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Abstract—A new method for attack detection of smart
grids with wind power generators using reservoir comput-
ing (RC) is introduced in this paper. RC is an energy-efficient
computing paradigm within the field of neuromorphic com-
puting and the delayed feedback networks (DFNs) imple-
mentation of RC has shown superior performance in many
classification tasks. The combination of temporal encoding,
DFN, and a multilayer perceptron (MLP) as the output read-
out layer is shown to yield performance improvement over
existing attack detection methods such as MLPs, support
vector machines (SVM), and conventional state vector es-
timation (SVE) in terms of attack detection in smart grids.
The proposed algorithms are shown to be more robust than
MLP and SVE in dealing with different variables such as
the amplitude of the attack, attack types, and the number
of compromised measurements in smart grids. The attack
detection rate for the proposed RC-based system is higher
than 99%, based on the accuracy metric for the average of
10 000 simulations.

Index Terms—Attack detection, delayed feedback
networks (DFNs), neuromorphic computing, reservoir com-
puting (RC), smart grids, state vector estimation (SVE),
temporal encoder.

I. INTRODUCTION

ENERGY harvesting from renewable resources, such as
solar and wind, is gaining lots of attention from both

academia and industry, especially with the ongoing increase
in the world’s power demand and the recent advancements in
this field. Energy harvesting technologies are foreseen to power
smart grid elements by up to 80%, including smart meters and
sensors, which will significantly reduce battery replacement
costs and the ongoing maintenance costs of smart grids. Fur-
thermore, renewable energy will significantly reduce the fos-
sil fuel power generation leading to a greener and sustainable
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environment. A solar panel of size 121 centimeters (cm) by
53.6 cm or a wind turbine with a rotor of 1 meter (m) in diameter
under an 8 m/s wind speed can generate 100 watt (W) of electric
power [1]. Even though energy harvesting and renewable energy
seem appealing for smart grids, they have several drawbacks and
complications that unless addressed, very limited benefits can
be gained from them [2]. Both wind and solar harvesting are
unreliable as primary sources of power generation [3]. Energy
harvesting should only be used as a supplementary source of
power, where it can assist in reducing the power plant generation
costs, carbon emissions, and fossil-based systems[2], [4], [5].

In this paper, we use wind turbines as a major source of
electrical power generation for smart grids. The first wind tur-
bine dates back to 1887, which had a peak power production of
12 kilowatts (KW) [6]. Since then, technological advancements
have enabled a greater power generation, higher electrical con-
version efficiency, and lower cost per kilowatt.

Cybersecurity is essential for ensuring the overall reliability
of smart grids. Among possible cyber-attacks, the most critical
one is the false data injection (FDI) [7]. Adversaries can launch
these attacks by compromising smart meters to introduce ma-
licious measurements.1 If these malicious measurements affect
the outcome of the state estimation, they can mislead the power
grid control algorithms, possibly resulting in catastrophic conse-
quences such as blackouts in large geographic areas. Therefore,
attack detection is the most essential step for minimizing the
damages resulting from the FDI. The efficiency and effective-
ness of FDI detection can have a significant impact on the overall
performance of smart grids. Feedforward neural networks have
been applied on FDI detection but they did not yield good results
because the spatio-temporal correlation of data is not considered
in training [7].

On the other hand, it is found in [8] that recurrent neural
networks (RNNs) are capable of exploiting the underlying cor-
relation within the data. It was shown that under fairly mild
and general assumptions, RNNs are universal approximations
of dynamic systems. However, training a fully connected RNN
in many cases is very difficult or even impossible [9]. Due to
the difficulty of training traditional RNNs, reservoir comput-
ing (RC) recently attracted a lot of attention due to its simple
training methods [10], [11]. Liquid state machine (LSM) [8]
and echo state networks (ESNs) [12] are two most popular RC
systems. The difference between LSM and ESN is that, LSM

1There are many online YouTube videos teaching how to hack smart meters.
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uses spiking trains as the input, which has to be encoded by
temporal or other encoding schemes, on the other hand ESN
deals with regular data that is not a spike [8], [12]. In gen-
eral, a typical RC system is composed of three different layers:
the input layer, the reservoir, and the readout/output layer. The
reservoir is mainly composed of randomly connected neurons
where the weights of the connections between neurons stay un-
changed during the training. The readout/output layer uses a
linear combination of the reservoirs to produce the desired out-
put [12], [13]. It has been shown in [12] and [14] that RC sys-
tems achieve better performance than traditional RNNs in many
applications.

