
IEEE TRANSACTIONS ON EDUCATION, VOL. 61, NO. 1, FEBRUARY 2018 63

Enhancing the Student Learning Experience in
Software Engineering Project Courses

Maíra Marques, Member, IEEE, Sergio F. Ochoa, Member, IEEE,
María Cecilia Bastarrica, and Francisco J. Gutierrez

Abstract—Carrying out real-world software projects in their
academic studies helps students to understand what they will face
in industry, and to experience first-hand the challenges involved
when working collaboratively. Most of the instructional strate-
gies used to help students take advantage of these activities focus
on supporting agile programming, which is appropriate for cap-
stone courses. This is not always recommended in initial software
engineering project courses, however, where novice developers
run projects in teams while simultaneously taking other courses.
To enhance the learning and teamwork experience in this latter
instructional scenario, this paper proposes a formative moni-
toring method, reflexive weekly monitoring (RWM), for use in
project courses that involve disciplined software processes and
loosely coupled work. RWM uses self-reflection and collaborative
learning practices to help students be aware of their individual
and team performance. RWM was applied in a case study over
nine consecutive semesters. The results obtained indicate that
RWM was effective in enhancing the learning experience in the
instructional scenario studied. While students in the monitored
teams were more effective and coordinated, and experienced
a higher sense of team belonging and satisfaction, little evidence
was found of them being more productive than students working
in non-monitored teams.

Index Terms—Collaborative learning, disciplined software pro-
cess, formative monitoring, project-based learning, reflexive mon-
itoring, reflective practice, software engineering project course,
team performance, teamwork.

I. INTRODUCTION

COMPUTER science programs strive to prepare future
software engineers for work in industry, by teaching

students core computing concepts that will allow them to
become lifelong learners, able to keep pace with innovations
in the discipline. Approaches to delivering technical knowl-
edge have usually been well adopted by universities. However,
the development of transversal capabilities, such as leadership,
teamwork, decision-making, negotiation, and self-reflection,
are usually less supported in these programs [1]–[3]. These
team’s capabilities, also known as “soft skills”, not only

Manuscript received January 22, 2016; revised October 3, 2016
and April 30, 2017; accepted July 31, 2017. Date of publication
September 6, 2017; date of current version February 1, 2018. This work was
supported by the Project Fondef IDeA under Grant IT13I20010. The work
of M. Marques was supported by the Ph.D. Scholarship Program of Conicyt
Chile (CONICYT-PCHA/Doctorado Nacional) under Grant 2012-21120544.
(Corresponding author: Maíra Marques.)

The authors are with the Department of Computer Science, Universidad
de Chile, Santiago 8370459, Chile (e-mail: mmarques@dcc.uchile.cl;
sochoa@dcc.uchile.cl; cecilia@dcc.uchile.cl; frgutier@dcc.uchile.cl).

Digital Object Identifier 10.1109/TE.2017.2742989

impact the teams’ results but also their work climate [4], since
software development also involves several human and social
aspects [5].

Universities are aware of this situation, and have been try-
ing to create recipes to develop soft skills in future software
engineers. There seems to be a consensus that project-based
and capstone courses that imitate industrial processes can con-
tribute to addressing this challenge, mainly because they show
students the need for applying such skills [6]–[9].

Although project-based learning [10] is the most com-
mon instructional approach used to implement these
experiences [11], [12], instructors must decide what software
development strategy to use for this. Typically, the chosen
strategy ranges between disciplined and agile processes [13],
the former being structured and based on phases and roles, and
the latter being unstructured, focused on the product, and based
on self-organized teams. Both strategies have shown posi-
tive results [11], [12], [14], but have different purposes and
requirements. Disciplined processes are useful for inexperi-
enced developers [13], and are recommended in project-based
courses that help students internalize their previously-acquired
theoretical software engineering knowledge [15]. This devel-
opment strategy supports the asynchronous and distributed
work of students, who perform individual activities most
of the time followed by sporadic coordination tasks. This
loosely-coupled work style provides flexibility to students
to contribute to a project, while they are still taking other
courses.

Agile processes, on the other hand, seem to be more appro-
priate for supporting capstone courses [16], where students
gain a broader perspective of the software development prac-
tice, and reinforce their technical and non-technical skills,
before being recruited into the software industry. These
processes require students to have ample time to work together,
since their activities are more tightly-coupled than in disci-
plined developments. Moreover, these students should have
some prior experience in developing software [15].

