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Unlike most of the crystals, graphene can be reversibly stretched 
beyond 10%. This unusual elastic response has made it suitable 
to modify its electronic and optical properties via strains, idea 
known as strain engineering [1, 2]. For instance, when graphene 
is uniformly deformed, its low-energy electronic band structure 
around the Dirac points becomes elliptical cones. This fact can 
be visualized as an anisotropy of the Fermi velocity [3]. As a 
consequence, the optical conductivity of graphene under uni-
form strain results anisotropic [4, 5], which produces a modula-
tion of the optical transmittance as a function of the incident light 
polarization [6, 7]. This strain sensitivity of the optical response 
of graphene has been experimentally observed [8] and, as pro-
posed, it could be utilized towards the design of novel ultra-thin 
optical devices and strain sensors [9]. Furthermore, it has been 
recently shown that the Faraday (Kerr) effect in graphene can 
be modified by means of deformations [10].

Nonuniform strains constitute even more useful tools to 
archive new behaviors of graphene. For example, the emer-
gence of a pseudomagnetic field caused by a nonuniform 
strain can produce a pseudoquantum Hall effect in absence of 
external magnetic field [11, 12]. Nowadays, signatures of such 
gauge field in the electronic transport properties of graphene are 
actively investigated [13–18]. Moreover, nonuniform strains 
graphene opens new opportunities to investigate others striking 
behaviors such as fractal spectrum [19], metal-insulator trans
ition [20], superconducting states [21] and magnetic phase 
transitions [22]. Within the Dirac approximation, in addition to 
the mentioned pseudomagnetic field, nonuniform strains give 
rise another recognized effect: a position-dependent Fermi 
velocity (PDFV) [23]. However, signatures of PDFV in the 
graphene physics have been less addressed, even though they 
are always present for any nonuniform strain.
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Abstract
Nonuniform strain in graphene induces a position dependence of the Fermi velocity, as 
recently demonstrated by scanning tunnelling spectroscopy experiments. In this work, we 
study the effects of a position-dependent Fermi velocity on the local density of states (LDOS) 
of strained graphene, with and without the presence of a uniform magnetic field. The variation 
of LDOS obtained from tight-binding calculations is successfully explained by analytical 
expressions derived within the Dirac approach. These expressions also rectify a rough Fermi 
velocity substitution used in the literature that neglects the strain-induced anisotropy. The 
reported analytical results could be useful for understanding the nonuniform strain effects on 
scanning tunnelling spectra of graphene, as well as when it is exposed to an external magnetic 
field.
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Given that scanning tunnelling spectroscopy (STS) spectra 
provide the local density of states (LDOS), which depends on 
the Fermi velocity v0 as ρ0(E) ∼ |E|/v2

0 for pristine graphene, 
the slopes of V-shaped STS spectra present variations at dif-
ferent positions of the sample if the Fermi velocity is spatially 
varying. Based on this idea, evidence of the PDFV effect in 
strained graphene has been provided in a few experiments 
through STS [24, 25]. However, to obtain a local measurement 
of the Fermi velocity, typically v0 is replaced by v(x) in ρ0(E) 
leading to ρ(E, x) ∼ |E|/v2(x), where x is the measured posi-
tion across the strain direction. According to this substitution, 
Fermi velocities at two different positions, v(x1) and v(x2), are 
related by the expression, v(x1)/v(x2) = [S(x2)/S(x1)]

1/2, 
where S(x) is the STS spectrum slope at the position x [25]. A 
purpose of this work is to clarify that the appropriate expres-
sion is given by v(x1)/v(x2) = S(x2)/S(x1), at least when a 
space dependent Fermi velocity is due to a nonuniform uni-
axial strain.

From the quantum field theory it has been pointed out that 
a PDFV (in curved graphene) becomes spatial modulations of 
LDOS [26]; nevertheless, a better description of strain-induced 
PDFV has been arrived at from low-energy expansions of the 
standard tight-binding model [23, 27–29]. The achievement of 
these last studies consists of determining the Fermi velocity 
tensor as a function of the position-dependent strain tensor. 
This fact has allowed to approximately calculate within the 
Dirac model the PDFV effect on the LDOS and, therefore, on 
STS measurements. However, the analytical expressions for 
the LDOS of strained graphene, reported in [27], have not been 
compared with results obtained from tight-binding calcul
ations. Such a comparison will be presented in this article.

Moreover, STS experiments in the presence of a magn
etic field can also be used to reveal local variations of the 
Fermi velocity, as performed in randomly strained graphene 
[30] as well as on the surface of a complex topological 
insulator [31]. Here, we report the first detailed study, to 
our best knowledge, of the PDFV effect on Landau-level 
spectroscopy using both approaches, tight-binding model 
and Dirac approximation, in order to provide a better under-
standing and a more complete theoretical framework for 
these types of experiments carried out in strained graphene 
under an external magnetic field.

