
THE DOMINO PROBLEM ON GROUPS OF POLYNOMIAL GROWTH

ALEXIS BALLIER AND MAYA STEIN

ABSTRACT. We conjecture that a finitely generated group has a decidable domino
problem if and only if it is virtually free. We show this is true for all virtually nilpo-
tent finitely generated groups (or, equivalently, groups of polynomial growth), and
for all finitely generated groups whose center has a non-trivial, finitely generated and
torsion-free subgroup.
Our proof uses a reduction of the undecidability of the domino problem on any such
group G to the undecidability of the domino problem on Z2, under the assumption
that G is not virtually free. This is achieved by first finding a thick end in G, and then
relating the thick end to the existence of a certain structure, resembling a half-grid,
by an extension of a result of Halin.

1. INTRODUCTION

In its original form, the domino problem consists of deciding whether the plane can
be tiled with square unrotatable plates of equal sizes and coloured edges, coming from
some previously fixed finite set of plates, so that any two shared edges have the same
colour. The problem was introduced by Wang [22] in 1961. Wang’s student Berger
showed undecidability for the domino problem on the (Euclidian) plane in 1964 [2, 3],
using a reduction to the halting problem. In 1971, Robinson [18] simplified Berger’s
proof.

The domino problem on the plane can be nicely expressed representing the plane
by Z2, and the tiles by symbols from some finite set. The colour restriction is trans-
lated by forbidding certain patterns: for instance symbol a may not lie directly below
symbol b. Note that forbidding larger patterns of fixed size does not change the com-
plexity of the problem.

Generalizations of the problems substitute Z2 with the Cayley graph of some finitely
generated group or semi-group. (For a formal definition of the domino problem on
groups see Section 4.) We remark that decidability of the domino problem does not
depend on the Cayley graph chosen, but on the (semi-)group itself (since the Cayley
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2 THE DOMINO PROBLEM ON GROUPS OF POLYNOMIAL GROWTH

graph only depends on the set of generators we chose, and we can rewrite the genera-
tors for one graph in terms of the generators for the other graph).

Let us summarize the known results. Robinson [19] conjectured that the domino
problem on the hyperbolic plane (which corresponds to the Cayley graph of a finitely
generated semi-group) is undecidable. This was confirmed by Kari [11], and inde-
pendently, by Margenstern [14]. Aubrun and Kari [1] showed that also on Baumslag-
Solitar groups the domino problem is undecidable.

On the other hand, on finitely generated virtually free groups, the domino prob-
lem is decidable. Indeed, the work of Muller and Schupp [16, 17] from the 1980’s,
complemented with results of Kuske and Lohrey [12] from 2005, gives that a finitely
generated group is virtually free if and only if its Cayley graphs have a decidable
monadic second order theory (MSO theory for short). Since the domino problem can
be expressed in MSO theory (see for instance [10]), we can conclude that all finitely
generated virtually free groups have a decidable domino problem.

We show that for finitely generated virtually nilpotent groups the converse is also
true. That is, among all finitely generated virtually nilpotent groups, only the virtually
free groups have a decidable domino problem.

Theorem 1.1. For every virtually nilpotent and finitely generated group G, it holds
that G has a decidable domino problem if and only if G is virtually free.

We show in Section 4 how Theorem 1.1 follows from the following result, Theo-
rem 1.2, which we believe to be of interest on its own.

Theorem 1.2. For any finitely generated group G whose center has a non-trivial,
finitely generated and torsion-free subgroup, G has a decidable domino problem if
and only if G is virtually free.

For instance, the direct product of Z and any other group G fall under the hypoth-
esis of Theorem 1.2: Z × {1G} is a non-trivial, finitely generated and torsion-free
subgroup of its center. This includes, for example, the direct product of an infinite
free Burnside group or of the Grigorchuck group or of a Tarski monster group with Z,
which fall outside of the hypothesis of Theorem 1.1 since they do not have polynomial
growth.

We now give an overview of the proof of Theorem 1.2. We start with a finitely
generated group G that is not virtually free, and whose center has a non-trivial, finitely
generated and torsion-free subgroup. Our aim is to show that G does not have a
decidable domino problem.

As we shall see in detail in Section 2, a result of Woess [24] implies that G has a
thick end (see Section 2 for a definition). In Section 3, we will show that any Cayley
graph of a finitely-generated group G whose center has a non-trivial, finitely gener-
ated and torsion-free subgroup with a thick end contains a certain half-grid structure,
resembling a subdivided N × Z. This is an extension of a classical result by Halin
from infinite graph theory.