It is observed that delayed feedback networks (DFNs) are also
capable of acting as RC systems [15]. The set of sparsely con-
nected neurons (reservoirs) in LSM and ESN are replaced by a
nonlinear node. This approach not only simplifies the structure
of RC systems but also demonstrates a very significant compu-
tational efficiency [15]. The parallelism that exists in many other
structures of artificial neural networks may simply be changed
by a nonlinear node in which the input is inserted into that node
[15]. It has been demonstrated in [16] that DFN performs very
similar to other RC systems. The delayed networks with feed-
back system creates short term dynamic memory, which enables
the network to mimic transient neural responses [17]. Transfer
functions are the mathematical representations of the correlation
between the input and output signals. In RC, nonlinear transfer
functions are used to achieve the desired nonlinear mapping.
Inspired by the Mackey–Glass function, we have designed an
analog delay-based reservoir node with compact delay [18].
Similar to traditional delayed feedback reservoir designs, the
introduced delayed feedback reservoir also consists of a single
nonlinear node with a delay loop. The spiking nonlinear neural
node serves the same purpose as well because the input of the
delayed feedback reservoir is mapped nonlinearly to a higher
dimensional space.

Several schemes have been introduced to encode the neural
information. Rate encoding and temporal encoding are the two
most popular ones [19]. In rate encoding, a code consists of
a number of spikes occurring in a time frame after the stim-
ulus appears [20]. Temporal encoding is subdivided into three
main groups: latency code, interspike intervals, and phase of
firing [21]. In latency code, the time in which the first spike
occurs is used for encoding [20]. Interspike interval coding is
another scheme that uses the intervals between different spikes
for encoding [21], [22]. In the temporal encoding using phase of
firing, the phase of the local field power is used to encode the
information [23]. Studies show that interspike interval encoding
carries more information than rate encoding [24], [25]. There-
fore, in this paper, we use interspike interval temporal encoding
as the encoder of our RC systems.

Equipped with the platform of analog spiking RC architec-
ture, we will be able to conduct anomaly detection in cyber
physical systems efficiently and effectively using RC. To be
specific, in this paper, we show that by using DFNs and MLPs
it is possible to efficiently and effectively detect attacks in smart
grids. Compared to existing attack detection algorithms in smart
grids, our introduced design shows a great deal of robustness

with respect to various attack variations. The main contributions
of this paper are the following:

1) First, to the best of our knowledge, this is the first work to
introduce the concept of RC for attack detection in smart
grids. It is shown through simulations that the RC-based
attack detection performs better than existing approaches.
Furthermore, the accuracy of the attack detection of the
RC-based approach is insensitive to attack variations such
as the magnitude of the attack and the number of com-
promised meters.

2) Second, we modify the DFN so that it is able to take
spike trains as the input. Note that spike encoding is
more biologically plausible and very similar to the way
that information is encoded in our brains. Several modi-
fications are conducted on the existing DFN architecture
in the literature: 1) A block is added to convert the spike
train into analog signals before the nonlinear node and in
the feedback loop. 2) The leaky-integrate and fire (LIF)
neuron model is introduced as the nonlinear node in the
DFN tailoring toward the input spike train.

3) Third, a multilayer preceptron is introduced as the readout
layer that can deal with both nonlinear data and classifi-
cation tasks.

We will show that the average attack detection rate based on
the accuracy metric for 10 000 simulations will be above 99%.
This paper is organized as follows. Section II reviews the related
works in smart grid security. Section III the proposed design will
be described; in Section IV the simulation results are presented
and compares the results of the proposed algorithm with current
existing methods and we will discuss why our proposed method
outperforms the other methods in literature. Section V concludes
the paper.

