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a b s t r a c t 

The time-varying nature of consumption patterns is critical in the development of reliable electric vehi- 

cles and real-time schemes for assessing energy autonomy. Most of these schemes use battery voltage 

observations as a primary source of information and neglect variables external to the vehicle that affect 

its autonomy and help to characterise the behaviour of the battery as main energy storage device. Us- 

ing an electric bicycle as case study, we show that the incorporation of external variables (e.g., altitude 

measurements) improves predictions associated with evolution of the battery voltage in time. We achieve 

this by proposing a novel kernel adaptive filter for multiple inputs and with a data-dependent dictionary 

construction. This allows us to model the dependency between battery voltage and altitude variations in 

a sequential manner. The proposed methodology combines automatic discovery of the relationship be- 

tween voltage and altitude from data, and a kernel-based voltage predictor to address an important issue 

in reliability of electric vehicles. The proposed method is validated against a standard kernel adaptive 

filter, fixed linear filters and adaptive linear filters as baselines on the short- and long-term prediction of 

real-world battery voltage data. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

The development of rechargeable lithium-ion batteries has en-

abled the use of electrical equipment such as smartphones, cord-

less power tools and electric vehicles, without the negative exter-

nalities associated with petrol, coal, and disposable batteries [23] .

To evaluate the autonomy and response of a battery, the estimation

of its remaining amount of energy (i.e., the state-of-charge) is cru-

cial but challenging, since the state-of-charge cannot be measured

directly but can only be estimated through related variables such

as voltage, discharge current and temperature [14] . Online estima-

tion of the state-of-charge also allows us to evaluate if the battery

is able to accomplish a task before executing it under variable user

profiles and in a safe manner, for instance, a monitoring module

for a battery in an electric car should inform the user whether it

is safe to overtake another vehicle at the necessary speed. 

The physics behind lithium-ion batteries are well understood

[23] , therefore, it is possible to construct a mathematical model

for the inter-dependencies of their state variables (e.g., voltage,

current, temperature) under idealised conditions. However, when

unexpected operating conditions come into place and the battery
∗ Corresponding author. 
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eeds to fulfil the requirements imposed by a human operator,

here is no clear mathematical model governing the relationship

etween the battery state variables and the environment; a fact

hat rules out the use of model-based estimation techniques such

s the (extended) Kalman filter or the particle filter [1] . For exam-

le, an electric bicycle behaves differently depending on the rider’s

eight, the slope of the ground, whether she or he is navigating

n a traffic jam or freely in an open road, or during summer or

inter. These conditions certainly change the dynamics of the bat-

ery, and although as humans we can give a qualitative assessment

s to how the battery might behave, deriving a sound mathemati-

al model describing these scenarios is beyond our reach. In order

o circumvent the construction of a theory-based deductive math-

matical model for the battery and its environment, we (i) use

ensing technologies to measure variables that are observable, both

rom the environment and the battery itself, then (ii) consider an

daptive algorithm to filter out the noise from the measurements,

o finally (iii) adopt a kernel-based approach to learn hidden and

omplex structure in the data and forecast the voltage signal. 

Finding hidden relationships among variables by using observed

ata for forecasting purposes is at the heart of Signal Processing

nd Machine Learning—see [12] and [ [15] , pp. 118–122]. In partic-

lar, we will consider kernel adaptive filters [10] , a class of nonlin-

ar adaptive filters [5] that operate by transforming noisy observa-

http://dx.doi.org/10.1016/j.patrec.2017.09.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.09.009&domain=pdf
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ions into high-dimensional features, all to perform predictions by

inearly combining those features. The predictive ability of kernel

daptive filters (KAFs) stems from the expressiveness of the nonlin-

ar transformation considered and the fact that the combination of

eatures is fully learnt from the data . In the last decade, KAFs have

roven successful on online data-processing tasks due to both its

educed computational complexity and ability to identify complex

elationships between multivariate data in an adaptive manner as

hown by [9,16,22,24] and [21] . KAF applications in energy storage

re still few and far between, in fact, machine learning approaches

o battery management are novel and have not addressed the rela-

ionship between the battery state variables and the environment

7,17] . 