Then, in Section 4, we use the grid-like structure for a reduction of the undecidabil-
ity of the domino problem. Namely, first we reduce the undecidability of the domino
problem on a finitely-generated group G that is not virtually free but has a non-trivial,
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finitely generated and torsion-free center to the undecidability on Z2, thus proving
Theorem 1.2. Then we use Theorem 1.2 for proving the analog for finitely generated
virtually nilpotent groups (Theorem 1.1). Some remarks on the (non-)applicability of
our methods to other groups can be found in Section 5.

We close the introduction with a conjecture due to the first author, suggesting that
the equivalence of being virtually free and having a decidable domino problem holds
for every finitely generated group.

Conjecture 1.3. A finitely generated group G has a decidable domino problem if and
only if G is virtually free.

2. THICK ENDS IN FINITELY GENERATED, NOT VIRTUALLY FREE GROUPS

In this section we see that a finitely generated group G which is not virtually free
has a thick end. We also see that such a thick end already appears in any finitely
generated subgroup of finite index of G.

Whenever we consider a Cayley graph of a finitely generated group G, we tacitly
assume that this Cayley graph is constructed using a finite set of generators of G.
In particular, here we only consider locally finite Cayley graphs of finitely generated
groups.

We need to go through some notation. A ray in a graph is a one-way infinite path.
An end is an equivalence class of rays, under the following equivalence relation: Two
rays are equivalent if they are connected by infinitely many disjoint finite paths. Ends
were first introduced by Freudenthal [6, 7]. For example, the usual Cayley graph of Z
has two ends, the usual Cayley graph of Z2 has one end, and any Cayley graph of a
free group has infinitely many ends. It is not difficult to see that the number of ends is
invariant under quasi-isometry.

A thick end in a graph is an end that contains an infinite set of disjoint rays. Thick
ends were introduced by Halin [9]. A group is said to have a thick end if one of its
Cayley graphs has one. Of the three examples above, only Z2 has a thick end.

Now, we relate the notion of thickness to the notion of the diameter of an end
(see [24] for a definition). Woess [24] showed that every finitely generated group that
is not virtually free has an end of infinite diameter. Together with Theorem 4.4 of [20],
which states that in every connected, locally finite, vertex-transitive graph, every end
of infinite diameter is thick, this gives the following.

Lemma 2.1. Every finitely generated group that is not virtually free has a thick end.

The next lemma is needed for the proof of Theorem 1.1.

Lemma 2.2. Let H and G be finitely generated groups such that H is a subgroup of
finite index of G. Then G has a thick end if and only if H has a thick end.

For the proof of Lemma 2.2, we need another lemma, and for this we need to
quickly recall the notion of quasi-isometry, an equivalence relation which is used for
describing the large-scale similarity of two given metric spaces X,X ′. A function
ϕ : X → X ′ is called a quasi-isometry from X to X ′ if there are positive constants
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c, C, ε such that cd(x, y)− ε ≤ d(ϕ(x), ϕ(y)) ≤ Cd(x, y)+ ε for all x, y ∈ X , and if
for each x′ ∈ X ′ there is some x ∈ X such that d(x′, ϕ(x)) ≤ C. Spaces X , X ′ are
quasi-isometric if there is an quasi-isometry from X to X ′ (then there is also one from
X ′ to X). It is well known that Cayley graphs of a given finitely generated group are
unique up to quasi-isometry. So, in view of the following lemma, we see that in fact
any of the Cayley graphs of a group with a thick end has a thick end.

Lemma 2.3 (Woess [23], Lemma 21.4). Let G and G′ be two quasi-isometric1 locally
finite graphs. Then the quasi-isometry extends to the ends of G and G′, mapping thick
ends to thick ends.

Now we are ready to prove Lemma 2.2.

Proof of Lemma 2.2. Corollary IV.B.24 of [8] (or Proposition 11.41 of [15]) states
that if G is a finitely generated group and H is a subgroup of finite index of G, then
these groups are quasi-isometric. By Lemma 2.3, we are done. □

3. A STRUCTURAL PROPERTY OF GROUPS WITH THICK ENDS

The main result of this section is Lemma 3.1. In this lemma, we show that every
finitely-generated group with a thick end, whose center has a non-trivial, finitely gen-
erated and torsion-free subgroup contains a structure roughly resembling the N × Z
grid. This is an extension of a classical purely graph-theoretical result of Halin [9].
Halin’s result states that any infinite graph with a thick end contains a subdivision of
the N×Z grid (a subdivision of a graph H is obtained from H by replacing each edge
with a path that has at least one edge; all these new paths have to be disjoint).

