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Abstract In this work, new strategies for automatic
identification of P- and S-wave arrival times from
digital recorded local seismograms are proposed and
analyzed. The database of arrival times previously
identified by a human reader was compared with auto-
matic identification techniques based on the Fourier
transformation in reduced time (spectrograms), frac-
tal analysis, and the basic matching pursuit algorithm.
The first two techniques were used to identify the P-
wave arrival times, while the third was used for the
identification of the S-wave. For validation, the results
were compared with the short-time average over long-
time average (STA/LTA) of Rietbrock et al., Geophys
Res Lett 39(8), (2012) for the database of aftershocks
of the 2010 Maule Mw = 8.8 earthquake. The iden-
tifiers proposed in this work exhibit good results that
outperform the STA/LTA identifier in many scenar-
ios. The average difference from the reference picks
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(times obtained by the human reader) in P- and S-wave
arrival times is ∼ 1 s.
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1 Introduction

The correct identification of the P- and S-wave arrival
times is crucial for the joint determination of hypocen-
ters and 3D body wave velocities (seismic tomogra-
phy). Manual identification is a slow and expensive
task; therefore, advances in the automatization of this
process would allow for a more efficient procedure,
without the lost of precision.

Since the late 1970s, automatization in the peak
identification of seismic phases in time series asso-
ciated to digital seismograms has been investigated.
This procedure is usually known as “picking.” Allen
(1978) proposed the first automatic method for
the identification of P-waves, which followed other
advances in the 1980s, until Cichowicz (1993) who
proposed the first method to detect the S-wave.

The automatic identification of phases continues
to be an important challenge to the community due
to the variability of the seismic signal. The morphol-
ogy of signal can be depends on the distance of the
source, where new seismic phases (Pn, Pg , or PmP ,
among others) appear when the duration of the event
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increases. In this investigation, we will only be con-
cerned with estimating P- and S-wave arrival times
from local earthquakes.

Among the proposed solutions, the short-time aver-
age over long-time average (STA/LTA) algorithm cre-
ated by Allen (1982) has been the most-used detec-
tion method, including some subsequent modifica-
tions made by Baer and Kradolfer (1987) or Earle
and Shearer (1994). There are other STA/LTA deriva-
tions. For instance, there is the Jones and van der
Baan (2015) hidden Markov models with STA/LTA to
detect seismic in continuous data or Ross and Ben-
Zion (2014a) who developed a pseudo-probability
to determinate a seismic events and different phases
using STA/LTA ratio (Ross and Ben-Zion 2014a).
Besides the STA/LTA method, many other solutions
have been implemented based on neural networks,
Fourier analysis, wavelet analysis, statistical analysis,
and fractal analysis (Dai and MacBeth 1995; Anant
and Dowla 1997; Bai and Kennett 2000; Sabbione
and Velis 2010). All of these methods provide differ-
ent results depending on the nature and quality of the
data collected: signal-to-noise ratio and models of the
physical environment through which seismic waves
travel (Ross and Ben-Zion 2014b), among others.

This work combines the fractal and spectrogram
methods in order to estimate P-wave arrival times. On
the other hand, we use basic matching pursuit algo-
rithm to detect S-wave arrival times. Due to the nature
of seismic signals, our approach exploits temporal
changes of the P-wave to S-wave, in order to distin-
guish them from the noise. Both developed methods
take advantage of this fact to identify the arrival of the
P- and S-waves.

This work combines the fractal method and spec-
trogram method in order to estimate P-wave arrival
times. For S-wave arrival time estimation, we pro-
posed the use of the basic matching pursuit algorithm.
For this reason only these methods are evaluated and

compared to the performance of STA/LTA as standard
method.

2 Mathematical background

2.1 The short-time Fourier transform

The short-time Fourier transform (STFT) consists of
separating the Fourier transform in sections, applying
it to a moving window w(n, τ), where τ is the win-
dow’s position along the entire signal (Fig. 1).