Several mechanisms have been reported in the literature
to enhance students’ experience when using agile methods.
However, less research has been done on supporting the
learning process when using disciplined development strate-
gies. To advance knowledge in this instructional scenario,
this paper proposes the Reflexive Weekly Monitoring (RWM)
method, which enhances students’ learning experience dur-
ing project-based courses using disciplined software strategies.
RWM assumes that students will perform loosely-coupled

0018-9359 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:mmarques@dcc.uchile.cl
mailto:sochoa@dcc.uchile.cl
mailto:cecilia@dcc.uchile.cl
mailto:frgutier@dcc.uchile.cl
http://www.ieee.org/publications_standards/publications/rights/index.html

64 IEEE TRANSACTIONS ON EDUCATION, VOL. 61, NO. 1, FEBRUARY 2018

work during the course of the project. This monitoring method
uses self-reflection and collaborative learning practices to help
students realize how well they are working from an individ-
ual and team perspective; this gives them the opportunity to
learn from past experience and address the remaining work in
a more appropriate way. After informally applying this mon-
itoring method in an undergraduate software project course
for two years, it was formalized in order to evaluate its real
benefits in practice. The evaluation process considered the
following hypotheses:

H1: RWM positively impacts coordination among team
members,

H2: increases students’ sense of belonging to a team,
H3: makes them work more effectively, and
H4: increases their productivity.
Coordination is defined as the capability of team mem-

bers to work together to reach project goals, and the sense
of belonging to a team as the team members’ percep-
tion of sharing a common goal. Effectiveness is understood
as the capability to focus on the mandatory requirements
of the software project [17]. Finally, productivity is mea-
sured by the amount of useful software built during the
project.

To study the validity of the hypotheses, the RWM method
was used in nine consecutive semesters –from spring 2011 to
spring 2015– to monitor 18 out of 32 software development
teams, which were all similar in terms of background, struc-
ture, and size. In total, 205 computer science undergraduate
students participated in the evaluation. The projects addressed
were comparable in terms of size, complexity, and dura-
tion, and all teams followed the same software development
process [18].

The results indicate that RWM helps student teams improve
their coordination, sense of belonging to a team, and effec-
tiveness, but not necessarily their productivity. Monitored
teams tend to be more productive during the first half of
the project, but this changes when they realize that they
have the project under control. From that point on, students
tend to be more speculative, probably adopting the so-called
“apprentice attitude” [19], [20], which negatively impacts on
the team productivity. This issue requires further research
and is planned as part of the future work. The empirical
results have also shown some unexpected but valuable results,
such as the early detection of free riders and of project
risks.

From a personal perspective, monitored students felt com-
fortable with the process and believed that it helped them better
address the project. Moreover, these teams felt more satisfied
with the completed work than those not monitored.

The rest of the paper is structured as follows. The next
section discusses related work. Section III describes the edu-
cational context. Section IV presents the RWM method.
Section V describes the empirical setting designed for study-
ing the validity of the stated hypotheses. Sections VI and VII
report and discuss the results, respectively. Section VIII
presents the study threats to the study’s validity. Finally,
Section IX concludes the paper and provides perspectives on
future work.

II. RELATED WORK

The literature reports several strategies for addressing
project-based learning experiences in software engineering
courses, such as simulations and the development of hypo-
thetical and real software products [21]–[23]. Project-based
learning is probably the most valuable strategy for students
and instructors, but is considered time-consuming and diffi-
cult to implement [8], [24]. When these instructional activities
are implemented, students should take advantage of them,
although this can represent a challenge for instructors.

Several methods have been proposed to help students
acquire technical and non-technical skills during these experi-
ences. Some were conceived to be used with agile processes,
others with disciplined processes, and others are independent
of the development strategy. The position of the course within
the curriculum, and the level of activity coupling required
of students in these projects will encourage the adoption of
a particular development process. In turn, this determines the
instructional strategy and tools used to support students acquir-
ing technical and non-technical skills throughout the project.
Typically, the first project-based course in a curriculum tends
to follow a disciplined strategy, with well-defined life cycle
phases and milestones, templates for the artifacts required, and
students’ work being loosely-coupled [13].