1.  PDFV effect on LDOS

For graphene, the electronic implications of strain can be 
investigated by means of the nearest-neighbor tight-binding 
Hamiltonian

H = −
∑
〈i,j〉

tijc
†
i cj,� (1)

where the sum 〈i, j〉 runs over nearest neighbors and c†i  (ci) is 
the creation (annihilation) field operator at the ith site. The 
strain-induced modification of the nearest-neighbor hopping 
parameter tij is captured by [32]

tij = t0 exp[−β(dij/a0 − 1)],� (2)

where t0 = 2.7 eV, β = 3.37, a0 = 0.142 nm is the inter-
atomic distance for unstrained graphene, and dij is the modi-
fied distance between atomic sites i and j. It is relevant for 
the present discussion to note that the Hamiltonian (1) with 
constant tij is not capable to describe purely geometric effects 
on LDOS induced by nonuniform strain [23]. For example, if 

one assumes β = 0, equation (1) becomes H = −t0
∑

〈i,j〉 c†i cj 
which has the same eigenenergies and eigenfunctions of pris-
tine graphene even when the atoms move from their equilib-
rium positions.

In order to isolate PDFV effects, we consider a nonuni-
form uniaxial strain along the zigzag crystalline orientation, 
as shown in figure 1(a), which is generated by a displacement 
field of the form u(x, y) = u0 sin(2πx/λ)ex , with ex being the 
unit vector in the x-direction. The parameters λ and u0 fulfill 
conditions a0/λ � 1 and 2πu0/λ � 1, allowing the com-
parison between discrete and continuous models. In fact, this 
particular nonuniform strain does not produce pseudomagn
etic field Bs. Because according to the considered displace-
ment field u, the components of the strain tensor defined by 
εij = (∂iuj + ∂jui)/2 result εxx(x) = (2πu0/λ) cos(2πx/λ) 
and εyy = εxy = 0; at the same time Bs is related to the strain 
tensor through Bs ∼ (∂yεxx − ∂yεyy + 2∂xεxy) [11], therefore 
Bs  =  0. It is worth noting that for an out-of-plane displacement 
field h(x), e.g. a ripple along the zigzag direction, the physical 
situation is essentially the same as that studied here, since one 
has only PDFV effects within the linear approximation [29].

Within the tight-binding model, we calculate the LDOS at 
the atomic site n through ρ(E, n) = (−1/π)Im[G+(n, n; E)], 
where G+ (n,m;E) is the retarded Green’s function evaluated 
using a uniform Monkhorst-Pack grid3. Given the considered 
displacement field, the LDOS depends only the x-coordinate 
and, besides, it results λ-periodic if λ is a multiple of 

√
3a0.

Figure 1(b) shows the LDOS at low energies, for 
λ = 660

√
3a0 and 2πu0 = 0.1λ, at three distinct sites of the 

strained graphene sample which are labelled as x1, x2 and x3, 
respectively. At x1 the sample has a maximum local stretching 
along the zigzag direction of 10% (εxx = 0.1), whereas that 
at x3 it has a maximum local shrinking of 10% (εxx = −0.1). 
In contrast, at x2 the local strain is close to zero (εxx ≈ 0). 
This change of strain along of the zigzag direction induces 
a variation of the LDOS observed in figure 1(b). In brief, the 
V-shape of LDOS at low energies is more widely-opened in 
the shrinked region than in the stretched one.

This behavior is quantitatively registered by figure  1(c), 
where we present the positive slope of the V-shaped LDOS 
S(x), in units of the slope S0 for unstrained graphene, as a 
function of the position x from three different approaches. 
The open circles correspond to our tight-binding calcul
ations of S(x), whereas the solid circles are given by 
S(x) = S0/[1 − βεxx(x)], according to the Dirac approach 
[27]. Good agreement is observed for these two approaches, 
confirming that the LDOS variation is indeed induced by 
PDFV.

3 We set the Monkhorst-Pack grid-spacing equal to 0.0013 Å
−1

.
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Let us explain the essence of the analytical expression derived 
within the Dirac approximation. For graphene under uniform 
strain, i.e. non-position dependent strain, the LDOS results 
ρ(E) = ρ0(E)/det(vij/v0), where vij = v0(1 − βεij + εij) is the 
strain-induced Fermi velocity tensor [5] whose β-independent 
term v0εij is purely a geometric consequence due to the lattice 
deformation [29]. Then for a sufficiently smooth spatially-
varying strain, the LDOS can be approximately calculated 
by making the substitution εij → εij(x, y). In consequence, for 
our problem ρ(E, x) = ρ0(E)/[1 − βεxx(x) + εxx(x)], but dis-
regarding geometric effects (given by the β-independent term) 
in order to compare with the tight-binding results, one finally 
get S(x) = S0/[1 − βεxx(x)].