II. RELATED WORK

FDI problem in smart grids was first introduced in [26]. In
[27], a summary of all the proposed methods for FDI detection
and the advantages and disadvantages of each methods is pre-
sented. Tan et al. [28] present a survey of the recent data driven
approaches in smart grid security. So far, many algorithms have
been introduced for FDI in smart grids. Within these meth-
ods, the state vector estimation (SVE) [26] is among the first
introduced algorithms. Machine learning techniques have also
been introduced to FDI detection of smart grids. To be specific,
feedforward neural network, K-nearest neighbor, support vector
machines (SVM), and sparse logistic regression have been ap-
plied to FDI detection recently [7]. However, most of these tech-
niques rely on manually chosen meta-parameters/parameters for
the corresponding model. Even though the feedforward neural
network allows for certain autonomy, its performance is usually
strictly suboptimal when dealing with correlated data. Machine
learning approaches show better results than support vector es-
timation methods when applied on IEEE test systems [29]. The
effectiveness of the Precision Measurement Units have been ex-
tensively investigated in order to improve the performance of
SVE [30], [31]. Extended distributed state estimation (EDSE)
was studied by Cramer et al. [32]. EDSE uses graph partition
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Fig. 1. RC System[15].

Fig. 2. Hardware implementation of delayed feedback reservoir
system.

algorithms to divide each power system to several subsystems
and in each subsystem three main categories are considered for
the buses: boundary bus, internal bus, and adjacent bus. EDSE-
based methods show better performance than the traditional
state estimation methods. In [33], the compromised nodes are
detected through the analysis of the existing relationship be-
tween the physical properties of the power system and FDI.

III. RC DESIGN FOR ATTACK DETECTION IN SMART GRIDS

A. Realizing RC Using DFN

Fig. 1 shows the structure of a RC system. The only differ-
ence between traditional RC models such as ESN and LSM and
DFN is in the reservoir layer [13]. As it can be seen in Fig. 1,
the reservoir layer in traditional models of RC contains neu-
rons, which are sparsely connected using recursive connections,
however, in the DFN there is only one nonlinear node and the
output or the state of this nonlinear node is shifted in time in
order to produce the states of other nodes or virtual nodes [16].
Fig. 2 illustrates the structure of the DFN used in this paper. The
first layer is the input layer in which the temporal encoder used
in [19] is applied. The temporal encoder details are explained
in Section III-B. The data used consists of 10 000 vectors of
measurements extracted from MATPOWER 5.1 [34]. Half of
the measurements were attacked by a random Gaussian vector.
The variance of the attack is set to 0.05. The vector of the com-
bined attacked and nonattacked data are saved and the temporal
encoder is applied on the data. For any sample in that vector,
a corresponding spiking train is produced. In this way, we are
able to convert the measurement matrix extracted from 57 buses
to its corresponding temporal code. The size of the measure-
ment matrix coming from the MATPOWER is 137 due to the

fact that several meters will be on the same bus. In the next
step, these spikes are applied on the nonlinear node of the DFN.
There are several design choices for the nonlinear node. Since
we are interested in spiking neural networks, the input node of
the reservoir layer will be a LIF neuron [35]. These produced
spikes will have to be converted to an analog current before be-
ing applied to the LIF neuron. A corresponding spike train will
be generated for any analog current applied to the LIF neuron.

Delay exists in almost all the systems with dynamics. In-
evitably, delays may even occur in the brains when information
is transmitted from one neuron to the other. Delay differential
equations are used to mathematically represent delayed sys-
tems[36]. For any delayed systems, the dynamics of the system
depend not only on the current states but also on previous states.
Such systems exhibit the characteristics of high dimensionality
and short term memory, which are the two prerequisites for any
RC systems[37].

Compared to the traditional RC systems, delayed feedback
RC has practically similar performance [15]. Different from the
traditional reservoir, delayed feedback reservoir is constructed
by a single nonlinear node and a delay loop. Output from the
reservoir will undergo a training process in which a training
algorithm is employed. The objective of the training is to ensure
that the weighted sum of the state approaches the target output
value. The input is injected directly to the nonlinear node. In or-
der to compensate the loss of parallelism, a masking procedure
is carried out before the nonlinear node. During the masking
procedure, the input signals are scaled whereby they will be in
the transient regime [15]. After the masking procedure, the sig-
nals are then transferred to the nonlinear node where the non-
linear mapping takes place. Similar to the traditional RC, the
output weight connections are the only trained weights.

