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Abstract We prove existence of Abrikosov vortex lattice solutions of the Ginzburg-
Landau equations of superconductivity, with multiple magnetic flux quanta per
fundamental cell. We also revisit the existence proof for the Abrikosov vortex lat-
tices, streamlining some arguments and providing some essential details missing in
earlier proofs for a single magnetic flux quantum per a fundamental cell.
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1 Introduction

1.1 The Ginzburg-Landau equations. The Ginzburg-Landau model of supercon-
ductivity describes a superconductor contained in � ⊂ R

d , d = 2 or 3, in terms of a
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complex order parameter � : � → C, and a magnetic potential A : � → R
d .1 The

Ginzburg-Landau theory specifies that the difference between the superconducting
and normal free energies2 in a state (�, A) is

E�(�, A) :=
∫

�

|∇A�|2 + | curl A|2 + κ2

2
(1− |�|2)2, (1.1)

where∇A is the covariant derivative defined as∇−iA and κ is a positive constant that
depends on the material properties of the superconductor and is called the Ginzburg-
Landau parameter. In the case d = 2, curl A := ∂A2

∂x1
− ∂A1

∂x2
is a scalar-valued function.

It follows from the Sobolev inequalities that for bounded open sets �, the energy E�

is well-defined and C∞ as a functional on the Sobolev space H 1.
The critical points of this functional must satisfy the well-known Ginzburg-

Landau equations inside �:

�A� = κ2(|�|2 − 1)�, (1.2a)

curl∗ curl A = Im(�̄∇A�). (1.2b)

Here �A = −∇∗A ∇A, ∇∗A and curl∗ are the adjoints of ∇A and curl. Explicitly,

∇∗A F = − div F+iA·F , and curl∗ F = curl F for d = 3 and curl∗ f =
(

∂f
∂x2

,− ∂f
∂x1

)
for d = 2.

The key physical quantities for the Ginzburg-Landau theory are

• the density of superconducting pairs of electrons, ns := |�|2;
• the magnetic field, B := curl A;
• the current density, J := Im(�̄∇A�).

Let κc = 1√
2
. All superconductors are divided into two classes with different

properties: Type I superconductors, which have κ < κc and exhibit first-order phase
transitions from the non-superconducting state to the superconducting state, and Type
II superconductors, which have κ > κc and exhibit second-order phase transitions
and the formation of vortex lattices. Existence of these vortex lattice solutions is the
subject of the present paper.

1.2 Abrikosov lattices. In 1957, Abrikosov [1] discovered solutions of (1.2a) in
d = 2 whose physical characteristics ns , B, and J are (non-constant and) peri-
odic with respect to a two-dimensional lattice, L, whilst independent of the third
dimension, and which have a single flux per lattice cell.3 We call such solutions the
(L−)Abrikosov vortex lattices or the (L−)Abrikosov lattice solutions or an abbrevia-
tion of thereof. (In physics literature they are variously called mixed states, Abrikosov
mixed states, Abrikosov vortex states.) Due to an error of calculation Abrikosov

1The Ginzburg-Landau theory is reviewed in every book on superconductivity and most of the books on
solid state or condensed matter physics. For reviews of rigourous results see the papers [7, 9, 16, 24] and
the books [14, 17, 22, 23]
2In the problem we consider here it is appropriate to deal with Helmholtz free energy at a fixed average
magnetic field b := 1

|�|
∫
�

curl A,where |�| is the area or volume of �.
3Such solutions correspond to cylindrical geometry.
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concluded that the lattice which gives the minimum average energy per lattice cell4 is
the square lattice. Abrikosov’s error was corrected by Kleiner, Roth, and Autler [18],
who showed that it is in fact the triangular lattice which minimises the energy.

Since their discovery, Abrikosov lattice solutions have been studied in numerous
experimental and theoretical works. Of more mathematical studies, we mention the
articles of Eilenberger [13], Lasher [19], Chapman [6] and Ovchinnikov [21].

The rigourous investigation of Abrikosov solutions began soon after their discov-
ery. Odeh [20] sketched a proof of existence for various lattices using variational and
bifurcation techniques. Barany, Golubitsky, and Turski [5] applied equivariant bifur-
cation theory and filled in a number of details, and Takác̆ [25] has adapted these
results to study the zeros of the bifurcating solutions. Further details and new results,
in both, variational and bifurcation, approaches, were provided by [11, 12]. In par-
ticular, [12] proved partial results on the relation between the bifurcation parameter
and the average magnetic field b (left open by previous works) and on the relation
between the Ginzburg-Landau energy and the Abrikosov function, and [11] (see also
[12]) found boundaries between superconducting, normal and mixed phases.

Amongst related results, a relation of the Ginzburg-Landau minimisation problem,
for a fixed, finite domain and external magnetic field, in the regime of κ → ∞, to
the Abrikosov lattice variational problem was obtained in [2, 4].

The above investigation was completed and extended in [26, 27]. To formulate the
results of these papers, we introduce some notation and definitions. For a lattice L ⊂
R

2, we denote by �L and |�L| a fundamental lattice cell and its area, respectively.
Next, assuming a single flux per fundamental lattice cell, we define the following
function on lattices L ⊂ R

2:

κc(L) :=
√

1

2

(
1− 1

β(L)

)
, (1.3)

where β(L) is the Abrikosov parameter, see e.g. [26, 27], defined as

β(L) := 〈|φ|4〉�L

〈|φ|2〉2
�L

, (1.4)

where 〈f 〉� denotes the average, 〈f 〉� = 1
|�|
∫
�

f, of a function f over � ⊂ R
2 and

φ is the solution to the problem

(−�a1 − 1)φ = 0, φ(x + s) = ei( 1
2 s·Jx+cs )φ(x), ∀s ∈

√
2π

|�L|L, (1.5)

where Jx = (−x2, x1) for x = (x1, x2), a1(x) := − 1
2Jx and cs satisfies the condi-

tion cs+t − cs − ct − 1
2bs ∧ t ∈ 2πZ. We will show below (Proposition 5.1) that the

problem (1.5) has a unique solution and therefore β is well-defined. The following
results were proven in [26, 27] (see these papers and review [24] for references to
earlier results):

4Since for lattice solutions the energy over R
2 (the total energy) is infinite, one considers the average

energy per lattice cell, i.e. energy per lattice cell divided by the area of the cell.
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Theorem 1.1 For every lattice L satisfying

∣∣∣1− b/κ2
∣∣∣ 1 and (κ − κc(L))(κ2 − b) ≥ 0, where b := 2πn

|�L| , (1.6)

with n = 1, the following holds

(I) The (1.2a) have an L−Abrikosov lattice solution in a neighbourhood of the
branch of normal solutions.

(II) The above solution is unique, up to symmetry, in a neighbourhood of the normal
branch.

Due to the flux quantisation (see below), the quantity b := 2π

|�L| , entering the

theorem, is the average magnetic flux per lattice cell, b := 1
|�L|

∫
�L curl A. We note

that due to the reflection symmetry of the problem we can assume that b ≥ 0.
All the rigourous results proven so far deal with Abrikosov lattices with one quan-

tum of magnetic flux per lattice cell. Partial results for higher magnetic fluxes were
proven in [3, 6].

1.3 Result. In this paper, we prove existence of Abrikosov vortex lattice solu-
tions of the Ginzburg-Landau equations, with multiple magnetic flux quanta per a
fundamental cell, for certain lattices and for certain flux quanta numbers.

We also revisit the existence proof for the Abrikosov vortex lattices, streamlining
some arguments and providing some essential details missing in earlier proofs for a
single magnetic flux quantum per a fundamental cell.

As in the previous works, we consider only bulk superconductors filling all R3,
with no variation along one direction, so that the problem is reduced to one on R

2.
To formulate our results, we need some definitions. Motivated by the idea that

most stable (i.e. most physical) solutions are also most symmetric, we look for solu-
tions which are most symmetric amongst vortex lattice solution for a given lattice and
given the number of the flux quanta per fundamental cells. Following [10], we denote

1. G(L) to be the group of symmetries of the lattice L,
2. T (L) to be the subgroup of G(L) consisting of lattice translations, and
3. H(L) := G(L) ∩O(2) ≈ G(L)/T (L), the maximal non-translation subgroup.

Note that the non-SO(2) part of H(L) := G(L) ∩ O(2) comes from reflections
and since all reflections in G(L)∩O(2) can be obtained as products of rotations and
one fixed reflection, which we take to be z �→ z̄, it suffices for us to consider the
conjugation action. Since the conjugation is not holomorphic, we show in Section A
that there is no solutions having this symmetry. This implies that the maximal point
symmetry group of the GL equations is

SH(L) := G(L) ∩ SO(2)(= H(L) ∩ SO(2)).

Hence, we look for solutions amongst functions whose physical properties are
invariant under action of SH(L).
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Definition 1.2 (Maximal symmetry) We say a vortex lattice solution on R
2 is max-

imally symmetric iff all related physical quantities (i.e. ns := |�|2, B := curl A,
J := Im(�̄∇A�)) are invariant under the action of the group SH(L), where L is the
underlying lattice of the solution.

Furthermore, we are interested in vortex lattice solutions with the following
natural property

Definition 1.3 (L− irreducibility) We say that a solution is L−irreducible iff there
are no finer lattice for which it is a vortex lattice solution.

Our main result is the following

Theorem 1.4 Assume the conditions of Theorem 1.1, except for n = 1, hold. Assume
either n is one of 2,4,6,8,10 and L is a hexagonal lattice or n = 3 and L is arbitrary
and let λ = κ2n/b. Then the GLEs have a unique (in a Sobolev space of index
2), L−irreducible, maximally symmetric solution branch (λ(s), �(s), A(s)), s ≥ 0
small. After rescaling (4.2), this branch is of the form (8.2).

Theorem 1.4 follows from Theorems 8.1, 10.5 and 10.14 and Corollary 10.12
below. As discussed in [8, 24], this result can be reformulated as a result for line
bundles over the complex torus.

As was mentioned above, we revisit the existence proof of [26, 27] streamlining
some arguments and providing some essential details either missing or only briefly
mentioned ([26, 27]) in earlier proofs of the existence of Abrikosov vortex lattices.

After introducing general properties of (1.2a) in Sections 2–4, we prove an abstract
conditional result in Sections 5–8, from which we derive Theorem 1.1 in Section 9
(giving a streamlined proof of this result) and Theorem 1.4, in Section 10.

2 Properties of the Ginzburg-Landau Equations

2.1 Symmetries

The Ginzburg-Landau equations exhibit a number of symmetries, that is, transforma-
tions which map solutions to solutions:

The gauge symmetry,

(�(x), A(x)) �→ (eiη(x)�(x), A(x)+ ∇η(x)), ∀η ∈ C2(R2,R); (2.1)

The translation symmetry,

(�(x), A(x)) �→ (�(x + t), A(x + t)), ∀t ∈ R
2; (2.2)

The rotation and reflection symmetry,

(�(x), A(x)) �→ (�(R−1x), RA(R−1x)), ∀R ∈ O(2). (2.3)
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2.2 Homogeneous Solutions

Since the GL equations have gauge and translation symmetries, one expects they have
translationally invariant (up to gauge transformations) solutions. Indeed, there are
two such solutions: the perfect superconductor solution where �S ≡ 1 and AS ≡ 0,
and the normal (or non-superconducting) solution where �N = 0 and AN is such
that curl AN =: b is constant. (We see that the perfect superconductor is a solution
only when the magnetic field is absent. On the other hand, there is a normal solution,
(�N = 0, AN, curl AN = constant), for any constant magnetic field.)