The windows are usually overlapped in order to
prevent discontinuities in the form of waves, for exam-
ple, the Hamming window, which is given by the
expression

w(n, τ) = 0.54 − 0.4 cos

(
2π(n − τ)

Nω − 1

)
. (1)

For 0 ≤ n − τ ≤ Nω − 1 and a null sequence
for any other value, where Nω is the window’s dura-
tion, the value Nω is commonly chosen considering
the trade-off between the width of the window and the
resolution in frequency of the signal. The short-time
Fourier transform (STFT) is defined by

X(ω, τ) =
∞∑

n=−∞
x(n, τ )ejωn, (2)

where

x(n, τ ) = w(n, τ)x(n), (3)

which represents the window of the signal analyzed,
centered at a time τ (Fig. 2). Note that x(n, τ ) rep-
resents signal in time domain and X(ω, τ) in the
frequency domain for the same windows.

We define the spectrum S(ω, τ) of the signal
X(ω, τ) as

S(ω, τ) = |X(ω, τ)|2, (4)

Fig. 1 Graphic explanation
of the parameters τ , Nω,
and n
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Fig. 2 Graphic explanation on the use of the Hamming window in the determination of the spectrogram

which can be interpreted as a two-dimensional energy
density, relative to the one-dimensional spectral infor-
mation received by the Fourier transform at different
temporary locations.

2.2 Basic matching pursuit

Basic matching pursuit (BMP) was introduced by
Mallat and Zhang (1993) and has been used for several
applications with signal or image processing (Durka
and Blinowska 1995; Phillips 1998; Wang 2006). The
algorithm is based on the following: we considerer
l observations {y1, y2, . . . , yl} and a target function
f ∈ H be evaluated at the points x1, x2, . . . , xl , where
H is a Hilbert space. On the other hand, a finite dic-
tionary D = {d1, d2, . . . , dM} of M functions belongs
to H. The algorithm looks for a sparse approximation
of the function f of the form

f ≈ fN =
N∑

n=1

angn(t), (5)

where N is the quantity of basic functions required to
approximate the function f , gi ∈ D to a basic function
and αi ∈ R

N corresponds to the coefficients of the
approximation. fN represents an approximation of f

using exactly N different basic functions taken from
the dictionary D.

The algorithm’s objective is to find the combina-
tion of basic functions {g1, g2, . . . , gN } ⊆ D and
its respective coefficients {α1, α2, . . . , αN } ⊆ R

N

solution of the following minimization problem.

mı́n
l∑

i=1

(yi − fN(xi))
2 (6)

In general, it is not possible to assume specific
properties of the dictionary; thus, finding N optimal
functions {g1, . . . , gN } implies an exhausting search
for all the combinations of M basic functions. The
procedure previously described is inefficient; there-
fore, BMP is a constructive solution to face this prob-
lem. The detailed description of the algorithm can be
found in Vincent and Bengio (2002).

The dictionary can be built with different families
of wavelet functions. An atom is a wavelet function
and a dictionary is created by temporary shifts of a par-
ticular wavelet type. The number of translations will
depend on the length of the signal. Thus, the dictionary
could be significantly great if many kinds of family
functions are used and the signal is long.

2.3 Fractal dimension

A fractal is a type of geometry that exhibits repetitive
patterns at any scale. These models have been used in
ecology (Sugihara and May 1990), economics (Peters
1994), and geophysics (Turcotte 1989), among other
applications.

Mathematically, it is possible to define the fractal
dimension as a metric set for which the Hausdroff-
Besicovitch dimension exceeds strictly the topological
dimension (Mandelbrot 1983). The fractal dimension
generalizes the topological dimension from a typical
set which is always a natural number 1, 2, or 3 to a
nonnegative real number.

The fractal curves can be classified as autosimilar
or self-affine (Turcotte 1997). A formal definition of
an self-similar fractal in a two-dimensional space xy is
a function such that f (rx, ry) is statistically similar to
f (x, y), where r is a scale factor. On the other hand, a
self-affine fractal is a function such that f (rx, rHay)

is statistically similar to f (x, y), where Ha is known
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as the measurement of Hausdorff (Sabbione and Velis
2010). The definition of the fractal dimension for a
self-affine fractal is given by

Ha = 2 − D. (7)

For a time series s(t), an equivalent definition for a
self-affine fractal is as follows:

