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Abstract

Category Theory, a branch of mathematics, has shown promise as a modeling framework

for higher-level cognition. We introduce an algebraic model for analogy that uses the lan-

guage of category theory to explore analogy-related cognitive phenomena. To illustrate the

potential of this approach, we use this model to explore three objects of study in cognitive lit-

erature. First, (a) we use commutative diagrams to analyze an effect of playing particular

educational board games on the learning of numbers. Second, (b) we employ a notion called

coequalizer as a formal model of re-representation that explains a property of computational

models of analogy called “flexibility” whereby non-similar representational elements are con-

sidered matches and placed in structural correspondence. Finally, (c) we build a formal

learning model which shows that re-representation, language processing and analogy mak-

ing can explain the acquisition of knowledge of rational numbers. These objects of study pro-

vide a picture of acquisition of numerical knowledge that is compatible with empirical

evidence and offers insights on possible connections between notions such as relational

knowledge, analogy, learning, conceptual knowledge, re-representation and procedural

knowledge. This suggests that the approach presented here facilitates mathematical model-

ing of cognition and provides novel ways to think about analogy-related cognitive

phenomena.

Author summary

Analogy is claimed to be the core of human cognition due to its pervasive involvement in

phenomena such as language, reasoning and learning. However, this phenomenon has

mainly been studied in isolation through computational methods, which has made it diffi-

cult to appreciate its different roles in diverse cognitive phenomena. Recent studies have

signaled that abstract concepts from category theory are able to describe constructions

carried out by the human mind, thus presenting this formal theory as a general framework

to study cognition. Our contribution here is to provide a model of analogy that bridges a

gap between the formal notions of category theory and the psychological notions of
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cognition. We illustrate the usefulness of this approach by using our model to represent

and analyze three different cognitive phenomena. Besides showing that some abstract

mathematical concepts can describe concrete cognitive notions such as re-representation,

learning, conceptual knowledge, and procedural knowledge, the process of mathematical

modeling is presented here as an alternative for outlining relations between cognitive

notions and for developing novel conceptualizations of the involved cognitive

phenomena.

Introduction

More than five decades ago, a formal notion of “isomorphism” was used to define “representa-

tions” that sustained measurement theory and models of cognitive systems [1, 2]. Afterwards,

it was proposed to describe how certain processes in a cognitive symbol system are able to

reflect corresponding processes in an environment [3]. More recently, this formal notion was

proposed to describe associations between “mental representations” and “environments” as a

general framework to approach cognition [4, 5]. In regard to analogy making, this notion

satisfied the structural consistency principle proposed by Dedre Gentner at the core of analogy

[6, 7], but it was pointed out that the constraints imposed by this formalism would be too

strong to be useful since isomorphisms identify entities that share the exact same internal

structure. This notion was then weakened as a framework for modeling analogies because “the

kinds of analogies of psychological interest, virtually never have the structure of a valid isomor-

phism” [5, p. 300].

But the proposal of similar but more flexible notions allowed novel conceptualizations of

analogies and other cognitive phenomena. For example, the notion of structure preserving

mappings between two domains—called morphisms—motivated proposals such as the quasi-
homomorphism, namely a morphism endowed with “exceptions” where the map would not

preserve the structure [4]. Additionally, the notion of a local homomorphism is a partial map-

ping that preserves the structure only where the map is defined i.e. a map that does not pre-

serve the structure of the entire object [8]. These ideas have proven valuable as cognitive

modeling tools, but they still have not taken full advantage of the richness provided by the

notion of morphisms.

There are claims pointing to the advantages of studying cognitive phenomena through a

branch of mathematics called Category Theory which is a theory of structure based on formal

notions such as morphisms, limits, colimits, products, adjuntions and other concepts developed

out of a need to formalize commonalities between various mathematical structures [9–11]. It

has been pointed out that the human mind has the ability to carry out a large number of con-

structions that seem so universal that they must be somehow severely constrained. And that

these constraints might well be adequately formalized by the notions proposed by category the-

ory which describe the natural constraints of mathematical constructions [12]. Furthermore,

category theory has been proposed as the foundation for a theory of cognitive developmental

stages [3, 13]

Along this path, it is emphasized that the use of category theory could lead to developing

new and fruitful analyses of classical cognitive notions [13]. For example, systematicity is the

feature of human cognition whereby cognitive capacity comes in groups of related behaviours.

The properties of this phenomenon cannot be explained neither by classical nor connectionist

theories because these theories must make ad-hoc assumptions on their respective representa-

tions of knowledge i.e. grammars and neural networks [14]. However, when it is examined

Category theory and analogy: Analyzing acquisition of numerical

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005683 August 25, 2017 2 / 38

Program of Conicyt (http://www.conicyt.cl/;

CONICYT/PIA Basal Funds for Centers of

Excellence: grant FB0003 "Centro de Investigación

Avanzada en Educación CIAE" and grant PFB03

"Centro de Modelamiento Matemático CMM"). The
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under a categorical approach, by using notions such as products and adjunctions, the systema-

ticity properties turn out to be uniquely determined. This approach thus explains systematicity

without making ad-hoc assumptions [15]. Further support for the potential of category theory

as an analytic tool is provided by similar studies of cognitive phenomena [16–19].

On another aspect, category theory seems to be also useful as a language for formulating

cognitive processes [20]. Formal notions such as limits and colimits have been used in models

of reasoning about space and time [21, p. 25], in semantic models for neural networks [22],

and in theories about brain’s spatial representation [23, 24]. Similarly, the notion of morphism

has been used to describe structure preserving paths between artificial perceptions [25, 26],

and to formalize the functional relation between man-machine interfaces and their machine-

functionality (in approaches to user interface development) [27, 28].

There are various applications of category theory to research cognitive psychology [12,

15–18] but applications of category theory to research analogy have been almost non-existent

(see however [19, 26]). This is odd because category theory has been used extensively in com-

puter science for the analysis of computation [29–31], and computationalism has been the

main tool to research analogy. Our goal here is to give a first step into developing a category

theory-based approach for analyzing and modeling cognitive phenomena directly related to

analogy.

In the present study, we introduce a simple mathematical model of analogy (MMA) and

illustrate how its application allows using notions of category theory into studying cognition:

(1) We use the model as a device to elaborate a theory able to describe the effects of playing

board games on children’s learning of mathematics [32, 33]. (2) We use the formal notion of a

coequalizer to explain a property of symbolic models of analogy called flexibility whereby non-

similar representational elements are considered matches and placed in structural correspon-

dence during the analogical comparison [34]. (3) We formalize a frequently used method for

teaching fractions to children thus obtaining a formal learning model that suggests that the

abilities of re-representation, language processing and analogy making can explain the acquisi-

tion of knowledge of rational numbers.

The analyses performed on the aforementioned three objects of study offer insight on the

role of analogy in these cognitive phenomena while illustrating the potentialities of applying

category theory into the study of cognition. In these analyses, we show how some abstract

structures provided by category theory can help us to arrange cognitive notions into formal

theories capable of explaining, analyzing and organizing cognitive material. Above all, these

three objects of study illustrate how this approach can help in developing novel ways to think

about cognitive phenomena. In this way, we argue here that the MMA (see Definition 0.3

below) provides a convenient bridge between the formal notions provided by category theory

and the psychological notions necessary to develop theories of cognition.

Analogy

Analogy enables humans to gain understanding of unknown structures (target domains) by

using knowledge of previously known structures (source domains). Evidence supporting this

point of view, together with the observation that analogy is pervasive in language and thought,

suggests a key role for analogical processes at the core of human cognition [35–40]. This sug-

gests that analogy plays a key role in diverse fields such as linguistics, psychology, cognitive sci-

ence, education and artificial intelligence [5, 6, 41–45] among others.

The study of analogy has been mainly done through computational models and simulations

of the phenomenon. Some of these models are called symbolic because they describe domains

of knowledge as sets of formulas of symbolic languages [7, 46]. Other models are called
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connectionist because they represent semantic knowledge through neural networks and distrib-

uted representations [43, 47, 48]. If these two features are present in a computational model, it

is called hybrid because it represents knowledge through the integration of syntax and seman-

tics [42, 49]. A review of these families of models has been presented in [34] and hence we

present here only a short review of analogy models that can be regarded as the predecessors of

the formal model presented in the next section.

COPYCAT solves proportional analogies in a domain of strings of characters: Its authors

would ask “suppose the letter-string aabc were changed to aabd; how would you change the

letter-string ijkk in ‘the same way’? [42]. To analyze this kind of problems, copycat has percep-

tual agents named codelets which, by using a stochastic method called simulated annealing,

combine the primitives stored in its slipnet (the letters a, b, c, d, . . ., z) using operators such as

“succesor”, “predecessor”, “same” and others that permit it to construct an internal representa-

tion of the problem (see also TABLETOP in [49]). In our example, the codelets choose the

answer ijll by generating representations such as the one described by Fig 1. Since copycat uses

a non-deterministic algorithm to solve the combinatorial problem, other answers such as ijkl
or hjkk are also given.

Around the same time, a formal treatise of analogy was proposed as the basis of a theory of

cognition inspired in algebraic concepts [40]. To represent knowledge, the notion of concep-
tual network is defined as a finitely generated algebra i.e. a set of objects along with some opera-

tions defined on that set. An analogy from conceptual network A to conceptual network B is

called a cognitive relation which is defined as a subset of the product A × B.

These ideas were then used to solve proportional analogies in string domains: Dastani and

Indurkhya [8] developed a computational model using the algebra determined by the charac-

ters a, b, c, d, . . ., z and some operators (or gestalts) such as “iteration”, “succesor”, “symmetry”

and “alternation”. Problems such as abc: abcd::zyx:? were solved by computing local homomor-
phisms i.e. partial maps preserving the algebraic structure only in the subset where the partial

map is defined. For example, to solve the mentioned problem, the core algorithm of this

model capitalizes on Indurkhya’s ideas by: (1) generating subalgebras A1 and A2 such that

abc, abcd belong to A1 and zyx belongs to A2, (2) generating identical representations for abc
and zyx (see Fig 2 to see what “identical” means) and (3) generating a local homomorphism h:

A1! A2 that satisfies h(abc) = zyx. This last step entails the solution h(abcd) = zyxw.

The reviewed models blend together representational processes and analogy-making pro-

cesses by using an algebraic technique: fixed primitives are combined to generate representa-

tions of the relevant domains. Their algorithms are designed to build representations of source

Fig 1. The unknown ijll is obtained by constructing representations of the source and target having the exact same

structure. In the picture, such structure is represented by the operators given by the blue arrows and the blue circles.

https://doi.org/10.1371/journal.pcbi.1005683.g001
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and target that share the same structure. This way, the analogy is constructed by forcible inter-

action of processes of analogy-making and representation. This short review sets an appropri-

ate context to introduce our formal model of analogy because the model proposed in the next

section can be thought as an abstraction of these computational models. The mathematical

definitions introduced below will be exemplified through computing solutions for analogy

problems similar to the ones depicted in the figures above.

Model

An algebraic model for analogy

Let us first introduce some mathematical tools to formalize concepts such as the source, the

target and the analogical map. These key components of the model will be illustrated through

formalizing the two following proportional analogy problems borrowed from [8]:

1: abba : abab :: pqrrqp : ?ðpqrpqrÞ

2: abba : abbbbba :: pqrrpq : ?ðpqrrrrrpqÞ

A signature is a set K of function symbols where a nonnegative integer n is assigned to each

f 2 K making f an n -ary function symbol. A K-algebra is a nonempty set C where it is defined a

family of finitary operations indexed by K i.e. to each n-ary function symbol f 2 K corresponds

exactly one n-ary operation fC defined on C.

Example 0.1. Let C be the set of all non-null strings on the letters a, b, . . .., z. Let C be endowed
with two operations: “append” which is associated to the binary function symbol λ, and “symme-
try” whose associated unary function symbol is σ. The “append” operation inputs two strings s1
and s2 and outputs the single string s1 s2. The “symmetry” operation inverts the order of letters in
its input string i.e. σ(l1 l2. . .ln−1 ln) = ln ln−1. . .l2 l1. This structured set C is a K-algebra when con-
sidering the signature K = {λ, σ} □.