To enhance project-based learning experiences in this con-
text, some researchers propose the use of e-portfolios where
students store their own work products, and keep a log-
book with their activities and reflections on a particular
project [25], [26]. These portfolios, which can be used with
both disciplined and agile development strategies, are accessi-
ble to the instructor, who can provide feedback and assess the
students’ performance. Despite the positive results reported
in [26], the use of e-portfolios can create tension between
the privacy of the students’ thoughts and their knowing that
these are to be shared with the instructor [25], which may
lead to discomfort for students. Moreover, when the e-portfolio
information is used as part of the students’ assessment, there
is little collaboration between students because of plagiarism
concerns [25], which further reduces the chances to reinforce
learning during these practical experiences.

With the same goal, Mahniè and Èasar [27] propose the
use of a tool, similar to an e-portfolio, that visualizes stu-
dents’ activities in Scrum-based software engineering capstone
courses. The visual display of task accomplishment not only
allows monitoring of students, but also prevents procrastina-
tion and the “free-rider” syndrome. This tool seems appropri-
ate for monitoring students, but was conceived particularly
for teams using an agile software development strategy; it
is therefore probably unsuitable for disciplined developments,
since both strategies have different requirements and different
purposes in the academic scenario.

Coaching, in which an experienced developer or instructor
assists student teams while they work on a project, is another
common practice to improve learning experiences, and is suit-
able for both disciplined and in agile developments. Of the
several coaching approaches, the most typical focus on help-
ing students address internal issues (e.g., communication and
coordination) by mentoring them to use their knowledge and

MARQUES et al.: ENHANCING STUDENT LEARNING EXPERIENCE IN SOFTWARE ENGINEERING PROJECT COURSES 65

review their deliverables [24], [28]. Rodríguez et al. [29] pro-
pose an agile coach with pedagogical expertise, who monitors
the students’ accomplishments and suggests corrective actions
and improvements. The evaluation results indicate that stu-
dents who were coached following agile principles perceived
a greater gain in non-technical skills than non-coached stu-
dents. Despite the good results reported in the literature,
this approach is more appropriate for capstone courses, since
inexperienced students tend to rely on the coach, and avoid
assuming the responsibility and risks of their projects. If the
coach becomes a project manager, then students lose a good
opportunity to learn more from these experiences.

Monitoring can also be used to make project experiences
valuable for students and instructors. A monitor helps student
teams to reflect, so as to address and solve their team and
individual issues. Several researchers indicate that team moni-
toring reduces motivational losses and increases the likelihood
of detecting free riding and social loafing [27], [30], and helps
focus the team effort on reaching the team goals over indi-
vidual interests [31]. Monitoring can operate as an implicit
coordination mechanism [32], by making team members more
aware of each other’ actions, timing, and performance; stu-
dents can thus increase their ability to synchronize their
contributions to maximize the attainment of team goals [33].
This approach appears to be an effective way to promote
product quality and team productivity [34].

Typically, in disciplined strategies, students conduct loosely-
coupled work to address the project tasks. Due to the effort
and complexity of monitoring their activities, software tools
are used by instructors and teaching assistants. For instance,
Collofello and Hart [35] proposed a tool where students report
their project status weekly. However, this system relies only
on information provided by the students, and therefore the
diagnosis could be inaccurate or definitively wrong. A sim-
ilar tool was proposed by Bakar et al. [36], which also
depends on student input. This characteristic potentially under-
mines the usefulness of these systems, for several reasons.
For instance, students tend to report their activities at the last
possible minute, so report what they remember rather than
what they have really done. In other cases, they report what
is required to avoid conflicts with team members and course
instructors.

More objective monitoring mechanisms have been proposed
based on mining the log files recorded by the tools used by
students for supporting their activities, such as, version con-
trol systems [37], [38], issue trackers [11], [39], wikis [39],
or mailing lists [11], [39]. Although these mechanisms are
useful, they only capture activities mediated by such tools;
this could be appropriate for monitoring global software
development scenarios, but is not completely transferable to
project-based courses, where students and monitors frequently
conduct face-to-face interactions that are not logged.