These solutions are the primary candidates for the ground state of the model, i.e.
a solution with the smallest energy per unit area.

3 Lattice Equivariant States

3.1 Gauge-Periodicity

Our focus in this paper is on states (�, A) defined on all of R2, but whose phys-
ical properties, the density of superconducting pairs of electrons, ns := |�|2,
the magnetic field, B := curl A, and the current density, J := Im(�̄∇A�), are
doubly-periodic with respect to some lattice L. We call such states L−lattice states.

One can show that a state (�, A) ∈ H 1
loc(R

2;C)×H 1
loc(R

2;R2) is a L-lattice state
if and only if translation by an element of the lattice results in a gauge transformation
of the state, that is, for each t ∈ L, there exists a function gt ∈ H 2

loc(R
2;R) such that

�(x + t) = eigt (x)�(x) and A(x + t) = A(x)+∇gt (x), ∀t ∈ L, (3.1)

almost everywhere. States satisfying (3.1) will be called (L−) equivariant (vortex)
states.

It is clear that the gauge, translation, and rotation symmetries of the Ginzburg-
Landau equations map lattice states to lattice states. In the case of the gauge and
translation symmetries, the lattice with respect to which the solution is periodic does
not change, whereas with the rotation symmetry, the lattice is rotated as well. It is
a simple calculation to verify that the magnetic flux per cell of solutions is also
preserved under the action of these symmetries.

Note that (�, A) is defined by its restriction to a single cell and can be recon-
structed from this restriction by lattice translations.

3.2 Flux Quantisation

The important property of lattice states is that the magnetic flux through a lattice cell
is quantised,

∫
�L

curl A = 2πn (3.2)
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for some integer n, with �L any fundamental cell of the lattice. This implies that

|�L| = 2πn

b
, (3.3)

where b is the average magnetic flux per lattice cell, b := 1
|�L|

∫
�L curl A.

Indeed, using the Stokes theorem on the l.h.s. of (3.2) and the second equation in
(3.1), we find (3.2).

Equation (3.2) then imposes a condition on the area of a cell, namely, (3.3).

4 Fixing the Gauge and Rescaling

In this section we fix the gauge for solutions, (�, A), of (1.2a) and then rescale them
to eliminate the dependence of the size of the lattice on b. Our space will then depend
only on the number of quanta of flux and the shape of the lattice. Given a lattice L
with a fundamental domain �L, it is convenient to introduce the normalised lattice

Lnorm :=
√

2π

|�L|L (4.1)

4.1 Fixing the Gauge

The gauge symmetry allows one to fix solutions to be of a desired form. Let Ab(x) =
b
2Jx ≡ b

2x⊥, where x⊥ = Jx = (−x2, x1) and J is the symplectic matrix

J =
(

0 −1
1 0

)
.

We will use the following preposition, first used by [20] and proved in [25] (an
alternate proof is given in in Appendix A of [27]).

Proposition 4.1 Let (� ′, A′) be an L-equivariant state, and let b be the average
magnetic flux per cell. Then there is a L-equivariant state (�, A), that is gauge-
equivalent to (� ′, A′), such that

(i) �(x + s) = ei( b
2 x·J s+cs )�(x) and A(x + s) = A(x)+ b

2J s for all s ∈ L;
(ii) div A = 0,

∫
�
(A− Ab) = 0.

Here cs satisfies the condition cs+t − cs − ct − 1
2bs ∧ t ∈ 2πZ.

4.2 Rescaling

Let b = 2πn

|�L| (see (3.3)). We define the rescaled fields (ψ, a) as

(ψ(x), a(x)) := (r�(rx), rA(rx)), r =
√
|�L|
2π

=
√

n

b
. (4.2)

We summarise the effects of the rescaling above:
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(A) � and A solve the Ginzburg-Landau equations if and only if ψ and a solve

(−�a − λ)ψ = −κ2|ψ |2ψ, λ = κ2n/b, (4.3a)

curl∗ curl a = Im(ψ̄∇aψ). (4.3b)

(B) (�, A) is a L-equivariant state iff (ψ, a) is a Lnorm-equivariant state. Moreover,
if (�, A) is of the form described in Proposition 4.1, then (ψ, a) satisfies

ψ(x + t) = ei n
2 x·J t+ict ψ(x), a(x + t) = a(x)+ n

2
J t, ∀t ∈ Lnorm(4.4)

div a = 0,

∫
�τ

(a − an) = 0, where an(x) := n

2
Jx, (4.5)

and ct , which satisfies the condition

cs+t − cs − ct − 1

2
ns ∧ t ∈ 2πZ. (4.6)

(C) 1
|�L|E�L(�, A) = Eλ(ψ, α), where a = an + α, with an(x) := n

2 Jx, λ =
κ2r2 = κ2 n

b
and (remember, |�norm| = 2π )

Eλ(ψ, α) = 1

2π

∫
�norm

(
|∇aψ |2 + | curl a|2 + κ2

2

(
|ψ |2 − λ

κ2

)2
)

dx. (4.7)

Our problem then is: for each n = 1, 2, . . ., find (ψ, a), solve the rescaled
Ginzburg-Landau (4.2) and satisfying (4.4).

4.3 Lattice Shape

We identify R
2 with C, via the map (x1, x2) → x1 + ix2, and, applying a rotation, if

necessary, bring any lattice L to the form

L = r(Z+ τZ), (4.8)

where r > 0, τ ∈ C, Im τ > 0, which we assume from now on. If L satisfies (3.3),

then r =
√

2πn
b Im τ

. For (4.8), the normalised lattice (4.1) becomes

Lnorm :=
√

2π

Im τ
(Z+ τZ). (4.9)

We note that |�norm| = 2π . In what follows, the parameter τ is fixed and, to simplify
the notation, we omit the superindex ‘norm’ at Lnorm and �norm and write simply L
and �.

5 The Linear Problem

In this section we consider the linearization of (4.2) satisfying (4.4) on the normal
solution (0, an), with, recall, an(x) := n

2 Jx. This leads to the linear problem:

−�anψ0 = λψ0, (5.1)
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for ψ0 satisfying the gauge - periodic boundary condition (see (4.4))

ψ0(x + t) = ei( n
2 x·J t+ct )ψ0(x), ∀t ∈ L. (5.2)

Our goal is to prove the following

Proposition 5.1 The operator −�an is self-adjoint on its natural domain (with the
additional condition (5.2)) and its spectrum is given by

σ(−�an) = { (2m+ 1)n : m = 0, 1, 2, . . . }, (5.3)

with each eigenvalue is of the multiplicity n. Moreover,

Null(−�an − n) = e
in
2 x2(x1+ix2)Vn, (5.4)

where Vn is spanned by functions of the form (below z = (x1 + ix2)/

√
2π

Im τ
)

θ(z, τ ) :=
∞∑

m=−∞
cmei2πmz, cm+n = e−inπzei2mπτ cm. (5.5)

Such functions are determined entirely by the values of c0, . . . , cn−1 and therefore
form an n-dimensional vector space.

Proof The self-adjointness of the operator−�an is well-known. To find its spectrum,
we introduce the complexified covariant derivatives (harmonic oscillator annihilation
and creation operators), ∂̄an and ∂̄∗an = −∂an , with

∂̄an := (∇an)1 + i(∇an)2 = ∂x1 + i∂x2 +
1

2
n(x1 + ix2). (5.6)

One can verify that these operators satisfy the following relations:

[∂̄an , (∂̄an)∗] = 2 curl an = 2n; (5.7)

−�an − n = (∂̄an)∗∂̄an . (5.8)

As for the harmonic oscillator (see for example [15]), this gives explicit informa-
tion about the spectrum of −�an , namely (5.3), with each eigenvalue is of the same
multiplicity. Furthermore, the above properties imply

Null(−�an − n) = Null ∂̄an . (5.9)

We find Null ∂̄an . A simple calculation gives the following operator equation

e−
n
2 (ix1x2−x2

2 )∂̄ane
n
2 (ix1x2−x2

2 ) = ∂x1 + i∂x2 .

(The transformation on the l.h.s. is highly non-unique.) This immediately proves that

∂̄anψ0 = 0, (5.10)

if and only if θ = e− n
2 (ix1x2−x2

2 )ψ satisfies (∂x1 + i∂x2)θ = 0. We now identify
x ∈ R

2 with z = x1 + ix2 ∈ C and see that this means that θ is analytic and

ψ0 (x) = e−
πn

2 Im τ
(|z|2−z2)θ(z, τ ), z = (x1 + ix2)/

√
2π

Im τ
. (5.11)
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where we display the dependence of θ on τ . The gauge-periodicity of ψ0 transfers to
θ as follows

θ(z+ 1, τ ) = θ(z, τ ), θ(z+ τ, τ ) = e−2πinze−inπτ θ(z, τ ).

The first relation ensures that θ has a absolutely convergent Fourier expansion of
the form θ(z, τ ) =∑∞

m=−∞ cme2πmiz. The second relation, on the other hand, leads
to relation for the coefficients of the expansion: cm+n = e−inπzei2mπτ cm, which
together with the previous statement implies (5.5).

Remark 5.2 Using (5.5) and (5.11), we can show that for n = 1

ψ0(x) = ψ0(−x). (5.12)

6 Setup of the Bifurcation Problem

In this section we reformulate the Ginzburg-Landau equations as a bifurcation
problem. We write a = an + α and substitute this into (4.2) to obtain

(Ln − λ)ψ = −h(ψ, α), Mα = J (ψ, α), (6.1)

where h(ψ, α) := 2iα ·∇anψ+|α|2ψ+κ2|ψ |2ψ and J (ψ, α) := Im(ψ̄∇an+αψ) and

Ln := −�an andM := curl∗ curl . (6.2)

The pair (ψ, α) satisfies the conditions (4.4)–(4.4), with a = an + α, an(x) :=
n
2 Jx,which we reproduce here

ψ(x + t) = ei( n
2 x·J t+ct )ψ(x), (6.3)

α(x + t) = α(x) and div α = 0, (6.4)

where t ∈ L and ct satisfies the condition (4.6). We take ct = 0 on the basis vectors

t =
√

2π
Im τ

,

√
2π

Im τ
τ (see (4.9)). Then the relation (4.6) gives

cs = πnpq, for s =
√

2π

Im τ
(p + qτ), p, q ∈ Z, (6.5)

which we assume in what follows.
We consider (6.1) on the space H 2

n × �H 2, where H s
n and �H s are the Sobolev

spaces of order s associated with the L2-spaces

L 2
n := {ψ ∈ L2(R2,C) : ψ satisfies (6.3)}, (6.6)

�L 2 := {α ∈ L2(R2,R2) : α satisfies (6.4)}, (6.7)

where div α is understood in the distributional sense, with the inner products of
L2(�,C) and L2(�,R2), i.e.