In other words, the considered strain only modifies the 
Fermi velocity in the x-direction, whereas the Fermi velocity 
in the y-direction remains equal to v0. Hence, the substitu-
tion v0 → v(x) in ρ0(E) = 2|E|/(π�2v2

0) is not appropriate to 
obtain ρ0(E, x) because when making such an substitution, 
one would be wrongly assuming that both components of the 
velocity are equally modified by strain. To visualize this fact, 
in figure 1(c) we illustrate with a dashed line the variation of 
the slope derived by replacing v0 in ρ0(E) by v0[1 − βεxx(x)], 
which remarkably differs from the ones obtained from the 
tight-binding and Dirac approaches. Therefore, to obtain a 
more accurate LDOS of graphene under a nonuniform uni-
axial strain (e.g. a ripple as considered in [25]) the appro-
priate replacement should be v2

0 → v0v(x) in ρ0(E), where 
v(x) is the Fermi velocity along the strain direction. In conse-
quence, one gets ρ(E, x) = ρ0(E)v0/v(x), whence the LDOS 
slopes at two different positions, S(x1) and S(x2), are related 
by the expression

S(x1)/S(x2) = v(x2)/v(x1).� (3)

2.  PDFV effect on LDOS in the presence of 
magnetic field

We now add a uniform magnetic field Bez to our previously 
discussed problem of strained graphene.

Within the tight-binding model, the Hamiltonian has the 
form (1), but now the hopping parameter tij is evaluated by a 
generalized expression of equation (2) as

tij = t0 exp[−β(dij/a0 − 1)] exp[iφij],� (4)

in which the magnetic field effect is introduced by the Peierls 
phase φij, according to [33, 34]

φij =
2π
φ0

∫ rj

ri

A(r) · dr,� (5)

where φ0 is the magnetic flux quantum, A(r) is the vector 
potential and ri (rj) denotes the modified position of site i ( j ). 
Unlike the case without magnetic field, the tight-binding 
Hamiltonian in the presence of magnetic field captures purely 
geometric effects due to strain. Even for β = 0, the resulting 
hopping parameter tij = t0 exp[iφij] depends on the position 
through the Peierls phase, leading to a spatial modulation of 
the LDOS.

Figure 2(a) is analogous to figure 1(b), but the shown 
LDOS were calculated by assuming a magnetic field of mag-
nitude B = 10 T. The most remarkable feature of figure 2(a) 
is the presence of a series of well defined peaks. For pristine 
graphene, the LDOS presents such peaks at the Landau level 

energies, given by E(0)
n = ±

√
2e�v2

0Bn [35]. For example, 

the first (positive) peak is at E(0)
1 ≈ 0.1 eV for B = 10 T. In 

figure 2(a) for nonuniformly strained graphene, the first peak 
of the LDOS, located at energy E1(x), is around 0.1 eV but it 
depends on the position x. For instance, E1(x1) < 0.1 eV in 

Figure 1.  (a) Schematic representation of an oscillating displacement field with wavelength λ along the zigzag direction of graphene. (b) 
Tight-binding results of the LDOS at three positions illustrated in panel (a). Solid lines obtained from fitting indicate the LDOS slope, 
S(x), at distinct sites. (c) Strain-induced variation of positive S(x) along the pink path in panel (a), according to three different approaches 
denoted in the figure. Results of panels (b) and (c) are obtained for λ = 660

√
3a0 and 2πu0 = 0.1λ.
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the stretched region, E1(x3) > 0.1 eV in the shrinked region, 
and E1(x2) ≈ 0.1 eV, where local strain is approximately 
zero. This variation of E1(x) with the position x is quantita-
tively displayed by open pink circles in figure 2(b), according 
to our tight-binding calculations. Moreover, to visualize the 
purely geometric effects due to strain, in figure 2(c) we show 
the LDOS, as analogously made in figure 2(a), but obtained 
by assuming β = 0 in equation (4). For this hypothetical case, 
the dependence of E1(x) as function of x is opposite to that of 
the realistic case with β = 3.37, which can be clearly noted by 
comparing figures 2(b) and (d).

Let us provide an explanation to the tight-binding 
results of E1(x) from the Dirac approximation in terms 
of PDFV effects on the LDOS. For graphene under uni-
form strain, the Landau level energies are given by 

En = E(0)
n

√
det(vij/v0), with vij = v0(1 − βεij + εij) [10]. 