In the case of using Scrum as a software development
strategy, Scrum Masters can perform the team monitoring. In
particular, Mahnic [40] proposes that the instructor assumes
that role in capstone courses by ensuring that everyone fol-
lows Scrum rules and practices. Rodríguez et al. [41] and
Scharf and Koch [42] agree that the Scrum Master should lead

teams into applying Scrum practices, but propose that students
with advanced knowledge of the agile philosophy assume this
role. Unfortunately, most agile practices require students to
have previous experience and to spend time working together,
which is not feasible in a first project-based course.

Another option for supporting students during these
learning experiences is implementing instances of peer-
assessment [24], [43], where students anonymously evaluate
the performance of their teammates and provide feedback
to help their peers overcome conflicts and limitations. This
approach has shown good results and is suitable for use
in disciplined developments. However, the comments given
to students are mostly based on team members’ personal
experiences, and may not represent overall team consensus.
Moreover, that feedback does not always focus on the key
aspects of the team dynamics, due to students’ lack of exper-
tise in identifying these aspects [24]. Similar limitations can
be also found in self-assessment [44], [45].

Selecting a peer-assessment instrument to support these
experiences is also a challenge, since their suitability
depends on several project features, such as the team
structure (peer-to-peer or based on roles), the software
process structure (agile or disciplined), the development
scenario (collocated, partially distributed, distributed) and
cultural aspects of the team members (individualists, col-
lectivists or mixed). Although several instruments have
been proposed for assessing team performance in academic
scenarios [39], [46], [47], few of them were specifically cre-
ated to assess software teams [11], [48], [49], and only the
proposal of Silvestre et al. [43], [50] considers all the fea-
tures involved in the projects addressed in this study scenario.
Therefore, this proposal is used to inform the quality of
teamwork of teams using RWM or not.

On the other hand, instructors frequently use formal course
checkpoints to provide feedback to students, typically through
Formal Technical Reviews [51]. Although useful, time con-
straints usually make these reviews superficial, focused on the
work products, and with little to no space for reflecting on
what went right or wrong in the project. Moreover, students
are not given suggestions as early as they should be, since
checkpoints are sporadic.

These previous works put in evidence the need to count
on instructional methods that help students take advantage
of these experiences when a disciplined software strategy is
used to guide the running of the project. In this sense, the
RWM method adapts general monitoring concepts to soft-
ware engineering education and uses team reflection during
weekly meetings for self-evaluating the project dynamics.
Thus, students can learn collaboratively, based on their own
experiences.

III. CONTEXT OF USE

The Reflexive Weekly Monitoring method was conceived
to monitor development teams in a software engineering
undergraduate course (CC5401 – Software Engineering II)
taught at Universidad de Chile, Chile. The course corre-
sponds to the ninth of the eleven semesters of the Computer

66 IEEE TRANSACTIONS ON EDUCATION, VOL. 61, NO. 1, FEBRUARY 2018

Science program. It is the first project-based course in the
curriculum where students have to apply, in a real prac-
tical experience, the theoretical knowledge acquired in the
previous software engineering courses. This course involves
two lectures and one discussion session facilitated by the
teaching assistant every week. Of those enrolled in the course,
only 20-30% had already worked in the software industry as
programmers, either in internships or part time jobs, so accord-
ing to Robillard and Dulipovici [13] these students could be
classified as “inexperienced developers”.

The course uses project-based learning as its instructional
approach, since is a proven strategy to engage students in
authentic real world tasks [52], [53]. The course objective is to
familiarize students with the dynamics of developing software
in teams and managing these projects while interacting with
clients and users. The teams have to work on their projects
for twelve weeks, and at the end of which they must deploy
the solution.

Every semester the instructor arranges development teams
composed of five to seven students and assigns them a project.
Typically, they develop Web-based information systems that
help address a problem for some unit of the university. These
projects involve real users and clients, with their goal and
scope having been previously negotiated between the instruc-
tor and clients. However, each team is responsible for reaching
a formal agreement with its clients and users about the
project’s scope and how to prioritize and develop its func-
tionality. After this negotiation, both parties sign a document
that specifies the software products and deadlines agreed upon.

To maintain similarity across all the software projects under
development, all teams must implement their product using
a PHP Model-View-Controller framework of their choice, and
must also select either a MySQL or PostgreSQL database
engine. These technological restrictions make it easier to
compare the teams’ productivity.

Students are also expected to follow an adaptation of the
Simple Software Process (SSP) model [54] to guide their
project development. This process is disciplined, according to
of Robillard’s definition [55], since it has a clear definition of
activities, milestones and roles, and also provides templates
for the artifacts that the students are to create.