Define
[x, y] = xyx−1y−1,

Z0(G) = {1G} ,
Zi+1(G) = {x ∈ G|∀y ∈ G, [x, y] ∈ Zi(G)} .

The subgroup Z1(G) is the center of G. A group G is nilpotent if there exists
n ∈ N such that Zn(G) = G. An element g ∈ G is called a torsion element if there
exists n ∈ N such that gn =G 1G. A group G is called torsion-free if it does not
contain any torsion element.

The following lemma is the heart of this section.

Lemma 3.1. Let G = ⟨g1, . . . , gn⟩ be a finitely generated group with a thick end,
such that Z1(G) has a finitely generated, non-trivial and torsion-free subgroup Z.
Then there exists a ∈ Z and a ray w ∈ {g1, . . . , gn}N such that no subword of w
belongs to ⟨a⟩. That is, for any i < j ∈ N, k ∈ Z, we have wi . . . wj ̸=G ak.

Proof. Since Z is finitely generated, the fundamental theorem of finitely generated
abelian groups (see for instance [5]) tells us that Z is isomorphic to Zn ⊕Zk1 ⊕ . . .⊕
Zkl

, for some n ∈ N and ki ∈ N, 1 ≤ i ≤ l ∈ N. Since Z is torsion-free, there is
no such Zki in the decomposition. Thus Z is isomorphic to some Zn with n ≥ 0.
Moreover, since Z is non-trivial, we know that n ≥ 1.

1Woess calls quasi-isometries ‘rough isometries’, but it is the same notion.
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If n > 1, then let a and b be the elements of Z that this isomorphism sends to
(1, 0, 0, . . . , 0) and (0, 1, 0 . . . , 0) in Zn. Let wi = b for all i; then the conclusion of
the lemma follows easily.

So from now on suppose n = 1. Let a be the element of Z that is sent to 1 ∈ Z
by the isomorphism between Z and Z; that is, Z = ⟨a⟩. The discrete topology on
{g1, . . . , gn} makes this space compact since it is finite, moreover, by the Tychonoff
theorem, {g1, . . . , gn}N is also compact when embedded with the product topology.

For any m ∈ N, let Rm be the set of all rays that have no non-empty subword equal
to any of a−m, a−m+1, . . . , am (where equality is taken in G).

Claim 3.1.1. For each m ∈ N, the set Rm is a non-empty compact subset of {g1, . . . , gn}N.

It is clear that the Rm’s from Claim 3.1.1 are such that Rm+1 ⊆ Rm and since
they are all non empty, ∩m∈NRm is also non empty by compactness. Any element of
∩m∈NRm is a ray w matching the conclusions. This is enough to prove the lemma.
So, it only remains to show Claim 3.1.1, which we will do in the remainder of the
proof.

By definition, Rm clearly is a closed subset of the compact space {g1, . . . , gn}N,
and is therefore compact too. Thus we only need to show that Rm ̸= ∅, for m ∈ N.
Suppose otherwise. Then each of the rays w ∈ {g1, . . . , gn}N contains a subword
equal to one of a−m, a−m+1, . . . , am. So, by compactness, there exists K ∈ N such
that all the (now finite) paths w ∈ {g1, . . . , gn}K contain a subword equal to one of
a−m, a−m+1, . . . , am.

Let {wi}i∈N be an infinite set of disjoint rays going to a thick end, with starting
vertices vi. By disjointness, for all i, j, k, k′ ∈ N with i ̸= j we have that

(3.1) viw
i
1 . . . w

i
k ̸= vjw

j
1 . . . w

j
k′ .

We claim that for any i, k, we can write viw
i
1 . . . w

i
k = zi,ka

ei,k with zi,k being a
word on the generators of G and ei,k ∈ Z, such that

• the length of zi,k as a word is less than K, and
• |ei,k − ei,k+1| ≤ m.