V (h) ∼ h2Ha , (8)

where V (h) is defined as

V (h) = 1

nf − h

t∑
j=t−nf +h+1

(s(j) − s(j − h))2, (9)

where nf is the size of time window where the frac-
tal dimension is calculated. Various methods exist
to determine the the fractal dimension, depending
on whether the fractal is self-affine or self-similar
(Klinkenberg 1994). The method of the variogram
(Korvin 1992) is a efficient and robust way of deter-
mining the fractal dimension for self-affine curves.
The method is based on the combination of the Eqs. 7
and 8 which delivers the following relationship on the

V (h) ∼ h4−2D. (10)

Therefore, by applying logarithm function in both
sides of the Eq. 10, it is possible to obtain the value
of D.

log V (h) = 4 − 2D =⇒ D = 2 − log V (h)

2
(11)

2.4 Short-time average over long-time average

Allen (1982) proposed the STA/LTA algorithm, and
it is a commonly used identifier in comparison to
new automatic identifiers. This algorithm utilizes the
STA/LTA index, which identifies an increase in the
increment of the STA window, with respect to the pre-
decessor LTA window determined in a seismic trace.
Mathematically, in a time series s(t), we can define

sSTA(t) = 1

T STA

t∑
j=t−T STA

s(j)2, (12)

where T STA is the size of short window. Similarly, we
can define

sLTA(t) = 1

T LTA

t∑
j=t−T LTA

s(j)2, (13)

where T LTA is the size of long window. The STA/LTA
ratio can be expressed by

S(t) = sSTA(t)

sLTA(t)
. (14)

This method requires a previous calibration of its
parameters which includes (1) the size of the STA
and LTA windows and (2) the threshold value that
the ratio must pass in order to be detected (see
Fig. 3). The STA/LTA program, which was used to
test the database, was previously programmed and
documented by Nippress et al. (2010). The program

Fig. 3 a Seismogram. b
Seismogram spectrogram,
where the increase in energy
identifies the P- and S-wave
arrival times. c Average
spectral density obtained
from the spectrogram,
where a clear increase can
be associated with the
arrival time of the P-wave
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was also used to identify the hypocenters of the after-
shocks after the Maule earthquake in 2010 and was
developed by Rietbrock et al. (2012).

3 Proposed identifiers

In this section, we describe the identifiers proposed to
determine the arrival time of the P- and S- waves on
seismograms.

3.1 Spectrogram method

The spectrogram allows graphically displaying more
energetic zones of the signal in some frequency bands,
which is compatible with the characteristics of seismic
signals. Joswig (1990) appreciated that seismic signals
have similar and repetitive spectral characteristics. For
this reason, we proposed a spectrogram method (SM)
for detecting the arrival time of the P-waves.

In Fig. 3, the spectrogram and the average spectral
density of a seismic signal are computed. As explained
in Section 3.2, the spectrogram was obtained with a
window of 1.2 s and an overlap of the Hamming win-
dows of 90%. The increase in energy can be seen at
the arrival of the P- and S-waves (see Fig. 3b). Finally,
the spectral density average (SDA) was obtained by
averaging out the values of the spectrogram in dis-
crete frequencies for each time of the seismogram (see

Fig. 3c). The threshold is set to standard deviation
of SDA trace, σSDA (Fig. 3c). Then, the arrival time
of P-wave is determined when the value of the spec-
tral density average SDA at some time overcomes the
threshold σSDA.

3.2 Modified fractal method

Korvin (1992) applied fractal dimensions to time
series via the variogram method (Section 2.3).
Figure 4 shows an example of use of this method.
In this figure, the global minimum of fractal dimen-
sion derivative (Fig. 4c) coincides with P-wave arrival.
However, there are cases, as shown in Fig. 5, where the
global minimum of fractal dimension derivative does
not match with P-wave arrival. One way to solve this
issue is by using spectrogram method (Section 3.1)
instead of FM. Nevertheless, the spectrogram method
by itself has poor precision on identifying the arrival
time. Therefore, we propose to combine both meth-
ods with the objective to improve the estimation of the
P-wave arrival time.