The SSP model involves two increments and eight check-
points, scheduled by the instructor during the kick-off meeting
for all projects. In each checkpoint, an intermediate soft-
ware artifact – for example, the requirements specification,
the software design, or a software prototype - is delivered
and evaluated. These checkpoints, open to any participating
team, allow the instructor to assess the current status of the
product and the project, but not the team internal dynamics
or the individual team members’ performance. In this sense,
the RWM method complements the tracking done by the
instructor.

Over twelve weeks of the project, students work in
a loosely-coupled way to reach the project goals. Attendance
at lectures is not mandatory under university rules, but at least
half of the team is expected to attend every weekly monitoring
session. These meetings last for an hour, and their frequency
is feasible for students while they are still taking courses.

All teams must use the SRM (Software Requirement
Manager) tool [54], a shared repository of the projects’ work
products. The project’s resources are only accessible to people
working on that project. The SRM also allows students to store
and share work products considered in the software process
(e.g., user and software requirements, components design and
test cases), generate their documentation on-demand based on
the information stored in the system, and keep track of the
work products’ evolution. This tool also reports, on-demand,
the status of a project according to the information stored in
the system (e.g., fulfilled and unfulfilled items, and committed
deadlines). Students and lecturer materials, templates, reading
materials, tasks submissions, evaluations and final course eval-
uation are managed by an e-portfolio tool (U-Cursos), like that
reported by Macías [26].

After each iteration, a major software product increment is
delivered, and the individual and team performance is evalu-
ated by a peer-assessment that considers both quantitative and
qualitative results [43], and that gives feedback to the students.

IV. REFLEXIVE WEEKLY MONITORING

The RWM method is led by monitors who perform weekly
monitoring sessions with a software development team to
facilitate members’ understanding of their own performance
and project status. The monitor is not a coach, project man-
ager, or Scrum master. Coaches suggest corrective actions and
improvements [29], project managers assign tasks, and Scrum
Masters lead teams in applying practices and help making
decisions [41], but the monitor is an agent who promotes
and facilitates the team members’ self-reflection, and uses
that mechanism to help them find their own solutions to their
individual and team problems.

Although the monitor is not responsible for team’s activ-
ities, he/she can raise warnings when the team is missing
critical issues that require a quick response. When students
need an external opinion on their diagnosis of the project sta-
tus, the monitor can provide general feedback about the course
of action to be followed, but it is the students alone who are
responsible for the project and the final product.

The weekly RWM sessions take place throughout the
project, although they are more useful during the early stages.
Students should not perceive the sessions as an evaluation,
but rather as a formative activity that allows them to improve
individually and as a team, based on their previous experi-
ences and without direct consequences on their course grade.
Therefore the course instructor and the teaching assistants do
not participate in the monitoring activities.

People taking the monitor role do not need significant pro-
fessional expertise, the projects are usually quite small and are
not complex. Similarly, the monitoring method is not complex
either and is rigorously defined, so little experience is needed
to follow it. Graduate students can assume this role.

Weekly sessions allow monitors to maintain awareness of
the projects and teams, recall previous sessions, and facili-
tate the early identification of risks in the project and the
team. This meeting frequency is not intended to overwhelm
students or monitors. These sessions involve three sequential

MARQUES et al.: ENHANCING STUDENT LEARNING EXPERIENCE IN SOFTWARE ENGINEERING PROJECT COURSES 67

Fig. 1. Structure of a RWM Session.

steps (Fig. 1): monitor diagnosis, team reflection, and closure.
This guide helps monitors to conduct the sessions in consis-
tently, and lets students know what to expect. The solid lines
in Fig. 1 show the sequence of steps followed by each role
during the session, and the dashed lines show the floor con-
trol shared between roles. Some activities, like the first done
by the team members (that is, the analysis of the project/team
situation), involve a meeting that the involved actors (in this
case, the team members) must attend, where they receive the
floor control from the monitor to start the activity.

A. Monitor Diagnosis

In each session, the monitor gathers information about the
project and team status by asking team members simple ques-
tions that require direct answers, such as: “Has everybody
accomplished the assigned tasks?”, “Is our project on sched-
ule?”, “Are we going to be able to accomplish the deadlines?”,
“Is our team working well?” The monitor, although not part of
the team, formulate the questions as though from a team mem-
ber, to make students feel more comfortable, and not judged,
reinforcing the idea of monitoring a formative activity.