∫
ψ̄ψ ′ and

∫
α · α′.

We define Ln and M on the spaces L 2
n and �L 2, with the domains H 2

n and �H 2,
respectively. The properties of Ln were described in Proposition 5.1. The properties
of M are summarised as in the following proposition
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Proposition 6.1 M is a non-negative operator on �L 2 with the domain �H 2 and
with purely discrete spectrum. Furthermore, 0 is an eigenvalue of M with the one-
dimensional eigenspace spanned by 1.

The fact that M is positive follows immediately from its definition. We note that
its being strictly positive is the result of restricting its domain to elements having the
divergence and mean zero.

Let P ′ be the orthogonal projection onto the divergence free vector fields (P ′ =
1
−�

curl∗ curl). We introduce the new system

(Ln − λ)ψ + h(ψ, α) = 0, Mα − P ′J (ψ, α) = 0, (6.8)

where we left the first equation unchanged and in the second equation we introduced
the projection P ′ .

Proposition 6.2 Assume (λ, ψ, α) is a solution of the system (6.8) satisfying (6.3)–
(6.3). Then div J (ψ, α) = 0 and therefore (λ, ψ, α) solves the original system (6.1).

Proof Assume χ ∈ H 1
loc and is L−periodic (we say, χ ∈ H 1

per). Following [26], we

differentiate the equation Eλ(e
isχψ, α+ s∇χ) = Eλ(ψ, α), w.r.to s at s = 0, use that

curl∇χ = 0 and integrate by parts, to obtain

Re〈−�an+αψ + κ2(|ψ |2 − 1)ψ, iχψ〉 + 〈J (ψ, α),∇χ〉 = 0. (6.9)

(Due to conditions (6.3)–(6.3) and the L−periodicity of χ , there are no boundary
terms.) This, together with the first equation in (6.8), implies

〈J (ψ, α),∇χ〉 = 0. (6.10)

Since the last equation holds for any χ ∈ H 1
per, we conclude that div J (ψ, α) =

0.

In Sections 7–10 we solve the system (6.8), subject to the conditions (6.3)–(6.3).
We conclude this section by establishing some general properties of the map

F : R × H 2
n × �H 2 → L 2

n × �L 2 is defined by the l.h.s. of (6.8). For a map
F(λ, u), u = (ψ, α), we denote by ∂ψF(λ, u)/∂uF (λ, u) its Gâteaux derivative in
ψ/u. Furthermore, we use the obvious notation F = (F1, F2). For f = (f1, f2), we
introduce the gauge transformation as Tδf = (eiδf1, f2). The following proposition
lists some properties of F .

Proposition 6.3

(a) F is analytic as a map between real Banach spaces,
(b) for all λ, F(λ, 0) = 0,
(c) for all λ, ∂uF (λ, 0) = Aλ,

(d) for all δ ∈ R, F(λ, Tδu) = TδF (λ, u).
(e) for all u (resp. ψ), 〈u, F (λ, u)〉 ∈ R (resp. 〈ψ, F1(λ, u)〉 ∈ R).



7 Page 12 of 40 Math Phys Anal Geom (2018) 21: 7

Proof The first property follows from the definition of F . (b) through (d) are straight-
forward calculations. For (e), since 〈u, F 〉 = 〈ψ, F1〉 + 〈α, F2〉 and 〈α, F2(λ, u)〉 is
real, the statements 〈u, F (λ, u)〉 ∈ R and 〈ψ, F1(λ, u)〉 ∈ R are equivalent. Now, we
calculate that

〈ψ, F1(λ, ψ, α)〉 = 〈ψ, (Ln − λ)ψ〉 + 2i

∫
�

ψ̄α · ∇ψ

+2
∫

�

(α · an)|ψ |2 +
∫

�

|α|2|ψ |2 + κ2
∫

�

|ψ |4.

The final three terms are clearly real and so is the first because Ln−λ is self-adjoint.
For the second term we integrate by parts and use the fact that the boundary terms
vanish due to the periodicity of the integrand to see that

Im 2i

∫
�

φα · ∇ψ̄ =
∫

�

α · (ψ̄∇ψ + ψ∇ψ̄) = −
∫

�

(div α)|ψ |2 = 0,

where we have used that div α = 0. Thus this term is also real and (e) is established.

7 Reduction to a Finite-Dimensional Problem

In this section we reduce the problem of solving (6.8) to a finite dimensional problem.
We address the latter in the next section. We use the standard method of Lyapunov-
Schmidt reduction.

We proceed in the generality we need later on. Let X = X′ ×X′′ and Y = Y ′ ×Y ′′
be closed subspaces of H 2

n × �H 2 and L 2
n × �L 2, respectively, s.t.

X ⊂ Y, densely, and F : R×X → Y and is C2. (7.1)

We rewrite (6.8) as a single equation

F(λ, u) = 0, (7.2)

where u := (ψ, α) and, recall, the map F : R×H 2
n × �H 2 → L 2

n × �L 2 is defined
by the l.h.s. of (6.8). We can write F as

F(λ, u) = Aλu+ f (u). (7.3)

Here Aλ := diag(Ln − λ,M) and

f (u) := (h(u),−P ′J (u)), (7.4)

with h(u) and J (u) defined after (6.1).
Recall that the operator Aλ := diag(Ln−λ,M) is introduced after the (7.3). Since

Aλ = dF(λ, 0), it maps X into Y . We let K = NullX An ⊂ X.
We let P be the orthogonal projection in Y onto K and let P̄ := I − P . Since 0 is

an isolated eigenvalue of An, P can be explicitly given as the Riesz projection,

P := − 1

2πi

∮
γ

(An − z)−1 dz, (7.5)



Math Phys Anal Geom (2018) 21: 7 Page 13 of 40 7

where γ ⊆ C is a contour around 0 that contains no other points of the spectrum of
An.

Writing u = v + w, where v = Pu and w = P̄ u, we see that the equation
F(λ, u) = 0 is therefore equivalent to the pair of equations

PF(λ, v + w) = 0, (7.6)

P̄ F (λ, v + w) = 0. (7.7)

We will now solve (7.6) for w = P̄ u in terms of λ and v = Pu.

Lemma 7.1 There is a neighbourhood, U ⊂ R × K , of (n, 0), such that for any
(λ, v) in that neighbourhood, (7.6) has a unique solution w = w(λ, v). This solution
w(λ, v) = (w1, w2) satisfies

w(λ, v) is C2 in (λ, v), (7.8)

‖∂m
λ ∂n

v wi‖ = O(‖v‖4−i−n), i = 1, 2, m+ n ≤ 1, (7.9)

where the norms are in the space H 2
n .

Proof We introduce the map G : R×K × X̄ → Ȳ , where X̄ := P̄X = X �K and
Ȳ := P̄ Y = Y �K , defined by

G(λ, v, w) = P̄ F (λ, v + w).

It has the following properties (a) G is C2; (b) G(λ, 0, 0) = 0 ∀λ; (c) dwG(λ, 0, 0)

is invertible for λ = n. Applying the Implicit Function Theorem to G = 0, we obtain
a function w : R × K → X̄, defined on a neighbourhood of (n, 0), such that w =
w(λ, v) is a unique solution to G(λ, v, w) = 0, for (λ, v) in that neighbourhood.
This proves the first statement.

By the implicit function theorem and the differentiability of F , the solution has
the property (7.8).

By (7.3) and the fact that product of H 2
n / �H 2 functions is again a H 2

n / �H 2 func-
tion (and the norms are bounded correspondingly), implies that h and J , entering
(7.4) and defined after (6.1), satisfy

‖h(u)‖H 2 � ‖u‖3
H 2 and ‖J (u)‖H 2 � ‖u‖2

H 2 .

Using (7.3), we can rewrite (7.6) as

Aλw = −P̄ f (λ, u). (7.10)

Since by the definition of P̄ and self-adjointness of Aλ, A⊥
λ := P̄AλP̄

∣∣
Ran P̄

is
invertible for λ close to n, with the uniformly bounded inverse and since Aλ is diag-
onal and f is of the form (7.4), we conclude that ‖w1‖ � ‖h(u)‖H 2 � ‖u‖3

H 2 and

‖w2‖ � ‖J (u)‖H 2 � ‖u‖2
H 2 . Recalling that u = v+w, this gives the second relation

in (7.8). The first relation in (7.8) is proven similarly.

We substitute the solution w = w(λ, v) into (7.6) and see that the latter equation
in a neighbourhood of (n, 0) is equivalent to the equation (the bifurcation equation)

γ (λ, v) := PF(λ, v + w(λ, v)) = 0. (7.11)
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Note that γ : R × K → K . We show that w and γ inherit the symmetry of the
original equation:

Lemma 7.2 For every δ ∈ R, w(λ, eiδv) = Tδw(λ, v) and γ (λ, eiδv) = eiδγ (λ, v).

Proof We first check that w(λ, eiδv) = Tδw(λ, v). We note that by definition of w,

G(λ, eiδv, w(λ, eiδv)) = 0,

but by the symmetry of F , we also have G(λ, eiδv, eiδw(λ, v)) =
TδG(λ, v,w(λ, v)) = 0. The uniqueness of w then implies that w(λ, eiδv) =
Tδw(λ, v). Using that eiδv = Tδv, we can now verify that

γ (λ, eiδv) = PF(λ, eiδv + w(λ, eiδv)) = PF(λ, Tδ(v + w(λ, v)))

= PTδF (λ, v + w(λ, v)).

Since P is of the form P = P1 ⊕ 0, where P1 acts on the first component, we have
PTδF (λ, v + w(λ, v)) = eiδPF (λ, v + w(λ, v)) = eiδγ (λ, v), which implies the
second statement.

Thus we have shown the following

Corollary 7.3 In a neighbourhood of (n, 0) in R × X, (λ, u),where u =
(ψ, α),solves (4.2) or (6.1) if and only if (λ, v), with v = Pu, solves (7.11). More-
over, the solution u of (6.1) can be reconstructed from the solution v of (7.11)
according to the formula

u = v + w(λ, v), (7.12)

where w = w(λ, v) is the unique solution to (7.6) described in Lemma 7.1.

Solving the bifurcation (7.11) is a subtle problem. We do this in the next section
assuming dimC NullX′(Ln − n) = 1.

8 Existence Result Assuming dimCNullX′(Ln − n) = 1

The main result of this section is the following theorem which gives a general, but
conditional result.

Theorem 8.1 Assume (i) Lτ satisfies (1.6), (ii) (7.1) holds and (iii) X′ be a closed
subspace of H 2

n , s.t.

dimC NullX′(Ln − n) = 1. (8.1)

Then, for every τ , there exist ε > 0 and a branch, (λs, ψs, αs), s ∈ [0,
√

ε), of
nontrivial solutions of the rescaled Ginzburg-Landau (4.2), unique modulo the global
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gauge symmetry (apart from the trivial solution (n, 0, an)) in a sufficiently small
neighbourhood of (n, 0, an) in R×X, and such that

⎧⎪⎨
⎪⎩

λs = n+O(s2),

ψs = sψ0 +OH 2
n
(s3),

as = an +O �H 2(s
2),

(8.2)

where ψ0 is the solution of the problem (5.1)–(5.2), with λ = n, (normalised as
〈|ψ0|2〉 = 1).