The contribution of this work is twofold: First, we propose a

ovel kernel adaptive filter which extends the kernel least mean

quare filter proposed by [9] and [16] to cater for multiple inputs,

ogether with a signal-dependent dictionary construction. Second,

e validate the proposed algorithm in a real-world case study to

mprove the forecast of an electric bicycle battery voltage using

easurements of the altitude of the bicycle; this is an applied con-

ribution with practical impact in the monitoring of energy-storage

evices and can also be understood as a proof-of-concept for im-

lementation on more general settings. 

For the rest of the paper, we give an overview of KAFs followed

y our proposed algorithmic extensions, a description of both the

quipment used and experimental settings, and a presentation of

he proposed kernel algorithm. Lastly, we compare our method

o existing approaches on experiments using real-world data and

nalyse our findings. 

. Existing kernel adaptive filters and proposed extensions 

Let us consider the discrete-time, real-valued, stochastic process

 t∈ N , where we denote the observation of the random variable X t 

y x t ∈ R , and the observation sequence x t = [ x t , . . . , x t−(d−1) ] 
T ∈

 

d for a given order d ∈ N —notice that we use lowercase letters for

calars and boldface letters for vectors. The prediction problem in-

olves estimating X t+1 by only using the sequence x t , in an online

ashion, where limited knowledge of the statistics of the process

 t∈ N is available a priori . 

We will address the prediction problem using kernel adap-

ive filters [10] , a class of nonlinear adaptive filters [5] . KAFs pro-

eed by implementing a sequential, supervised-learning, algorithm

ased on support vector regression machines [3] , to learn the re-

ationship between [ X t , . . . , X t−(d−1) ] 
T and X t+1 . Specifically, a KAF

uilds a set of support vectors D t = { s 1 , . . . , s N t } and weights W t =
 w 1 , . . . , w N t } , encompassing information about the observed tra-

ectories of the process X t∈ N ; thus, when a new trajectory x t is ob-

erved, the algorithm assesses the similarity between x t and each

ictionary member (or support vector) through a kernel function

o estimate X t+1 as a linear combination of the kernel evaluations. 1 

The KAF prediction can be denoted by 

ˆ 
 t+1 = 

∑ 

s j ∈D t 
w j K(s j , x t ) (1)

here 

• ˆ X t+1 is the prediction of the random variable X t+1 , 

• the set of support vectors D t = { s 1 , . . . , s N t } is referred to as

Dictionary , 
• w j is the weight corresponding to the support vector s j , and 
1 We have kept technicalities to a minimum and avoided feature-space references 

reproducing kernel Hilbert space) to benefit conciseness and clarity. For a detailed 

resentation of KAFs, the reader is referred to [10] . 
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• K ( s j , x t ) is the kernel (or similarity) evaluation between support

vector s j and input x t . 

The adaptivity of the KAF comes from learning both the weights

nd the dictionary in an online manner. The weight update rule

s inherited from classic linear adaptive filters [5] , these give rise

o a plethora of KAF algorithms including the kernel ridge regres-

ion [3] , kernel recursive least squares [4] , extended kernel recur-

ive least squares [8] , and kernel state-space models [21] . We will

onsider the kernel least mean square (KLMS) variant in our exper-

ments due to its advantages for online implementation: low com-

utational complexity and ability to quickly adapt to nonstationary

ignals [9,16] . 

We next propose two extensions of the KAF setting to cater for

he multivariate and nonstationary data that will be used in our

xperiments, that is, a kernel designed for multiple inputs and a

ata-dependent method for constructing the dictionary. 

.1. A dedicated kernel for multiple inputs 

The kernel choice first involves finding a similarity function, we

onsider the Gaussian kernel [ [18] , Section 2.3] defined by 

 l (s j , x t ) = exp 

(
−|| s j − x t || 2 

2 l 2 

)
(2)

here the parameter l > 0 is referred to as the lengthscale and con-

rols the rate of decay of the similarity between the support vector

 j and the input sample x t . The Gaussian kernel reaches its maxi-

um when the support vector s j is equal to the input x t and de-

ays to zero when they are dissimilar. Furthermore, the Gaussian

ernel is preferred since it is universal , meaning that the set of

stimates produced by the Gaussian kernel is dense in the space

f continuous functions; therefore an arbitrary degree of accuracy

n regression is guaranteed by increasing the number of support

ectors—see [19] . 

