
16	SY Wang	-	-	20	1	3	4	-	-	83	111
17	M Gendreau	1	11	17	6	-	12	-	-	58	105
18	A Gunasekaran	-	-	11	3	2	-	-	-	89	105
19	JC Yao	-	-	6	-	-	-	2	1	96	105
20	GL Nemhauser	7	17	5	1	-	1	2	22	49	104

	ACCEPTED MANUSCRIPT													
21	G Levitin	-	-	9	3	-	2	-	-	87	101			
22	FTS Chan	-	-	1	-	2	-	-	-	95	98			
23	JG Shanthikumar	8	16	7	-	-	3	6	1	56	97			
24	JND Gupta	-	1	16	13	5	14	1	-	46	96			
25	WB Powell	2	12	6	-	-	-	1	1	74	96			
1	WW Cooper	30	6	20	6	4	-	-	-	23	88			
2	A Charnes	31	12	10	1	2	1	1	1	25	83			
3	HL Lee	20	14	3	1	-	-	-	-	35	73			
4	RD Banker	14	2	13	1	-	-	-	-	5	35			
5	ML Fisher	8	9	1	-	-	-	2	4	11	35			
6	CF Daganzo	-	4	-	-	-	-	-	-	91	95			
7	A Federgruen	19	34	-	-	-	-	6	1	19	79			
8	D Bertsimas	3	28	3	-	-	1	8	12	35	90			
9	TL Saaty	3	6	14	-	-	-	-	-	13	36			
10	PT Harker	6	2	7	-	-	-	-	7	17	39			
11	GP Cachon	19	2	-	-	-	-	-	-	5	26			
12	GB Dantzig	10	6	1	1	-	-	-	3	6	27			
13	JS Dyer	17	8	4	-	1	-	-	-	8	38			
14	JDC Little	2	14	-	-	-	-	-	-	4	20			
15	GR Bitran	13	16	3	-	1	-	-	2	9	44			
16	HM Wagner	12	17	1	-	-	-	-	∧ <u>-</u> ∧ (6	36			
17	E Brynjolfsson	12	-	-	-	-	-	-		1	13			
18	MJD Powell	-	-	-	-	-	-	-	17	5	22			
19	SC Graves	14	5	1	-	-	1	1	-	15	37			
20	WD Cook	9	6	22	15	7	5	-	<u> </u>	29	93			
21	RL Keeney	11	21	2	2	1	(-	-	10	47			
22	S Zionts	14	6	13	1	-	4	-	-	12	50			
23	PC Fishburn	19	15	2	-	-		7	1	8	52			
24	JB Orlin	3	17	1	-		2	2	16	29	70			
25	RL Winkler	25	8	-	-		-	-	-	2	35			

Abbreviations: R = Rank; Journal abbreviations are shown in Table 3.

Table 7. Authors with the highest number of papers in eight selected journals

	MS		OR		EJO	1	JORS		Ome		COR		MOR		MP	
					R				ga							
R	Autho	T	Autho	T	Auth	T	Autho	T	Auth	T	Auth	T	Autho	T	Autho	T
	r	P	r	P	or	P	r	P	or	P	or	P	r	P	r	P
1	A	3	A	3	G	5	G	4	S	2	G	4	MJ	1	YY	3
	Charn	1	Feder	4	Lapo	4	Lapor	7	Eilon	1	Lapo	1	Todd	5	Ye	1
	es		gruen		rte		te				rte					
2	WW	3	W	3	TCE	4	Z	2	WR	1	TCE	3	YY	1	JS	3
	Coop	0	Whitt	3	Chen	8	Drezn	4	King	6	Chen	7	Ye	4	Pang	0
	er				g		er				g					
3	W	2	D	2	J Zhu	3	AH	2	TCE	1	BL	3	JS	1	M	2
	Whitt	5	Bertsi	8		4	Christ	3	Chen	0	Gold	1	Pang	3	Kojim	8
			mas				er		g		en				a	
4	RL	2	LM	2	O	3	TCE	2	TSH	1	O	1	WT	1	MJ	2
	Winkl	5	Wein	4	Berm	1	Cheng	1	Teo	0	Berm	9	Rhee	3	Todd	8
	er				an						an					
5	HL	2	RL	2	M	3	LC	2	PC	9	G	1	UG	1	LA	2
	Lee	0	Keen	1	Saka	0	Thom	1	Nutt		Mos	6	Rothb	3	Wolse	8
			ey		wa		as				heiov		lum		y	
6	GP	1	G	2	T	3	JE	1	TS	9	R	1	A	1	D	2
	Cacho	9	Lapor	0	Suey	0	Beasl	9	Raghu		Batta	5	Hordij	1	Goldf	7
	n		te		oshi		ey		nathan				k		arb	
7	A	1	DD	2	JPC	2	C	1	JR	8	CJ	1	A	1	RDC	2
	Feder	9	Yao	0	Kleij	9	Eden	7	Doyl		Liao	5	Shwar	1	Mont	5