Proof Our goal is to solve the (7.11) for λ. By Proposition 6.1, we have

NullX An = NullX′(Ln − n)× {const}. (8.3)

This relation and assumption (8.1) yield that the projection P can be written, for
u = (ψ, α), as

Pu = (sψ0, 〈α〉) with s := 1

‖ψ0‖2
〈ψ0, ψ〉,

ψ0 ∈ NullX′(Ln − n), ‖ψ0‖ = 1, (8.4)

where, recall, 〈α〉 := 1
|�|
∫
�

α. Hence, we can write the map γ in the bifurcation

(7.11) as γ = (ψ0γ1, γ2), where γi : R× C× R
2 → C are given by

γ1(λ, s, μ) := 〈ψ0, F1(λ, v + w(λ, v))〉 (8.5)

γ2(λ, s, μ) := 〈F2(λ, v + w(λ, v))〉, (8.6)

with v ≡ vs,μ := (sψ0, sμ). The bifurcation (7.11) is equivalent to the equations

γ1(λ, s, μ) = 0, γ2(λ, s, μ) = 0. (8.7)

First, we consider the equation γ2(λ, s, μ) = 0. We solve for μ given real s and
real λ. The choice of real s looses no generality as we will see later that γ1(λ, s, μ)

is real if s is real; and clearly γ2 is real valued if s is real. By the 2nd equation in
(6.8) and the facts 〈P ′J (ψ, α)〉 = 〈1, P ′J (ψ, α)〉 = 〈P ′1, J (ψ, α)〉 and P ′1 = 1,
we have

γ2(λ, s, μ) = 〈P ′J (v + w(λ, v))〉 = 〈J (v + w(λ, v))〉. (8.8)

By (7.12), (8.4) and (7.8), ∂n
ξ w(λ, v) = (OH 2

n
(s3), O �H 2(s

2)), for n = 0, 1 and
ξ = λ,μ. Hence

J (v + w(λ, v)) = s2 Im(ψ̄0∇anψ0)− s3s|ψ0|2μ+OH 2
n
(s4)+O �H 2(s

4). (8.9)

Recall, that curl∗ maps scalar functions, f, into vector-fields, curl∗ f =
(∂2f,−∂1f ). The next lemma, due to [26], shows that the leading term on the r.h.s.
of (8.9) drops out under taking the average. (For the reader’s convenience, the proof
of this lemma is given at the end of this section.)
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Lemma 8.2

Im(ψ̄0∇anψ0) = −1

2
curl∗ |ψ0|2. (8.10)

By (8.10), 〈Im(ψ̄0∇anψ0)〉 = 0. This and 〈|ψ0|2〉 = 1 give

γ2(λ, s, μ) = s3μ+O(s4).

Define γ̃2(λ, s, μ) := s−3γ2(λ, s, μ). Then γ̃2(λ, 0, 0) = 0 (for any λ) and it is easy
to see that ∂μγ̃2(λ, s, μ) = 1+O(s). Thus the equation γ̃2(λ, s, μ) = 0 has a unique
solution, μ = μ(λ, s), provided s is sufficiently small, and this solution is of the form

μ = O(s). (8.11)

Next, we address the equation γ1(λ, s, μ) = 0, where μ = μ(λ, s) as above. First,
we show that γ1(λ, s, μ) ∈ R for s ∈ R. Using that the projection P̄ is self-adjoint,
P̄w(λ, v) = w(λ, v) and that w(λ, v) solves P̄ F (λ, v + w) = 0, we find

〈w(λ, v), F (λ, v + w(λ, v))〉 = 〈w(λ, v), P̄ F (λ, v + w(λ, v))〉 = 0.

Therefore, recalling v ≡ vs,μ := (sψ0, sμ) and using that 〈v, F 〉 = s〈ψ0, F1〉 +
sμ〈F2〉 and 〈F2(λ, v + w(λ, v))〉 = −γ2(λ, s, μ) = 0, we have, for s �= 0,

〈ψ0, F1(λ, v + w(λ, v))〉 = s−1〈v, F (λ, v + w(λ, v))〉
= s−1〈v + w(λ, v), F (λ, v + w(λ, v))〉,

and this is real by Proposition 6.3 (6.3) and the fact that the part 〈w2(λ, v), F2(λ, v+
w(λ, v))〉 of the inner product on the r.h.s. is real.

Next, for any μ, by Lemma 7.2, γ1(λ, s, μ) = ei arg sγ1(λ, |s|, μ). Therefore
γ1(λ, s, μ) = 0 is equivalent to the equation

γ ′1(λ, s, μ) = 0 (8.12)

for the restriction γ ′1 : R × R × R
2 → R of the function γ1 to R × C × R, i.e., for

real s.
Now, recall that the map F = (F1, F2) is defined by the l.h.s. of (6.8) and can be

written as (7.3). Using w(λ, v) = O(s3), and recalling v ≡ vs,μ := (sψ0, sμ), we
find

F1(λ, v + w(λ, v)) = s(−�an − λ)ψ0 +OH 2
n
(s3). (8.13)

Using this and (−�an − n)ψ0 = 0 and denoting the first component of P by P1, we
obtain

P1F1(λ, v + w(λ, v)) = s(n− λ)ψ0 +OH 2
n
(s3). (8.14)

If we write γ ′1(λ, s, μ) = sγ̃1(λ, s, μ), then, since 〈|ψ0|2〉 = 1, we have
γ̃1(λ, s, μ) = n− λ+O(s2). Since γ̃1(n, 0, μ) = 0 (for any μ) and, as easy to see,
∂λγ̃1(λ, s, μ) = −1 + O(s2), the equation γ̃1(λ, s, μ) = 0 has the unique solution,
λs , and this solution is of the form

λs = n+O(s2). (8.15)
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Now, we know that (λ, u) solves F(λ, u) = 0 if and only if u = v + w(λ, v), v ≡
vs,μ,and λ, s, μ solve γ (λ, s, μ) = 0 (see (7.11)), or γi(λ, s, μ) = 0, i = 1, 2 (see
(8.7)). By above, near (n, 0, 0), (8.7) has two branches of solutions, s = 0 and λ,μ

are arbitrary and (λs, s, μ), where λs and μ are given by (8.15) and (8.11), respec-
tively, and s is sufficiently small, but otherwise is arbitrary. For s = 0, we have
vs,μ = 0 and therefore u = vs,μ + w(λs, vs,μ) = 0, which gives the trivial solution.
In the other case, u = us := vs,μ+w(λs, vs,μ) = (sψ0+OH 2

n
(s3), sμ+O �H 2(s

2))).

Remembering a = an + α, we see that the solutions (λs, us) = (λs, ψs, αs) are of
the form (8.2).

Proof of Lemma 8.2 Multiplying (5.10) by ψ̄0 and taking imaginary and real parts
of the resulting equation gives

Im ψ̄0(∇�an)1ψ0 = −Re ψ̄0(∇�an)2ψ0 = −1

2
∂x2 |ψ0|2

and

Im ψ̄0(∇�an)2ψ0 = Re ψ̄0(∇�an)1ψ0 = 1

2
∂x1 |ψ0|2,

which, in turn, gives (8.10).

Remark 8.3 For n > 1, the null space of M is trivial for the space X introduced in
Section 10 (a proof is given in Remark 10.13). The statement is true also for n = 1,
if we use that (�(x), A(x)) → (�(−x),−A(−x)) is a symmetry of the GLEs and
impose the parity condition

(�(−x),−A(−x)) = (�(x), A(x)) (8.16)

(see also Remark 5.2). Taking this into account in (8.3), we see that the proof above
for the symmetry reduced spaces simplifies.

9 Bifurcation Theorem for n = 1

In this section we let L be an arbitrary lattice satisfying (1.6) and take n = 1. For
n = 1, we can take X = H 2

1 × �H 2 and Y = L 2
1 × �L 2 (see the paragraph preceding

(7.1)). By (8.1) and Proposition 5.1, the space K = Null An has the complex dimen-
sion 1 and therefore Theorem 8.1 is applicable and gives Theorem 1.1, statements (I)
and (II). �

10 Bifurcation Theorem for n > 1 and Point Symmetries

As above, n will denote the number of flux quanta through a fundamental cell of L.
We want to prove the existence of Abrikosov lattices for n ≥ 2. The main notions of
the section are as follows:

1. Number of flux quanta, n.
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2. L− irreducibility. We are interested in L−equivariant solutions which are not
equivariant for any finer lattice. We call such solutions L−irreducible.

3. Multiplicity, which is defined as the dimension of the linear subspace, NullX An.
The difficulty of bifurcation theory reduces considerably if the multiplicity is
one. We call the corresponding solutions simple.

The former is achieved by employing the symmetries of the lattice to reduce
the dimension of NullX An, more precisely, to find X satisfying (7.1) and
dimC NullX An = 1.

In the next two subsections, we outline the general strategy of reducing multiplic-
ity by the group symmetry and choose appropriate subgroups of the point group to
impose as symmetry group. Then, in the following three subsections, we give the
actual proof.

10.1 Symmetry Reduction

Let Xn = H 2
n × �H 2 and Yn = L 2

n × �L 2. Define the action of H(L) on our spaces
by

ρg(ψ(x), α(x)) = (ψ(gx), g−1α(gx)), (10.1)

where g ∈ H(L). (The groups we deal with are abelian, so (10.1) defines a
representation.) We begin with the following

Lemma 10.1 Let n be even. Then ρg : Xn → Xn ∀g ∈ SH(L).

Proof By the definition, it suffices to show that if ψ(gx) satisfies (6.3). We check
this condition. Recalling (6.3), we have ψ(g(x + t)) = ei( n

2 gx·Jgt+cgt )ψ(gx). One
can compute easily that gx · Jgt = x · J t, ∀g ∈ SH(L). Furthermore by (6.5), we
have eicgt = eict , for n even, and hence the result follows.

Let F(λ, u), u = (ψ, α), be the map defined by the l.h.s. of (6.8) and u0 = (0, 0),
the normal state. Since the map F(λ, u) is rotationally, translationally and gauge
covariant and ρga

n = an ∀g ∈ H(L) (recall, a = an + α), we have the following
lemma

Lemma 10.2 Let T̃ gauge
χ : (ψ, α) → (eiχψ, α). Then

F(λ, ρgu) = ρgF (λ, u), g ∈ H(L), (10.2)

F(λ, T̃
gauge
χ u) = T̃

gauge
χ F (λ, u), ∀χ ∈ R. (10.3)

Define ρ̃g := T̃
gauge
−χg

ρg , where χg are some constants. (If χg is a representation of
G, then so is ρ̃g . By Proposition C.1, we do not loose any generality by assuming χg

are constants.) The lemma above leads to the following
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Proposition 10.3 Let n be even. Then for ρ given in (10.1), we have

ρ̃g NullXn dF (λ, u) = NullXn dF (λ, ρ̃gu), ∀g ∈ H(L). (10.4)

Hence, if G is a subgroup of H(L) and ρ̃gu∗ = u∗, ∀g ∈ G, then the subspace
Null dF(λ, u∗) is invariant under the action of G.