Inspired by the delayed feedback reservoir, we introduce an
analog hardware implementation of the delayed feedback RC
system with the capability of processing spike-based signals
directly. With the analog implementation, the use of periph-
eral components, such as analog-to-digital and digital-to-analog
converters, is avoided when interfacing with analog signals. In
general, analog implementation has the advantage of implicit
real-time operation, resulting in small design area and low power
[38]–[40]. In our design, the spike train produced by the LIF
neuron is shifted 10 milliseconds (ms) in time to produce the
state of the second node in the reservoir. This process is repeated
four times until we obtain a different state. Before signals are
injected into the nonlinear node, information is usually encoded.

In general, there are two types of encoding strategies: rate
encoding and temporal encoding. Rate encoding scheme ensures
that the input information is represented by the number of spikes,
whereby other spike characteristics are ignored. On the other
hand, temporal encoding encodes information into the inter-
spike intervals. Using temporal encoding, analog signals will be
encoded into spike-based information, which not only possess a
compact form but also are energy efficient. In our design, we use
temporal encoding and an iterative structure is adapted in the
temporal encoder where the number of neurons and the number
of spikes are in an exponential relationship. In this way, less
neurons would be needed to achieve the same number of spikes.
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Fig. 3. Interspike intervals [19].

The temporal encoder ensures that only one neuron is in the
dynamic mode in which the power consumption is greatly re-
duced. Our introduced temporal encoder has been fabricated
using 180 nm CMOS process and symmetry scheme to maxi-
mize the die area utilization. Our design not only employs the
internal verification technique, but also uses the output temporal
code, which exhibits high error-tolerance mechanism achieved
via exploiting the additional inspection spikes. Apart from pos-
sessing high accuracy, the introduced neuron also exhibits low
power consumption when compared to other state-of-the art
neuron designs [17]. We could extract five different states for
every sample in the measurement matrix. These states will be
used to train a multilayer perceptron (MLP). The feature used
for training the MLP is the times at which spikes are occurring
for the corresponding state of every sample. Since half of the
samples are attacked, the corresponding label of the attacked
data for training the reservoir state is considered as one and
zero otherwise. After the MLP was trained by the training data,
the test data are then used to evaluate the performance of the
system.

B. Temporal Encoder

The encoder introduced in [19] serves as the temporal encoder
of our design. The corresponding inter-spike intervals can be
expressed as follows

Di = f (Ci, Vi) − f (Ci−1, Vi−1) . (1)

The function f(X,Y ) is expressed as

f (Ci, Vi) = (Ci+1) [β (Vi − γ) + θ] (2)

where the parameters specify the characteristics of the encoder,
such as charging and refractory periods. Ci and Vi are the pa-
rameters of membrane capacitance and threshold firing voltage
of the temporal encoder, respectively.

Using the above temporal encoder, any sample in the mea-
surement matrix is encoded in the interspike interval distances,
Di . There may be different number of intervals based on the
number of neurons used in the temporal encoder for any sam-
ple. In this experiment, for the sake of simplicity, we choose
the number of neurons in the encoder to be N = 3, which re-
sults in four different spikes, X1 to X4 or three intervals D1 to
D3 which can be seen in Fig. 3. Due to the following equation
mentioned in [19], there is a relationship between the number of
spikes produced and the number of neurons used in the temporal
encoder:

SN = 2N −1 (3)

where, SN is the number of spikes produced by the temporal
encoder and N is the number of neurons used in the encoder.

C. Smart Grid Attack Detection Formulation

Smart grids are used to make a reliable power transmission
network and connection between consumers and generators.
They are really vulnerable to cyber-attacks, and thus, it is a very
important and challenging task to provide a secure network of
smart grids [41]. MATPOWER 5.1 can be used to produce the
smart grids’ measurement matrix [42]. MATPOWER allows the
users to run the toolbox with different numbers of buses. In our
experiment, the number of buses is set to 57 resulting in 137
different measurements. Note that it is pointed out in [7] that the
parameter that really impacts smart grid attack detection is the
number of compromised meters instead of the number of buses.
The reason that we pick 57 is because this number is almost in the
middle of the range of the number of the buses that is provided
by MATPOWER. This configuration will result in 137 meters,
which is large enough for us to study the effect of different
number of the attacked meters in that configuration [43].