In our experiments, the input signal comprises both altitude h t 

nd (battery) voltage v t measurements of an electric bicycle, that

s, x t = [ h 

T 
t , v 

T 
t ] 

T . In this case and in general for multi-input sce-

arios, a more expressive predictor can be designed by using one

aussian kernel for each input and then multiply them together,

he advantage of this formulation is that each input has a particu-

ar lenghtscale parameter. We have chosen this multiplicative ker-

el rather than a additive one to emphasise that two data samples,

ay x t and x t ′ , are considered similar if both voltage and altitude

omponents are similar . 
Denoting by l h and l v the lengthscales for the altitude and volt-

ge respectively, and the corresponding parts of the support vector
 j by s h 

j 
and s v 

j 
, a two-input Gaussian kernel can be expressed as: 

 l h ,l v 

([
s h 

j 

s v 
j 

]
, 

[
h t 

v t 

])
= K l h (s h j , h t ) K l v (s v j , v t ) 

= exp 

(
−

|| s h 
j 
− h t || 2 
2 l 2 

h 

)
exp 

(
−

|| s v 
j 
− v t || 2 
2 l 2 v 

)

= exp 

(
−

|| s h 
j 
− h t || 2 
2 l 2 

h 

−
|| s v 

j 
− v t || 2 
2 l 2 v 

)
. (3) 

he lengthscales l h and l v reveal how much the altitude and volt-

ge explain the observations respectively, where an input that does

ot aid the prediction has a vanishing lengthscale—this kernel is

herefore referred to as Automatic Relevance Determination Gaus-

ian kernel [11] . A careful determination of the optimal kernel pa-

ameters is usually neglected within KAF due to the universal ap-

roximation property of the Gaussian kernel (i.e., it works even for

 suboptimal choice of parameters), however, in our experiments

e will determine the optimal lengthscales via minimisation of the

elative mean square error on a training set. 
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Fig. 1. Battery voltage and altitude signals recorded from electric bicycle (standard- 

ised). Notice that the periodic components of both signals are aligned but the volt- 

age signal also features a decreasing trend and a waveform that changes in time. 
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2.2. Signal-dependent sparsification (dictionary construction) 

The dictionary contains information about the region of the in-

put space where the data have been seen and its size controls the

trade-off between the algorithm’s computational complexity and

its predictive ability—the construction of the dictionary is referred

to as sparsification [6] . Popular sparsification methods are the nov-

elty criterion [9,13] and the coherence criterion [16] , both of these

strategies add the observed sequence x t to the dictionary based on

its proximity to the dictionary and whether it improves the estima-

tion or not. Despite the adaptive nature of KAF, the sparsification

criteria are always fixed which is unsuitable for nonstationary sig-

nals; e.g., for signals with a monotonically decreasing trend as the

battery voltage in our experiments. 

We propose a novel sparsification criterion that takes concepts

from both methods mentioned above but with a further modi-

fication that allows it to adapt to changes in the magnitude of

the target signal unlike the standard methods. We first take the

proximity-to-dictionary rule from the coherence method measured

by the kernel distance, see Eq. (4) , then, we consider a prediction-

oriented rule inspired on the novelty criterion, however, the nov-

elty criterion considers the absolute error whereas we consider

the relative error with respect to the current value of the signal,

see Eq. (5) , thus allowing larger absolute errors when the signal is

large and vice versa. The proposed rules are: 

distance to dictionary := max 
s j ∈D 

K(s j , x t ) ≥ δdict (4)

prediction error := || x t+1 − ˆ x t + 1 || ≤ δpred x t + 1 (5)

The pseudocode for the kernel least mean square with the pro-

posed multi-input kernel and adaptive sparsification criterion is

presented in Algorithm 1 . 

Algorithm 1 Proposed kernel least mean square for multiple in-

puts with adaptive sparsification rule. 

1: # Initialisation 

2: Construct input signal: x t = [ h t , v t ] T , t = 1 , . . . 