Indeed, for a given i, we define zi,k and ei,k by induction on k. For k = 0, note that
since any path of length K contains aj , for some j with −m ≤ j ≤ m, and since
aj commutes with all the elements of G, we have vi = zi,0a

ei,0 , where zi,0 is of
length less than K and ei,0 ∈ Z. For the induction step, observe that as a commutes
with all the elements of G, and by the induction hypothesis, we have viwi

1 . . . w
i
k+1 =

zi,kw
i
k+1a

ei,k . If zi,kwi
k+1 has length less than K, we define zi,k+1 = zi,kw

i
k+1 and

ei,k+1 = ei,k. Otherwise, zi,kwi
k+1 is of length at least K and can be written as

zi,k+1a
j , for −m ≤ j ≤ m, where zi,k+1 is of length less than K. We then define

ei,k+1 = ei,k + j.
Let us now argue that ei,k →k→∞ ±∞. Indeed, otherwise for an infinity of k’s, the

elements zi,ka
ei,k are at a bounded distance of 1G. Hence, the pigeonhole principle

allows us to find k ̸= k′ such that

viw
i
1 . . . w

i
k = zi,ka

ei,k = zi,k′aei,k′ = viw
i
1 . . . w

i
k′ .
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But this contradicts (3.1).
We assume, without loss of generality, that for an infinity of i’s, ei,k →k→∞ +∞.

Since for every i and k, |ei,k+1 − ei,k| ≤ m, by considering only the ei,k’s that tend
to +∞ with k, for I ∈ N, there exists NI ∈ N such that for every i ≤ I , there exists
ki such that ei,ki ∈ {NI −m,NI −m+ 1, . . . , NI +m}.

If I is chosen sufficiently large, by the pigeonhole principle, we can find i ̸= i′ such
that zi,ki = zi′,ki′ and ei,ki = ei′,ki′ because both zi,ki’s and ei,ki’s belong to a finite
set whose size does not depend on I . This means that viwi

1 . . . w
i
ki

= vi′w
i′

1 . . . wi
ki′

for some i ̸= i′, again contradicting (3.1).
This completes the proof of Claim 3.1.1 and thus the proof of the lemma. □

4. DECIDABILITY OF THE DOMINO PROBLEM

In this section we reduce the undecidability of the domino problem in groups with
the ‘half-grid’ structure found in Section 3 to the undecidability of the domino problem
on Z2. This will enable us to prove our main theorem.

We start by formally defining the domino problem. We need to introduce some
notation first. Let Σ be a finite set, called the alphabet, and let G be a finitely generated
group, given together with a finite set of generators. Recall that for decidability of the
domino problem it does not matter which finite set of generators was chosen.

The set ΣG is called the fullshift. An element of the fullshift is called a configu-
ration. For a finite set D ⊆ G, an element of ΣD is called a pattern over D. For a
configuration x ∈ ΣG and a pattern P ∈ ΣD, we say that P appears in x if there
exists i ∈ G such that for every j ∈ D, xij = Pj . A subset X of ΣG is called a
G-SFT if it is precisely the set of configurations of ΣG that do not contain any pattern
from a given finite set of patterns F .

In addition, we say that an SFT is one-step if F contains only elements of some
ΣD with D = {1G, gi} where gi is a generator of G. One-step SFTs correspond to
the intuition one has of a tiling of G and to the dominoes of Wang [22] on Z2. It
is well known that any SFT is conjugate to a one-step SFT, and the conjugacy can be
computed from its forbidden patterns and its alphabet. For more information on SFT’s
and symbolic dynamics in general, see [13].

The domino problem on G consists of deciding if there exists a configuration not
containing any pattern of F when given F ; equivalently, deciding whether the G-SFT
defined by F is non-empty [21, 22].

As a warm-up, we start with an easy lemma.

Lemma 4.1. Let H and G be finitely generated groups such that H is a subgroup of
G. If the domino problem on H is undecidable then so it is on G.

Proof. Let XH be an H-SFT. The same XH -forbidden patterns can be forbidden to
obtain XG, a G-SFT. It is clear that if XG is non-empty then so is XH : For x ∈ XG,
x|H is an element of XH .

For the converse, i.e. in order to see that if XH ̸= ∅ then also XG ̸= ∅, proceed
as follows. Consider the left cosets {gH|g ∈ G} of H in G. As these cosets form a
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partition of G, we can write {gH|g ∈ G} = {giH|i ∈ I} such that giH ̸= gjH if
i ̸= j.

There exist functions f : G → {gi|i ∈ I} and h : G → H such that g = f(g)h(g).
For a configuration c ∈ XH , we define c′ ∈ ΣG by setting c′g := ch(g). Since all the
forbidden patterns of XG are defined on H , we conclude that c′ does not contain any
XG-forbidden pattern (because c does not contain any XH -forbidden pattern). Thus
c′ ∈ XG.