The proposed modified fractal method (MFM)
works as follows:

1. Carry out the spectrogram method with a rela-
tively large time window (for example, 3 s). This
allows a rough identification of the P-wave arrival

Fig. 4 a Seismogram. b
Seismogram fractal
dimension. c Discrete
fractal dimension derivative
(subtraction of consecutive
values of seismogram
fractal dimension, b), where
it is possible to verify a
minimum that coincides
with the arrival time of the
P-wave
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Fig. 5 a A noisy
seismogram. b Derivative of
the fractal dimension where
the onset of arrival time of
P-wave is not identifiable
via MF because the global
minimum in this case
coincides with the arrival of
the S-wave 20 40 60 80 100 120 140 160
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time. In this point, the interval where the P-wave
arrives can be identified.

2. In order to refine the P-wave arrival time, run the
fractal method for the whole signal.

3. Take the P-wave arrival time as the local mini-
mum of the fractal dimension derivative (the time
series obtained in point 2) within the time interval
obtained in point 1.

Additionally, we apply an edge-preserving smooth-
ing (EPS) filter to the fractal dimension series
(AlBinHassan et al. 2006). The 1D EPS filter is useful
for smoothing out the time series signal; in this case, it
helps to detect the drastic change in time of the fractal
dimension.

An example of an inaccurate identification of the
P-wave resulting from the use of the global minimum
(fractal method) can be observed on Figs. 5 and 6. In
contrast, the MFM solves this problem by searching
for the interval with the highest probability of arrival
of the P-wave.

3.3 Basic matching pursuit

This scheme was explained in Section 2.2 and an
application to seismogram is shown in Fig. 7.

From this example, it is possible to see that the
basic matching pursuit (BMP) method completely
eliminates the appearance of the P-wave within the

Fig. 6 Zoom in Fig. 5
between 20 and 80 s
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Fig. 7 a Complete
seismogram. b Seismogram
after the application of the
BMP algorithm, where the
complete disappearance of
the P-wave can be observed
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seismic trace. This is a consequence of the ability of
the method to approximate the best shape of the most
energetic parts of the seismogram using a finite num-
ber of wavelet functions, which generally coincides
with the arrival of the S-wave. The time arrival is chosen
selecting the first non-null value in filter signal (Fig. 7).

Two examples of a less desirable decomposition,
which are recurrent in the database, are shown in

Fig. 8. In the first case (Fig. 8a, b), the P-wave is
more energetic than the S-wave, and consequently, the
BMP algorithm decomposes some segments of the P-
wave. This situation could depend on many factors
like the paths of the body waves controlled by the
material of the medium, the local anomalies associ-
ated with the specific seismic station, and the depth
and the focal mechanism associated to the seismic

Fig. 8 a–c Complete
seismogram. b–d
Seismogram after the
application of the BMP
algorithm, where the partial
disappearance of the
P-wave can be observed
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Fig. 9 Distribution of
seismic magnitudes in the
databases

Local Magnitude (ML)
1 2 3 4 5 6

N
um

be
r 

of
 T

ra
ce

s

0

50

100

150

200

250

300

event. Figure 8c, d shows another case, where P-wave
is detected after BMP method. These situations create
an ineffective selection of the S-wave, that produces
miss-detection between the detection of the P- and S-
wave (see Fig. 8). In order to take these limitations into
account, we propose some modifications that consist
of the following:

– running the filtered signal and identifying the
“gaps,” which are defined as time intervals where
the filtered signal is completely null.

– ignoring the initial and final gaps, it appears that
there is a sufficiently long gap (based on the
threshold) which is considered to be a separation
between the P- and S-wave arrival times. In the
event of a separation, the first non-null value after
the end of this gap is selected.

– if the gap is not long enough or there is no gap
in the filtered signal, the first non-null value is
selected as the arrival time of the S-wave.

Figure 8 shows that at 50 s, the signal is divided by
the largest gap, which also separates the P- and S-wave
arrival times. With the modification of the algorithm,
the correct form of the arrival time of the S-wave
would then be recognized.