Proof Indeed, differentiating F(λ, ρ̃gu) = ρ̃gF (λ, u) w.r. to u, we obtain

dF(λ, ρ̃gu)ρgξ = ρ̃gdF (λ, u)ξ,

which gives (10.4).

Clearly, ρ̃gu0 = u0, ∀g ∈ H(L), for the normal state u0 := (0, 0), so, by
Proposition 10.3,

NullXn dF (λ, u0) is invariant under ρg, ∀g ∈ H(L). (10.5)

Recall that dF(λ, u0) = Aλ. By formula (8.3), it suffices to concentrate on
NullH 2

n
(Ln − n). The action ρg induces the action, ρ′g onψ’s:

ρ′gψ(x) = ψ(g−1x), ∀g ∈ SH(L). (10.6)

Since NullH 2
n × �H 2 An is invariant under ρ̃g and due to formula (8.3), we conclude

Corollary 10.4 Let n be even. Then NullH 2
n
(Ln−n) is invariant under the gauge and

(10.6) transformations, and therefore under ρ̃′g, ∀g ∈ SH(L), where ρ̃′g := e−iχgρ′g ,
the restriction of ρ̃g to ψ’s.

For a subgroup G ⊂ G(L), we require that a solution in question is
G−equivariant w.r.to this action, in the sense that it satisfies

ρgu = T̃
gauge
χg u. (10.7)

where u = (ψ, α) and T̃
gauge
χ : (ψ, α) → (eiχψ, α), for some functions χg (satisfy-

ing the corresponding co-cycle condition). (It turns out it is sufficient to assume that
χg are constants, see Proposition C.1.)

Note that, if u = (ψ, α) satisfies (10.7), then ψ obeys the equivariance condition

ρ′gψ = ξgψ, ξg := eiχg , g ∈ G. (10.8)

Now, let G be a subgroup of H(L) with the irreducible representations labelled
by σ . We define the subspaces

Xnσ ⊂ Xn : ρ̃
∣∣
Xnσ

is multiple of ρ̃σ , (10.9)

Ynσ ⊂ Yn : ρ̃
∣∣
Xnσ

is multiple of ρ̃σ . (10.10)
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Then F : R × Xnσ → Ynσ . Now, our goal is to choose G and σ such that
NullXnσ dF (λ, u0) is one-dimensionall at the bifurcation point λ = n. Then The-
orem 8.1, with the spaces X and Y , appearing in (7.1), given by X = Xnσ and
Y = Ynσ , would be applicable and would give the desired result, Theorem 1.4.

Note that for any G with ρgu0 = u0, ∀g ∈ G, the bifurcation (7.11) is invariant
under ρg ,

γ (λ, ρgv) = γ (λ, v). (10.11)

10.2 Discrete Subgroups of SO(2)

As was discussed above the maximal symmetry group of NullXn An is the group
G(L)∩ SO(2) = H(L)∩ SO(2). The Crystallographic restriction theorem says that
H(L) is either the cyclic, Ck , or dihedral, Dk , group, with k = 1, 2, 3, 4, 6. Since
the reflection is not a holomorphic map, we can rule out Dk as follows. We identify
z = x1+ iz2. First we note that Dk has the presentation 〈r, s | rk = s2 = (sr)2 = 1〉.
The group Dk induces action on ψ’s via rotation

r · ψ(z) = ψ(Rz) (10.12)

where R is rotation by 2π/k and reflection (we take it to be reflection about x1-axis
for simplicity, by conjugation by powers of r, we can generate all other reflections)

s · ψ(z) = ψ(z̄) (10.13)

If we take Dk group as our symmetry group, then we would require, in particular,

ψ(z̄) = s · ψ(z) = eitψ(z) (10.14)

for some constant phase eit . If ψ is in the null space of the linear operator, we pass
it to theta functions by substituting ψ = ehθ for h = eC(ix1x2−x2

2 ) where C is a real
constant and theta holomorphic. This means

eh(z̄)−h(z)θ(z̄) = eit θ(z). (10.15)

We note h(z̄)− h(z) = C(−ix1x2 − x2
2)−C(ix1x2 − x2

2) = −2Cix1x2 = −C(z2 −
(z̄)2)/2. Hence

eC(z̄)2/2θ(z̄) = eit eCz2/2θ(z). (10.16)

Note that the LHS is a function of z̄ and the right hand side is a function of z. This is
not possible unless each side is a constant. Substitute z = x ∈ R to get eCz2/2θ(z) =
0 and, thus, θ(z) = 0. Consequently, we consider subgroups Ck only.

The case k = 1 is trivial and gives us nothing new. Hence as a symmetry group,
G, we take one of the cyclic group of rotations, Ck , of order k = 2, 3, 4, 6.
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For k = 3, the lattice whose symmetry group is C3 is the hexagonal lattice. So
it is to our advantage to consider C6 instead for a stronger symmetry reduction. The
case k = 4 corresponds to square lattice, the proof of existence in this case is similar
to the case k = 6 but requires a smaller selection of flux n’s. Thus, we consider only
C2 and C6.

The group Ck is generated by a rotation Rk ∈ SO(2) by the angle 2π/k. If
we identify R

2 with C, under (x1, x2) ↔ x1 + ix2, then Rk is identified with the
multiplication by

ξk = e2πi/k ∈ U(1).

We can specify the action (10.1) and (10.6) to the present group by defining

ρk(ψ(x), α(x)) = (ψ(R−1
k x), Rkα(R−1

k x)), (10.17)

ρ ′kψ(x) = ψ(R−1
k x), (10.18)

where k ∈ Z. Then the equivariance conditions (10.7) and (10.8) become,
respectively,

ρku = T̃
gauge
rχk

u, ξk := eiχk , ρ′kψ = ξ r
k ψ. (10.19)

for some r ∈ Z. Thus the group representation problem is eventually reduced to the
eigenvalue problem for the operator ρ′k .

10.3 Spaces X and Y

Since the groups Ck are finite abelian groups, their irreducible unitary representations
are 1-dimensional and, on H2, coincide with the eigenspaces of the operator ρ′k . Since
ρ′k is unitary and satisfies

(ρ′k)k = 1, (10.20)

it has exactly k eigenvalues, ξ r
k = e2πir/k, r = 0, . . . k − 1. In this case, we specify

our spaces for (ψ, α)’s as

Xn,k,r := {u ∈ Xn : ρku = T̃
gauge
rχk

u}, (10.21)

Yn,k,r = {u ∈ Yn : ρku = T̃
gauge
rχk

u}. (10.22)

and the corresponding spaces for ψ’s as:

X′
n,k,r := {ψ ∈ H 2

n : ρ′kψ = ξ r
k ψ}, (10.23)

Y ′n,k,r = {ψ ∈ L 2
n : ρ′kψ = ξ r

k ψ}. (10.24)

Then, by Lemma 10.2, F : R×Xn,k,r → Yn,k,r , so condition (7.1) holds.
These are the X,X′, Y and Y ′ spaces of Section 7 (see (7.1)).



7 Page 22 of 40 Math Phys Anal Geom (2018) 21: 7

10.4 Multiplicity (Spaces Vn,k,r )

Let n be the flux quantum number. For n = 1, 2, . . . , k = 1, 2, . . . , r =
0, 1, 2, . . . , k − 1, we define the spaces

Ṽn := NullXn(L
n − n) and Ṽn,k,r := NullX′

n,k,r
(Ln − n). (10.25)

Our first goal is to prove the following

Theorem 10.5 Let n be even. Then Ṽn,k,r is one dimensional for k = 6 and for the
pairs

(n, r) = (2, 0), (2, 2), (4, 0), (4, 1), (4, 2), (4, 4), (10.26)

(6, 1), (6, 2), (6, 3), (6, 4) (10.27)

(8, 1), (8, 3), (8, 4), (8, 5) (10.28)

(10, 3), (10, 5) (10.29)

To prove this theorem, we pass to the corresponding spaces of theta functions. The
latter are more rigid since they are holomorphic.

By the definition, the space Ṽn is related to the space Vn, defined in Proposition
5.1 as

Ṽn = fnVn, fn(x) := e
in
2 x2(x1+ix2) = e−

C
2 (|z|2−z2), (10.30)

where C := πn
Im τ

and z := (x1 + ix2)/

√
2π

Im τ
, or in terms of the functions,

ψ(x) = fn(z)θ(z), fn(z) := e
in
2 x2(x1+ix2) = e−

C
2 (|z|2−z2). (10.31)

Elements, θ , of the subspace Vn, will be called n-theta functions. Similarly, we define
the spaces Vn,k,r by

Ṽn,k,r = fnVn,k,r . (10.32)

We define the induced action on theta functions via Tn,k := f−1
n ρ̃′k,j fn. We have

Lemma 10.6 The operator Tn,k is unitary and satisfies (Tn,k)
k = 1. Consequently,

its spectrum consists of the eigenvalues of the form ξ r
k for some r = 0, . . . , k − 1.

Moreover, the eigenfunctions corresponding to the eigenvalue ξ r
k has zero at z = 0

of the order r .

Proof Equation (10.20) and the definition Tn,k := f−1
n ρ̃′k,j fn imply the first claim.

To show the second claim, let λ be any eigenvalue. Expanding θ(z) = azm +
O(|z|m+1), where a �= 0 and m ≥ 0, and ex = 1 + O(|x|) and writing out the
eigenvalue equation, we see that to lowest order in z,

λazm = aξm
k zm (10.33)

Hence λ = ξm
k .
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Corollary 10.7 Let n be even. Then Vn,k,r are eigenspaces of the operator Tn,k

corresponding to the eigenvalues ξ r
k .

We recall that the Wigner–Seitz cell around a lattice point is defined as the locus
of points in space that are closer to that lattice point than to any of the other lat-
tice points. To eliminate the overlap between the Wigner–Seitz cells around different
points, we agree on the choice of their boundaries. Say, observing that the Wigner–
Seitz cell is a (slanted) hexagon, we set the boundary of a Wigner–Seitz cell to
contain the three left-most edges and the two left-most vertices (see Fig. 1). Hence
Wigner–Seitz cells of a lattice tile R

2 without an intersection.
By a standard result about theta functions (see Theorem B.2 of Appendix B) or line

bundles, theta functions are entirely determined by their zeros, zj , and multiplicities,
m(zj ), in a Wigner–Seitz cell, W . By analogy with holomorphic sections of line bun-
dles, we call the collection of zeros and multiplicities of a theta function, θ , its divisor
and denote div(θ) = ∑

z∈W m(z)z. The degree of a theta function, θ , is defined as
the degree of its divisor, |div(θ)| =∑z∈W m(z). Then θ ∈ Vn ⇐⇒ |div(θ)| = n.