Now, let us consider a countable set V = {x1, x2, . . .} of variables and let us generate the set

of K-terms in the standard recursive way:

• every variable is a K-term,

• if f is an n-ary function symbol and t1, t2, . . ., tn are terms, then f(t1, t2, . . ., tn) is a K-term.

Fig 2. The unknown zxyw is obtained by constructing representations of the source and target that have identical

structure. In the picture, such structure is represented by the operators given by the blue arrows, the blue circles and the times of

iteration. Notice that it is necessary to establish an associaton between source’s suc (standing for succesor) and target’s pre

(standing for predecessor).

https://doi.org/10.1371/journal.pcbi.1005683.g002
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This recursive generation of terms has some well known consequences (see [50–52]): First,

each assignment of variables α: V! C can be extended to every term t = f(t1, . . .tn) by the recur-

sive definition α(t) = fC(α(t1), . . .., α(tn)). And second, if {x1, x2, . . ., xn} is the set of variables

occurring in the term t, then an n-ary operation ft is determined on C by ft(a1, a2, . . ., an) = α(t)
where the assignment α satisfies a1 = α(x1), . . ., an = α(xn). Notice that any nonempty set

P of K-terms determines a family of operations {ft}t 2 P in the K-algebra C. The closure of

A0� C with respect to {ft}t 2 P is the countable union
S1

i¼0
Ai ¼ A0 [ A1 [ A2::: where

Ai = {ft(a1, a2, . . ., an) | t 2P and a1, a2, . . ., an 2 Ai−1}.

Definition 0.1. Let C be a K-algebra, let A� C, and let P be a set of K-terms. The pair (A, P)

is a domain with context C if the set A is closed with respect to the family of operations {ft}t2P.

Also, we say that A0� A generates (A, P) if A is the closure of A0 with respect to {ft}t2P.

Example 0.2. Let us consider the K-algebra from example 0.1 and consider two K-terms:
t = λ(x1, x2) and s = λ(x1, σ(x2)). Notice that ft represents the append operation. In contrast, the
operation fs takes two strings and appends to the first one, the result of applying symmetry to
the second one. Given P = {t, s}, let us consider the domain (A, P) generated by the two-string set
A0 = {ab, p}. For illustrative purposes, let us emphasize that A is an infinite set containing ele-
ments like ab, p, abp = ft(ab, p), pba = fs(p, ab), and abpabp = ft(abp, abp) = fs(abp, pba). □.

We say that a 2 A is an element of (A, P) and that ft is an operation of (A, P). In Example

0.2 the elements are strings of letters and the operations are syntactic operators. To introduce

our formalism, let us first consider a similar, widely known algebraic notion. Let A and B be

two K-algebras. A map h: A! B is called a homomorphism from A to B if for each n-ary func-

tion symbol f 2 K and every a1, . . ., an 2 A,

hðf Aða1; :::; anÞÞ ¼ f Bðhða1Þ; :::; hðanÞÞ ð1Þ

This algebraic definition formalizes the preservation of the structure of the K-algebra A into

the K-algebra B. As mentioned in the introduction, notions such as quasi-homomorphisms [4]

and local-homomorphisms [8] have been proposed as models for analogy. A key problem with

these approaches is that many mathematical constructions—such as products, quotients, lim-

its, adjunctions and others whose construction depends on homomorphisms—lose their key

properties when “exceptions” are allowed (the composition of two partial-functions or quasi-

homomorphisms is not well defined in general, hence these notions may not satisfy the com-

position axiom required by category theory [9, pp. 7]).

To preserve the potential usefulness of these constructions in modeling of cognitive phe-

nomena, we propose a model based on homomorphisms. But we need a strategy to achieve

certain flexibility for formalizing at least some of the analogies with psychological interest. To

this aim, we have included a set of parameters (the set P of Definition 0.1) that gives us a mar-

gin of action in the modeling process. A first version of our model is presented now.

Definition 0.2. (RMA/Restricted Model for Analogies) Let (A, P) and (B, P) be two
domains whose context is the K-algebra C. Amap h: A! B is called a homomorphism from
(A, P) to (B, P) and denoted by h: (A, P)! (B, P) if for each t(x1, x2, . . ., xn) 2P and every
a1, a2, . . ., an 2 A,

hðf At ða1; :::; anÞÞ ¼ f Bt ðhða1Þ; :::; hðanÞÞ ð2Þ

The only difference between conditions (1) and (2) is that the last condition ensures the

preservation of the structure determined by the family of operations {ft}t 2 P instead of the

operations that are indexed by the signature K. This subtle characteristic together with the

notion of “generating a domain” endow our model with certain flexibility when formalizing

analogies as it is shown by the next examples.
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Example 0.3. Let us model the analogy problem abba: abab::pqrrqp:? and propose a solution
through the model.

Let us consider the set of terms P = {t, s} from Example 0.2 where the term t = λ(x1, x2) gives
the operation “append” and s = λ(x1, σ(x2)) gives an operation which appends a first string to the
result of applying symmetry to a second string. Let (A, P) be the domain generated by the single-
ton A0 = {ab} and let (B, P) be the domain generated by the singleton B0 = {pqr}. Observe that
abba, abab 2 A and that pqrrqp 2 B. We need to look for a homomorphism h: A! B that
extends the partial map h0(ab) = pqr. There exists a (unique) homomorphism h from the domain
(A, P) to the domain (B, P) that extends h0 (see S1 Note). Since h is a homomorphism of
domains, it must satisfy that h(abba) = pqrrqp and h(abab) = pqrpqr which is the answer that
this particular modeling of the problem provides. □

The example above formalizes a relation between the two key letter-strings in the source

domain. This relation allows determining the missing item in the target domain via analogical

transfer: abba and abab are built from the same element (ab) by applying the operations ft and

fs imposed on the source domain (see S2 Note for more details about this relation and its trans-

fer). Notice also that the definition of (A, P) gives these two operations a key role, while down-

playing the role of the original “symmetry” operation. These observations are consistent with

empirical data suggesting that analogy is based on the mapping of relations [6, 53] and is able

to emphasize certain features of domains while downplaying certain others [54].

Clearly, our definition of domains is reminiscent of similar proposals in the literature (see

[5, 8, 40]) where a domain is a mathematical set together with a collection of operations

defined on it. However, the syntactic parameters in the set P, besides giving some flexibility to

our model, gives us a way of “quantifying” the representational structure that a domain

imposes over an analogy problem. To see this, observe that under the perspective of the K-alge-

bra C (Example 0.1), the structure imposed on the string abba is “low” because this string can

be built up in many ways from the alphabet and the primitives λ and σ. But under the perspec-

tive of (A, P) in Example 0.3, the structure imposed on abba is “high” because there is exactly

one way of building such a string: the only way in which the domain (A, P) can “understand”

the letter-string abba is fs(ab, ab). Next example displays another domain that “understands”

the string abba in a unique way.

Example 0.4. Let us model the proportional analogy

abba : abbbbba :: pqrrpq : ? ð3Þ

Let us consider the set P = {t1, t2} = {λ(λ(x1, x2), λ(x2, x1)), λ(λ(λ(λ(λ(x1, x2), x2), x2), x2),

λ(x2, x1))} and observe that ft1ða; bÞ ¼ abba. At the same values, the operation determined by t2
returns the string abbbbba. Therefore, when considering (A, P) as the domain generated by the
set A0 = {a, b} we conclude that abba, abbbbba 2 A. Also, if (B, P) is the domain generated by the
set B0 = {pq, r}, then pqrrpq2 B. We now look for a homomorphism h from (A, P) to (B, P) that
extends the partial map given by h0(a) = pq and h0(b) = r. It can be shown (see S3 Note) that there
exists a (unique) homomorphism h from the domain (A, P) to the domain (B, P) extending h0.
This map must satisfy h(abba) = pqrrpq and h(abbbbba) = pqrrrrrpq.This last string is the
answer given by this particular model of the problem. □

The last two examples show the parameters available in our model of analogy: The source

and the target of the analogy are modeled through domains (A, P) and (B, P) respectively. A

partial map h0—considered as the “analogical map”—characterizes the relation between the

source and the target. The model takes this information and provides us with the “analogical

transfer” given by h: (A, P)! (B, P).
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We have been assuming that the source and the target of an analogy share the same context

(the same K-algebra). And that the set P determines the family of operations in source and tar-

get i.e. the operations in both domains share the same “syntactic structure”. These assumptions

are systematically violated by most analogies because, in general, the source and the target of

an analogy differ radically. To account for this observation, we need a way to relate terms of

the two domains—because each one may have its own language.

Let K1, K2 be two signatures, let P be a set of K1-terms and let C be a set of K2-terms. A

map F: P!C is called a term translation if it preserves the variables. More precisely, for each

t 2P, the set of variables occurring in t is the exact same set of variables occurring in F(t).
Definition 0.3 (MMA/Mathematical Model for Analogies) Let C1 be a K1-algebra and let C2

be a K2-algebra. Let (A, P) be a domain with context C1, let (B, C) be a domain with context C2

and let F: P!C be a term translation. A map h: A! B is called a F -homomorphism from (A,

P) to (B, C) and denoted by h: (A, P)! (B, C) if for each term t(x1, x2, . . ., xn) 2P and every
a1, a2, . . ., an 2 A,

hðf At ða1; :::; anÞÞ ¼ f BFðtÞðhða1Þ; :::; hðanÞÞ: ð4Þ

This is our core definition, and we refer to it as the mathematical model for analogy (MMA).

Notice that Definition 0.2 is just a particular case of the MMA with C1 = C2, P = C and F
equal to the identity. This model has two main components, namely, the “structure-preserv-

ing” map h: A! B and the “symbol system” determined by the map F: P!C. These two

components are in line with the explanation given by Dedre Gentner for the striking abilities

of human cognition when she says “. . .analogical ability is the key factor in our prodigious

capacity, and, . . . possession of a symbol system is crucial to the full expression of analogical

ability” [55].

In this sense, the MMA abstracts a process whereby chunks of information (from context

C1) are combined and coded in (A, P) for representing the source domain, and concurrently,

other chunks of information (from context C2) are combined and coded in (B, C) for repre-

senting the target domain. These two processes are coordinated in a way that both domains

end up sharing a common structure characterized by the map F: P!C so that the analogical

transfer can be performed by the map h: A! B. Each domain has two dimensions. The sym-

bolic dimension is conformed by sets of terms (P and C) that represent symbolic information

and embedded grammars. And the semantic dimension is conformed by sets (A and B) that

abstract possibly non-symbolic elements such as conceptual objects or spatial coordinates.

Some features of this definition can be illustrated through the example: “suppose the letter-

string aabc were changed to aabd; how would you change the letter string ijkk in the same

way?” [42]. The copycat model reports that the most preferred answer is the letter string ijll fol-

lowed by ijkl and then by hjkk. The next example uses the MMA to provide us with insight

about the algebraic nature of the solution hjkk.

Example 0.5. Let us model the proportional analogy

aabc : aabd :: ijkk : ? ð5Þ

Let us endow the K-algebra C (Example 0.1) with the additional operation “successor” and its
inverse “predecessor”, denoted by γ and γ−1 respectively. They are defined in a way that agrees
with the alphabet ordering i.e. γ(a) = b, γ(b) = c, . . ., γ(y) = z, γ(z) = a, γ−1(z) = y, γ−1(y) = x, etc.
Let F: P!C be the only term translation that can be defined between the following sets of
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terms.

P ¼ flðx1; x2Þ ; gðx3Þg

C ¼ flðx2; x1Þ ; g
� 1ðx3Þg

Now, let (A, P) and (B, C) be the two domains generated by the singletons A0 = {a} and B0 = {k},

respectively. Observe that aabc, aabd 2 A, and that ijkk 2 B. We look for an F-homomorphism
h: A! B satisfying h(a) = k. It exists (see S4 Note ) and can be defined recursively by
h(γ(c)) = γ−1(h(c)) and h(λS(c1, c2)) = λS(h(c2), h(c1)) for every c, c1, c2 2 A. This model gives the
intended answer of the analogy problem since h(aabc) = ijkk and h(aabd) = hjkk. □

The example above illustrates how the complete model is more flexible than the restricted

model. However, the constraints imposed by the MMA on the modeling of analogies are still

strong. The nature of these constraints is illustrated in the next example where the model can-

not give a solution.