We conclude that XH is non-empty if and only if XG is. Hence, if there exists
an algorithm deciding the domino problem on G, such an algorithm can be used to
decide it on H , completing the proof. □

The next lemma contains the reduction of the decidability of the domino problem
on a group G which contains the structure from Section 3, to the decidability of the
domino problem on Z2.

Lemma 4.2. Let G = ⟨g1, . . . , gn⟩ be a finitely generated group such that g1 has
infinite order, g1 ∈ Z1(G) and there exists a ray w ∈ {g1, . . . , gn}N such that no
subword of w belongs to ⟨g1⟩, i.e., for any i < j ∈ N, wi . . . wj ̸∈ ⟨g1⟩. Then the
domino problem on G is undecidable.

Proof. We reduce to the Z2 case where the problem is already known to be undecid-
able [2, 18]. For this, we prove that there exists an algorithm which for any given
Z2-SFT X computes a G-SFT XG such that X is non empty if and only if XG is non
empty.

Let A(X) denote the alphabet of X. We take the alphabet of XG to be A(X) ×
{2, . . . , n}. Without loss of generality, we can assume that X is a one-step SFT. The
rules defining XG are as follows, for any c ∈ (A(X) × {2, . . . , n})G and any point
x ∈ G:

(I) If cx = (a, i) then cxg1 = (b, i) and cxg−1
1

= (b′, i) for some b, b′.
In words: The second component is constant on the lines defined by ⟨g1⟩.

(II) cx = (a, i) and cxg1 = (b, i) is allowed if and only if a is allowed left to b in X.
In words: The ⟨g1⟩ lines in XG represent the horizontal lines of X.

(III) cx = (a, i) and cxgi = (b, j) is allowed if and only if a is allowed below b in X.
In words: The second component in the alphabet of XG dictates the vertical
direction and following those paths represent the vertical direction of X.

Every other case is allowed. It is clear that one can compute the forbidden patterns
defining XG when given those of X. It remains to prove that XG is non empty if and
only if X is.

If XG ̸= ∅, then X ̸= ∅: Let c be a configuration of XG. First, we define c′ only
on A(X)Z×N. This will be done by induction as follows.

For i ∈ Z, choose c′(i,0) so that (c′(i,0), x0) = cgi
1
, for some x0. Then, for j ≥ 1 and

i ∈ Z, let c′(i,j) be such that (c′(i,j), yj) = cgxj−1
gi
1
, where we define gxj := gxj−1gyj

inductively.
In order to see that c′ does not contain any X-forbidden pattern, observe no for-

bidden horizontal pattern may occur by rules (I) and (II), and by the definition of c′.
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For the vertical patterns, consider two points a = c′(i,j) and b = c′(i,j+1). Then by
construction,

cgxj−1
gi
1
= (a, yj)

and
cgxj−1

gi
1gyj

= cgxj−1
gyj g

i
1
= cgxj

gi
1
= (b, yj).

Thus by rule (III), also no forbidden vertical pattern occurs.
A standard compactness argument shows that we can extend c to all of A(X)Z×Z.

Thus X is non empty.

If X ̸= ∅ then XG ̸= ∅: Let c be a configuration of X. Recursively define a
configuration c′ of XG as follows. At each step s, the set of coordinates Ls ⊆ G for
which c′ is already defined will satisfy the following conditions:
(a) on Ls, configuration c′ does not contain any forbidden patterns,
(b) if x ∈ Ls, then xgℓ1 ∈ Ls for all ℓ ∈ Z, and there are k, n ∈ Z and j ∈ {2, . . . , n}

such that c′x = (c(k,n), j) and c′
xgℓ

1
= (c(k+ℓ,n), j) for all ℓ ∈ Z,

(c) if x ∈ Ls with c′x = (z, j), then xgj ∈ Ls.
We start by defining c′ for all points w1 . . . wj of the ray w from the assumption of

the lemma, and all lines w1 . . . wj ⟨g1⟩. In other words, we take

L1 := {w1 . . . wjg
ℓ
1 : j ∈ N, ℓ ∈ Z}.