Corollary 10.7 and Lemma 10.6 and standard results about theta functions
mentioned above imply

Corollary 10.8 θ ∈ Vn,k,r ⇐⇒ the following three conditions hold: (a) |div(θ)| =
n (i.e. θ has n zeros counting their the multiplicities); (b) m(0) = r (i.e. θ has the
zero of the multiplicity r at the origin); (c) div(Tn,k(θ)) = div(θ) (i.e. div(θ) is
invariant under the transformation Tn,k (i.e. rotation by 2π/k)).

10.4.1 C6

By Corollary 10.8, we want to translate the eigenvalue problem Tn,6θ = ξ rθ into the
existence of divisors corresponding to the zeros of θ . This would allows us to find
1-1 correspondence between all such θ and simple diagrams for our analysis.

Let div (divisor) denote a finite collection of points in the Wigner-Seitz cell W ,
centred at the origin, together with their multiplicities, i.e. a map from W to Z

+ with
a finite number of non-zero values. We can identify the divisors with the diagrams as
in Fig. 1 (the WS cell with the choice of points and multiplicities), the latter provide
handy illustrations. Then we obtain a map

Div : theta functions → divisors/diagrams, (10.34)

Since we are interested in eigenvectors of Tn,6, we restrict div to the set of
eigenvalues of Tn,6. In particular, let

V div
n,k,r := {div : | div | = n, | div(0)| ≡ r mod k, Tn,k div = div}.

We have the following result, proven in Section 11:
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Fig. 1 Typical diagram of a
divisor. The black dots denote
nonzero point on W . Each black
dot is assumed to have
multiplicity 1 unless otherwise
indicated by a number next to it

Theorem 10.9 (Classification Theorem for C6-invariant Theta Functions) The map
Div : Vn,6,r → V div

n,6,r is a bijection, and in particular

dim Vn,6,r = dim V div
n,6,r .

To compute dim V div
n,k,r it is convenient to give each point of W the index which

is the number of elements in the orbit under Tn,k generated by this point. Thus, for
k = 6, all interior points of W and all boundary points, besides the vertices and the
midpoints of the edges, have the index 6. The boundary vertices and the midpoints of
the edges have the indices 2 and 3, respectively, and the origin has the index 1.

By the orbit-stabiliser theorem, there is no divisor with index 4 or 5 where the
multiplicity is simple at each point, since 4 and 5 do not divide 6.

We identify orbits with the same index. Denote the multiplicity of points in the
orbit of the index i by mi , so that m1 = r . Then we have the relation

∑
i

imi ≡ 1 ·m1 + 2m2 + 2m3 + 6m6 = n. (10.35)

We use this equation to classify the diagrams to obtain

Theorem 10.10 Let n be even. Then Vn,k,r is one dimensional for k = 6 and for the
pairs

(n, r) = (2, 0), (2, 2), (4, 0), (4, 1), (4, 2), (4, 4), (10.36)

(6, 1), (6, 2), (6, 3), (6, 4) (10.37)

(8, 1), (8, 3), (8, 4), (8, 5) (10.38)

(10, 3), (10, 5) (10.39)
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This result implies Theorem 10.5. A table describing the explicit spanning theta
functions for Vn,6,r can be found in Appendix D

10.4.2 C2

For ξ2 = −1, the corresponding irreducible representations of C2 are simply even
and odd functions. By the correspondence (10.31), the evenness and oddness of ψ

translates to the same property of θ . Hence, we easily see that linear compatibility is
satisfied as Vn can be decomposed into odd and even functions

Lemma 10.11 Let Vn = Vn,even ⊕ Vn,odd be the decomposition of Vn into even and
odd functions. Then dim Vn,even/odd ≥ 1

Proof Let θ0, ..., θn−1 be the standard basis for the set of theta functions as in
Theorem A.2. We recall that

θm(−z) = θn−m mod n(z) (10.40)

This shows that the set of odd theta functions are spanned by

σj,−(z) = θj (z)− θn−j (z) (10.41)

Similarly, the even functions are spanned by

σj,+(z) = θj (z)+ θn−j (z) (10.42)

Corollary 10.12 If n = 3, then dim Vn,k,1 = dim Vn,odd = 1 and consequently
dim Ṽn,k,1 = dim Ṽn,odd = 1.

Remark 10.13 (The null space of M) We claim that nullM = 0 on Xn,k,r . Indeed,
we see that (ψ, a) ∈ Xn,k,r only if R−1

k a(Rkx) = a(x) where Rk represents rotation
by 2π/k (c.f. equation (10.22) and (10.23)). This means∫

�

R−1a(Rkx)dx = R−1
k

∫
�

a(Rkx)dx = R−1
k

∫
�

a(x)dx (10.43)

if we choose a fundamental cell � to be invariant (up to a boundary set) under Ck .
This means, if Rk �= 1, then

∫
�

a(x)dx = 0. Since the null space of M , on X,
consists of constants only. Hence the statement follows.

10.5 Irreducibility

The main result of this subsection is

Theorem 10.14 The spanning theta function of Vn,k,j is irreducible for the pairs

(n, j) = (4, 0), (6, 3), (8, 5), (10, 5),

and for n prime.
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Using (10.30), irreducibility of ψ translate to irreducibility of θ . We say that θ is
reducible (to L′) if there is a finer lattice, L′, containing L s.t. the corresponding ψ

is gauge periodic with respect to L′. Otherwise we say that θ is irreducible. We now
prove irreducibility of θ below. Theorem 10.14 follows from Propositions 10.15 and
10.17 below.

10.5.1 Irreducibility for C6 Symmetry

Proposition 10.15 The spanning theta function of Vn,k,j is irreducible for the pairs

(n, j) = (4, 0), (6, 3), (8, 5), (10, 5).

Proof To prove irreducibility, we need the following basic lemma:

Lemma 10.16 Let L ⊂ L′ be lattices. Let �L be any fundamental cell of L. Then
precisely one of the following holds: there is a v ∈ L′ such that v ∈ �L\L orL′ = L.

Proof Assume that no such v ∈ L′ with v ∈ �L\L exists. That is, every v ∈ L′
such that v ∈ �L is contained in L. Since translates of �L tiles the entire plane and
L ⊂ L′, we conclude that every element of L′ is in L. That is, L = L′.

Now, by choice of theta functions indicated in Table D.1, we see that for vor-
tex number n, the number of zeros of the chosen theta at the origin differs from
the number of zeros at any other point in �L. If L′ is any finer lattice contain-
ing L with respect to which our solution is gauge periodic, then Lemma 10.16
implies that the number of flux per fundamental cell of L for our chosen theta
= (number of zero at the origin)+ n > n. This is a contradiction.

10.5.2 Irreducibility of Odd Theta Functions with Prime Flux

Proposition 10.17 Let θ be an odd theta function with prime flux p. Then θ is
irreducible.

Proof Let θ be gauge periodic with respect to L. Let L ⊂ L′ be any finer lattice. Let
q denote the number of zeros of θ in a fundamental cell of L′. We first claim that
q | p. Let u, v be the generators of L′ and �L′ be the fundamental cell of L′ formed
by taking the convex hall of u and v (together with appropriate boundary). Define
an equivalence relationship as follows: two translates of �L′ , s + �L′ and s′ + �L′
for s, s′ ∈ L′, are said to be equivalent if s − s′ ∈ L. Let s1 + �L′ , ..., sk + �L′
be maximally inequivalent for s1, ..., sk ∈ L′. Since translates of �L′ tile the entire
plane, we conclude that by appropriate translates of the sj ’s, s1+�L′ ∪ ...∪ sk+�L′
is a fundamental domain of L. In particular, p = qk since θ has the same number
of zeros in each fundamental cell of L′. Since p is prime, either q = p or q = 1. If
q = p, then L = L′. Otherwise q = 1. Since 0, 1/2, τ/2 are zeros of θ and each
fundamental cell s + �L′ has exactly one zero, we conclude that 0, 1/2, τ/2 ∈ L′.
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Fig. 2 Index 6 divisors. The figure on the left has six distinct dots on its left most 3 edges, forming an
orbit for C6. The figure on the r.h.s. indicates six distinct dots forming an orbit of C6 in the interior of the
WS cell

So in particular L ⊂ 1
2 (Z+ τZ) and ψ is gauge periodic with respect to 1

2 (Z+ τZ).
This is clearly not possible, for otherwise 4 | p is a contradiction.

11 Proof of Theorem 10.9

We note that V div is the subset of the Z-module of divisors generated by diagrams of
the form in Figs. 2–5 such that the multiplicity of each point is non-negative. So we
show that there is a theta function corresponding to each such diagram. This would
show that V div ⊂ Div(V EV ). In what follows τ = ξ = eπi/3 as before. Existence

Fig. 3 Pictorial discription of θ2
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Fig. 4 Pictorial description of
θ0

of θ2 is a direct result of Theorem A.6 with n = 2. Namely, the set of permissible
double zeros for theta functions in V2 is just 1

2 (Z+ τZ).
To construct θ0, let θ2,0, θ2,1 be a basis for V2 as in Theorem A.2. Form the

function

σ(z) := det �(z) := det

(
θ2,0(z) θ2,1(z)

θ2,0(−z) θ2,1(−z)

)
(11.1)

By Theorem A.2, θ2,i (z) is symmetric about 0 for i = 0, 1 when n = 2, thus σ(z) = 0
identically. In particular, for z0 = 1

4 (τ + 1), there are constants c0, c1 such that
c0θ2,0 + c1θ2,1 has two simple zeros located at z0,−z0, respectively.

The theta function θ4 is the Wronskian, �, of θ2,0 and θ2,1. For n = 2, Theorem
A.7 shows that the location of the zeros of � are precisely the set of permissible zeros

Fig. 5 Pictorial description of
θ4
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for a singular 2-theta function. In this case, it is 1
2 (1+ τ) by Theorem A.6. It matches

the definition of θ4.
Finally, we show existence of theta functions with 6 distinct zeros on the WS-cell.

Let a1, a2, a3 ∈ C. Consider

σ(z) := det

⎛
⎜⎜⎜⎜⎜⎜⎝

θ6,0(z+ a1) θ6,1(z+ a1) · · · θ6,5(z+ a1)

θ6,0(z− a1) θ6,1(z− a1) · · · θ6,5(z− a1)

θ6,0(z+ a2) θ6,1(z+ a2) · · · θ6,5(z+ a2)

θ6,0(z− a2) θ6,1(z− a2) · · · θ6,5(z− a2)

θ6,0(z+ a3) θ6,1(z+ a3) · · · θ6,5(z+ a3)

θ6,0(z− a3) θ6,1(z− a3) · · · θ6,5(z− a3)

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.2)

Recalling that θn,m(−z) = θn,n−m mod n(z) by Theorem A.2, we see that

σ(−z) (11.3)

=det

⎛
⎜⎜⎜⎜⎝

θ6,0(z−a1) θ6,5(z−a1) θ6,4(z−a1) θ6,3(z−a1) θ6,2(z−a1) θ6,1(z−a1)
θ6,0(z+a1) θ6,5(z+a1) · · · θ6,1(z+a1)
θ6,0(z−a2) θ6,5(z−a2) · · · θ6,1(z−a2)
θ6,0(z+a2) θ6,5(z+a2) · · · θ6,1(z+a2)
θ6,0(z−a3) θ6,5(z−a3) · · · θ6,1(z−a3)
θ6,0(z+a3) θ6,5(z+a3) · · · θ6,1(z+a3)

⎞
⎟⎟⎟⎟⎠

= (−1)3 det

⎛
⎜⎜⎜⎜⎝

θ6,0(z+a1) θ6,5(z+a1) · · · θ6,1(z+a1)
θ6,0(z−a1) θ6,5(z−a1) · · · θ6,1(z−a1)
θ6,0(z+a2) θ6,5(z+a2) · · · θ6,1(z+a2)
θ6,0(z−a2) θ6,5(z−a2) · · · θ6,1(z−a2)
θ6,0(z+a3) θ6,5(z+a3) · · · θ6,1(z+a3)
θ6,0(z−a3) θ6,5(z−a3) · · · θ6,1(z−a3)

⎞
⎟⎟⎟⎟⎠

= (−1)3(−1)2σ(z) (11.4)

= −σ(z) (11.5)

where the factor (−1)3 arises from interchanging the 2i − 1 and 2i-th row for i =
1, 2, 3. The (−1)2 factor occurs after interchanging the second and the 6-th column
and interchanging the third and the fourth column. So we have that σ(0) = 0. This
proves the desired claim that σ(z) has a kernel.