Example 0.6. Let us model the proportional analogy

ababa : abbaa :: cdcdg : ? ð6Þ

Let us set P = {λ(λ(x1, x1), x2), λ(λ(x1, σ(x1)), x2)}. Let (A, P) be the domain generated by the set
A0 = {ab, a} and let (B, P) be the domain generated by the set B0 = {cd, g}. Notice that ababa,
abbaa 2 A and cdcdg 2 B. Now, let us notice that the MMA cannot provide an answer to this
problem because an F-homomorphism h that extends h0 can not exist. Let us write P = {t1, t2}

and observe that f At1 ðababa; aÞ ¼ f At2 ðababa; aÞ ¼ ababaababaa, and then such an h would satisfy
hðababaababaaÞ ¼ f Bt1 ðcdcdg; gÞ ¼ cdcdgcdcdgg and also
hðababaababaaÞ ¼ f Bt2 ðcdcdg; gÞ ¼ cdcdggdcdcg. This would imply that
cdcdgcdcdgg = cdcdggdcdcg which is a contradiction. Therefore, h can not exist. □

The lack of a solution is due to the fact that each binary operation ft along with each pair of

elements x, y 2 A determine one constraint, namely

hðftðx; yÞÞ ¼ ftðhðxÞ; hðyÞÞ

All these constraints must be satisfied to ensure that (A, P) and (B, C) share the same struc-

ture. The last example illustrates a case where one of these constraints is violated, meaning that

the source and target domains have different structures. This suggests that if one does not plan

using category theory to analyze phenomena, one might want to consider instead only a small

number of these constraints—as in the definition of local homomorphisms [8, Definition 10].

All the examples until now suggest that the partial map h0 somehow forces the unique way

in which h must be defined. This does not mean that the MMA predicts only one “valid”

answer for each analogy problem. We can use the same framework, even the same K-algebra,

and come up with a variety of different domains that yield different answers for the same prob-

lem. We illustrate this situation in the next example motivated by results given by Copycat:

kjh, kjj and lji are solutions to the problem abc: abd::kji:?
Example 0.7. Let us model the proportional analogy

abc : abd :: kji : ? ð7Þ

Let us consider the K-algebra C from the last example: the operation “successor” is denoted by γ
and its inverse “predecessor” by γ−1. Now, let F1: P1!C1 be the term translation between the
sets of terms P1 = {λ(x1, x2), γ(x3)} and C1 = {λ(x1, x2), γ−1(x3)}. Also, let (A, P1) and (B, C1)

be generated by the singletons A0 = {a} and B0 = {k}, respectively. Notice that abc, abd 2 A and
kji 2 B. The F-homomorphism h: A! B satisfying h(a) = k exists. It can be defined recursively by
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h(γ(c)) = γ−1(h(c)) and h(λS(c1, c2)) = λS(h(c1), h(c2)) for every c, c1, c2 2 A. This first model
entails h(abc) = kji and the answer h(abd) = kjh.

Now, let F2: P2!C2 be the term translation between P2 = {λ(x1, x2), γ(x3)} and C2 = {λ(x2,

x1), γ(x3)}. Also, let (A, P2) and (B, C2) be the two domains generated by the singletons A0 = {a}

and B0 = {i}, respectively. Notice that abc, abd 2 A, and that kji 2 B. The technique used in Exam-
ple 0.5 can be used to show that the F-homomorphism f: A! B satisfying f(a) = i exists. It can be
defined recursively by f(γ(c)) = γ(f(c)) and f(λS(c1, c2)) = λS(f(c2), f(c1)) for every c, c1, c2 2 A. This
second model entails f(abc) = kji and the answer f(abd) = lji. □

In the next section we present three objects of study that illustrate how this model enables

the application of abstract structures from category theory for studying analogy-related cogni-

tive phenomena. But first, we need to present an adaptation of this model to build a represen-

tation of a symbolic model of analogy which will be used in our analysis of re-representation

and flexibility.

A formal model for symbolic models of analogy

According to literature, symbolic models are characterized by the following features

[34, 56, 57]:

1. The use of formal languages to represent domains of knowledge as sets of terms and

formulas.

2. The “analogical map” is obtained by the application of algorithms on symbolic descriptions.

They implement a syntax-guided correspondence between representational elements from

the source and the target.

3. The ultimate goal is to perform the “analogical transfer”. The source’s knowledge is pro-

jected into the target to hypothesize new statements about the target.

We want to emulate these features in a mathematical model that captures the behavior of

symbolic models along with their key symbolic mechanisms to represent domains of knowl-

edge. To this aim, let X = {x1, x2, . . .} be any set (whose elements are thought here as variables),

let K be a signature, t, t1, t2, . . .., tn be K-terms on X, and let us denote by t t1 ;:::;tn
x1 ;:::;xn

the “term”

obtained by substitution i.e. simultaneously replacing each occurrence of xi in t by the term ti.
We can now define the set of terms P�(X) that is “freely” generated by X (on a set of terms P)

as the minimal set that satisfies two conditions:

1. if x 2 X, then x 2P�, and

2. if t 2P and t1, t2, . . ., tn 2P�, then t t1;:::;tnx1;:::;xn 2 P�.

Notice that each K-term t with variables x1, . . ., xn determines a n-ary, symbolic operation ft on

this set P�(X) as follows:

ftðt1; ::::; tnÞ ¼ t
t1; :::; tn
x1; :::; xn

Hence the pair (P�(X), P) is a domain, namely the free P-domain on the set X. This allows us

to define a symbolic version of a domain of knowledge. The following definition is a particular

case of Definition 0.1.

Definition 0.4 (Symbolic Domain). Let K be a signature and let P be a set of K-terms on the
set of symbolic variables X. The pair (P�(X), P) is a symbolic domain with signature K. When
the set X of symbolic variables is clear from the context we just call it a domain and denote it by
(P�, P).
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We can think of the set P� as the language that the symbolic model uses to describe a

domain of knowledge. We regard the terms in P and the operations in {ft}t2P as the symbols

and the rules (grammar) that determines such language. We now adapt the notion of a F-

homomorphism with the aim to capture the behaviour of symbolic models of analogy and

their aforementioned characteristics.

Definition 0.5 (SMA/Symbolic Model for Analogy). Let P and C be a set of K1-terms and
K2-terms respectively. Let (P�, P) and (C�, C) be two symbolic domains and let F: P!C be a
term translation. A map F�: P� !C� is called a term morphism when (1) it extends F and (2) it
is a F-homomorphism from (P�, P) to (C�, C).

The features (a), (b) and (c) of symbolic models of analogy are satisfied by a term morph-

ism: The sets P and C are symbolic descriptions of the source and target that are provided as

inputs to the symbolic analogy model. The term translation F: P!C associates source’s sym-

bols with target’s symbols—it is a description of the characteristic “analogy map” that any sym-

bolic model computes heuristically. The domains (P�, P) and (C�, C) are larger descriptions

of the source and target created by the symbolic model by recursively using syntactic rules on

the descriptions P and C. Finally, since F� translates the “larger description” P� to the “larger

description” C� in a way that agrees with F, the notion of a term morphism formalizes the

“analogical transfer” of knowledge that is based on the preservation of the syntactic structure

of the representations of source and target.

The two last definitions comprise a formal model of computational symbolic models of

analogy that captures a key mechanism implicit in the nature of symbolic models, namely that

the analogical matching is guided by the syntax of the representational elements associated to

the source and target domains. Clearly, computational symbolic models are more complex

than our formal model and thus we do not expect a full description of them. Particular fea-

tures, such as architectures or specific algorithms, are lost. Furthermore, our mathematical

description does not accurately reflect a key feature of symbolic models: they represent knowl-

edge by using higher-order formal languages whereas our formal description is restricted to

using terms of first order languages. Still, the analyses performed on it provide (we believe)

some conceptually interesting insights about computational symbolic models of analogy.

In order to analyze the role of re-representation in these computational models, we will

explore a relation that appears between a “symbolic model” represented by a (term) morphism

F�: (P�, P)! (C�, C) (Definition 0.5) and its underlying “conceptual analogy” represented

by an F-homomorphism h: (A, P)! (B, C) (Definition 0.3). The core of this analysis is car-

ried through the formal notion of a coequalizer—a generalization of a quotient object—that is

introduced below in the context of category theory.

Category theory

In category theory, the importance of diagrams and diagram chasing method has been empha-

sized as a notational method and as a device to organize ideas because “their use provides

extensive savings in space and in mental effort” [58]. Our analysis of the cognitive design of

board games in our first object of study is based on the use of diagrams that give a precise for-

mal interpretation to the analogy between the spatial domain embedded in these board games

and the numerical domain that is the mental representation to be learned. To this aim, we will

need the notions of object, morphism and commutative diagram that are exemplified below.

Although these notions are not directly defined in category theory, the examples below illus-

trate how these notions are instantiated in different applications of the theory.

Objects. As a way to introduce this notion, let us exemplify some objects: A set is a group-

ing of elements with no additional structure. A group (G, �) is a set G of elements together with
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an associative binary operation �, an identity element e, and for each g 2 G, an inverse element

g−1 2 G such that e�g = g = g�e and g�g−1 = e = g−1�g. We already introduced the notion of a

domain (A, P) that is a set A of elements together with a set P of terms that determine a family

of operations on A.

Morphisms. In category theory, a morphism f: A! B abstracts a particular relation

between objects A and B. In our applications, the morphisms are structure preserving maps

between objects. As examples, the morphisms between sets are mappings—no constraints on

them. The morphisms between groups are group homomorphisms i.e. mappings f: (G, e, �)!
(H, e0, •) that preserve identities (i.e. f(e) = e0) and satisfy f(g1

�g2) = f(g1)•f(g2), for all g1, g2 2 G.

The morphisms between domains (Definition 0.1) are pairs of maps (F, f) called F-homomor-

phisms (Definition 0.3). A morphism f: A! B is an isomorphism if there exists g: B! A such

that g � f = 1A and f � g = 1B, where 1A and 1B are the identity morphisms on A and B, respec-

tively. If g exists, it is denoted by f−1 and called the inverse of f. An isomorphism conveys the

idea that the two mapped objects are indistinguishable in terms of their structure. In mathe-

matical contexts, the objects A and B in f: A! B are usually called the domain and the codo-

main of f, but such terminology is not adopted in this study because the word “domain” is

used here to refer to a domain of knowledge in its psychological sense.

Category. Formally, a category C consists of a class of objects |C| = (A, B, . . .) such that for

every pair (A, B) of objects, there is a set C(A, B) of morphisms from A to B. For every object

A, there is an identity morphism 1A 2 C(A, A). There is also a composition operation “�” that

satisfies

• Identity: f � 1A = f = 1B � f, for all f 2 C(A, B).

• Associativity: h � (g � f) = (h � g) � f, for all f 2 C(D, E), g 2 C(E, F) and h 2 C(F, G).

We shall write f: A! B instead of f 2 C(A, B) because, in our applications, morphisms are

functions. The most familiar example of a category is Set where the objects are sets and the

morphisms are functions; the identity morphism is the identity function and the operation is

the usual composition of functions. Another well known example of a category is Grp whose

objects are groups and whose morphisms are group homomorphisms. It is easily shown that

domains (Definition 0.1) and pairs of mappings (F, h) (Definition 0.3) are respectively the

objects and morphisms of a category that we denote here by Dom. When it does not lead into

confusion, rather than making reference to the pair (F, h), we say that h is an F-homomor-

phism. Accordingly, if F is the identity term translation I, we say that h is an I-homomorphism.

Commutative diagrams. A diagram is a network or linear graph in which each vertex

represents an object, and each oriented edge represents a morphism connecting the two

objects at its ends. In a diagram, each path from an object A to an object D represents the

morphism f: A! D that is obtained by composing all the arrows along the path. A commuta-
tive diagram is a diagram where each path from the same initial object to the same final object

determines the same morphism (this does not apply to parallel arrows). In this manner, this

kind of diagrams is useful to express a collection of simultaneous equations. For example, stat-

ing that Diagram 8 “commutes” means that the two composites g � f and v � u are equal. This

condition is potentially satisfied by various collections of objects and arrows, for example, the

sets and functions depicted in Diagram 9 below.

