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SHORT COMMUNICATION

Y-chromosome and mtDNA variation confirms independent
domestications and directional hybridization in South American
camelids
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Summary Investigations of genetic diversity and domestication in South American camelids (SAC)

have relied on autosomal microsatellite and maternally-inherited mitochondrial data. We

present the first integrated analysis of domestic and wild SAC combining male and female

sex-specific markers (male specific Y-chromosome and female-specific mtDNA sequence

variation) to assess: (i) hypotheses about the origin of domestic camelids, (ii) directionality of

introgression among domestic and/or wild taxa as evidence of hybridization and (iii)

currently recognized subspecies patterns. Three male-specific Y-chromosome markers and

control region sequences of mitochondrial DNA are studied here. Although no sequence

variation was found in SRY and ZFY, there were seven variable sites in DBY generating five

haplotypes on the Y-chromosome. The haplotype network showed clear separation between

haplogroups of guanaco–llama and vicu~na–alpaca, indicating two genetically distinct

patrilineages with near absence of shared haplotypes between guanacos and vicu~nas.

Although we document some examples of directional hybridization, the patterns strongly

support the hypothesis that llama (Lama glama) is derived from guanaco (Lama guanicoe) and

the alpaca (Vicugna pacos) from vicu~na (Vicugna vicugna). Within male guanacos we

identified a haplogroup formed by three haplotypes with different geographical distribu-

tions, the northernmost of which (Peru and northern Chile) was also observed in llamas,

supporting the commonly held hypothesis that llamas were domesticated from the

northernmost populations of guanacos (L. g. cacilensis). Southern guanacos shared the

other two haplotypes. A second haplogroup, consisting of two haplotypes, was mostly

present in vicu~nas and alpacas. However, Y-chromosome variation did not distinguish the

two subspecies of vicu~nas.

Keywords DBY, d-loop, introgression, llama, patrilineage, vicu~na

Studies of the evolutionary history of domestication have

relied predominantly on the genetic variation of autosomal

microsatellites or the mitochondrial genome. Relatively few

studies have used markers from the male-specific region of

the Y chromosome. Although less variable, the Y-chromo-

some is paternally inherited, and most of this chromosome

does not undergo homologous recombination at meiosis.

Genetic data from the non-recombining portion of Y-

chromosome loci are good candidates for extracting evolu-

tionary information of the patrilineal history for mammals,

and analyses based on the Y-chromosome in combination

with mtDNA often reveal different patterns between female

and male lineages (Pidancier et al. 2006). Additionally, Y-

chromosome patterns are of particular interest in livestock

species because the most common breeding strategies rely on

a relatively small number of males each generation (Lind-

gren et al. 2004). Indeed, very low rates of nucleotide

diversity have been reported within the Y-chromosome of

horse (Lindgren et al. 2004), cattle (Hellborg & Ellegren
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2004; G€otherstr€om et al. 2005), pig (Ramirez et al. 2009),

goat (Cinar Kul et al. 2015) and sheep (Meadows et al.

2006). Despite that, Y-chromosome variation has been

useful in understanding the domestication of horses (Lind-

gren et al. 2004) and in confirming the independent domes-

tications of swamp and river buffalo (Yindee et al. 2009).

The origins of South America’s domestic alpaca (Vicugna

pacos) and llama (Lama glama), despite new autosomal

microsatellites and mitochondrial genome evidence, have

been difficult to resolve in part because of hybridization and

their near extirpation during the Spanish conquest. Gua-

naco (Lama guanicoe), vicu~na (Vicugna vicugna) and domestic

forms have the same number of chromosomes, 2n = 72

(Taylor et al. 1968) and very similar C and G banding

patterns (Bunch et al. 1985). However, fine-scale differences

on the short arms of chromosome 1 separate camels,

guanacos and llamas from vicu~nas and alpacas (Mar�ın et al.

2007a). At the molecular level, The cytochrome b gene and

control region sequences of mitochondrial DNA (mtDNA)

provide relatively weak support for the phylogenetic rela-

tionships among wild and domestic forms of camelids

(Stanley et al. 1994; Kadwell et al. 2001; Mar�ın et al.