The answers to the questions, which must be agreed upon
between the team members, are used to make an initial
diagnosis of the project progress, their commitment, and
the perceived quality of the teamwork. Achieving consen-
sus pushes students to analyze various opinions and points
of views, and helps them visualize the current status of the

team and project. The monitor can ask additional questions to
reach an initial diagnosis, which is usually adjusted during the
next steps of the monitoring session. The monitor diagnosis
workflow is depicted in the upper part of Figure 1.

B. Team Reflection

The team reflection is designed to make students reflect on
possible causes of the issues identified in the team and project
diagnosis conducted in the previous step.

The monitor leads the team in a reflexive activity based on
questions and answers that focus on the weaknesses and risks
of the performed work, project plan, and the attitudes of team
members, to arrive at “reflection-in-action” [57], a technique
that allows a reshaping of what the students are working on
while they are working on it.

C. Data Analysis

Typical questions asked are: “Why are we delayed?”,
“What are our main risks/weaknesses?”, “How can we address
these risks/weaknesses?”, “How can we improve our team
performance?”, and “What can we do to reach the deadlines?”

Answering these questions requires reflection and agree-
ment among teammates. Typically, students only understand
the situation when trying to answer these questions. Therefore,
this stage is usually the most important part of the pro-
cess. The monitor has to use his/her own criteria to keep the
monitoring session within certain time limits, typically 30 to
40 minutes, so should determine the most relevant questions
in each session, and prioritize them.

At the end of this second step the monitor asks students
about the project plan to make them reflect on its suitability for
addressing the remaining project goals. Eventually, the monitor
can offer indirect feedback, which will be discussed during the
next monitoring session. This step of workflow is shown in the
middle of Figure 1.

D. Closure

The last step is closure, a wrap-up presented by the devel-
opment team that highlights up to three priority actions to be
addressed during next week. The closure step acts as a trig-
ger to create short-term tasks and assignments. If the RWM
sessions are applied in long projects, the closure should also
consider priority actions for the mid-term. It is recommended
that the team self-organizes to address the tasks identified.
And thus, determines how they would be carried out. The
self-organization requires reflection in and on-action [56] to
determine the next steps. This process design is inspired by
the guidelines given by Schön [57].

Immediately after the session, the monitor writes a session
record that students, teaching assistants, and the instructor do
not see until after the end of the course. In the record, the
monitor specifies the diagnosis of the project and the team,
the actions to be taken for the next week, and optionally some
open comments that help keep track of the status of all projects
and teams. The team diagnosis includes its engagement with
the project, and the level of teamwork and control shown over
the development activities. The project diagnosis includes its

68 IEEE TRANSACTIONS ON EDUCATION, VOL. 61, NO. 1, FEBRUARY 2018

state of advancement and risk, and also the appropriateness of
the plan to reach the goals.

V. EVALUATION

The effectiveness of the RWM monitoring method on under-
graduate software engineering students was studied through
a mixed-methods evaluation. Following a between-groups
experimental design, a sample of student teams enrolled in
the project course described in Section IV were recruited to
participate in the study.

A. Participants

Thirty-two teams (205 students) participated in the study
over nine consecutive semesters, from spring 2011 to
spring 2015. Each student was enrolled in the course for only
one semester, hence being assigned to just one team. Sixty-five
percent of teams were formed only by male students whereas
35% of teams were mixed. From the latter, 22% had one
female student (seven teams) and 13% had two female students
(three teams). All participants were of similar age, ranging
between 22 and 25 years old.

Adhering to the course instructional approach, each team
was assigned a project to be independently addressed over
a period 12-week period. All enrolled students belonged to
the same undergraduate program, which is rigid and comprises
mostly mandatory courses, and thus they had comparable tech-
nical skills at the beginning of the project. Furthermore, they
had similar prior experience in software development since
they all had completed their first professional internship that
lasts for one month. The course instructor and the leading
teaching assistant were the same for the whole study period,
and neither participated in the monitoring sessions, since their
involvement could possibly influence student behavior and
final grades in the course.