					ACC	CE	PTED	M	ANUS	C	RIPT					
	gruen				nen				e				tz		eiro	
8	PC Eighh	1	F	1	SK	2	YD	1	B	8	JND	1	W	1	M Figure	2
	Fishb urn	9	Glove r	7	Goya 1	7	Kim	7	Gold		Gupt a	4	Whitt	1	Fisch etti	4
9	JS	1	GL	1	HS	2	J	1	V	8	R	1	RM	1	P	2
	Dyer	7	Nemh	7	Lau	5	Minge	7	Grov		Marti	4	Freun	0	Tseng	4
			auser				rs		er				d			
1	J	1	JB	1	R	2	JM	1	JC .	8	Z	1	R	1	G	2
0	Eliash	7	Orlin	7	Dekk	4	Wilso	7	Higgi		Drez	3	Hassi	0	Cornu	3
1	berg CS	1	НМ	1	er LF	2	n SK	1	ns K	8	ner CY	1	n A	1	ejols GL	2
1	Tang	7	Wagn	7	Escu	4	Goyal	6	Kowa	Ü	Lee	3	Shapir	0	Nemh	2
	Ü		er		dero		•		lski				0		auser	
1	C .	1	GR	1	R	2	RJ	1	L	8	JM	1	EA	9	E	2
2	Terwi	7	Bitran	6	Lahd	4	Paul	6	Liang		Smit	3	Feinb		Balas	0
1	esch RK	1	JG	1	elma R	2	BR	1	A	8	h LX	1	erg MS	9	R	2
3	Sarin	6	Shanth	6	Slow	4	Sarker	6	Mehr	O	Tang	3	Gowd		Weis	0
•			ikuma		inski				ez		0		a	_	mante	
			r												1	
1	TE	1	P	1	LN	2	E	1	D	8	JF	1	E	9	PL	1
4	Morto n	5	Zipki n	6	van Wass	4	Thana ssouli	6	Sculli		Bard	2	Lehre r		Toint	9
	11		11		enhov		S						1			
1	A.C.	1	DC	1	e WD	2		1	I 7hu	0	II	1	AS	9	S	1
1 5	AG Rao	1 5	PC Fishb	1 5	WD Cook	2 2	WD Cook	1 5	J Zhu	8	H Brun	2	Lewis	9	S Mizu	1 7
3	Rao	3	urn	3	COOK	_	COOK	5			eel	2	Le Wis		no	,
1	K	1	NG	1	Z	2	JM	1	V	7	SI	1	RDC	9	MJD	1
6	Sriniv	5	Hall	5	Drez	2	Norm	5	Adla		Gass	2	Monte		Powel	7
1	asan	1	DI	1	ner	2	an	1	kha	7		1	iro	0	1	1
1 7	RD Banke	1 4	RL Smith	1 5	F Glov	2 2	EA Silver	1 5	JE Beasl	7	M Gend	1 2	RL Smith	9	M Fukus	1 6
,	r	7	Sillui	5	er	2	Silvei		ey		reau	2	Siliui		hima	U
1	MA	1	HL	1	MY	2	PC	1	PD	7	JP	1	E	9	JB	1
8	Cohe	4	Lee	4	Kova	1	Bell	4	Berge		Igniz	2	Zemel		Orlin	6
	n		TD C		lyov	•			r	-	io			0	4 D	
1 9	SC Grave	1 4	JDC Little	1 4	KK Lai	1	O Berm	1 4	Y Chen	7	SH Kim	2	A Neym	8	AR Conn	1 5
7	S	4	Little	4	Lai	1	an	4	CHEII		KIIII	2	an		Colli	5
2	EL	1	M	1	ww	2	FR	1	WD	7	PM	1	LQ Qi	8	RM	1
0	Porte	4	Queyr	4	Coop	0	Johnst	4	Cook		Pard	2			Freun	5
•	us		anne		er	•	on		D.G.	_	alos		****	0	d	
2	LM Wein	1 4	HD Shera	1	C	2	M Pidd	1	BG Dale	7	MS Aletu	1	WD Sudda	8	M Grots	1
1	wein	4	li	4	Koul amas	0	Pluu	4	Date		Aktu rk	1	Sudde rth		chel	5
2	S	1	D	1	CS	2	S	1	SK	7	A	1	M	8	A	1
2	Zionts	4	Simc	4	Tang	0	Salhi	4	Gupt		Allah	1	Svirid		Nemir	5
			hi-						a		verdi		enko		ovski	
2	CD	1	Levi JS	1	CV	2	ΕI	1	M	7	VV	1	M	o	Y	1
2 3	GR Bitran	1	Song	1 4	SY Wan	2	FJ Vasko	4	M Igbari	7	YK Lin	1 1	M Tebou	8	r Neste	1 5
J	Dinan	J	Song	7	g	9	, asko	7	a		1111	•	lle		rov	5
2	C	1	E	1	ĎJ	2	JE	1	KH	7	JY	1	P	8	A	1
4	Derm	3	Balas	3	Whit	0	Boyla	3	Lai		Potvi	1	Tseng		Ruszc	5
	an				e		n				n				zynsk :	
2	P	1	P	1	JE	1	RG	1	В	7	R	1	JN	8	i HD	1
5	r Kouv	3	Glass	3	Beasl	9		3	Lev	/	ĸ Ruiz	1	Tsitsi	o	Sheral	5
	elis	-	erman	٠	ey		_ ,5511	٥				-	klis		i	-
2	Н	1	SP	1	J	1	JND	1	T	7	KJ	1	RJB	8	KM	1