2007a) but have confirmed the occurrence of extensive

hybridization between llamas and alpacas, probably since

the arrival of Europeans and facilitated by the fact that

interspecies crossbreeding generated fertile hybrids (Gray

1954; Skidmore et al. 2001). Genetic studies suggesting

that there are only two subspecies of guanaco, instead of

four—L. g. cacsilensis and L. g. guanicoe (Mar�ın et al. 2013),

and L. g. voglii and L. g. huanacus (for morphological details,

see Wheeler 1995; Gonz�alez et al. 2006)—were not sup-

ported. In contrast, similar analyses confirmed the two

morphologically described vicu~na subspecies V. v. mensalis

and V. v. vicugna (Wheeler 1995; Mar�ın et al. 2007b). Here

we present the first Y-chromosome sequence data combined

with mtDNA haplotype data from the same individuals in

the four species of South American camelids (SAC). Our

objectives were: (i) to test hypotheses about the origin of

domestic camelids, (ii) to identify directionality of introgres-

sion among domestic and or/wild taxa as evidence of

hybridization using sex-linked and (iii) to assess currently

recognized subspecies patterns.

Our analyses included 99 guanacos and vicu~nas from

Peru, Bolivia, Argentina and Chile as well as 86 llamas and

alpacas (Table S1). We sequenced two regions of SRY and

one region of both ZFY and DBY of the Y chromosome. In

addition, we sequenced the hypervariable I domain of the

control region of mtDNA (Table S2). DBY and hypervariable

I domain sequences were deposited in GenBank (accession

nos. KY420200–KY420384 and KY420385–KY420569
respectively).

There was no sequence variation observed in ~2500 bp of

ZFY and SRY fragments. However, in 684 bp of DBY

(a Y-chromosomal single-copy sequence) there were seven

polymorphic sites (Table S3) that defined five haplotypes.

Three of these were relatively common (DBY1, DBY2 and

DBY4) compared to two minor haplotypes (DBY3 and

DBY5), which were observed in only two patrilines in SAC,

suggesting that the major haplotypes originated prior to

domestication (Fig. 1a). However, mitochondrial DNA vari-

ation for the same set of individuals had a high degree of

polymorphism, with 64 polymorphic sites and 81 haplo-

types (Table S4) that revealed four well-defined clusters

with Bayesian analysis of population structure (BAPS)

analysis (Appendix S1) that we call d-loop 1, d-loop 2, d-

loop 3 and d-loop 4 (Fig. 1b).

The DBY network reflects a clear divergence between

guanaco–llama and vicu~na–alpaca haplogroups, which are

separated by five mutational steps (Fig. 1a). Specifically, the

near total absence of shared haplotypes between guanacos

and vicu~nas indicates that there is a reproductive barrier

that maintained genetic integrity without hybridization

between wild forms despite past bottlenecks and low

population size some decades ago (Mar�ın et al. 2007b,

2013) and in spite of the observation that crossbreeding

among species produces fertile hybrids in captivity (Gray

1954), as was observed in our alpaca–northern guanaco

hybrid sampled in captivity. Reproductive barriers may also

impede extensive hybridization (Ward et al. 2001). In

contrast, alpacas and llama shared haplotypes, supporting

the idea that hybridization occurred among domestic

camelids during and after domestication and/or after the

Spanish conquest (Wheeler 1995).

The guanaco–llama haplogroup was formed by DBY1,

DBY2 and DBY3. Haplotype DBY1 was observed in one

northern guanaco and 92% of llamas, whereas haplotypes

DBY2 and DBY3 were largely restricted to southern

guanacos (with the exception of one alpaca that had

haplotype DBY2). The occurrence of three haplotypes in the

guanaco and a frequency of 100% of haplotype DBY1 in the

northern guanacos and most of llamas strongly suggest that

llamas are derived from northern populations of guanacos.

Moreover, our results confirm the subspecific differentiation

of guanacos into L. g. cacilensis and L. g. guanicoe (Mar�ın

et al. 2013). Therefore, based on parental lineage patterns,

we propose that the border between L. g. cacsilensis and

L. g. guanicoe occurs around 31° S in Chile. Y-chromosome

patterns may partly reflect the reproductive behaviour of

males, which often dominate a territory for several years

(Young & Franklin 2004), and of females, which largely

have higher mobility across landscape without male control

(Franklin 1983). This behaviour could lead to disparate

patterns between genetic markers (mitochondrial and Y-

chromosome results).