(8)
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(9)

One goal of this study is to argue that the modeling of cognitive phenomena can be

enriched by constructions provided by category theory. Such constructions are defined in

terms of “universal mapping properties” (UMP) which provide a principled understanding of

these constructions in terms of their relation to other objects in the same category. We will

observe that when these abstract constructions serve as models for psychological phenomena,

their universal mapping properties can be interpreted as features of such phenomena. Let us

illustrate the notion of an UMP by considering the one that characterizes our free P-Domain

on a set X.

The UMP of a symbolic domain. A symbolic domain was defined as a free P-domain on

a set X. The UMP of this “free domain” is described as follows: There is the injection i: X!
P�[X], and given any domain (A, P) and any assignment α0: X! A, then there is a unique I-
homomorphism α: (P�, P)! (A, P) that extends α0 i.e. such that α � i = α0, all as indicated in

the following diagram:

A key argument for the validity of symbolic models is that they are domain-general models

of analogical processing i.e. they can be applied to a wide array of domains of knowledge. The

UMP stated above may be taken as a formal characterization of such property: the symbolic

model (P�, P) can “emulate” any semantic domain with form (A, P) in a unique way through

the mapping α (c.f. discussion in [56]). This UMP can be proved by standard algebraic proce-

dures (for example by adapting the proof in [10]). And it permits the statement of the next

lemma that is crucial to our applications. A proof of this lemma is given in supplementary text

(see S1 Appendix).

Lemma 0.1. Let F: P!C be a term translation, h: (A, P)! (B, C) be a F-homomorphism
and α0: V! A be an assignment of variables. Let α and β be the extensions of α0 and h � α0 as in
the diagram below. If there exists a term morphism F� that extends F, then diagram 10 (below)
commutes.

(10)

Now, let us consider another UMP, namely the one that characterizes a quotient set by an

equivalence relation. A partition of a set X is a collection of disjoint subsets of X whose union is

the whole set X. Such a partition determines a binary relation on X called an equivalence relation
and denoted here by “*”. The element of the partition that contains x is denoted by [x] and it
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is called the equivalence class of x because it contains all elements y 2 X equivalent to x:

½x� ¼ fy 2 X j x � yg

One can think of an equivalence relation as arising from the equivalent elements having some

property in common (like being the same color). And one then regards the equivalence classes

[x] as the properties themselves i.e. “abstract objects” (the colors: red, blue, etc.). The set of

abstract objects (the set of colors) is thus defined as the set of equivalence classes which is

known as the quotient of X by * and determined as

X= � ¼ f ½x� j x 2 Xg

This is known as “definition by abstraction”, and it describes, for example, the way that rational

numbers are constructed from pairs of integer numbers. The quotient set is used to “abstract

away” the difference between equivalent elements by identifying such elements. The quotient
map π: X! X/* taking x to [x] has the property that every map z: X! Z respecting the equiv-

alence relation (i.e. x1 * x2 implies f(x1) = f(x2)) can be decomposed as z = u � π where u is

unique (see Diagram 11). These useful notions can be generalized and applied to other contexts

through the UMP that characterizes a coequalizer.

(11)

(12)

Coequalizer. Given a pair of parallel arrows f, g: R! A in a category C, a coequalizer of f
and g consists of an object Q together with an arrow π: A! Q satisfying π � f = π � g and the

following (universal mapping) property: For any object Z and any arrow z: A! Z satisfying

z � f = z � g, there exists a unique arrow u: Q! Z such that u � π = z. This UMP is depicted in

commutative diagram 13.

(13)

For example, in the category Set of sets, any equivalence relation R on a set A, provides two

parallel arrows r1, r2: R! A which are the two projections of the inclusion R� A × A. Each

(a1, a2)2R forces a1 and a2 to be identified in the quotient set Q = A/R. The quotient map π:

A! A/R defined by a! [a] is the coequalizer of r1 and r2 since it satisfies that for any

z: A! Z that respects R, there is a unique u such that u � π = z.
Another example can be given in the category Grp of groups. Let N◁ G be any normal

subgroup of G and form the semidirect product G × N having as elements the pairs <x, n> for

x 2 G, n 2 N with the (associative) multiplication defined by<x, n><y, m> =< xy, (y−1 ny)

m>. In this case, the two parallel arrows δ0, δ1: G × N! G defined by δ0 < x, n> = x and

δ1 < x, n> = xn have a coequalizer, namely the usual projection to the standard quotient

group π: G! G/N. This notion of a quotient group will be further explored and exemplified

below in the section “A First Isomorphism Theorem”.
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In the category Dom of domains, any pair of parallel arrows (F, f), (G, g): (R, O)! (A, P)

determines a congruence on A, namely the least equivalence relation R0 on A that contains all

pairs (f(r), g(r)). This determines the quotient set A/R0 which can be used to build the domain

(A/R0, P) whose operations are defined as ft([a1], [a2], . . ., [an]) = [ft(a1, a2, . . ., an)], for t 2P.

This domain is called the quotient domain of (A, P) by R0 and denoted by (A, P)/R0. The I-
homomorphism defined by a! [a] is called the quotient map π: (A, P)! (A, P)/R0 and satis-

fies the UMP depicted in Diagram 13 above, which means that π is the coequalizer of f and g.
Conversely, every F-homomorphism α: (A, P)! (Q, C) induces a congruence on A that

determines a pair of I-homomorphisms p0, p1: (K, P)! (A, P) called its kernel pair and

whose coequalizer is denoted by πα: (A, P)! (A, P)/α. These features of Dom imply a result

that is relevant to our aims and that is generally know as a “first isomorphism theorem”.

A first isomorphism theorem. It is known that any category with kernel pairs and

coequalizers admits a factorization system [59, proposition 4.2]. This means that each morph-

ism in Dom can be factorized as a surjective I-homomorphism (the coequalizer of its kernel

pair) composed with an injective F-homomorphism. A corollary of this result is that every sur-

jective I-homomorphism α: (P�, P)! (A, P) determines a quotient domain (P�, P)/α that is

isomorphic to (A, P). This kind of results is generally known as a “first isomorphism theorem”

and provides us with a modeling tool since the quotient domain (P�, P)/α can be thought as a

“symbolic representation” of the “semantic” domain (A, P). This modeling tool will be devel-

oped further in our second object of study, but let us exemplify here the first isomorphism the-

orem without deepening into the details of the category Dom.

Let us provide an example in the more familiar category Grp which also has kernel pairs

and coequalizers, and then admits an analogous factorization system. As a concrete example,

the group of integers Z has identity 0, operation “addition” and for each integer n, its inverse

is −n. For any fixed m, we can define [0]m as the class of numbers whose remainders after

division by m are zero. The quotient group Z=m is determined by considering the m classes

given by [k] = {h + k | h * 0} for k 2 {0, 1, . . ., m − 1}. For instance, the quotient group Z=3

contains three elements: [0] = {. . ., −6, −3, 0, 3, 6, . . .}, [1] = {. . ., −5, −2, 1, 4, 7, . . .}, and

[2] = {. . ., −4, −1, 2, 5, 8, . . .}. In this group, the identity is [0] and [1] is the inverse of [2]. Simi-

larly, Z=15 can be thought as partitioning the integers into fifteen classes and then endowing

these fifteen elements with a group structure. Here, the property of the quotient map π15 is

that the associated equivalence relation is as small as possible, and thus one can always map

Z=15 in a unique way to any other group that induces these identifications on Z by means of a

morphism (e.g. Z=3 in Diagram 12).

For the case of groups, the first isomorphism theorem states that every surjective group

homomorphism α: G1! G2 determines an equivalence relation * on G1 such that the quo-

tient group G1/* is isomorphic to G2 (see Diagram 14). More precisely, the set of all classes

[x] = {y 2 G1 | α(y) = α(x)} can be endowed with a group structure that makes it indistinguish-

able from G2. For example, let G2 = {0, 1, 2; +} be the group with identity 0 and operation

“addition modulo 3”. A surjective group homomorphism is given by the map a : Z! G2 that

assigns to m the remainder of the division of m by 3. The first isomorphism theorem tells us

that G2 = {0, 1, 2; +} is isomorphic to Z=3 (see Diagram 15).

(14)
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(15)

The theorem of re-representation. Our objects of study two and three are based on this

theorem. We explain flexibility in symbolic models and build our formal models for the learn-

ing of fractions by using the commutativity of diagram 16 below. An intuitive interpretation of

this theorem will be given during the analysis of re-representation and flexibility. The proof

(see S1 Appendix) is direct from Lemma 0.1 and the first isomorphism theorem.

Theorem 0.2 (Re-representation). Let F: P!C be a term translation, h: (A, P)! (B, C)

an F-homomorphism and α0: V! A an assignment of variables. Consider diagram 16 where F�

is a term morphism that extends F, α is the extension of α0 and β is the extension of h � α0. If α
and β are surjective, then there exist domains (P�, P)/α and (C�, C)/β, I-isomorphisms a, b and
surjective I-homomorphisms πα and πβ that make both triangles of the diagram commute. Also,
h� = b−1 � h � a is an F-homomorphism that makes Diagram (16) commute.

(16)

Results

Object of study 1

Board games and children’s learning of mathematics. We illustrate here how the MMA

along with commutative diagrams can be used as a device to elaborate theories capable to

describe empirical data. This object of study is based upon a series of experiments performed

by Siegler and Ramani [32, 33] who showed that playing certain board games helps children to

improve their mathematical knowledge. In two pretest-posttest experiments they assessed

mathematical knowledge of children with four numerical tasks: (1) to count from 1 up to 10,

(2) to identify the numerical phoneme associated to a numerical symbol, (3) to compare two

numerals by pointing at the greater one, and (4) to estimate the position of a given number on

a number line. The proficiency in these four tasks has been found predictive of the acquisition

of further mathematical knowledge [60].

We conceptualize these two experiments as comparing the performance of children belong-

ing to three playing groups. The three associated games (depicted in Fig 3) made each child

race against an experimenter for completing a walk from “Start” to “End”. During this walk,

the number of boxes advanced (1 or 2) in each round was determined by the flip of a coin. The

game’s dynamics included saying each number (or color) at the time of stepping on it, and fol-

lowing certain protocol designed to control confounding variables.
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The mentioned experiments were designed for testing the “representational mapping

hypothesis” which states that the greater the transparency of the mapping between physical

materials and desired internal representations, the greater the learning of the desired internal

representations [32, 33]. The results showed that playing the “numbered game” significantly

improves children’s learning of mathematics (see caption of Fig 3). The features of this game

hypothesized to influence learning are (a) the linearity of the board, (b) the kinesthetic cues

produced by physically moving the tokens, and (c) the game dynamics that help children iden-

tifying the value of the current number and counting-up from there. Also, the authors wonder

whether the variety of redundant cues supporting the formation of linear representations of

numerical magnitudes is crucial, as opposed to any particular cue being essential [32, 33].

These studies have shed a good deal of light on the nature of human learning. However, the

authors acknowledge that some features of the intervention were based on hunches and

guesses [61, pp. 393] which suggests that there is still room for new contributions to under-

stand how the features of these games influence learning. Our goal here is to provide a more

precise meaning for terms such as the “transparency of the mapping”, the “internal representa-

tions”, the “kinesthetic cues” or the “redundant cues”.

Analysis of board games and children’s learning of mathematics. In this section we use

the MMA along with commutative diagrams to analyze the design of the educational games

and, in the light of these analyses, to provide a complementary interpretation for the experi-

mental results of Siegler and Ramani. The MMA will be used to represent a combination of

semantic and syntactic cognition which has been argued to be characteristic of reasoning and

acquisition of relational knowledge [62, 63]; in this sense, the MMA will play the role of a

“painting set” enabling us to “draw and connect” the cognitive elements that shape the design

of these games. Since the MMA by itself cannot explain the complex mechanisms underlying

learning, we will need to decide among plausible mechanisms and competing hypothesis in

order to theorize about the underlying phenomenon.