Teams were randomly assigned to the experimental condi-
tion, i.e., being monitored following the RWM method. At the
end of the study, eighteen teams (112 students) were monitored
while the other fourteen (93 students) were not monitored.
Non-monitored teams served as the control group and did not
show significantly lower performance—measured in terms of
the final grade obtained at the end of the course—as compared
to non-monitored teams not participating in the study (i.e.,
those before the observation period). Comparing the grades
of nine semesters prior to this empirical evaluation, the aver-
age course grade was 5.62 with a standard deviation of 0.882,
whereas non-monitored teams that participated in the exper-
iment had an average course grade of 5.51 with a standard
deviation of 0.993.

For the monitored teams, a group of graduate students in
computer science assumed the role of monitors. Some were
teaching assistants in other introductory computer science
undergraduate courses at the university and were recruited
based on their prior experience in working and leading soft-
ware development teams. New monitors were required to
complete a brief instruction period on how to conduct the
monitoring sessions in which they were trained in the steps,
goals, and scope of the RWM method. To ensure consistency

across monitors, they were observed by the first author when
delivering their first two or three sessions.

B. Data Collection

To compare the experimental group (monitored teams) to the
control group (non-monitored teams), the study used the infor-
mation gathered using the regular course tracking instruments -
the peer assessment conducted at the end of each increment
and a statistical report provided by the requirements tracking
tool (SRM) [54] used by the students in their projects.

For the anonymous peer-assessment students used the
instrument proposed by Silvestre et al. [43], [50], designed
specifically to evaluate software team performance in the
scenario considered in this study; i.e., software teams of
Latin American undergraduate students following a disci-
plined software process in a loosely-coupled way to develop
a Web information system. This instrument, a 5-point Likert
scale questionnaire, evaluates seven aspects of teammates
(engagement, sense of belonging to a team, responsibility, ini-
tiative, communication, coordination, and desire to improve)
using several weightings that are the result of an empirical
study. Students had to indicate their level of agreement or
disagreement with each statement of a dimension of team-
work with one of the following options: 1-never, 2-almost
never, 3-sometimes, 4-regularly, and 5-always. Analysis of
the responses made it was possible to study the validity of
hypotheses 1 and 2. The instrument also elicits open com-
ments about the strengths and weaknesses of the teammate
being evaluated. Each aspect is represented through one or
more sentences describing an expected attitude of a team-
mate. For instance, a description of the coordination aspect
states: “He/she fulfills his/her assignments properly, working
transparently and coordinated with other peers”, and that eval-
uating the sense of belonging to a team is: “He/she assumes
the project as a team effort, providing support to peers in the
project tasks”. The validity of this instrument was assessed
with a representative sample of the study population [50].
Opinions reported on the peer-assessment items were found
to be highly reliable, by calculating the associated Cronbach’s
alpha for each subscale (α = 0.86 for coordination and
α = 0.91 for sense of belonging to a team).

Students used the SRM tool [54] to manage the scope and
current status of their projects according to their requirements.
As an objective measure for effectiveness (i.e., whether a piece
of software was actually deployed and used to solve a partic-
ular problem) and productivity (i.e., the number of software
requirements met by the team), the information provided by
SRM was used to identify the size and completeness of each
project after the second increment. In particular, SRM lists
the software requirements for all projects, and a status code
indicating its final level of completion (fulfilled, unfulfilled
or ambiguous). The information stored in SRM can be con-
sidered valid and reliable since it is the result of the last
software inspection performed by the instructor and teaching
assistants just before the project closure. The effort needed
to address each functional requirement was estimated using
the RESC (Raw Estimation based on Standard Components)

MARQUES et al.: ENHANCING STUDENT LEARNING EXPERIENCE IN SOFTWARE ENGINEERING PROJECT COURSES 69

method [58], which is an adaptation of PROBE (Proxy-Based
Estimating) [59], specifying the development effort in terms
of function points (FP). RESC allows the development effort
for new components to be estimated using a set of standard
components (e.g., CRUDs, reports, and Web menus) as refer-
ence points, whose development effort is already known for
that context. Therefore, this effort estimation is based on his-
torical information gathered from the same work context. To
minimize bias on the effort estimation, this was done individ-
ually and independently by the second author and two other
experienced software engineers, based on historical informa-
tion for that work context and the software requirements for
the project. The absolute difference between these estimations
was of 14% in average (max = 18%, min = 5%, med = 10%).
The information provided by SRM allows evaluation of the
validity of hypotheses 3 and 4.