4 Database and pre-processing

In this study, the database corresponds to seismic events
recorded by a network of 26 seismological stations.
The stations are short-period, three-component contin-
uous recording seismological stations located around
Pisagua, Northern Chile (FONDECYT 1130071).
These 528 local seismic events occurring between
June 1st and June 9th 2013 were chosen to serve as test
bed for this work. The stations operated for 4 months
(from June to October 2013), with a sampling rate of
100 Hz. Total measured traces for the stations cor-
respond to 2926 analyzed signals, because there are
stations that do not record all events in all components.
The lengths of the traces range from 30 to 180 s.

The magnitude of the events ranging from 1.5 to 5.2
ML (Fig. 9) and their depths are from 0.43 to 175.6 km
(Fig. 10). All the traces utilized in this study have
had the onset of P- and S-wave arrival times manually
identified by an expert. The pre-processing of the data
consists on subtracting the arithmetic mean of the sig-
nal to its standardization, leaving a range of velocity
between ±1, according to the following formula:

SN(t) = s0(t)

max{s0} − min{s0} , (15)

Fig. 10 Distribution of
depth of the earthquakes
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where

s0(t) = s(t) − s̄ (16)

and s̄ is average of original signal s(t), for any time t .

5 Methodology and parameter identification

For the identification of P-wave arrival times, vertical
components were used. On the other hand, the hori-
zontal components were used for identifying S-wave
arrival times (Rawles and Thurber 2015).

The parameters used are shown in Table 1. For the
MFM, the values recommended by Sabbione and Velis
(2010) were used. On the other hand, the BMP param-
eters were determined by iterating through various
combinations of them.

Additionally, Nippress et al. (2010) recommend a
range of optimal values for the parameter of STA/LTA
detector. They were found by trying different values
within this range in a incremental manner from the
lower limit to the upper limit by using equally spaced
steps or increments (Nippress et al. 2010).

6 Results and analysis

In the following section, the results obtained from
identifiers described above are shown. Given that the

Table 1 Used parameters of the different identifiers

Method Parameters Value/s

MFM Size of spectrogram
windows

5

% of overlap between
windows

20

Filter length EPS (s) 0.15

Fractal dimension
window size (s)

12

BMP Number of atoms 25

Type of wavelet Daubechies lv5

Duration gap (s) 180

STA/LTA Window size STA (s)
Increments: 8

(1, 8)

Window size LTA (s)
Increments: 23

(8, 30)

Threshold increments: 9 (4, 12)

Table 2 Parameter STA/LTA for the identification of the
P-wave arrival time

Method Parameters Value

STA/LTA Window size STA (s) 1

Window size LTA (s) 10

Threshold 4

database had previously identified the P- and S-wave
arrival times by a human expert, the residual time was
defined by

tres = tauto − tmanual, (17)

where tauto is the time obtained by automatic identi-
fiers and tmanual is the time obtained by an expert.

6.1 P-wave detection

Regarding the detection of P-waves, various iterations
were carried out to find the parameters that obtain the
best detection performance for the STA/LTA method
for further comparison with the MFM.

The values of the parameters which give the best
performance in STA/LTA are shown in Table 2. In
Table 3, the effectiveness of the MFM detection versus
the results from the best STA/LTA can be observed.
It should be noted that MFM is more accurate than
STA/LTA in all intervals. Nevertheless, both methods
were correct in more than 85% with residual times
within ±1-s interval.

The histogram of the distributions of time in the
interval ±2 s can be observed in Fig. 11, where the dis-
tribution of the residual times in this interval is shown
in detail. It is possible to verify that the MFM residual

Table 3 Proportion of P-wave arrival times detected within
different residual time intervals using MFM and STA/LTA
methods

Residual interval time (s) MFM (%) STA/LTA (%)

(−0.1, 0.1) 47.3 10.9

(−0.5, 0.5) 83.9 68.1

(−1, 1) 93.8 85.4

(−2, 2) 98.2 90.7

Phase not identified 0 0.06
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Fig. 11 Histogram of the distribution of residual times for the P-wave in the interval ±2 s (MFM and STA/LTA methods)

times are closest to zero, so that 47% of the traces
have a residual time less than 0.1 s. In general for all
the traces in the database, 80% of the residual errors
obtained by MFM are smaller than those found by the
STA/LTA method.