Let A be a set of ten boxes spatially arranged and let B be the set of the first ten natural num-

bers. These two sets can be endowed with a certain structure as a way to model a spatial source

and a numerical target in an analogy satisfying Definition 0.3. We have chosen the structure as

indicated by Fig 4. The left half of the figure represents the source of the analogy: a concrete

spatial domain that is familiar to children as they usually handle spatial notions. This domain

is conformed by ten boxes (at the bottom) and some spatial relational knowledge (on top).

Therein, a stroll that starts at the zero position and ends up at certain box is associated to the

Fig 3. Each game has a different pattern of knowledge gains. (a) the colored game produced no gains of knowledge, (b) the

circular game produced positive knowledge gains only in counting and identification, and (c) the numbered game produced

knowledge gains in all four measures.

https://doi.org/10.1371/journal.pcbi.1005683.g003
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box itself, giving rise naturally to concepts such as the distance between two boxes. On the

right half of Fig 4 is depicted the target domain—familiar to the game designer but unfamiliar

to children: An abstract domain conformed by ten numbers (at the bottom) along with their

usual arithmetical structure (on top). In describing this formal model, some technical issues

must be addressed such as making a good definition for successor(10) or encoding the relation-

ship X< Y in a way that satisfies the constraints imposed by the MMA. Since there are simple

ways of handling these technical issues, and these are not crucial for this presentation, they are

not addressed here.

The top half of Fig 4 depicts the syntactic component of the MMA: The symbolic represen-

tations of spatial relations (left side) are associated to the symbolic representations of numeric

relations (right side) through the mapping F: P!C which acts as the identity on variables.

This symbolic mapping assigns, for example, the numerical distance between two numbers to

the stroll distance between boxes, and the successor of a number to the operation “go to right”

in the game board. Similarly, the bottom half of the figure depicts the semantic (or conceptual)

component of the MMA: Boxes in the spatial domain are associated to numbers in the numeri-

cal domain through the mapping h: A! B which assigns the number 1 to the first box from

the left, the number 2 to the second box from the left, and so on.

The interpretational mapping α (see Fig 4) assigns semantic objects to syntactic symbols; it

can be thought of as a dynamic binding that depends on the values taken by the symbol vari-

ables X and Y. For example, the two tokens depicted in the figure indicate that α(X) is the third

box and α(Y) is the fifth box; and these two values fully determine the map α. For example,

α(go_to_right(X)) is the fourth box. Also, by using the rule β(X) = h(α(X)) to assign β-values to

variables, the interpretational mapping β is fully determined: β(X) is the number three, β(Y) is

the number five, and the rest of values follow from there e.g. β(|X − Y|) is the number two.

Fig 4. The numbered game (Siegler et al.) is represented as an F-homomorphism from a spatial source to a

numerical target. Left side: a spatial domain formed by boxes and some spatial structure ordinarily well handled by

children. Right side: a highly abstract domain of ten numbers. The map h is an F-homomorphism (Definition 0.3) that

assigns the i-th number to the i-th box and preserves all the structure represented in the upper boxes.

https://doi.org/10.1371/journal.pcbi.1005683.g004
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In this context, the analogy can be characterized by the four mappings mentioned above.

Fig 4 shows two ways in which a symbolic representation s of a spatial relation can be associ-

ated to a number: either (i) by following the horizontal arrow F and then the vertical arrow β
or (ii) by following the vertical arrow α and then the horizontal arrow h. If for every possible

mapping α, the routes (i) and (ii) are equivalent, then the pair of mappings (F, h) is an F-

homomorphism. In particular, the diagram in Fig 4 commutes for each one of the 102 possible

mappings α, and then the mapping h: (A, P)! (B, C) is an F-homomorphism. This using of

commutative diagrams can be seen as a formal statement of the consistency requirement for
analogical mapping outlined by Holyoak and Thagard [5]. Moreover, this indicates that the

MMA satisfies the notion of consistency in a cognitive system proposed by Halford and Wilson

as a core characteristic of processing relational knowledge [3]. This point will be addressed in

detail in the last section of the third object of study, but by now let us just highlight that the

MMA integrates key properties of relational knowledge at the core of analogy-making.

Observe that h is an isomorphism, which means that the spatial domain (A, P) and the

numerical domain (B, C) are indistinguishable in terms of their structure. This model thus

provides an interpretation where the design of the numbered game entails a perfect analogy:

the numbers printed on the boxes implement the isomorphism h that transfers the complete

structure from the spatial domain to the numerical domain. Research in analogical transfer

[64, 65] suggest that this game-play design provides cues on how to carry the relational struc-

ture from the spatial domain to the numerical representation. Hence, this perfect preservation

of structure allows children to use sound working definitions that help them to acquire numer-

ical relational knowledge such as the “successor of a number” which could be defined uncon-

sciously as “advancing one box” during game playing.

Additionally, the two variables in the model (see X and Y in Fig 4) suggest that the using of

two tokens is an important feature of the game: the racing dynamics engages the player’s atten-

tion on tracking and comparing the positions of the two competitors. Since each player is

bonded to a variable whose value—the number printed on the box—changes with his position,

the feeling of getting ahead or falling behind exemplifies the comparison of two numbers. A tie

illustrates the equality of numbers. The number of single jumps necessary to go from one play-

er’s location to the other’s indicates the distance between the two numbers being stepped on.

Therefore, after a single match, the players have been exposed to dozens of good numerical

examples involving two numbers. This analysis provides links with theories of cognitive devel-

opment that describe relational complexity in terms of the number of symbols that must be

cognitively processed [3, 13, 66]. And it suggests a prediction not accounted by Ramani and

Siegler’s analysis: the numbered game would have less positive influence on learning if its

design considered one token only, shared by the two players.

This pictures analogy-making in a way that is consistent with current theories of relational

knowledge [63] and dual-processing accounts [62] which emphasize a combination of seman-

tic and syntactic information for use in reasoning. For this study, we have conceptualized the

“desired internal representation” as a collection of relation symbols which can be bounded to

semantic elements (see the right side of Fig 4). Here, the “transparency of the mapping” can be

assessed in terms of the relational knowledge that the pair of mappings (F, h) carry from the

spatial to the numeric domain. These interpretations, along with studies showing that effective

use of analogies promotes learning [44, 67–70], provide an explanation for the improvement

of mathematical knowledge of children who played the numbered game. Actually, the analysis

sketched above has been used in developing instructional materials that successfully promote

children’s numerical knowledge [71]. This kind of research may open a path to investigate

how relational representations can occur through structural alignment, symbol-binding and

analogical mapping [72, cf.].
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Additionally, the outlined analysis explains why the colored game produces no learning.

The numbered game was represented through an F-homomorphism h defined from the

“board without number labels” to the “desired representation of numbers”. Arguably, the col-

ored game may be also represented by an F-homomorphism, but in this case, the target would

not be a set of numbers. This suggests that the absence of numerical symbols hinders children

from creating a representation of numbers that could be aligned with the spatial structure con-

tained in the colored game (or aligning a numerical representation already existent).

Further elaborations with our model can also explain the effects on learning associated with

the circular game. To this aim, let us clarify two reasonable assumptions that we have made

regarding children’s perception of the games: (1) the distance between the two players is per-

ceived visually as the length of the straight line connecting them, and (2) the spatial relation

between the players is coded categorically: the first player can be at the “left/right” (or above/

below) of the second player, even though they differ widely in their locations on vertical and

horizontal axes.

Assumption (1) is supported by studies in space cognition that show that computing a

route-distance following the circular path of the game would imply creating a “reference

object” for each numbered box and then adding the different legs from one object to another

along the route [73, 74]. This makes euclidean distance estimates more appealing because of

cognitive economy. Additionally, Ramani and Siegler have explained that “such spatial cues

are highly salient for young children, as indicated by their strong reliance on them on number

conservation, liquid and solid quantity conservation. . .” [33, p. 547]. Likewise, assumption (2)

is supported by empirical studies showing that categorical codings are used spontaneously

[75].

The model and the analysis associated with the circular game can be built in a manner fairly

similar to what was done for the numbered game. Actually, we imagine a model like that illus-

trated by Fig 4, but depicting a circular board instead of a linear one. The map h still transfers

the notion of “successor” to the numerical domain but, due to the shape of the board, it cannot

transfer the accurate distances nor the numerical comparisons: by assumption (1), the distance

between the first and the tenth boxes is smaller than the distance between the first and the

sixth boxes (Fig 3). By assumption (2), any criterion for comparing two boxes would make it

impossible to order them in agreement with the order of numbers. For example, let us take the

criterion left/right: it sets the first box to the left of the second box, and paradoxically, the tenth

box to the left of these two (see Fig 3).

This analysis explains why the positive effect on learning produced by the circular game is

weaker than the one produced by the numbered game. But it might be argued that children

can perceive the circular path in ways that enable them to keep track of the actual numerical

distances and comparisons. For example, by tracking the angular distance between the two

tokens. However, such a notion of distance may not work for angles close to 360˚, not to men-

tion that it is still reasonable that assumptions (1) and (2) produce effects interfering with the

correct coding of numerical representations.

To conclude, we should mention that our a priori knowledge of the experimental results

may have influenced our modelling strategy. But the interpretation proposed here displays

some appealing properties: (a) it provides new hypotheses and predictions—for instance, the

“two token” hypothesis could be tested by an experiment wherein children in the experimental

group would play a version of the numbered game whose design contemplated only one token

meant to be shared by the two players. Of course, the challenge here would be to endow this

new game with gaming dynamics that make it as fun as the original one; (b) it leads into a pre-

cise interpretation that is consistent with relational knowledge theory and experimental evi-

dence: it gives further support to some of the conclusions reached by the original studies—for
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example, that the linearity of the game board is a key feature influencing learning; and (c) it

associates specific features of the games with particular effects on the acquisition of numerical

knowledge.

Relations versus associations. Relational knowledge is crucial to higher cognitive pro-

cesses [13, 63, 66] and, as stated above, it plays a crucial role in the MMA. An elementary

explanation based on associationist learning may posit that the acquisition of numbers is due

to the learning of associations between representations of numbers (e.g. 1! 2! 3! . . .) in

which the stimulation of one representation activates the representation connected to it. In

such an account, response times for certain inferences involving two numbers should depend

on the distance between these numbers due to the required chain of activations. Notice how-

ever that an account based on relational knowledge with symbol-binding and structure-pre-

serving maps such as the one depicted in Fig 4 would suggest parallel access to various

representational items, only constrained by working memory capacities [66]. This makes a dif-

ferent claim because response times does not necessarily depend on the distance between the

involved numbers. The two approaches thus suggest competing claims which can be assessed

empirically.

Along these lines, the differences between the linear and circular boards can be further

highlighted by drawing an analogy with research in transitive inference that makes a distinc-

tion between two tasks [13]: transitive inference and transitivity of choice. Transitive infer-

ence tasks typically present premises such as “Michael is taller than John”, “John is taller

than Peter” and then ask for the taller person between Michael and Peter. In similar fashion,

tasks of transitivity of choice are based on training subjects (such as monkeys) for example

to choose one member of each pair in a series such as A+B-, B+C-, C+D-, D+E- (where

“+” indicates a rewarded choice and “−” indicates nonrewarded choice). Subsequently, this

kind of tasks asks subjects to choose one member of the pair BD (monkeys show a 90% of

preference for B over D).

Though these two tasks are apparently similar, research has revealed deep differences

among them including that transitivity of choice can be performed by very young children and

a variety of species whereas transitive inference is limited to 4-year old (or older) humans. Cur-

rent theories of relational complexity [13, 63, 66] account for these differences by pointing out

that transitive inference tasks elicit ordering schemes that facilitate logically valid inferences

whereas transitive of choice tasks elicit mechanisms that capture the results of training in the

form of associations. Analogously, points scattered on a one-dimensional line can be (physi-

cally) well ordered which suggests that the linear board can elicit a structured schema. On the

other hand, points scattered on a two-dimensional plane cannot be ordered following a natural

criterion, and hence, by considering assumptions (1) and (2) of the presented analysis, the cir-

cular board cannot elicit a similar structured schema thus making it natural for associative

mechanisms to be activated with consequences such as those mentioned above e.g. that the

“distance association” between 1 and 10 would be stronger than the association between 1

and 6.