Hence, the first peak of the LDOS for uniformly strained gra-

phene should be at E1 = E(0)
1 [1 − (β − 1)tr(εij)/2], up to 

first-order in the strain tensor. Then, for a sufficiently smooth 
spatially-varying strain, E1(x, y) can be approximately estimated 
by making the substitution εij → εij(x, y) in E1, which leads to

E1(x, y) = E(0)
1

{
1 − β − 1

2
tr[εij(x, y)]

}
.� (6)

Thus, at a locally dilated region (tr[εij(x, y)] > 0) the first posi-

tive peak of the LDOS is shifted to the left of |E(0)
1 |, whereas at 

a locally compressed region (tr[εij(x, y)] < 0) the first positive 
peak of the LDOS is shifted to the right.

From equation (6), for a nonuniform strain as illustrated in 

figure 1(a), it follows that E1(x) = E(0)
1 [1 − (β − 1)εxx(x)/2]. 

In figure  2(b) with β = 3.37 and figure  2(d) with β = 0, it 
can be observed a good agreement between the results pre-
dicted by the last analytical expression, according to the Dirac 
approach, and those obtained from the tight-binding model. 
This fact confirms the concept of a PDFV for the understanding 
and description of LDOS variations induced by a nonuniform 
uniaxial strain. Moreover, in figures 2(b) and (d) we illustrate 
by the dashed lines the consequence of substitution v0 → v(x) 
in E(0)

1 , which leads to results notably different from those 
obtained by the tight-binding and Dirac approaches. In short, 
to evaluate approximately E1(x) for graphene under a nonu-
niform uniaxial strain (e.g. a ripple) and in the presence of a 
uniform magnetic field, the appropriate replacement should be 

v2
0 → v0v(x) in E(0)

1 , hence one gets E1(x) = E(0)
1

√
v(x)/v0 , 

keeping in mind that v(x) is the Fermi velocity along the strain 
direction. Therefore, using Landau-level spectroscopy meas-
urements, Fermi velocities at two different positions, v(x1) and 
v(x2), are related by

v(x1)/v(x2) = [E1(x1)/E1(x2)]
2 .� (7)

Equation (7) is certainly limited to a nonuniform uni-
axial strain along the zigzag direction. For a situation beyond 
uniaxial strain, the PDFV effect on the LDOS peaks can 
be quantified by a more general expression as equation  (6), 
which is valid whenever the strain-induced pseudomagnetic 
field Bs(x, y) fulfills the condition Bs(x, y)/B � tr[εij(x, y)].

On the other hand, as illustrated in the inset of figure 2(a), 
the LDOS presents an inclination (slope) over an extended 
energy range. Furthermore, this inclination depends on the 
position in the same manner as occurred in figure 1(b), which 

Figure 2.  Tight-binding calculations of the LDOS for graphene under a nonuniform uniaxial strain, as illustrated in figure 1(a), and 
in the presence of a magnetic field B. (a) LDOS at three positions as indicated in figure 1(a) with the corresponding colors. (b) First 
peak of the LDOS, E1(x), as function of the position x along the strain direction, according to three different approaches. Panels (c) and 
(d) are analogous to panels (a) and (b), respectively, but assuming β = 0. Insets: LDOS over an extended energy range. Parameters: 
λ = 660

√
3a0, 2πu0 = 0.1λ and B = 10 T.
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can be explained as a PDFV effect. For the case β = 0, see 
inset of figure 2(c), the mentioned position dependence of the 
LDOS inclination is less remarked because the PDFV effect is 
only introduced through the Peierls phase.

3.  Conclusions

In closing, we have presented a numerical and analytical study 
of the LDOS of graphene under nonuniform uniaxial strain, 
either in absence or in presence of a uniform magnetic field. 
Our tight-binding results of the LDOS have been successfully 
explained by analytical expressions derived from the Dirac 
approximation in term of a PDFV. Moreover, we have clari-
fied that the replacement v0 → v(x) in expressions of pristine 
graphene (e.g. ρ0(E) ∼ |E|/v2

0) could be inappropriate to 
evaluate PDFV effects on LDOS since such rough approach 
disregards the strain-induced anisotropy of the Fermi velocity. 
In consequence, the analytical expressions (3) and (7) for the 
LDOS can be useful to appropriately describe effects of non-
uniform uniaxial strains (e.g. ripples along the zigzag direc-
tion) on STS experiments of graphene, without and with the 
presence of a uniform magnetic field. It is important to mention 
that the analytical results reported in this article are valid for 
λ � �B � a0, where �B =

√
�/(eB) is the magnetic length. 

In addition to the contribution of this work for understanding 
PDFV effects on Landau-level spectroscopy measurements of 
strained graphene, our results also suggest that PDFV effects 
should be considered in a complete description of transport 
signatures of strain-induced pseudomagnetic fields.
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