3: Dictionary D = { x 0 } , number of delays d, weights w 1 = 0 

4: Learning step: μw 

> 0 

5: Sparsification parameters: δdict , δpred > 0 

6: Kernel parameteres l h , l v > 0 

7: for observation sequence x t , x t−1 , . . . , x t−(d−1) do 

8: Denote regressor: x t = [ x t , . . . , x t−(d−1) ] 
T 

9: Similarity distance to dictionary: 

d dict = max s j ∈D K l h ,l v 
(s j , x t ) 

10: Prediction: ˆ x t+1 = 

∑ 

s j ∈D w j K l h ,l v 
(s j , x t ) 

11: Error: e pred = x t+1 − ˆ x t+1 

12: if d dict ≥ δdict and || e pred || ≤ δpred x t+1 then 

13: Add new support vector: D ← D ∪ { x t } 
14: end if 

15: w j ← w j + μw 

e pred K l h ,l v 
(s j , x t ) 

16: end for 

3. Case study: the electric bicycle 

3.1. Experimental setting 

We used an electric bicycle powered by a 250 W RMS electric

motor fitted onto an urban-style frame, 2 the battery that energises

the motor had the following specifications: 
2 Equipment provided by the Chilean company EliBatt SPA. 

 

v  

v  
• The battery package was comprised of 30 lithium-ion cells

(40 0 0 mAh, 3.7 V), 
• the cells were connected in a 10 × 3 configuration to give a

nominal output of 37 V and 12 A, thus having a total output

power of 4 4 4 W, and 

• the battery energy capacity Joules was 37 V × 12 A × 3600 s

= 1,598,400 J. 

The voltage signal was acquired using the analog-to-digital

A/D) converter of an Arduino board at a sampling frequency of

.5 Hz. The bicycle was further equipped with a (smartphone) GPS

hat provided geolocalisation measurements, these were validated

hrough Strava’s database in order to compute the altitude with

 precision of up to 11 mm [20] . The motivation to include alti-

ude measurements (an exogenous input to the system) instead of

nly considering inner variables of the battery, such as current and

emperature, was to learn how the battery system reacts to the en-

ironment changes. Our hypothesis is that the voltage depends on

he slope (differential altitude) rather than the altitude; we aim

hat this dependency is automatically discovered by the proposed

lgorithm by considering past observations. We denote the voltage

ignal coming from the battery (Arduino) by v t∈ N and the altitude

ignal by h t∈ N , these were synchronised and combined into a vec-

or to construct the observation signal { x t = [ v t , h t ] T , t ∈ N } , also

aving a sampling rate of 0.5 Hz. 

The experiment consisted in riding the bicycle at a constant

controlled) speed in a 440 m racetrack in O’Higgins Park, Santiago,

hile, starting from a fully-charged battery to a complete discharge.

otice that the altitude measurements were corrupted by terrain

rregularities and sensor noise. The top speed was 16.6 km/h, the

verage speed 13.5 km/h, the travelled distance 29.4 km, and the

ltitude difference between the lowest and highest points of the

oute was 10 m as confirmed by the GPS and the geolocalisation

atabase from Strava. The duration of the experiment was 2 h and

0 min (3900 samples) and the standardised voltage and altitude

ignals are shown in Fig. 1 . 

. Data preprocessing and models considered 

.1. Assessing (non-)linearity of the voltage signal 

Kernel adaptive filters (e.g., KLMS) are more computationally-

xpensive than linear ones (e.g., LMS). Therefore, we first motivate

he use of KAFs by showing that if only a linear estimator is con-

idered, the number of delayed samples required for a sound pre-

iction becomes excessively large. 

We studied the linear dependency between the altitude and

oltage by computing the autocorrelation function (ACF) of the

oltage signal, and the crosscorrelation function (CCF) between
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Fig. 2. Autocorrelation function (left, ACF) of the voltage signal, and cross- 

correlation function (right, CCF) between voltage and altitude signals. The three 

colours denote three non-overlapping thirds of the detrended data. 