Object of study 2

Re-representation and flexibility in symbolic models of analogy. Although the empiri-

cal evidence is neither systematic nor definitive, it points to the existence of mental processes

that permit achieving certain flexibility in performing an analogical matching [49, 53]. How-

ever, leading accounts of analogy implement the principles of structural alignment [6] which

seem to be insufficiently flexible to account for human analogical processing because non-

Category theory and analogy: Analyzing acquisition of numerical

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005683 August 25, 2017 21 / 38

https://doi.org/10.1371/journal.pcbi.1005683


structurally similar representational elements, although semantically compatible, are not

permitted to match [76].

In order to account for this flexibility, computational models of analogy have implemented

processes of re-representation: non-identical representational elements are considered

matches and placed in structural correspondence during the analogical comparison [46, 53,

56]. The specifics of re-representation depend on the underlying theoretical framework, for

example, the constraints of structure-mapping theory have been used to derive a theory where

re-representation is a selectively activated process that identifies opportunities for re-represen-

tation when local changes can improve the overall match [77]. In contrast, the distributed rep-

resentations of knowledge used by other approaches imply that analogy making is a persistent

and naturally flexible process (e.g. LISA, BART and DORA models, [43, 45, 47, 48]). In the

heuristic driven theory projection (HDTP) approach, re-representation is implemented

through logical inference rules that operate as part of the matching process [78, see antiunifica-

tion in]. Indurkhya’s interactionist approach argues that re-representation is the process by

which a representational network is modified by grouping some of its elements with the aim to

better reflect the structure of the target environment [40, p. 174].

Processes of re-representation are important for symbolic models of analogy which are par-

ticularly sensitive to the coding used for representing the source and target of an analogy. This

sensitivity has often resulted in the use of hand-coded representations tailored to the needs of

the model [34]. This limitation has been overcome by many symbolic models that have

achieved certain flexibility in the processing of analogies. For example, PHINEAS—learning

naive physics by analogical generalization—is able to take inputs created by qualitative simula-

tions of physical behaviour [46]. More impressive is the case of a symbolic model that accesses

open-source representation ontologies in order to solve physics problems by analogical model

formulation [79].

The achievement of flexibility in some symbolic models has been attributed to the applica-

tion of re-representation techniques: “our preferred technique for achieving flexibility . . . is to

re-represent the nonmatching predicates into subpredicates . . .” [56, p.20]. Our aim in analyz-

ing this object of study is to develop a formal explanation on how re-representation allows

symbolic models to gain flexibility.

Analysis of re-representation and flexibility in symbolic models of analogy. As an aid

to this presentation, let us illustrate the notion of re-representation by considering the follow-

ing riddle: “In a room there are two fathers and two sons, but there are only three men. How is

that possible?”. By definition, a symbolic model should represent this riddle by using a formal

language whose signature may include symbols such as father,son, is_father_of,
is_son_of, etc. Let us assume that this model uses the variables F1, F2 to represent the two

fathers and S1, S2 for the two sons. To solve the riddle, the model has to “align” these four roles

with only three persons (grandfather, father and son). This is usually done by means of an

“inference calculus” composed by (a) some facts about the domain, and (b) some syntactic

rules. These facts and rules may look as follows:

Fact 1) father(S1) = F1.

Fact 2) father(S2) = F2.

Rule 1) IF is_son_of(X,Y), THEN father(X) = Y.

Rule 2)father(son(X)) = X.

An inference calculus endows a symbolic model with abilities to process and discover

knowledge. For our riddle, a chain of symbolic computations will be triggered to process the
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information which then results in the conclusion that one person is simultaneously being a

father and a son, for example, that F2 = S1. This engenders re-representations because Fact 1

can be now re-represented as father(F2) = F1 and, by using Fact 2, another re-representation

of Fact 1 is

fatherðfatherðS2ÞÞ ¼ F1

The key observation here is that the latter statement is conceptually equivalent to Fact 1,

but note also that these two statements are structurally different in regard to their syntax. And

since symbolic models use the syntactic structure of representations as a guide to perform the

analogical matching, the availability of multiple conceptually equivalent representations with

different syntactic structures allows symbolic models to gain flexibility in the processing of the

involved analogies.

Our goal here is to provide an alternative conceptualization of this process of re-representa-

tion mediated by an inference calculus. To this end, we outline its relation with a formal notion

known as a quotient object. To this aim, we now use our definition of a symbolic domain to

represent the riddle under analysis. Let us use the set of variables V = {F1, F2, S1, S2} and a set of

terms P that includes the terms in Table 1 above.

The set P� represents the language used by our symbolic model which contains an infinite

number of terms. Examples of these terms are father(S2), is_father_of(F2, S2),

is_father_of(father(S2), son(F1)), and father(son(F2)), among others. This set of

terms can be seen as having certain structure: we can operate its elements through the syntactic

operators ft determined by the terms t 2P. We have built the symbolic domain that is denoted

by (P�, P).

We need to build another domain: a conceptual one that underlies the symbolic domain

(P�, P). We use the domain (A, P) whose elements are three persons (at least) and whose

structure is given by the family relationships among them. For example, let us say, Angelo,

Paul (Angelo’s father) and Marius (Paul’s father). Now, the solving of the riddle involves find-

ing a F-homomorphim α that “aligns” the symbolic domain (P�, P) with the conceptual

domain (A, P). This can be done by assigning the conceptual objects to the symbolic variables

in a way that induces the solution: Let us set α(S2) = Angelo, α(F2) = Paul, α(S1) = Paul and

α(F1) = Marius. Notice that α can be extended to an I-homomorphism α: (P�, P)! (A, P) in

a unique way because of the UMP associated to (P�, P).

Building on these preliminaries, we can now explain how the notion of a coequalizer

abstracts the idea of re-representation. The mapping α assigns objects to symbolic strings as

illustrated in Table 2. This assignment determines the quotient domain of (P�, P) with respect
to α denoted by (P�, P)/α. Each element of this quotient domain is a “class of terms” that acts

as an “abstract representation” of some person in (A, P). Crucially, the first isomorphism the-

orem ensures that (P�, P)/α is isomorphic to the conceptual domain (A, P), and that the next

Table 1. Terms that generate the setΠ*.

father(X) is_father_of(X, Y)

son(Y) is_son_of(Y, X)

TRUE FALSE

https://doi.org/10.1371/journal.pcbi.1005683.t001
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diagram commutes.

(17)

Hence, a coequalizer abstracts the meaning of re-representation in this sense: each equiva-

lence class contains all symbolic representations associated to one conceptual object, and since

all these representations share the same meaning, all of them can be substituted between each

other when representing knowledge associated to the domain (A, P). This makes us think of α
as an “interpretation map” that gives rise to the techniques of re-representation necessary to

capture the semantics of the domain (A, P). To put it another way, this mapping determines

the re-representation techniques that must be implemented into a computational symbolic

model to transform its language (P�, P) into a representation of (A, P).

As we already mentioned, this interpretation of re-representation—characterized by the

UMP of a coequalizer—sheds some light into an old discussion about why symbolic models of

analogy have a capacity to simulate analogy in various contexts (general-domain) whereas

computational models using conceptual “micro worlds” do not have such a capacity (specific-

domain) [56, 80]. Additionally, we also mentioned that symbolic models generally use an

“inference calculus” consisting on a set of facts and rules that (among other things) permits

them to compute the aforementioned equivalence classes. This makes us interpret the quotient

map π: (P�, P)! (P�, P)/α (in Diagram 17) as a representation of this “inference calculus”

in the sense that it has a symbolic nature and contains enough information to identify all the

representational elements in the language (P�, P) that are conceptually equivalent.

To make our proposal about how re-representation helps symbolic models to achieve flexi-

bility, let us use the previously introduced riddle as a source analog for the almost identical rid-

dle “In a room there are two mothers and two daughters, but there are only three women.

How is that possible?”. The analogical alignment between the two riddles is self-evident, but

the simplicity of this exercise will help us to shorten this presentation.

To formalize the new riddle, we use a different signature thus determining a symbolic

domain (C�, C). As before, we model a conceptual domain (B, C) to represent the three

involved woman, let us say, Angela, Paula (Angela’s mother) and Mary (Paula’s mother). After

relating these two domains through an F-homomorphims β, it turns out that the conceptual

domain (B, C) and the quotient domain (C�, C)/β are isomorphic. The equivalence classes of

the quotient domain (C�, C)/β are illustrated in Table 3 below.

Table 2. Each term in the left column is associated to a conceptual element of (A,Π) in the right col-

umn. Each cell in the left column represents a class of the quotient domain (Π*,Π)/α.

t 2 Π* α(t)2A

F1,

father(S1), father(F2),

father(father(S2)), . . .

Marius

S1, F2,

son(F1),

father(S2), . . .

Paul

S2,

son(F2), son(S1),

son(son(F1)), . . .

Angelo

https://doi.org/10.1371/journal.pcbi.1005683.t002
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Notice that the analogy between the two riddles can be seen now as operating at three

levels. The diagram 16 in the model section depicts how, at a conceptual level, the mapping

h: (A, P)! (B, C) preserves the conceptual structure by associating Marius with Mary,

Paul with Paula and Angelo with Angela. It also depicts how, at a syntactic level, the

mapping F�: (P�, P)! (C�, C) preserves the syntactic structure of symbolic representations.

For example, to associate Angelo and Angela, this mapping would make the assignment

son(S1)! daughter(S1), or the alternative

sonðsonðF1ÞÞ ! daughterðdaughterðF1ÞÞ:

It is important noticing that the mapping F� cannot make the conceptually equivalent assign-

ment

sonðS1Þ ! daughterðdaughterðF1ÞÞ

because these two representations do not share the same syntactic structure. Hence, F� cap-

tures the behaviour of a symbolic model that has not yet achieved flexibility.

Our explanation of the arising of flexibility is based on an interpretation given to

Diagram 16 (theorem of re-representation): On the one hand, the structure between concep-

tual domains is preserved by the mapping h: (A, P)! (B, C). On the other hand, the syntactic

structure of symbolic descriptions associated to these domains is preserved by the mapping

F�: (P�, P)! (C�, C). The mappings α and β associate symbolic descriptions to their respec-

tive conceptual domains. The first isomorphism theorem shows that the quotient domain

(P�, P)/α is isomorphic to (A, P) and that (C�, C)/β is isomorphic to (B, C). The theorem

proves the existence of an F-homomorphism h� between these two quotient domains.

Although this mapping h� has a symbolic nature, it is indistinguishable from the conceptual

mapping h because a and b are isomorphisms and h� = b−1 � h � a. Note that this mapping

h�: (P�, P)/α! (C�, C)/β associates classes of equivalence and, in this sense, it may be seen

as violating the preservation of syntactic structures because it performs assignments such as

½sonðS1Þ� ! ½daughterðdaughterðF1ÞÞ�:

Hence, this mapping h� reflects the existence of flexible symbolic models of analogy:

computational models that detect conceptually analogous representational elements and place

them in correspondence, even though they do not share the same syntactic structure.

In sum, the theorem formalizes re-representation through a quotient domain; it describes

flexibility as a byproduct of mapping equivalence classes that contain conceptually equivalent

symbolic expressions that are dissimilar at a syntactic level. Therefore, this interpretation

regards re-representation as an instance of a coequalizer that emerges in the context of

Table 3. Equivalence classes in the quotient domain (Ψ*,Ψ)/β associated to elements in the concep-

tual domain (B,Ψ).

t 2Ψ* β(t)2B

F1,

mother(S1), mother(F2),

mother(mother(S2)), . . .

Mary

S1, F2,

daughter(F1),

mother(S2), . . .

Paula

S2,

daughter(F2), daughter(S1),

daughter(daughter(F1)), . . .

Angela

https://doi.org/10.1371/journal.pcbi.1005683.t003
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symbolic models of analogy that achieve flexibility. In the next section we argue that this

conceptualization is possible thanks to the MMA’s combining of syntactic and semantic infor-

mation in its coding of knowledge. This point is developed by considering two approaches to

re-representation that rely on purely symbolic methods.