A vicu~na–alpaca haplogroup was formed by DBY4 and

DBY5. DBY4 was found in 95% of the vicu~nas, 92% of the

alpacas, four llamas and one northern guanaco, whereas

haplotype DBY 5 was restricted to only two alpacas

(Fig. 1a). In contrast with guanaco, there was no evidence

of subspecific differentiation among vicu~nas (V. v. mensalis

© 2017 Stichting International Foundation for Animal Genetics, doi: 10.1111/age.12570
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Figure 1 Minimum spanning network representing the relationships among five DBY haplotypes (a) and 81 d-loop haplotypes (b) grouped into four

clusters detected by BAPS (Appendix S1). Each haplotype is represented by a circle and number, with its size proportional to haplotype frequencies.

Colours indicate phenotypic species: dark blue = guanacos; light blue = llamas; green = alpacas; red = vicu~nas.

Figure 2 (a) Relationships among the five DBY haplotypes and four BAPS clusters of d-loop sequences observed in four species of South American

Camelids. DBY1, DBY2 and DBY3 were observed predominantly in guanacos and llamas and DBY4 and DBY5 in vicu~nas and alpacas. The

thicknesses of the lines are proportional to frequency (Table S5). Discontinuous lines depict hybrid individuals, and arrows indicate the direction of

introgression. (b) Proportion and number of pure (following colour scheme of Fig. 1 for phenotypic species) and hybrid individuals. Hybrids are noted

with ♂ to represent the proportion with paternal introgression, ♀ for maternal introgression and ♂ + ♀ to show the proportion (only one individual)

with evidence of paternal and maternal introgression.

© 2017 Stichting International Foundation for Animal Genetics, doi: 10.1111/age.12570
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and V. v. vicugna), as clearly shown by mtDNA data (Mar�ın

et al. 2007b) and here. Mitochondrial and Y-chromosome

patterns probably reflect a more rigid reproductive strategy

by which females are confined to territory actively con-

trolled by the male (Franklin 1983). Absence of differenti-

ation using Y-genes is perhaps a function of sample size, but

a rapid exchange of territorial males and high male mobility

may also be a factor.

The mitochondrial phylogenetic network (Fig. 1b) sug-

gests that the divergence among vicu~na–alpaca maternal

lineages is larger than that observed between the guanaco

and llama. Although relatively few hybrids were observed

among the wild individuals, hybridization was much more

common in domestic individuals, among which 67% of

alpacas had evidence of maternal introgression and 25% of

llamas had patterns consistent with maternal and paternal

introgression (Fig. 2, Table S5).

The SAC represent a unique opportunity for further study

because, unlike what has occurred in many other domestic

livestock, the two wild ancestors of both domestic forms are

still common and co-occur through much of their range

(Wheeler 1995; Gentry et al. 2004). Additional sequence

data from a larger sample of individuals is needed to better

understand the chronology of domestication, hybridization

and geographic patterns of Y-chromosomal variation, espe-

cially from domestic and wild populations near Peru,

Argentina and Bolivia where domestication is presumed to

have happened. These data will likely be relevant for the

genetic management of SAC populations, especially for

alpacas, which have experienced significant declines in fibre

quality that have been linked to increased hybridization

(Wheeler et al. 1995). The differences between maternal and

paternal genetic introgression patterns reported here may be

the consequence of deliberate hybridization by breeders of

alpaca males with llama females, probably to increase body

size and fleece weight, followed by subsequent backcrossing

with alpaca males to improve the fibre fineness (Kadwell

et al. 2001). The patterns observed here should be confirmed

with additional individuals of known origin and additional

genetic markers. Given the extreme maternal introgression

observed in present-day alpacas, the pattern of Y-chromo-

somal variation has been important to confirm independent

domestications of llama from guanaco and alpaca from

vicu~na. Our results provide strong support for the hypothe-

ses that domestic camelids descended from wild camelids and

not an extinct form (L�opez-Aranguren 1930; Cabrera 1932)

or that hybridization between llama and vicu~na produced

the alpaca (Hemmer 1990). Finally, our findings highlight

the importance of analysing both maternally and paternally

inherited loci to obtain a comprehensive understanding of

geographic structure in wild camelids and the domestication

of these species, which a have been essential to the lifestyle

and economy of the Andean peoples.
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