Fig. 3. Data acquisition from bicycle, lithium-ion battery and GPS (red), composi- 

tion of the input data (green) and kernel adaptive filter (blue). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

t  

b  

o  

s  

d  

e  

s  

f  

t  

m  

l  

o  

o

4

o

 

i  

t  

m  

A  

p  

X  

d  

t  

E  

g  

t  

p  

t  

c  

t  

o  

b  

t

Fig. 4. Search of KLMS-X lengthscales using stochastic minimisation of RMSE (over 

the first 500 observations). The black dots are the initial values, the red crosses 

are the found minima and the trajectories are shown in colours. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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(  

i  

o  

s  
he voltage and altitude signals. As these signals are known to

e nonstationary, the ACF and CCF were computed on three non-

verlapping sections of the (detrended) experimental data and are

hown in Fig. 2 . Recall that the magnitude of the ACF (cf. CCF) is

irectly related to the magnitude of the coefficients of the linear

stimator of the voltage given its own (cf. the altitude’s) delayed

amples. The fast decay of the ACF and the low values of the CCF

unctions do not allow us to confirm the existence of a linear rela-

ionship in the data either temporally or across channels. Further-

ore, as it will be seen in Section 5 , accounting only for linear re-

ationships on the data is misleading and requires a large number

f delays, where the proposed method will suggest the existence

f short-term nonlinear relationship in the data. 

.2. KLMS-X: a voltage predictor that incorporates altitude 

bservations 

To assess whether the inclusion of altitude measurements

mproves the forecasting of the battery voltage, we considered

he KLMS algorithm proposed in Section 2 , which incorporates

ulti-input and adaptive-sparsification capabilities as seen in

lgorithm 1 , and implemented two variants: the first one incor-

orates altitude and voltage measurements (referred to as KLMS-

 due to the exogenous input) and the second one is the stan-

ard autoregressive-only approach (referred to as KLMS). Note

hat for the single-input case, the multi-input kernel proposed in

q. (3) collapses to the classic Gaussian kernel in Eq. (2) . The dia-

ram in Fig. 3 illustrates (i) the data acquisition module comprising

he battery and the GPS on the bicycle in red; (ii) the data pre-

rocessing module, that is, the synchronisation and composition of

he input to the predictor in green; and (iii) the KLMS-X algorithm

omposed by the sparsification strategy that builds the dictionary,

he least-mean-square (LMS) weight update and the computation

f the prediction using a sum of weighted kernel evaluations in

lue. Recall that the KLMS implementation does not incorporate

he altitude information from the GPS module. 
.3. Hyperparameter learning for KLMS and KLMS-X 

Although both KLMS-X and KLMS algorithms are guaranteed to

earn the hidden relationships on the data (recall the universality

f the Gaussian kernel) for any choice of lengthscales, we found

he optimal lengthscales in terms of prediction error by minimis-

ng the relative mean square error (RMSE) using the first T = 500

amples 

MSE = 100 

∑ T 
t=1 (v t − ˆ v t ) 2 ∑ T 

t=1 v 2 t 

(6) 

here v t is the true voltage signal at time t , and 

ˆ v t is the predic-

ion computed at time t − 1 . Intuitively, the RMSE is a percentage

atio between the power of the prediction error and the power of

he signal to predict. 

The RMSE is highly nonlinear w.r.t. the lengthscale, not only be-

ause of the exponential function but also due to the sparsification

riterion that links the number of support vectors to the optimal

engthscales. For this reason, the RMSE was minimised w.r.t. the

engthscale parameters by exhaustive search for KLMS (one param-

ter) and stochastic optimisation for the proposed KLMS-X (two

arameters)—in the latter, the solution was found using a random

alk which moves where accepted only when they lowered the

MSE. This initialisation of the adaptive filter resembles the ap-

roach in [2] , where the hyperparameters of the algorithm are fit-

ed by a maximum-a-posteriori rationale. 