Representing environments through symbols. The riddle-example used in the previous

section can be approached through Unification Theory. This theory has a wide range of appli-

cations in the field of computational logic e.g. theorem provers, logic programming and equa-

tional theories. This theory helps in symbolic processing by providing tools to solve equations

posed in sets of symbolic terms, for example, an equation between terms in our riddle-example

could be posed as

fatherðfatherðS2ÞÞ ¼ fatherðS1Þ

and a solution of such equation is a substitution s: V! Term[V] that “unifies” the two terms in

the equation. In other words, when s = {S2 S2, S1 father(S2)} is applied to both terms (by

replacing variables by terms), the terms become syntactically equal. Since unification theory

has been given a category theory treatment in terms of co-equalizers [81], it may be tempting

to think that this syntactic approach may be essentially the same as the one outlined above. We

argue that the similarity is only superficial.

Substitutions are arrows h: X! Y in a category whose objects are sets. A substitution

q: X! Y is said to unify a set of equations {si = ti: i 2 I} in X, if for all i 2 I, q(si) = q(ti). Such

unifiers do not always exist, but when they do exist, so does a most general unifier (mgu)
defined to be a unifier q: X! Y such that for any unifier q0: X! Y0 there is a unique substitu-

tion u: Y! Y0 satisfying u � q = q0. This definition of an mgu is transparently translated to

the one of a coequalizer [81, p.175]. Let us now focus on the partition that is related to this

coequalizer. This mgu induces a partition on the set of terms whose equivalence classes

satisfy the following three properties [82, p. 19] (1) no equivalence class contains terms

f(. . .) and g(. . .) with f 6¼ g, (2) no term is equivalent to a proper subterm of itself, and (3) if

[f(s1, s2, . . ., sn)] = [f(t1, t2, . . ., tn)], then [si] = [ti] for i 2 {1, . . ., n}. Let us notice that, in con-

trast with the equivalence classes depicted in Table 2, the property (1) implies that father(S2)

and son(F1) cannot belong to the same class of equivalence i.e. these two terms cannot be con-

ceptually equal under the Unification Theory approach described here. The difference outlined

is due to the partition induced by an mgu is associated to a “syntactic equality” whereas the

one induced by our approach is associated to a “conceptual equality” induced by the semantic

component.

To further emphasize this contrast, we now refer to the approach to re-representation taken

by the Structure Mapping Engine (SME) [7] which is a successful symbolic model of analogy.

The earliest of its versions inputs source and target domains as descriptions written in a formal

language (whose syntax determines the structure of the two representations). The SME pro-

cesses the two domains by structurally aligning them in order to produce a set of correspon-

dences between symbolic elements that characterize the analogical matching. To improve the

performance of this analogical matching, recent versions of SME include re-representation

modules that use techniques such as transformation, decomposition and entity spliting

(among others) that permit substituting certain symbolic elements for others that are concep-

tually equivalent [77]. One transformation may replace the sentence greaterThan(sun,
earth) by the conceptually equivalent lessThan(earth,sun). In this context, re-

representation emerges as a a large collection of computational techniques designed to handle

violations to the principles of structure-mapping theory [6].
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Summarizing, the strength of the two symbolic approaches outlined above (Unification

Theory and SME) is that they are theoretical approaches that count with an important body of

computational support in the form of algorithms, libraries and computational modules ready-

to-use in applications. The approach presented here complements them by providing a novel

conceptualization of re-representation as a mechanism by which a “symbolic system” is able to

create a coherent representation of an “environment”. This kind of conceptualization cannot

be provided neither by Unification Theory nor by the SME approach. More importantly, this

conceptualization is based on core principles of optimality, namely the UMP’s characterizing a

free domain and a coequalizer. As Steven Phillips has pointed out, each UMP represents a

kind of optimization of cognitive resources (see [19]). The UMP of a free domain can be inter-

preted here as a symbolic system being designed to represent a maximal variety of environ-

ments; and the UMP of a coequalizer can be associated to expending the minimal amount of

cognitive resources for creating such representations.

These features also distinguishes the MMA from other purely algebraic accounts of analogi-

cal processing. For example, our approach might seem equivalent to Indurkhya’s interaction-

ism [40] (see introduction) because both approaches depend on algebraic notions at their core.

But the fact that the MMA can use the language of category theory gives it the ability to employ

formal, principled constructions such as coequalizers and free objects in the development of

cognitive models. This is significant because developing domain-general theories of analogical

processing has been referred as crucial in advancing the understanding of analogy [56]. Addi-

tionally, the MMA is aimed to integrate syntactic and semantic information to afford repre-

senting relational knowledge whose importance has been highlighted by the accumulating

evidence of the crucial role that relational knowledge plays in higher cognitive processes [63].

Hence, we believe this approach is not only useful for conceptualizing re-representation and

symbolic models in an abstract manner, but also that it can shed some light on the functioning

of certain human cognitive processes. This perspective is explored in our last object of study

that develops a formal approach to the acquisition of the knowledge of fractions with basis on

the theorem of re-representation.

Object of study 3

Teaching and learning of fractions. The domain of rational numbers has traditionally

been a difficult one for middle school students to master. Although most students eventually

learn the specific algorithms that they are taught, their general conceptual knowledge often

remains remarkably deficient. The foregoing errors are diverse and they all reveal a profound

lack of conceptual understanding [83–86]. This calls our existing methods of teaching fractions

into serious question. Hence, the development of theoretical tools to review teaching methods

is necessary.

In this section we apply our theoretical approach to perform an analysis of the “area model”

teaching strategy that is frequently used to teach fractions to children. This strategy assumes

that students build their understanding of positive fractions as they partition wholes such as

pizzas, brownies and other objects. The knowledge is thus transferred from a source domain

with operations such as “put together” and “share between” by analogizing them with

their corresponding arithmetic operations—addition and division—in the target domain of

positive fractions.

Our formal interpretation of the teaching and learning of fractions is aimed to highlight

relations between the notions of analogy, re-representation, conceptual knowledge and proce-

dural knowledge. In this sense, we rely on observations by Dedre Gentner who claims that

analogy, re-representation and learning are related: “a further way that learning can occur is
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re-representation: if there is good reason to believe two (nonidentical) relations should match

(e.g., a very good overall structural match), then one or both of the nonmatching predicates

may be rerepresented to permit the overall match” [55, p. 754].

Our goal here is to propose an abstract conceptualization of the learning of fractions that is

based on the building of two formal models: The first one describes how a symbolic represen-

tation of the domain of fractions could be created and delivered by a hypothetical teacher. The

second model describes some mechanisms whereby a hypothetical learner could acquire such

symbolic representation. The analysis performed on these models provides a discussion on a

long-standing and ongoing debate about the relations between two types of knowledge—con-

ceptual and procedural [87].

Analysis of teaching and learning of fractions. We regard the area model teaching strat-

egy as involving two conceptual domains, namely, the “pizza domain” and the “positive ratio-

nal number line” which are modelled here through the domains (A, P) and (B, C),

respectively (mathematically, each one of the sets A and B is the setQþ of positive rational

numbers). These two conceptual domains are associated to two languages which are modelled

here through the symbolic domains (P�, P) and (C�, C). They are generated up from the fol-

lowing sets of terms

Q
¼ fput togetherðX;YÞ; share betweenðX; YÞ; smaller thanðX;YÞg

C ¼ fðXþYÞ; ðX=YÞ; ðX < YÞg

We can arrange the four aforementioned domains as in the bottom trapezoid of Diagram 16

(see Theorem 0.2). By the first isomorphism theorem, the quotient domain (C�, C)/β is iso-

morphic to the positive rational number line (see Fig 5). The theorem of re-representation

ensures that the diagram depicted in Fig 5 commutes, which allows us to conceptualize such

Fig 5. The teacher’s model. The domains (Ψ*,Ψ) and (B, Ψ) along with the map β allow the teacher to build the

domain (Ψ*,Ψ)/β that represents the “positive rational number line”. This symbolic representation is delivered to

learners by (1) handing the algorithms or procedural knowledge—map πβ, (2) associating source and target domains

through the language—map F*, and (3) interpreting conceptual knowledge—through a map c: A!Ψ*/βwhich

coincides here with the composite c = b−1 � h.

https://doi.org/10.1371/journal.pcbi.1005683.g005
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diagram as a model for the teaching strategy as we explain below. But first, we need to stress

out that, in order to make this presentation more readable, Fig 5 refers to variables by abusing

of the interpretation maps α and β: the figure depicts V ¼ fmn j m; n 2 N; n 6¼ 0g as the set of

variables, but these variables are, a priori, just meaningless symbols of the language. Addition-

ally, technical issues addressed in the construction of this model (the encoding of X� Y, for

example) are not detailed here due to space constraints.

The commutative diagram in Fig 5 is part of the diagram provided by the theorem of re-

representation which is interpreted here as a model that describes our hypothetical teacher.

This abstract model assumes, a priori, certain conceptual encoding of the positive rational

number line i.e. the domain (B, C). The model describes how this domain can be represented

symbolically. To this aim, it assumes a capacity to process a standard grammar which permits

generating the symbolic language for working with fractions, namely the domain (C�, C). The

key point the model makes is that the interpretation β allows the transformation of this lan-

guage into the domain (C�, C)/β which is isomorphic to the positive rational number line—by

the first isomorphism theorem. This quotient domain is a symbolic representation of the ratio-

nal numbers along with its structure (see Table 4). We will note below that this kind of sym-

bolic representation can be acquired by a very simple cognitive agent as long as it counts with

the capacity of processing a symbolic language and a set of specific rules to compute equiva-

lence classes.

The learner’s model is our second formal model. It describes how an “abstract learner”

could acquire the symbolic representation given by the quotient domain (C�, C)/β. This

model is depicted in Diagram 18 below and it uses the same elements depicted in Fig 5 but

excludes the domain (B, C) and the map β. This model is easier to interpret by using the

inverse of F� which is denoted here by F<�. As before, it is assumed that the learner has some

capacity to process a grammar which permits generating the language (C�, C). Here, the

“learning of the subject” occurs when our abstract learner is able to transform (C�, C) into the

quotient domain (C�, C)/β.

The transformation mentioned above is achieved through the two arrows (C�, C)!

(C�, C)/β depicted in Diagram 18: The mapping α � F<� abstracts the process whereby the

symbolic string 1

2
þ 1

2
is interpreted as two halves of a pizza that are grouped together in (A, P),

thus obtaining one pizza which afterwards is linked to the symbol 1 through the mapping

Table 4. Equivalence classes in the quotient domain (Ψ*,Ψ)/β associated to conceptual numbers in

the domain (B,Ψ).

Equivalence classes in (Ψ*,Ψ)/β Concepts in B

1

4
,

3

12
,

3

24
þ

1

8

� �

,
3

36
þ

2

12

� �

,
2

32
þ

2

32

� �

þ
1

8

� �

, . . .

1

2
=

2

1

� �

,
1

2
=

6

3

� �

,
6

3
=

4

1

� �

=
10

1
=

5

1

� �� �

, . . .

a “quarter”

1

2
,

6

12
,

6

24
þ

2

8

� �

,
6

36
þ

4

12

� �

,
4

32
þ

4

32

� �

þ
2

8

� �

, . . .

1

4
=

1

2

� �

,
1

1
=

6

3

� �

,
6

3
=

4

1

� �

=
5

1
=

10

2

� �� �

, . . .

a “half”

. . .

. . .

. . .

. . .

1

1
,
12

12
,

6

24
þ

6

8

� �

,
6

36
þ

5

6

� �

,
4

32
þ

4

32
þ

3

4

� �� �

, . . .

1

4
=

1

4

� �

,
5

5
=

3

3

� �

,
6

3
=

4

1

� �

=
5

1
=

10

1

� �� �

, . . .

“one”

https://doi.org/10.1371/journal.pcbi.1005683.t004
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c = b−1 � h. The composite c � a � F<� represents conceptual knowledge. Similarly, the map πβ
abstracts the application of standard algorithms which show, for example, that the symbolic

expression 1

4
= 3

15
þ 3

5

� �� �
belongs to the same equivalence class that the symbol 5

16
. This quo-

tient map πβ represents procedural knowledge. The two aforementioned kinds of knowledge

are the center of a long-standing and ongoing debate in the learning of fractions [87].

(18)

The learner’s model: The learner first generates the symbolic domain (C�, C) for then comput-

ing the equivalence classes that transform it into a representation of the “positive rational

number line” (the quotient domain (C�, C)/β). To this aim, the learner can use the procedural

knowledge (the map πβ) or the conceptual knowledge (the composite c � a � F<�).