Another characteristic of both methods is that they
tend to have a positive residual error, that is tmanual <

tauto. Consequently, both methods tend to estimate
later the arrival of P-waves. For the MFM, a possible
explanation for the overestimation might be related to
the fact that fractal dimension needs a moving window
of 12 s in order to be determined; therefore, this pro-
vokes a difference between the arrival of the wave and
the time of detection.

Physically, the overestimation of the P-wave arrival
times could propagate as an error in the determination
of hypocenters and the structure of wave velocities.
Miscalculating the P-wave arrival time by just 1 s
could translate into approximately 7 km of difference
in the hypocenter’s actual location.

Comparing the MFM method to other methods,
Küperkoch et al. (2010) implement a high-order statis-
tics to estimate arrival time of the P-wave. On the
other hand, Rawles and Thurber (2015) use the near-
est neighbor algorithm and build a model based on
non-parametric time-series classification. In this way,
they estimate the parameters from a set of reference
data that transforms the original signal and obtains the
arrival time of the wave based on the analysis of the
processed signal. The methods previously mentioned
use very sophisticated statistical tools, whereas there

are other methods like Rawles and Thurber (2015)
who proposed a simple methodology to determine
P- and S-waves.

Our average deviation from the reference picks is
0.18 ± 0.62 s. This result is more accurate in compar-
ison to that of Küperkoch et al. (2010), because they
have 0.26 ± 0.64 and 0.38 ± 0.75 s in their P-pickers.
However, our identifier is less accurate than Rawles
and Thurber (2015) method, which was 0.04 ± 0.51
and 0.1 ± 0.57 s. Although the ideal is that the meth-
ods can be compared with the same data, we can verify
that our P-wave detector has acceptable performance
with respect to other methods.

Figure 12 shows that the method is sensitive to SNR
of the P-wave signal. It is possible to see the resid-
ual time tends to zero when the SNR increases. For
example, for SNRs greater than 15 dB, most of the
P-wave signals have a residual time less than 0.5 s. The
result is coherent with the fact that high SNR implies
a clearer signal, so identification is more accurate.

With respect to the computational cost of the
process, currently, MFM requires much more time
(factor of 4) than the STA/LTA method. However,
the comparison is difficult since the languages used
are different: C for STA/LTA and Matlab for MFM.
Nevertheless, we anticipate that MFM requires more
computational time since the determination of the
fractal dimension is a sequential process of mov-
ing time windows. Additionally, the application of
EPS filter is slow too; thus, this process could be
parallelized.
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Fig. 12 Comparison
between SNR and residual
times for the MFM (P-wave
detection)
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6.2 S-wave detection

In the case of the S-wave arrival time detection, we
iterated using the range of values that is specified in
Table 4.

The maximum values found for the performance of
the picker in the horizontal components are shown in
Table 4 (i.e., those which have the largest quantity of
identifications close to the residual null time). These
values are similar to those found for the P-wave.

As shown on Table 5, the results of the STA/LTA
picker are far below the results from the BMP. In
general, the majority of traces observed are not capa-
ble of being identified by STA/LTA in the range of
parameters recommended by Nippress et al. (2010).

In Figs. 13 and 14, it is possible to observe the
distribution of residual times for S-waves using the
North-South and East-West components, respectively.
Those results are consistent with what is shown in
Table 5, that the detection of the S-wave is similar in
the STA/LTA indicator.

The STA/LTA method has miss-picking between 25
and 32% and it is more inaccurate than BMP in all

Table 4 STA/LTA parameters for the identification of the
S-wave arrival times

Method Parameters North-South East-West

value value

STA/LTA Window size STA (s) 1 1

Window size LTA (s) 10 10

Threshold 4 4

intervals (Table 5). It is interesting that, for the same
range of parameters, the detection of the P-wave is
considerably more precise and effective than that of
the S-wave.

On the other hand, the BMP detector shows a very
good approximation of the arrival time of the S-wave,
even though its displacement to the left −0.6 ± 0.97 s
in the North-South component and −0.53 ± 0.92 s in
the East-West component. Additionally, this method
could continue improving the creation of dictionaries
of functions specialized in seismic signals, and by this
way, the decomposition would be much more exact
in the arrival times of the P- and S-wave. In contrast
to S-wave arrival identifiers, the BMP is less precise
than other methods; for instance, Rawles and Thurber
(2015) introduce a detector with −0.13 ± 1.58 and
0.06 ± 1 s or Küperkoch et al. (2012) who have
reported detection results of 0.5 ± 0.8 s.