The search of the optimum lengthscales was performed for dif-

erent delays d for both kernel algorithms over the first 500 obser-

ations. Fig. 4 shows the minimisation of RMSE reported by KLMS-

 for d = 30 (this is the first time the ACF vanishes—see Fig. 2 ) as

 function of its two lengthscale hyperparameters, where 10 dif-

erent initial conditions in black dots arrived at the local minima

hown in red crosses. The chosen hyperparameters were the aver-

ge of these minima: l v = 6 . 42 , l h = 25 . 18 for KLMS-X, and l = 4 . 4

or KLMS. For different delays, we scaled the lenghtscales linearly

ith the square root of the number of delays, this choice was

ased on the growth of the norm of the input and confirmed by

n experimental exploratory analysis. 

. Experiments 

We implemented KLMS-X for voltage prediction together with

i) a purely-autoregressive KLMS, (ii) least mean square filters us-

ng voltage observations only (LMS), and both voltage and altitude

bservations (LMS-X), (iii) a linear time-invariant order-one Gaus-

ian state-space model (Kalman) and (iv) a basic estimator that
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Fig. 5. Electric bicycle voltage recording (red dots) and KLMS-X predictions (blue 

line): transient region (top) and steady state (bottom). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Four support vectors (SVs) within KLMS-X. The SVs corresponding to the 

voltage (cf. altitude) signal are shown in the top (cf. bottom) row. Recall that the 

data is standardised. 

Table 1 

Performance and complexity of algorithms considered for one-step ahead prediction 

of voltage signal and 30 delays. 

KLMS-X KLMS LMS-X LMS Kalman 

RMSE 0.329 0.512 0.479 0.35 0.284 

Time 0.73 s 0.68 s 0.22 s 0.15 s 0.92 s 

#SV 136 107 N/A N/A N/A 
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predicted the next voltage value using the last seen voltage ob-

servation (referred to a persistent estimator). All the parameters

and hyperparameters were learnt using the first 500 observations,

in particular, the parameter of the state-space model was (for all

experiments) very close to unity and therefore its performance vir-

tually equal to that of the persistent estimator. 

We next show three different experiments: First, we imple-

mented the aforementioned models for one-step-ahead prediction,

where we focused on the 30-delay case in detail, and then anal-

ysed its performance as a function of the delay; the aim of this

experiment was to show that the proposed approach is able to dis-

cover data structure in an automatic manner, i.e., without hand-

crafted terms. Second, we extended the KLMS and the proposed

KLMS-X algorithm with a linear part in order to reduce computa-

tional complexity; the aim of this part was to show that the ker-

nel algorithms admit prior signal knowledge (autoregressive be-

haviour). Third, we showed that the proposed method can also

be used beyond the one-step-ahead scenario and show a 20-step-

ahead prediction experiment. 

5.1. One-step-ahead voltage prediction using kernel methods 

We first implemented KLMS-X for one-step-ahead prediction of

the voltage using 30 delayed samples, this corresponds to predict-

ing 2 seconds ahead using the observations corresponding to the

last minute—recall that the sampling frequency is 0.5 Hz. Fig. 5

shows the (standardised) measured voltage signal (red dots) and

the prediction using KLMS-X (blue line) for the transient and

steady-state regions, illustrating the improvement of KLMS-X as

more data are seen in time. Observe the characteristic voltage-

discharge curve and its trend, this is aligned with the intrinsic

impedance (unknown for the KLMS-X algorithm), which deter-

mines the slope in the different operation zones of the battery [14] .

Predictions are shown from sample 31, since 30 delayed samples

are used. 

Fig. 6 shows four consecutive support vectors (SV) encapsulat-

ing information about voltage and altitude trajectories from where

KLMS-X has learnt; comparing these trajectories can reveal dif-

ferences in, e.g., slope which affect the behaviour of the battery.

One can intuitively understand the SVs and the weights w j as a

database, and then when new measurements are received they are

compared to the elements in this database (SVs) in order to cal-

culate the prediction based on similarity to the SVs and the learnt

weights w j . Furthermore, as the considered algorithm is nonpara-

metric [18] , the effective number of parameters increases with

the number of observations. In this case, the support vectors and
eights are the parameters of the predictor, which becomes more

xpressive as more data are seen. 