To prove that Div(V EV ) = V div, we study orbits of C6 on the WS-cell. We will
use the divisor and theta function picture (see (10.34)) interchangeably. We find all
possible orbits of the action of C6 on the WS-cell. The only choice of having index
1 is the case where the origin has index 1. The only index 2 possibility where each
point has index one is shown in Fig. 4. Then we have index 3 divisors. The possible
location of points on W with index 3 each with multiplicity 1 is as shown in Fig. 6

By the orbit-stablizer theorem, there is no divisor with index 4 or 5 where the
multiplicity is simple at each point, since 4 and 5 do not divide 6. Finally, we consider
the index 6 case. The possible divisors are shown in Fig. 2.

Now we are ready for the proof of Theorem 10.9. First note that injectivity of the
map Div is a direct consequence of Proposition A.3. Now if θ is any C6-equivariant
theta function, its zeros are unions of orbits of C6. We may divide θ by C6-equivariant
theta functions corresponding to elements of V div to produces new theta functions
with fewer zeros in the Wigner-Seitz cell. Note that this division process preserves
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Fig. 6 Index 3 divisor

C6-equivariance. We repeat this process until any further division results in a non-
theta-function. We claim that the resulting function, σ , is a complex number. If so, we
have completely factor θ by theta functions from V div and the bijection is established.

Now, we study σ . σ cannot have any zeros that form an orbit of C6 of size 6,
otherwise they can be removed by dividing by an element from V div, contradicting
the definition of σ . It can neither have zeros that form orbits of size 2 for the same
reason. Hence, the zeros of σ can only be in the following two configuration: one
zero at the origin, or as shown in Fig. 6. To see this, if there are zeros as in Fig. 6, but
with higher multiplicity, we divide σ by θ−1

2 θ2
4 as shown in Fig. 7 to remove all the

multiplicities. Likewise we can divide by θ2 to remove even multiplicity at the origin.
So, we may assume that σ has a simple zero at the origin. Indeed, if σ has three

zeros as in Fig. 6, we divide it by θ−1
2 θ4 to obtain a theta function with a single zero

Fig. 7 Pictorial description of
θ−1

2 θ2
4



Math Phys Anal Geom (2018) 21: 7 Page 31 of 40 7

at the origin. But this is not allowed as V1 is 1-dimensional and whose generator has
zero at 1

2 (1+ τ) = 1
2 (1+ ξ) by Proposition 11.1 below. Thus this case never occurs

and the proof is complete.
To prove the assertion above, we pass the problem back to linear solutions ψ from

the theta functions via (5.11) and use the complexified co-ordinates x = x1 + ix2.
We have

Proposition 11.1 Let ψ satisfy the gauge-periodicity condition (5.2). Then it has
zero at 1

2 (1+ τ). In particular, when n = 1, ψ does not vanish at 0. Thus by unique-
ness of theta functions, we conclude there is no theta function with a single zero at
the origin (with our imposed boundary condition).

Proof Let us denote by z = 1
2 (1+ τ). Due to the quasiperiodic boundary conditions

ψ(y + 1) = e
ikny2

2 ψ(y) (11.6)

ψ(y + τ) = e
ikn(τ1y2−τ2y1)

2 ψ(y) (11.7)

Applying these relations at the point z = (−(τ1 + 1)/2,−τ2/2), we find that

ψ(z+ 1) = e−
iknτ2

4 ψ(z) (11.8)

ψ(z+ τ) = e
iknτ2

4 ψ(z) (11.9)

Now, utilising the symmetry ψ(−x) = ψ(x), we deduce that ψ(z+ 1) = ψ(z+ τ).
Thus

e
iknτ2

4 ψ(z) = e
−iknτ2

4 ψ(z),

or equivalently

e
iknτ2

2 ψ(z) = ψ(z).

Since kτ2 = 2π , this relation becomes (einπ − 1)ψ(z) = 0, and implies when n is
odd that ψ vanishes at z.
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Appendix

Recall that x and z are related as in (5.11) and identify x = (x1, x2) with x1 + ix2.

A On Solutions of the Linearised Problem

Lemma A.1 There is no linear solution ψ , as in Section 5, such that

ψ(x̄) = eigr (z)ψ(x) (A.1)
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for some real valued g.

Proof Assume for the sake of contradiction that such ψ exists. Then

ψ(x) = e
n
4 (z2−|z|2)θ(z) (A.2)

for some holomorphic θ . Equation (A.1) becomes

θ(z̄) = e
n
4 (z2−z̄2)eigr (z)θ(z) (A.3)

Taking ∂z on both sides, we see that

0 = e
n
4 (z2−z̄2)eigr (z)

(
−n

2
z̄θ + iθ∂zgr + θ ′

)
(A.4)

This shows that the term in the bracket vanishes identically. In particular,(
−n

2
z+ i∂zgr

)
θ = −θ ′ (A.5)

Taking ∂z̄ again, we see that
(+i∂z̄∂zgr ) θ = 0 (A.6)

Since θ has at most finitely many zeros, we conclude

−�gr = 0 (A.7)

This shows that gr is harmonic. Since it is periodic, it is a constant. Equation (A.3)
then shows that such solution is impossible.

B Theta Functions

In this appendix we review basic properties of theta functions, which are likely to be
known but which we could not find in the literature. From now on, we fix a lattice
shape τ and a lattice

Lτ = Z+ τZ (B.1)

throughout this appendix (unless otherwise stated).

B.1 Basic Properties

In this section, we prove some basic properties of the theta functions. Let n be fixed.
Define for 0 ≤ m ≤ n− 1,

θn,m(z) =
∑

l∈[m]n
γ l2e2πilz (B.2)

where γ := eπiτ/n and [m]n = {a ∈ Z : a = m mod n}.

Theorem B.1 The θn,m’s form a basis for Vn that satisfy

1. θn,m(z+ 1
n
) = e2πim/nθn,m(z)

2. θn,m(−z) = θn,n−m(z)

3. θn,m(z+ τ/n) = γ−1e2πizθn,m+1(z)
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Theorem B.2 Any n-theta function has exactly n zeros modulo translation by lat-
tice elements. Moreover, any two theta functions that share the same zeros (counting
multiplicity) are linearly dependent.

Theorem B.3 θ1,0 has a simple zero at 1
2 (1+ τ)

Proof See Proposition 11.1.

Theorem B.4 Suppose that θ ∈ Vn and σ ∈ Vm, then θσ ∈ Vn+m.

Proof Inspection.

The proof of the theorems consists of the following lemmas:

Proof of Theorem A.2 Expanding in e2πikz for k ∈ Z, the coefficients of any element
of Vn satisfies the recurssion cm+n = cmei(2m+n)πτ . This recursion implies that for
0 ≤ m ≤ n− 1, we have that

cm+ln = cmeiπτ(l2n+2lm) (B.3)

where l is an integer. So the functions∑
k∈Z

eiπτ(k2n+2km)e2πi(nk+m)z, m = 0, ..., n− 1 (B.4)

form a basis for the eigenspace. If we let l = kn+m, then we can rewrite the above as
∑

l∈[m]n
eiπτ l2−m2

n e2πilz = e−iπm2/nθm (B.5)

Now we prove the three bullet points. We note that

θm

(
z+ 1

n

)
=
∑

l∈[m]n
γ l2e2πilze2πil/n (B.6)

Since l ∈ [m]n, we have that l/n−m/n ∈ Z. Hence

θm

(
z+ 1

n

)
= e2πim/nθm(z) (B.7)

Now for the second item, we note

θm(−z) =
∑

l∈[m]n
γ l2e−2πilz (B.8)

=
∑

l∈[m]n
γ (−l)2

e2πi(−l)z (B.9)

=
∑

l∈[n−m]n
γ l2e2πilz (B.10)

= θn−m mod n(z) (B.11)
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Finally, recalling that γ = eπiτ/n, we note that

θm(z+ τ/n) =
∑
k∈Z

γ (kn+m)2
e2πi(kn+m)z+2πi(kn+m)τ/n (B.12)

= γ−1
∑
k∈Z

γ k2n2+2knm+m2+2kn+2m+1e2πi(kn+m)z (B.13)

= γ−1
∑
k∈Z

γ (kn+m+1)2
e2πi(kn+m)z (B.14)

= γ−1e−2πizθm+1 mod n(z) (B.15)

Proof of Theorem A.3 First we prove that elements of Vn has exactly n zeros modulo
translation by lattice elements. We compute the winding number of θ . First, since θ is
holomorphic, its zeros are discrete. Hence we may assume WLOG that all the zeros
are in the interior of the fundamental domain. Let � denote the fundamental domain.
Then the total number of zeros of θ is given by

1

2πi

∫
∂�

θ ′

θ
dz (B.16)

Since θ(z) = θ(z+ 1), the integral along the tτ and tτ + 1 for t ∈ [0, 1] is zero. Let
y(z) = e−iπτ eαz where α = −2πi. Since θ(z + τ) = ynθ(z) and y′ = αy, we see
that θ ′(z + τ) = yn(z)θ ′(z) + nαyn(z)θ(z). Hence, only the horizonal segment of
the line integral contribute:

1

2πi

∫
∂�

θ ′

θ
dz = 1

2πi

∫ 1

0

θ ′(t)
θ(t)

− θ ′(1+τ−t)

θ(1+τ−t)
dt (B.17)

= 1

2πi

∫ 1

0

θ ′(t)
θ(t)

− yn(1−t)θ ′(1−t)+nαyn(1−t)θ(1−t)

yn(1−t)θ(1−t)
dt (B.18)

= 1

2πi

∫ 1

0

θ ′(t)
θ(t)

− θ ′(1−t)+nαθ(1−t)

θ(1−t)
dt (B.19)

= 1

2πi

∫ 1

0

θ ′(t)
θ(t)

− θ ′(1−t)

θ(1−t)
dt+n (B.20)

= n (B.21)

Next, we show that any two theta functions that share the same zeros (counting mul-
tiplicity) are linearly dependent. Let θ and ϕ be the two nonzero zeta functions that
shares the same zeros. Set f (z) = θ(a)/ϕ(z). We show that

1. f (z) can be extended analytically to all of C and
2. f (z) is doubly periodic.