The system model that is used to study the attack detection
in smart grids is defined in [26]

z = Hx + n. (4)

The measurement vector, which is the output of different me-
ters on the buses is z; H is the state vector; x is the voltage
phase of the buses; and n is the environment noise. When attack
is present, an attack vector, a, is added to the measurement.
Accordingly, the measurement, z̆, becomes

z̆ = Hx + a + n. (5)

We assume that the attack is a Gaussian random vector with
0.05 variance [43].

SVE is the first method introduced to perform attack detection
for smart grids. This method consists of calculating a residual
stated as ρ. If the value of ρ exceeds a predefined threshold value,
it is said that the z vector has been attacked and the meters are
compromised [26].

ρ = ‖z̆ − Hx̂‖2
2 (6)

where x̂ is the vector estimated using SVE algorithm. x̂ is then
estimated as follows:

x̂ = (HT ∧ H−1)HT ∧ z. (7)

The only action that has to be done in SVE algorithm is to
estimate the x̂, and to do so, ∧ needs to be calculated, where ∧
is defined as a diagonal matrix with its diagonal elements are the
reciprocals of the variance of the measurements. For example,
the jth diagonal element of the ∧ is equal to the reciprocal of
the variance of the jth element of the z. SVE method is a very
simple method for implementation but it has many shortcomings
with different attack situations [26].

In the case where a = HC, the attack is hidden (see
Appendix A). It means that SVE is incapable of detecting the bad
measurements [26]. In the case of hidden attacks, the residual
value is less than the threshold and the attack cannot be detected
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by SVE. In order to perform a hidden attack, the cyber attacker
has to have access to at least a specific number of attacks. In
[26], it has been shown that it is not possible for the attacker
to choose any arbitrary c and multiply it by H to perform the
hidden attack. This means that in order to make a hidden attack,
the attacker has to have access to at least k measurements, in
which k > m − n where m is the number of meters and n is
the number of buses. In our system, m = 137 and n = 57. In
this case, m − n = 80 meaning that with high chance the attack
will be a hidden or stealth attack when there are more than 80
compromised measurements in our smart grid network. Under
this scenario, the SVE becomes an inefficient attack detector.

D. Modeling the Wind Power Generators in MATPOWER

MATPOWER can also be used to study renewable energy,
especially wind powers [44]. There are six power generators
for a 57-bus smart grid network. It is possible to substitute the
power of these generators with the power obtained from wind
power generators. Accordingly, (8) gives the power produced
by a wind power generator as the source of energy [45]

Pavail = 1/2ρAv3CP (8)

where Pavail is the power converted from wind; ρ is the air
density, which is assumed to be equal to 1.23 kg/m3; A is the
sweep area of the wind turbine blades; v is the speed of the
wind; and CP is the coefficient of the power. Albert Betz, a
German physicist, has shown that the maximum value for the
power coefficient is equal to 0.59. This is called Betz Limit
or Betz Law. Based on that, the performance of a wind power
generator cannot exceed 0.59 [46]. In this study, the value of CP

is set to 0.4 while the area of the generator is set to 8495 m2, six
different values ranging from 0 to 12 m/s are used for the wind
speed. These power values are inserted in the MATPOWER to
produce H matrix [46].

E. Smart Grid Attack Detection Using DFN and MLP

The FDI problem can also be formulated as a classification
problem. So far, many machine learning algorithms have been
suggested to deal with this problem [47]. To the best of our
knowledge, this problem has never been studied from RC’s point
of view. We are the first to study this problem using RC methods.
In the FDI problem we face two classes of data: attacked data
and nonattacked data, we can assign two different labels for
these two classes and figure out the classification of data.