The proposed KLMS-X algorithm was also compared to the

LMS that only considers past values of the voltage signal and

ot the altitude ; the least mean square estimators considering

ast values of the voltage only (LMS) and both voltage and alti-

ude (LMS-X); and the fixed-parameter Kalman filter. The ratio-

ale behind comparing KLMS-X against these linear predictors is

o show that the kernel algorithms are effectively learning the

on-linear time-varying relationships within the data and there-

ore their computational complexity is justified. 

Table 1 shows the RMSE, the running time, and the dictionary

ize for all algorithms considered. Notice that the size of the dic-

ionaries at the end of the experiment were 107 and 136 for KLMS

nd KLMS-X respectively, this is to be expected since the dimen-

ion of the input variable for KLMS-X is larger than that of KLMS

60 versus 30, for a delay of 30), and therefore extracting knowl-

dge from larger datasets will result in increased computational

omplexity. However, the computational complexity is still in the

ame order of magnitude as revealed by running times of 0.68 s

KLMS) and 0.73 s (KLMS-X) for the duration of the experiment

3900 iterations), this is well suited for online implementation of

he experiment considered, where data arrives at 0.5 Hz. Recall

hat both KLMS and KLMS-X are operating with their optimal hy-

erparameters as explained in Section 4.3 . 

Note that LMS performed better than arguably more expres-

ive LMS-X, thus revealing that LMS-X is an incorrect model: it

egards the relationship between the voltage and altitude as lin-

ar and learns a misleading instantaneous linear relationship. Ad-

itionally, the (fixed-parameter) Kalman filter exhibited the lowest

MSE, this suggests that the adaptive algorithms struggle to iden-

ify the simple autoregressive structure in the data; we incorpo-

ate the Kalman filter terms into the KLMS algorithms in the next

xperiment. 

.1.1. Comparison for different number of delays 

To further validate the proposed KLMS-X as a means to ex-

ract expressive relationships between the altitude and voltage us-

ng fewer delays than KLMS or linear adaptive filters, we imple-

ented all five algorithms for different number of delays from one
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Fig. 7. Performance of kernel and linear algorithms considered for multiple- 

number-of-delays prediction of the voltage signal (relative mean square error). 

Fig. 8. Runtime (computational complexity) for voltage prediction as a function of 

the number of delays for all algorithms considered. 
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Fig. 9. Electric bicycle voltage recording (red dots) and KLMS-X predictions (blue 

line): transient region (top) and steady state (bottom). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 10. Performance of kernel algorithms with linear component and linear algo- 

rithms considered for multiple-number-of-delays prediction of the voltage signal 

(relative mean square error). 
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o 120 s and compared them in terms of their RMSEs ( Fig. 7 ). The

yperparameters were also set as explained in Section 4.3 . 

Let us first notice that the performance of the linear adaptive

lters improves very slowly, this was expected from the slow de-

ay of the ACF and CCF shown in Fig. 2 and confirms that a large

mount of data has to be processed to provide sound estimates

f we only rely on linear relationships. On the contrary, observe

ow the RMSE related to the kernel filters decays sharply for the

rst few number of delays. One of our main contribution is high-

ighted here: note that it only required about 20 delayed samples

or KLMS-X to surpass the other adaptive algorithms considered,

hus confirming the ability of KLMS-X to find expressive nonlinear

elationships between altitude and voltage using short regression

orizons. This figure also reveals that, although in the considered

elay horizon KLMS-X finally performs marginally better than the

asic Kalman filter, it takes a large number of delays to do so—this

ill be addressed in Section 5.2 . 

Finally, Fig. 8 shows the running time for all algorithms con-

idered. Despite the large computational complexity of the kernel

lgorithms, they process 3900 observations in less than 1 s for any

umber of delays, and are therefore appropriate for online opera-

ion, since the data arrives at 0.5 Hz. Recall that the Kalman fil-

er requires a matrix inversion which is computationally expensive

ompared to LMS. 