Certainly f is holomorphic away from zeros of ϕ. We only need to show that f can
be extended analytically to zeros of ϕ. But this is precisely the requirement that θ and
ϕ share the same zeros (counting multiplicity).

For the second item, we note that

f (z+ 1) = θ(z+ 1)/ϕ(z+ 1) = θ(z)/ϕ(z) = f (z) (B.22)
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and

f (z+ τ) = θ(z+ τ)

ϕ(z+ τ)
= e−2πinze−πinτ θ(z)

e−2πinze−πinτ ϕ(z)
= θ(z)

ϕ(z)
= f (z) (B.23)

This shows that f is doubly periodic.
Now, Liouville’s theorem shows that f must be constant. It follows that θ and ϕ

are collinear.

B.2 Classification of Singular n-theta Functions

Theorem B.5 Let Xn be the set of singular n-theta functions mod scaling. Then

Xn =
{
θn

0

(
z+ 1

n
(a + bτ)

)
e2πibz : a, b ∈ Z

}
(B.24)

where θ0 is a basis for V1. Moreover, |Xn| = n2. The location of zeros of elements in
Xn form the set

1

2
(1+ τ)+ 1

n
(Z+ τZ) (B.25)

As before, we establish the theorem through various lemmas. The idea of the proof
is as follows: by Theorem A.3, we may identify elements of Xn with the location of
their zeros. We attempt to locate the zeros of singular n-theta function first and show
that there are only n2 possible locations in a fundamental cell. So |Xn| = n2. Then
we explicitly construct n2 singular n-theta functions to complete the proof.

To locate the zeros of singular n-theta functions, we study the Wronskian of a
particular set of nice basis element: �(z) := det(θ(i)

j ) for i, j ∈ {0, ..., n− 1}, where

θ
(i)
j means the i-th derivative of θj (see (B.2) for definition θj ).

Proposition B.6 The function � is holomorphic and

1. The locations of the zeros of � are exactly the locations where a singular n-theta
function can have zero.

2. �(−z) = (−1)n+1�(z),
3. �(z+ 1/n) = (−1)n+1�(z),
4. �(z+ τ/n) = (−1)n+1γ n(n−1)yn�(z) where y = e−iπτ eαz and α = −2πi.

Proof We recall that the θm’s form a basis for Vn. If θ(z) =∑m amθm(z) has n zeros
at z0, then

0 = θ(i)(z0) =
∑
m

amθ(i)
m (z) (B.26)

for i = 0, ..., n − 1. So the matrix (θ
(i)
j (z0)) has a nonzero vector (a0, ..., an−1) in

its kernel. Hence �(z0) = 0. Conversely, if �(z0) = 0, then we can find a nonzero
vector (a0, ...., an−1) in the kernel of the matrix (θ

(i)
j (z0)). Then θ = amθm has

n-zeros at z0.
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Recall from Theorem A.2 that θm(−z) = θn−m mod n(z). It follows that θ(k)
m (−z) =

(−1)kθ
(k)
n−m mod n(z). If n is even, then after z �→ −z, every even row in the matrix

(θ
(i)
j ) picks up a minus sign, and moreover, we need to interchange the m-th collumn

with the (n − m mod n)-th collumn for 0 < m < n/2. Together we pick up n/2 +
n/2 − 1 minus signs for �. So �(−z) = −�(z). If n is odd, we pick up (n − 1)/2
minus signs from the even rows and need to interchange (n − 1)/2 columns. So
�(−z) = �(z).

Recall from Theorem A.2 that θm(z + 1/n) = ζmθm(z) where ζ = e2πi/n. It
follows after z �→ z + 1/n, the m-th column of (θ

(i)
j ) picks up a factor of ζm−1.

Hence �(z+ 1/n) = ζ
∑n−1

k=0 k�(z) = (−1)n+1�(z).
Finally, we recall from Theorem A.2 and the definition y = e−iπτ e2πiz =

γ−ne2πiz that

θm(z+ τ/n) = γ−1e2πizθm+1 mod n(z) (B.27)

= γ−1γ nyθm+1 mod n(z) (B.28)

= γ n−1θm+1 mod n(z) (B.29)

Repeated differentiation shows that

θ(k)
m (z+ τ) = γ n−1

k∑
i=0

(
k

i

)
(y)(i)θ

(k−i)
m+1 (z) (B.30)

Hence

(
θ

(i)
j (z+ τ/n)

)
= γ n−1E

⎛
⎜⎜⎜⎜⎜⎝

y

(y)′ y

(y)′′ 2(y)′ y
...

. . .

(y)n · · · y

⎞
⎟⎟⎟⎟⎟⎠
(
θ

(i)
j (z)

)
(B.31)

where E is the matrix that corresponds to a permutation of columns(1, 2, ..., n) �→
(2, 3, ..., n, 1). It follows that

det
(
θ

(i)
j (z+ τ/n)

)

= (−1)n+1 det

⎡
⎢⎢⎢⎢⎢⎣

γ n−1

⎛
⎜⎜⎜⎜⎜⎝

y

(y)′ y

(y)′′ 2(y)′ y

. . .

(y)n y

⎞
⎟⎟⎟⎟⎟⎠
(
θ

(i)
j (z)

)
⎤
⎥⎥⎥⎥⎥⎦

(B.32)

(where (−1)n+1 = det E). Hence �(z+ τ) = (−1)n+1γ n(n−1)yn�(z).

Corollary B.7 � ∈ Vn2
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Proof The lemma above shows that

�(z+ 1) = �

(
z+

n∑
i=1

1/n

)
= (−1)(n+1)n�(z) = �(z) (B.33)

We repeat the above proof with τ/n replaced by τ . Note first that θ(z + τ) =
e−2πinz−πinτ θ(z) for all θ ∈ Vn. Set Y = e−2πinz−πinτ , then we see that

(
θ

(i)
j (z+ τ)

)
=

⎛
⎜⎜⎜⎜⎜⎝

Y

(Y )′ Y

(Y )′′ 2(Y )′ Y
...

. . .

(Y )n · · · Y

⎞
⎟⎟⎟⎟⎟⎠
(
θ

(i)
j (z)

)
(B.34)

Taking det of both sides, we see that �(z + τ) = Yn�(z) = e−2πin2z−πin2
�(z),

which is precisely the defining conditions of elements of Vn2 .

Corollary B.8 |Xn| = n2.

Proof The uniqueness Theorem A.3 shows us that |Xn| is equal to the number of
possible locations of zeros of singular n-theta functions. Proposition A.7 shows that
that this is equal to the size of the zero set of � mod Lτ . Since � ∈ Vn2 . We conclude
by Theorem A.3, again, that |Xn| = n2.

Now, we obtain explicit formulae for elements of Xn. To do this, we need the
following lemma

Lemma B.9 If θ ∈ Vn, so is

γ (z) = θ

(
z+ 1

n
(a + bτ)

)
e2πibz (B.35)

for a, b ∈ Z.

Proof We check that

γ (z+ 1) = θ

(
z+ 1

n
(a + bτ)+ 1

)
e2πibz+2πib (B.36)

= γ (z) (B.37)

since b ∈ Z. Similarly,

γ (z+ τ) = θ

(
z+ 1

n
(a + bτ)+ τ

)
e2πibz+2πibτ (B.38)

= e−πinτ−2πinz−2πi(a+bτ)θ

(
z+ 1

n
(a + bτ)

)
e2πibz+2πibτ (B.39)

= e−πinτ−2πinzγ (z) (B.40)

since a, b ∈ Z.
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Now, let θ0 be a basis for V1. From Theorems A.4 and A.5, we see that that θn
0 ∈

Xn, it follows by Lemma A.10 that

θa,b(z) := θn
0

(
z+ 1

n
(a + bτ)

)
e2πibz (B.41)

are all in Xn for a, b ∈ Z. But there are exactly n2 = |Xn| number of distinct
such functions (mod scaling). So Xn is contains exactly these elements. Moreover,
by Proposition 11.1, the zero of θ0 is at 1

2 (1 + τ). So the zeros of θa,b are located at
1
2 (1+ τ)− 1

n
(a + bτ).

C Choice of χg

The action of point groups is given by

ψ(gx) = eiχgψ(x). (C.1)

for some χg , which we determine below.

Proposition C.1 Let g ∈ SH(L) and ψ is a linear solution satisfying (C.1), then χg

are constant.

Proof We identify SH(L) as a subset of C so that gx is the multiplication of the
two complex numbers g and x. Assume that χg satisfies (C.1). Since ψ is a linear
solution, by (5.11), we can find a holomorphic theta function θ such that θ(x) =
h(x)ψ(x) for some smooth, nonvanishing, h with the property (∂̄h)(x) = b

2xh(x)

where ∂̄ := 1
2 (∂x1 + i∂x2). Then (C.1) is equivalent to the fact that

Hg(x) := h(gx)eiχgh(x)−1 (C.2)

is holomorphic. Taking ∂ , this requirement is equivalent to

0 = ∂̄(h(gx)eiχgh(x)−1) (C.3)

=
(

i∂̄χg + b

2
ḡgx − b

2
x

)
h(gx)eiχgh(x)−1. (C.4)

Since |g| = 1 and h(gx)eiχgh(x)−1 is invertible, we see that

∂̄χg = 0 (C.5)

Since χg are real valued, it is a constant.

As a result of the the proposition, it suffices for us to look for gauge invariant
(ψ, A) under actions of H(L) whose gauge factor hg(x) = eiχg is a constant. Hence
we consider spaces of the form{

ψ
(
R−1

ξ ix
)
= ηψ(x), RξA

(
R−1

ξ x
)
= η′A(x)

}
(C.6)

where η, η′ ∈ C. One realises that such space corresponds to irreducible representa-
tions of H(L).
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D Table of C6-Equivariant Theta Functions

Vortex number Value of r Theta functions that span Vn,6,r

n = 2 0 θ0
2 θ2

n = 4 0 θ2
0

1 θ4
2 θ0θ4

4 θ2
2

n = 6 0 θ3
0 , θ3

2 , θ2
4 θ−1

2
1 θ0θ4

2 θ2
0 θ2

3 θ4θ2

4 θ0θ
2
2

n = 8 0 θ4
0 , θ0θ

3
2

1 θ2
0 θ4

2 θ4
2 , θ2

4 , θ3
0 θ2

3 θ0θ4θ2

4 θ2
0 θ2

2
5 θ4θ

2
2

n = 10 0 θ5
0 , θ2

0 θ3
2

1 θ3
0 θ4, θ4θ

3
2

2 θ4
0 θ2, θ0θ

4
2 , θ0θ

2
4

3 θ2
0 θ4θ2

4 θ3
0 θ2

2 , θ5
2 , θ2

4 θ2

5 θ0θ4θ
2
2

(D.1)
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