It is important noticing that diagram 18 commutes because it means that there is no

discrepancy in using either of the two aforementioned mechanisms, that is, for every symbol

s 2C�, it holds that

pbðsÞ ¼ c � a � F<�ðsÞ ð19Þ

which may reflect the kind of interactions observed in laboratory experiments, namely, that

the procedural skill (πβ) and the conceptual understanding (c � a � F<�) are deeply intertwined

into the learning of fractions [88].

Along these lines, the learner’s model provides an account of certain relations between con-

ceptual and procedural knowledge. In the first place, the equality Eq (19) indicates that both

mechanisms potentially perform the same function [87]. However, the specificities of the

involved mappings suggest that these two mechanisms are implemented in very different

ways. Notice that πβ is a mapping between symbolic representations which suggests that proce-

dural knowledge can be automatized thus allowing people to solve problems in a quick and

effective way by using few cognitive resources [89]. In contrast, conceptual knowledge is more

demanding as it is described by a composite of various mappings, some of which involve

semantic domains. It requires relational representations of these domains [89] and the ability

to coherently map symbols and semantics [63]. The above considerations suggest that concep-

tual knowledge is more flexible than procedural knowledge but less efficient [90].

Additionally, the UMP of the coequalizer πβ can provide a simple but formal description of

errors in the learning of fractions. An error such as 1

2
þ 1

2
¼ 2

4
, which is commonly made by

learners [91], can be seen as a mapping e from the symbolic domain (C�, C) to certain repre-

sentation (Q, C) that is entailed by their mistaken procedures and that confounds the numbers

“one” and “a half”. The UMP of πβ ensures that this mapping can be factorized as e = w � πβ
where w is unique. Hence, the map w characterizes the error in terms of the equivalence classes

that are unduly identified. In this case, w identifies the classes of equivalence [1] and 1

2

� �
.

In the view outlined above, conceptual and procedural knowledge are seen as “re-represen-

tation techniques” that transform the language (C�, C) into an isomorphic representation of

the positive rational number line. Hence, the interpretation given here poses re-representation

as a core process in the acquisition of the knowledge of fractions. This formal analysis shows,

at least as a proof of concept, that the human capacities of re-representation, language process-

ing and analogy making can set a mechanism whereby rational number meanings could be
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acquired and developed. Thus, the models developed here are consistent with claims that

the human capacities for number rely on recursive computations and symbolic processing

[55, 92–94].

The potential of these two models as a research tool may be illustrated by using them to

describe the kind of “rote learners” that would often “perform calculations without knowing

why”. To this aim, let us remove the maps a � F<� and c = b−1 � h from the learner’s model.

Mathematically, the map πβ is enough by itself to determine all the adequate equivalence clas-

ses on C� so that (C�, C)/β remains isomorphic to (B, C). This mathematical fact reflects two

well established facts in the literature of mathematics education. First, that many learners can

excel at performing symbolic calculations even when they do not assign any meaning to such

computations. And second, that this kind of rote learners cannot apply their syntactic knowl-

edge to solve problems in realistic contexts possibly due to they cannot associate symbolic and

conceptual domains [91, 95].

Additionally, these kind of analysis may indicate that rote learners lag behind those learners

described by the learner’s model (diagram 18) possibly because, to solve a problem such as
2

3
þ 1

4
, rote learners can only apply algorithms, whereas the others can also “intuit” that the solu-

tion is “close to” 1: they can imagine the solution as an area that almost fills one pizza. Conse-

quently, these learners can quickly notice mistakes in their application of the algorithms by

checking that the output is “close to” 1. This brief analysis suggests that the lack of a domain

like (A, P) may prevent rote learners from obtaining conceptual feedback such as the one

exemplified above in terms of “closeness”.

The analysis also outlines how conceptual voids hinder the development of intuitions about

fractions. In the case of the area model teaching strategy, these intuitions are grounded on geo-

metrical notions such as “smaller areas”, “similar areas”, “equal areas” and others like these.

Hence, teaching strategies that deliver conceptual domains successfully—perhaps through

visual cues, comprehensive analogies, or well chosen examples—enrich learner’s knowledge

with additional structures such as spatial references or geometrical notions [70]. Yet recent

studies have found that the knowledge of fractions is better delivered by using number lines

instead of object’s areas during learning [83–86]. This suggest that there is still room for con-

tributions, and thus, the sort of analyses presented here could be applied with the aim to design

novel and effective teaching strategies.

Additional work may reveal the scope of the approach introduced here. It served us here to

build a novel conceptualization of the learning and teaching of fractions where the processing

of a grammar and the computing of equivalence classes are the basis to create a representation

for rational numbers. It also enabled us to formally describe the relations among analogy, re-

representation, conceptual knowledge and procedural knowledge. And the analysis on rote

learning makes us to believe that this approach could be applied to perform theoretical analy-

ses on teaching strategies with the aim to predict their effects on learning.

In sum, the mathematical modeling presented here uses notions from category theory to

describe some of the components involved in the learning of fractions while outlining their

relations. Since our interpretation is compatible with empirical observations, we believe these

models may provide a formal framework wherein observations could be placed to study their

relation with the larger context, thus deepening our understanding of their meaning (see other

frameworks in [83, 91, 93]). Perhaps future research projects indicate the extent to which these

models can be applied to describe, explain or predict phenomena regarding the teaching and

the learning of fractions. In this work, we only illustrate how the MMA along with the lan-

guage of category theory can help us to create formulations for cognitive phenomena that are

related to analogy.
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A distinction between syntax and semantics

The distinction between the syntactic and semantic versions of the MMA was leveraged in the

last section to provide an account of procedural and conceptual knowledge. This distinction is

similar to the one proposed by Halford and Wilson who employed category theory to develop a

theory of cognitive development [3]. They pointed out that representations in thought must be

general so that they can be transferred to situations not previously experienced and argued that

representations in the form of relational knowledge are necessary. They described how symbol

systems and environmental elements must be set in structural correspondence by building a

formal model: a cognitive system is defined as a symbol system (a n-ary operation f defined on a

set of symbols S), an environment system (a n-ary operation g defined on a set of environmental

elements E) together with a mapping a: S! E that makes the next diagram commute:

(20)

A cognitive system: the mapping a: S! E assigns symbolic representations to environment ele-

ments. The n-ary symbolic process f transforms a n-tuple of symbols into another symbol. The

n-ary environmental process g transforms a n-tuple of semantic elements into another ele-

ment. The commutativity of the diagram means that symbolic processes exactly reflect the cor-

responding processes in the environment system.

This definition allowed its authors to predict age-related differences in performance of cer-

tain cognitive tasks. This prediction was based on that the greater the number of symbols

involved in a cognitive process (i.e. the arity associated to f or g), the greater the cognitive

demands imposed on short term memory. These kind of thinking guided Halford, Wilson and

Phillips to create an account of cognitive processing capacity in terms of the relational com-

plexity of symbolic representations [66]. This is pointed out here because of the close relation

between the MMA and a cognitive system: the mapping a in Diagram 20 is an F-homomor-

phism

a : ðS; ff ðx1; . . . ; xnÞgÞ ! ðE; fgðx1; . . . ; xnÞgÞ:

This may open a path to research how the relational complexity of representations influences

analogical processing: the MMA extends the notion of a cognitive system to include the

case of analogical processing where two symbol systems are interacting. In particular, Lemma

0.1 contributes by providing two “orthogonal” structure-preserving mappings: (1) between

syntax and semantics within a domain of interest, and (2) between domains of interest (see

Diagram 10).

It is important to point out here that we do not claim that symbolically structured cognition

necessarily requires symbolic languages as part of their representational systems. This point is

made by a model of analogy and schema induction (DORA) [48] which represents relations

through four layers of units in a neural network. Such relations are composed by a relation

symbol linked to roles which are bounded to fillers. Units representing a role oscillate in close

temporal proximity with units representing the filler bound to that role, and out of phase with

units representing other roles and fillers. The relational instance less_than(two,
three)would be represented by units representing the first-object role of less_than oscil-

lating in synchrony with units representing the number two, while units representing the sec-

ond-object role of less_than oscillating in synchrony with units representing the number
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three. Units representing the first-object oscillate out of synchrony with units representing

the second-object. Structure-consistent mapping occurs by concurrent activation of units in

two analogues i.e. superimposing another relational instance (e.g. smaller_than) by having

corresponding roles of all relational instances oscillate in synchrony.

In our perspective, the importance of these achievements lies partly in showing that the

integration of semantic and syntactic information must not necessarily rely on the grammar of

a symbolic language but rather it may be based on mechanisms similar to neural nets with syn-

chronous oscillation. More importantly, DORA provides a precise account of how children

transition from representing the world in terms of unstructured representations of objects to

representing the world in a structured fashion where relational knowledge and structure-pre-

serving mappings are explicit. The work presented here pushes a bit further these achieve-

ments by showing how similar premises can also provide a basis for the emergence of more

complex structures such as those of procedural and conceptual knowledge in the learning of

fractions. Although our models cannot give a precise account of the training process (in the

way that DORA does), they at least suggest the core data structures and algorithms that may be

used in a computational implementation aimed to simulate the human learning of fractions

(similar to what is done in [94] where number meanings and other related concepts are

learned from naturalistic data).

Discussion

Category Theory can help us to understand how the core constructions of mathematics are

systematically related to one another and how they arise from one another according to simple

and general basic principles. By bridging a gap between the formal notions of category theory

and the psychological notions of cognition, the MMA helped us to exploit these principles for

thinking about the role of analogy in cognition: We used commutative diagrams to describe

the learning by analogy that underlies the playing of board games. Also, we used a free domain

and a coequalizer to explain the arising of flexibility in symbolic models of analogy. And we

built formal models that suggest that the human abilities of re-representation, symbolic lan-

guage processing and analogy making can explain the acquisition of knowledge of rational

numbers. The coherence between the theoretical results and the empirical observations in lit-

erature supports that the approach presented here serves as a framework for modeling and

analyzing cognitive phenomena related to analogy.

The approach seems to have at least two limitations. The first one is that the MMA imposes

conditions that may be too strong for capturing analogical behaviour in certain contexts. But

we have presented here three objects of study showing the existence of psychologically interest-

ing phenomena that are well suited to be studied within this framework. The second limitation

is that the MMA has less expressive power than computational frameworks of analogy that

represent knowledge by using higher order languages. Although this comparison might be

unfair because computational models pursue goals conceptually different from the ones pur-

sued in this study, we acknowledge that the presented framework could be improved with the

addition of higher order logics. In the meanwhile, this lack of expressiveness may well be com-

pensated by the variety of formal notions (such as limits, colimits, adjuntions, functors and

others) from category theory that can be used as construction blocks into the building of new

cognitive models.

Even though the analyses presented in this work are based on simple models of complex

phenomena, these models allowed us to articulate analogy-related cognitive theories and to

exploit them into analyzing, explaining and organizing cognitive material. Hence, category

theory not only helped us to re-conceptualize cognitive notions, but also to hypothesize on
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how these notions are connected to each other. This interplay between mathematics and cog-

nitive theories yielded results that are mathematically interesting, conceptually revealing and

potentially useful for the cases of re-representation and acquisition of numerical knowledge.

But, what other cognitive phenomena can be studied in this manner? We believe the

approach presented here might help us to inquire into more fundamental aspects of analogy.

For example, a problem of central concern to analogy researchers is to understand why a par-

ticular analogy is chosen over the possibly many other alternatives. It might be interesting to

apply the MMA along with a theory of relational complexity and cognitive processing [66] in

order to investigate whether the relational complexity of the analogical candidates can deter-

mine (or influence) the final selection. We suggest to move forward by using formal notions

such as products, functors, limits and colimits into exploring more cognitive phenomena.

Non-trivial results of category theory might become relevant in future research. For example,

the free domain (P�, P) presented in this study is associated to a free functor that appears as

the left adjoint to a forgetful functor defined on certain sub-categories of Dom. Hence, adjoint

functor theorems might turn out to be suitable tools when studying the category of domains

introduced here. We expect the full development of this framework will provide a large collec-

tion of mathematical tools to formulate theories that exploit the advantages of formal analysis

in the study of the human cognitive architecture.
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