Furthermore, BMP gives a good result indentifying
the arrival time of the S-wave despite we did not apply
any kind of sophisticated preprocessing to the original
data

Furthermore, Fig. 15 shows that it is possible to
visualize the behavior of the S-wave’s residual time
against the SNR. In this figure, it is possible to notice
that the identification of the S-wave is not clear in a
noisy environment.

At this point, it is important to highlight the fact
that the evaluation of BMP has been performed only
with this data base, which implies seismic signals with
high SNR, near to the source (local events) and with
measurements in three components. Therefore, gener-
alization of the performance of the method requires
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Table 5 Proportion of S-
wave arrival times detected
within different residual
time intervals using BMP
and STA/LTA methods

BMP (%) STA/LTA (%)

Residual interval time (s) North-South East-West North-South East-West

(−0.1, 0.1) 6.29 6.56 1.57 1.57

(−0.5, 0.5) 35.17 36.43 34.93 31.95

(−1, 1) 79.87 82.54 59.71 54.20

(−2, 2) 94.74 95.42 70.43 63.74

Phase not identified 0 0 25.46 32.5

Fig. 13 Histogram of the
distribution of residual
times for the S-wave in the
interval [−2, 2] seconds.
North-South component
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Fig. 14 Histogram of the
distribution of residual
times for the S-wave in the
interval [−2, 2] seconds.
East - West Component
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Fig. 15 Comparison
between SNR and residual
times for the BMP in North
component (S-wave
detection)
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further study. The used signal duration goes from
30 to 180 s, and we used two kinds of wavelets to
decompose the signal:

– Daubechies wavelet with four vanishing moments
at level five.

– Wavelet packet Symlet with four vanishing
moments at level five (modified version of
Daubechies wavelets).

These kinds of waveles were chosen because the mor-
phology of these functions is similar to that of seismic
traces (Rinehart et al. 2016).

A major drawback of BMP is its computational
cost during the creation of the dictionary. MATLAB
was presented problems for the creation of dictionar-
ies for signals that have more 18000 samples (180 s).
Although the BMP algorithm does not use brute force,
it is slower if you use larger dictionaries with different
kinds of wavelets. We recommend using a language
like C or Fortran if large databases are analyzed.

7 Conclusions

The methods presented in this study showed an
improved performance when it is compared with the
STA/LTA identifier. In this work, the estimated arrival
time obtained with all methods were compared with
times obtained by a human expert.

For the identification of the P-wave, the modified
fractal method (MFM) proves to be quite precise in
predicting the first arrivals of seismic waves compared
to STA/LTA; 78.5% of the traces got a more precise
time arrival with MFM than with STA/LTA.

For the identification of the S-wave, the basic
machine pursuit (BMP) algorithm method is an accu-
rate approximation in an interval close to the value
detected by an expert of the S-wave arrival times.
The BMP method outperform the STA/LTA in all
time residual intervals of comparison; additionally, the
STA/LTA method does not able to detect S-wave in 25
to 32% of cases.

The data presented in this work have been evalu-
ated with a data base where seismic signals are similar
in magnitude, depth, and hypocentral distance, and are
for local events. Additionally, the measurements have
three components; thus, in the vertical component, it is
possible to see more clearly arrival of the P-wave and
the S-wave in the horizontal components. The proper

visualization of the arrival of the P-wave allows to see
clearly the precipitous change of the derivative of frac-
tal dimension. On the other hand, an energetic S-wave
allows a better wavelet decomposition in the seismic
signal. Our data also had good SNR. In general, it was
shown that the results from MFM improve if the SNR
of the signal is high, for which an abrupt change in
the fractal dimension is clearer and the identification
becomes more precise. On the other hand, MBP is pre-
sented as a method capable of identifying the S-wave
as long as the earthquakes are temporally bounded.
Therefore, in order to verify the validity of the results
obtained in this work to other cases (generalizing the
results), further studies need to be performed with
different type of data.
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