	ACCEPTED MANUSCRIPT															
6	Levy	3	Sethi	3	Blaze wicz	9	Gupta	3	Suey oshi		Chun g	0	Wets		Anstr eicher	4
2	V	1	MJ	1	A	1	A	1	C	6	F	1	D	7	RH	1
7	Sriniv	3	Sobel	3	Lim	9	Mehre	3	Firer		Glov	0	Bertsi		Byrd	4
	asan						Z				er		mas		,	
2	E	1	P	1	J	1	CM	1	P	6	L	1	M	7	OL	1
8	Brynj	2	Toth	3	Puert	9	Molin	3	Good	_	Gouv	0	Confo		Mang	4
	olfsso	_	10111		0		ero		win		eia	Ü	rti		asaria	•
	n				Ü		C 10		******		Ciu		111		n	
2	RL	1	SA	1	C	1	C	1	K	6	A	1	PC	7	A	1
9	Keene	2	Zenio	3	Zopo	9	Rome	3	Gron	Ü	Mehr	0	Fishb	•	Tamir	4
	у	_	S	0	unidi		ro	0	haug		ez	Ü	urn		1 411111	•
	3		5		S		10		naug		CL		um			
3	Н	1	RL	1	R	1	J	1	C	6	R	1	KD	7	DP	1
0	Mend	2	Ackof	2	Batta	8	Rosen	3	Kao	Ü	Nagi	0	Glaze	•	Bertse	3
O	elson	_	f	_	Buttu	Ü	head	0	1140		rugi	Ů	brook		kas	
	S	1	A	1	A	1	nead		R	6	C	1	S Hart	7	M	1
	Shane	2	Charn	2	Volg	8			Oster	Ü	Prins	0	S Tiurt	,	Confo	3
	Shane	_	es	_	enant	O			mark		1 11113	Ü			rti	3
	HM	1	M	1	Chant				KJ	6	M	1	R	7	O	1
	Wagn	2	Fisch	2					Radf	O	Schnie	0	Kanna	-	Gunlu	3
	er	_	etti	_					ord		derjan	Ü	n		k	
	C1		PW	1					JE	6	s HD	1	M	7	KC	1
			r w Glynn	2					Samo	O	Sher		Kojim		Kiwie	1 3
			Glyllii	_					uilidi		ali	0	a		l Riwie	3
									S		all		a		1	
			WS	1					TJ	6	L	1	A	7	J	1
			Jewel	2					Stew	U	Wan	0	Mand	,	Noce	3
			1	_					art		g	O	elbau		dal	3
			1						art		5		m		aai	
			D	1							E	1	S	7	MR	1
			Kling	2							Wasi	0	Mann	,	Rao	3
			man	_							1	Ü	or		1440	
			PM	1							•		S	7	UG	1
			Mors	2					>				Mizun	•	Rothb	3
			e	_									0		lum	
			WB	1			30"						A	7	A	1
			Powel	2			(1)						Ruszc	•	Shapi	3
			1	_									zynski		ro	
			MH	1									M	7		
			Rothk	2.									Shake	•		
			opf	7.									d			
			op.										DB	7		
													Shmo	•		
													ys			
	1												E	7		
													Solan	,		
													M	7		
													Talagr	,		
													and			
													unu			

Abbreviations: R = Rank; TP = Total number of publications; Journal abbreviations are shown in Table 3.

Highlights

- A bibliometric analysis of the state of the art in operations research and management science.
- Identification of the 200 most influential papers in the field.
- Analysis of the most influential authors and journals.