In this experiment, two different sets of data are used. The data
which has been attacked by a hidden attack and the data, which
its measurements have been attacked by direct or nonhidden
attack vectors. The experiments are performed on 1000 samples
and the experiments are repeated 10 times. The first step is to
encode z using the temporal encoder. Then, every spike train
extracted from the temporal encoder is converted to an analog
current. In [48], an equation was introduced to convert the spike
trains to the analog current

Ii =
∑

tj

K
(
t − tj

)H (
t − tj

)
(9)

Fig. 4. Average DFN states for attacked and nonattacked data.

where H is the Heaviside function; Ii is the analog current of
the ith sample in the z; and tj is the time of occurrence of the jth
spike in the corresponding spike train of the ith sample achieved
from the temporal encoder [48]; and

K(t − tj) = V0
(
exp(−((t − tj )/τs)) − exp(−((t − tj )/τf ))

)

(10)
where τs is set to 10 ms and τf to 2.5 ms. The values of τs

and τf have to be chosen somehow that τs/τf = 4. V0 is a
normalization factor to make sure that the maximum value of
kernel does not exceed one [48].

Up to now what we can generate analog current signals
from (9) and (10) corresponding to the temporal codes extracted
from the temporal encoder. The next step is to apply these current
on the DFN to produce the corresponding states. As mentioned
in Section III-A, the nonlinear node of the DFN is chosen to
be an LIF neuron. The analog current signals for the attacked
samples and nonattacked samples were applied to the DFN. The
output of the LIF neuron is shifted 10 ms in time to produce the
state of the first virtual node. This process is repeated in four
times until we obtain four virtual nodes. Note that the state of the
fourth virtual node is shifted 40 ms compared to the nonlinear
node. Then, the state of the fourth virtual node is multiplied by
0.8, which is the feedback gain, and is then added to the new in-
coming analog current. Now for both attacked and nonattacked
samples, five different states are generated. Fig. 4 shows the
average total state of attacked and nonattacked samples.

From Fig. 4, it is clear that the timing of the spikes for the
average states of the two data classes are very different. It can
be seen that average spikes produced for the attacked samples
are more likely to fire at smaller times and the ones fired for
nonattacked samples are more likely to fire at larger times.
Furthermore, it is possible to use these timings as a feature to
classify these two groups. Therefore, in the next step we utilize
an MLP and train the MLP with these features [49].

F. Training an MLP With the Timing of Spikes

As demonstrated in [15], the readout layer can be trained with
a linear algorithm. In the introduced training algorithm in [15],
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Fig. 5. Error Plot for training an MLP with DFN states spikes timings.

a weight was assigned to the every state extracted from the DFN
in a way that the desired output values can be estimated with the
least possible error. The following expression provides a good
summary of the training algorithm in [15]

ŷ(k) =
N∑

i=1

wi × x [kτ − τ/N(N − i)] (11)

where ŷ(k) is the estimated output; wi is the connection weight;
x is the state vector; and N is the number of states. The above
algorithm is linear and not iterative so it won’t be very precise.
Therefore, in our RC-based attack detector, we adopt an MLP
for output estimation. The algorithm used for training the MLP
is backpropagation. The label of y is set to 1 for training the
samples being attacked and 0 for the samples not being attacked.
The time in which attacks spikes happen for different states are
saved in a vector and are used as features for training the MLP.
The MLP is trained with two different hidden layers and one
output layer. The desired output for the attacked sample is 1
otherwise it is 0. As it can be seen in Fig. 5, the MLP is trained
after 82 iterations. Then, the weights are saved to be applied on
the test data to evaluate the performance of the system. In the
next step, SVE algorithm, MLP, and SVM are applied on the
samples to compare against the performance of our introduced
RC-based attack detection strategy. We use Gaussian radial basis
function as the kernel of the SVM classifier (see Appendix B
for details) [43].

As it can be seen in Fig. 5, the training mean square error
(MSE) reduces to 0.016, which indicates that MLP is capable
to distinguish between the states spike timings of the attacked
data and the nonattacked data. The learning rate is set to 0.01
and momentum factor to 0.5. If the output value is greater than
0.5, it is considered as 1, else it is considered as 0. In that
sense, the training accuracy is almost 100%, meaning that almost
100% of the samples are classified accurately as attacked and
nonattacked. In order to quantify the detection performance, the
accuracy metric is defined in (12). We used 50% of the samples

Fig. 6. Accuracy of the SVE.

for training and the rest are saved for testing and validation.
The results of applying the DFN algorithm are presented in
Section IV. Fig. 7 shows the block diagram of our RC-based
attack detection algorithm.