.2. One-step-ahead voltage prediction using kernel adaptive filters 

ith order-one linear component 

Recall from Fig. 7 that despite the fact that the proposed KLMS-

 is able to achieve better results than all algorithms considered, it

akes about 90 delays to perform better than the basic persistent
stimator (or Kalman filter). For this reason, in this section we re-

eat the above experiment but now enhance both KLMS and the

roposed KLMS-X with a linear function of the last seen sample,

hus giving explicit form for the autoregressive component. That is,

nstead of the estimator in Eq. (1) , the KAFs considered now have

he form 

ˆ 
 t+1 = αx t + 

∑ 

s j ∈D t 
w j K(s j , x t ) (7)

here the parameter α is to be updated in an LMS fashion as

ell, and the rest of the hyperparameters are learnt as explained in

ection 4.3 . The adaptation of KLMS-X with the linear component

s shown in Fig. 9 for the 30-delay case, where it can be seen that

he inclusion of the linear autoregressive part results in a shorter

ransient time as compared to the kernel-only case as shown in

ig. 5 . We also run this experiment for all algorithms and differ-

nt delays: Fig. 10 shows the RMSE for all algorithms considered

here both KLMS and KLMS-X have the additional linear autore-

ressive terms, notice how now these kernel estimators are always

etter than the persistent estimator and thus achieve much better

erformance. 

.3. Long-term voltage prediction using KLMS-X 

Finally, we implemented the proposed KLMS-X and compared

t to the algorithms mentioned on a long-term prediction, a crucial

pplication in battery health prognosis. We chose 20 steps ahead,

0 delays and implemented the kernel algorithms with the autore-

ressive linear component as explained in Section 5.2 . The parame-

er of the linear term was trained offline, since for 20 steps the lin-

ar relationship decays in 80% and recovering it sequentially from

ata is challenging—see Fig. 2 . 

Fig. 11 shows the KLMS-X 20-step ahead prediction starting

rom sample 50, this is because 30 delays are used to forecast the
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Fig. 11. 20-step-ahead prediction of the voltage signal using KLMS-X with linear 

autoregressive component. 

Table 2 

Performance of algorithms considered for 20-step ahead prediction of voltage 

signal and 30 delays. 

KLMS-X KLMS LMS-X LMS Kalman 

RMSE 0.512 5.433 3.453 5.044 3.223 
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signal 20 steps into the future. Notice the large transient time com-

pared to the one-step-ahead experiments in Figs. 7 and 10 due to

the more challenging task of forecasting against short-term predic-

tions. Table 2 reports the RMSE of all methods considered, where

the proposed KLMS-X outperformed all other methods. Recall that

the RMSE is a percentage between the power of the prediction er-

ror signal and the power of the signal to predict, where the large

RMSE values in Table 2 are due to the fact that KLMS-X was the

only algorithm able to predict the oscillations in the voltage, as

these depended nonlinearly on the altitude. 

6. Conclusions 

Through a real-world case study, we have shown that it is pos-

sible to forecast an internal variable of an electric bicycle (voltage)

using both past values of such variable and external measurements

(altitude). The key challenge in the case considered was that the

relationship between internal and external variables cannot be de-

scribed by a known mathematical model, therefore, it was charac-

terised by an expressive model purely learnt from data using ker-

nel adaptive methods. This is then our main contribution: the use

of a machine learning approach to discover structure from data in

a sequential manner to then perform predictions that are funda-

mental for the application at hand. 

In algorithmic terms, we have proposed a novel kernel adaptive

filter that extends existing ones by catering for multiple inputs and

has a signal-dependent rule for constructing the dictionary. The

proposed KLMS-X (enhanced with a linear component) performed

better than its purely-autoregressive counterpart (KLMS) and linear

filters for all regression horizons in terms of prediction error and

the amount of past samples required. Although the computational

complexity of the proposed KLMS-X filter is slightly higher than

the baselines considered, its complexity is more than acceptable

and it can still be used in a real-time. 

From an application point of view, our contribution is to show

than kernel adaptive filters can be used to forecast the voltage of
n electric bicycle using altitude measurements both for short- and

ong-term scenarios. This is a proof-of-concept that paves the way

or implementation on other vehicles (e.g., cars or drones) through

he consideration of more expressive environmental variables such

s trajectory planning, road conditions or weight load. Further-

ore, due to its bounded computational complexity, the proposed

lgorithm can be implemented online on the Arduino unit in or-

er to develop accurate alerts about the autonomy and state of the

ehicle in real time. 
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