Define
c′w1...wjgℓ

1
:= (c(ℓ,j), i)

for ℓ ∈ Z and j ∈ N, where i = i(j) is such that gi = wj+1. In this way c′ is well
defined. Indeed, if w1 . . . wjg

ℓ
1 = w1 . . . wj′g

ℓ′

1 for some ℓ, ℓ′, j, j′, then j ̸= j′ since
g1 has infinite order. Therefore, we may assume that j′ > j, and hence wj . . . wj′ =

gℓ−ℓ′

1 ∈ ⟨g1⟩ contradicting our hypothesis on w.
It is easy to check that conditions (b) and (c) are satified. For (a), first note that

rules (I) and (II) clearly hold. For rule (III), suppose there is an x = w1 . . . wjg
ℓ
1 with

c′x = (a, i) and c′xgi = (b, j) for some a, b, i, j with i ̸= j. Then by construction,
we have that gi = wj+1. Further a = c(ℓ,j), and b = c(ℓ,j+1). Thus a and b are as
necessary for rule (III).

Now assume we are in step s, and wish to define Ls. Let x ∈ G\Ls−1 be such that
xgm ∈ Ls−1 for some 1 < m ≤ n. (We may assume such an x exists, as otherwise
we have defined c′ for all of G.)

By (b), also xgℓ1 ∈ Ls−1, for all ℓ ∈ Z. Because of the second part of (b), there are
k, n, j such that for all ℓ ∈ Z we have

c′xgmgℓ
1
= (c(k,n), j).

We set
Ls := Ls−1 ∪ x ⟨g1⟩

and define
c′xgℓ

1
:= (c(k+ℓ,n−1),m)
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for all ℓ ∈ Z. Note that in this way c′ is well defined, as the xgℓ1 are all distinct, and
furthermore, none of them is in Ls−1, by (b), and since x /∈ Ls−1.

It is clear that (b) holds in step s. Further, (c) in step s holds by the choice of x and
the definition of c′. So we only need to check (a), and again, rules (I) and (II) are easy.

For rule (III), suppose there is an x with c′x = (a, i) and c′xgi = (b, j) for some
a, b, i, j with i ̸= j. By (a) for earlier steps, we may assume that one of x, xgi lies in
Ls \ Ls−1. We employ (c) for step s − 1 to see that if xgi ∈ Ls \ Ls−1, then also
x ∈ Ls \ Ls−1. So in all cases x ∈ Ls \ Ls−1. By definition of c′, this means that
i = m. Thus by construction, a, b are as desired for rule (III).

As in each step s we add at least one element of G \ Ls−1 to Ls, after transfinitely
many steps (namely, after at most |G| steps) the union of all sets Ls is G, and thus,
using (a), we see that c′ defines a configuration of XG. Hence XG is non empty, as
desired. □

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.2. Let G be a finitely generated group whose center has a non-
trivial, finitely generated and torsion-free subgroup. Assume G is not virtually free.
By Lemma 2.1 it follows that G has a thick end. Hence, we may apply Lemma 3.1 to
G and can deduce with the help of Lemma 4.2 that the domino problem is undecidable
on G. □

Proof of Theorem 1.1. Assume G is finitely generated and virtually nilpotent, but not
virtually free. Since any nilpotent group has a torsion free subgroup of finite index,
we can choose a nilpotent and torsion-free subgroup H of finite index of G. By
Schreier’s lemma, H is finitely generated since it is a subgroup of finite index of a
finitely generated group.

By Lemma 2.1, G has a thick end and so, by Lemma 2.2, H has a thick end. As H
is nilpotent and finitely generated, also the subgroup Z1(H) is finitely generated (see
for instance Lemma 1.2.2 of [4]). Moreover, as H is nilpotent, Z1(H) is non-trivial.
Hence, we may apply Theorem 1.2 to see that the domino problem is undecidable
on H . By Lemma 4.1, the domino problem is undecidable on G as well. □

5. CONCLUSIONS

We conjecture the equivalence from Theorems 1.1 and 1.2 holds for every finitely
generated group but we note that there are known cases that do not fall under the scope
of our results: Most Baumslag-Solitar groups have a trivial center but none of them is
virtually free and all of them have an undecidable domino problem [1]. Lemma 3.1
is really focused on exhibiting the Z2-like structure of certain groups, which allows
us to carry out a reduction to the domino problem on Z2; on the other hand, Aubrun
and Kari [1] give a new proof of the undecidability of the domino problem adapted to
the structure of the groups they are studying. This latter approach is probably needed
for Baumslag-Solitar groups since it seems difficult to find a Z2-like structure withing
these groups. However, it may be possible to combine their methods with ours in order
to find a larger class of groups with undecidable domino problem.
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