G. State Vector Estimation

As mentioned in Section III-C, ρ = ‖z̆ − Hx̂‖2
2 needs to be

computed for SVE. If the value of ρ exceeds a predefined thresh-
old value, it is said that an attack has occurred, nonattack is de-
tected otherwise [26]. Accordingly, we can calculate the value
of ρ when the measurement vector is attacked by the same at-
tack vector mentioned in the previous section. The value of ρ
achieved for attacked vectors with different number of com-
promised measurements is used to evaluate the performance of
SVE. However, we show in the next section that there are some
drawbacks with SVE. The performance metric used to evaluate
the detection performance is the accuracy, which is defined as

Accuracy = (TP + TN) / (TP + TN + FP + FN) (12)

where TP, TN, FP, and FN correspond to the number of true
positive, true negative, false positive, and false negative samples,
respectively.

The attack detection performance of SVE can be clearly seen
in Fig. 6. As seen in the figure, the accuracy of SVE is severely
affected by the number of compromised measurements even
when the attack is not hidden. This is due to the fact that the
performance of SVE depends heavily on the residual value.
When the number of compromised measurements is small, the
accuracy of the SVE drops significantly. In Section IV, we will
show that this issue can be completely resolved by the introduced
RC-based DFN+MLP attack detector.

IV. PERFORMANCE EVALUATION

As it was mentioned in Section III only 50% of the data
are used for training and the rest is saved for test and vali-
dation. In this section, we will detail the performance evalua-
tion of the three aforementioned algorithms: RC-based method
(DFN+MLP), MLP, and SVM. We have totally 5000 samples
for testing and validation. Half of them are attacked and half
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Fig. 7. Block diagram of the proposed DFN+MLP system for attack detection.

Fig. 8. Accuracy of direct attack detection for three different methods, a = 0.1,1,10.

Fig. 9. Accuracy of hidden attack detection for three different methods, a = 0.1,1,10.

of them are not. As the main evaluation results, Figs. 8 and 9
show the accuracy of the proposed method for the two types of
attacks in smart grids, hidden and direct, as a function of the
attack magnitude a. Three different values of the attack mag-
nitude are used: a = 0.1, a = 1, and a = 10. Note that since
SVE is not capable of detecting hidden attacks [26], we did not
evaluate its performance in Figs. 8 and 9.

From the figures, we can clearly observe that the performance
of both MLP and SVM are very sensitive to attack magnitudes
as well as the number of attacked meters. Unlike SVE, both
MLP and SVM can detect hidden attacks. However, their detec-
tion performances are very sensitive to attack parameters. For
example, the accuracy of both MLP and SVM increases as the
attack magnitude increases. This means that MLP and SVM can
detect attacks accurately when attacks have large magnitudes.

However, when attacks have small magnitudes, MLP and SVM
will detect attacks with less certainty. To be specific, for the
case of MLP, the accuracy is 100% when the magnitude of the
attack is 10 and can be as low as 70% when the attack mag-
nitude is 0.1. This is not very desirable for attack detection in
smart grids where the attack magnitude can be arbitrary. For the
RC-based DFN+MLP method, we can see that the variations of
attack magnitude do not cause any significant change to the ac-
curacy. To be specific, the accuracy variation due to the change
in attack magnitude is very small for RC-based approach and
the accuracy is close to 100% in all attack magnitudes. This
clearly suggests that the attack detection performance of the
RC-based approach is robust under different attack magnitudes.
Figs. 8 and 9 also show the accuracy as a function of the number
of compromised meters for different attack detection strategies.
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As discussed in Section III-C and Section III-G, SVE is not
capable of detecting hidden attacks, therefore, we did not eval-
uate its performance in Figs. 8 and 9. From the figures we can
see that the introduced RC-based approach is much more robust
than the MLP and the SVM method under different number of
compromised meters. Furthermore, comparing the two figures,
we can observe that unlike existing detection strategies (SVE,
MLP, and SVM) the RC-based DFN+MLP method provides
uniform performance under different attack methods (direct and
hidden). In this study, 50% of the samples are attacked and
the rest not, which means we are dealing with a balanced data
set and if the number of attacked and nonattacked samples are
significantly different the data set is imbalanced [43]. The im-
balanced data set is very likely to compromise the performance
of the learning algorithm [50]. In such scenarios F1 score is
used to evaluate the performance of the learning algorithm [43],
[51]. F1 measure can handle the imbalanced data. In [43] the
detection performance evaluation is studied for both balanced
and imbalanced data set extracted from IEEE 30-bus system.

F1 = (2TP) / (2TP + FP + FN) . (13)

In that study [43], the performance plots , accuracy for balanced
data set and F1 measure for the imbalanced data set, do not show
any meaningful difference.

V. CONCLUSION

In this paper, we introduced a RC-based (DFN+MLP) at-
tack detection strategy for smart grids. The introduced method
constitutes of three main steps. The first step is encoding the
measurement vector with temporal encoder and converting the
produced spikes to their corresponding analog currents. In the
second step, these analog currents are applied on an LIF neuron
and shifted in time to produce the sates of virtual nodes. The out-
put of the fourth virtual node is multiplied by a feedback gain and
added to the new incoming data in order to preserve the recurrent
nature of the DFN. The spiking times of these states are used to
train an MLP for classification. Simulation results have shown
that this algorithm can robustly detect attacks under different
attack variations such as magnitudes and the number of com-
promised meters compared to existing methods such as SVE,
MLP, and SVM. It is also important to note that this paper is
the first effort to solve FDI problems in smart grids through RC.
The proposed model can be applied on any classification task
that there is spatio-temporal correlation between the samples of
the data set. In our next work we will show that we have been
able to apply this model successfully on face recognition task
from video frames. Since there are spatio-temporal correlations
among the meters in smart grids, RC-based attack detection can
take full advantage of this spatio-temporal correlation yielding
a better performance compared to existing solutions.

APPENDIX A

ρ = ‖z̆ − Hx̂‖
= ‖z + a − H(x + (HT ∧ H)−1HT ∧ a)‖

= ‖z − Hx + (HC − H((HT ∧ H)−1HT ∧ HC)‖
= ‖z − Hx + (HC − HC)‖
= ‖z − Hx‖ ≤ τ (14)

where, τ corresponds to the threshold of detection.

APPENDIX B

SVM is a binary classifier. It tries to find two parallel hyper-
planes that maximizes the margin between two classes.

{
wT si + b = +1 if yi = +1
wT si + b = −1 if yi = −1

(15)

where yi is the label of each class; si is each data point, and
w is the weight matrix that has to be found by SVM [43].
Margin is the region in between the two hyperplanes and the
weights have to maximize this margin. The margin is defined
as D = 2/wT w. In order to have the maximum margin, the
following optimization problem has to be solved by the SVM

minw
1
2
wT w (16)

s.t.yi(wT si + b) ≥ 1, i = 1, 2, . . . , m. (17)

The Lagrangian optimization has to be used to find b and w [43]

L(w, b, α) =
1
2
wT w −

m∑

i=1

αi [yi(wT si − b) − 1]. (18)

In (17) α corresponds to Lagrange multilpier. The Lagrange dual
can be replaced by (17) because (17) satisfies Karush–Kuhn–
Tucker conditions as

L(α) =
m∑

i=1

αi − 1
2

m∑

i,j=1

yiyjαiαj s
T
i sj (19)

s.t.
m∑

i=1

αiyi = 0. (20)

This solution works for linearly separable data samples, but
when the data points are not linearly separable sT

i sj has to be
replaced by a kernel function, K(si, sj ) [43] as

K(si, sj ) = φ(si)T φ(sj ) (21)

where φ is a function that maps the data points to higher dimen-
sion in order to make them linearly separable. In this paper, we
use Gaussian radial basis function as the kernel

K(si, sj ) = e−λ||si −sj ||2 . (22)
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