C. Data Analysis

A two-tailed independent samples t-test was performed
over the empirical data to study the validity of the stated
hypotheses. All the statistical analyses were done using SPSS
version 23.

Hypotheses 1 and 2 were evaluated using the data obtained
from the peer-assessment. The Cronbach’s alpha coefficient
was computed for the answers provided by the participants
in each team, to analyze the internal consistency of the peer-
assessment. For hypotheses 3 and 4, the criticality level of
the requirements was used to determine team effectiveness
(H3), and their level of completeness and the effort required to
address them was used to determine team productivity (H4).

Finally, to cross-check the results obtained from the peer-
assessment and SRM, the values observed were triangulated
with qualitative data from handwritten records of the moni-
toring sessions and from comments on student evaluations of
courses and instructors that the university applies twice per
semester (at the middle and end of the course). At the end
of the semester all the handwritten records were delivered for
analysis to the instructor who performed an open, axial, and
selective coding on the data, and then grouped the emerging
themes in affinity diagrams mapping the study hypotheses.

VI. RESULTS

Choosing a significance level of α = 0.05 for all hypothe-
ses, the null hypotheses was rejected for H1, H2, and H3,
while rejection of the null hypothesis for H4 failed. Table I
summarizes the observed values for the study sample. Next,
the obtained results and a discussion on the validity of the
hypotheses are presented.

A. Coordination

Monitored teams (M = 4.61, SD = 0.62) reported being
more coordinated than non-monitored teams (M = 4.17, SD =
1.02), t(1796) = 11.222, p = 0.00001, d = 0.52, 95% CI =
[0.3635, 0.5175].

The comments included in the peer-assessments indicate
some coordination limitations for both types of teams after

TABLE I
COORDINATION, SENSE OF BELONGING TO A TEAM, EFFECTIVENESS,

AND PRODUCTIVITY OF TEAM MEMBERS

the first increment. However, after the second increment, these
limitations only appear in non-monitored teams.

This matches the observations both of monitors, who
reported that “There seems to be an improvement in the team
members’ coordination after the first increment”, and of par-
ticipants in monitored teams, who stated: “The monitoring
sessions showed us the need for coordinating our activities.
Unfortunately, we understood at the very last stage of the
project”, and also that “We started out uncoordinated, but this
situation changed after each [monitoring] session. I feel that
we finished working as a team”. Therefore, the results obtained
support the first hypothesis (H1: the RWM method positively
impacts coordination between team members).

B. Sense of Belonging to a Team

Monitored teams (M = 4.60, SD = 0.63) showed a bet-
ter sense of belonging than non-monitored teams (M = 4.22,

70 IEEE TRANSACTIONS ON EDUCATION, VOL. 61, NO. 1, FEBRUARY 2018

SD = 1.06) did, t(1796) = 9.614, p = 0.00001, d = 0.45,
95% CI = [0.3057, 0.4624].

Monitors identified a significant effort made by students to
come together as a team during the first increment: “Most
[monitored] students work hard during the first increment to
become part of their teams, and most of them seem to suc-
ceed”. The sessions seem to motivate the students to make an
effort to become a team.

In that respect, students in monitored teams mentioned:
“The sessions help us realize that people can contribute in
several ways, and this understanding made us a great team”,
and “The weekly discussions about team limitations allowed
us to overcome them”.

This was also recognized by students in non-monitored
teams, some of whom felt that the lack of a weekly monitoring
session had harmed them: “We finished acting as a group of
developers, because we were not monitored (...). In this sense,
the monitoring sessions favored the other teams”.

In summary, the results obtained support the second hypoth-
esis (H2: RWM increases the sense of belonging to a team),
and show that members of monitored teams tend to be more
motivated to become a team and more satisfied with the overall
experience than those in non-monitored teams.

C. Effectiveness

Monitored team members (M = 99%, SD = 1%) work
more effectively than members of non-monitored teams (M =
86%, SD = 16%), t(30) = 3.570, p = 0.001, d = 1.18,
95% CI = [5.85%, 21.51%]. Here, effectiveness is measured
in terms of the coverage of critical requirements met in the
software project.

A requirement is considered “critical” if it must be
addressed to put the software into production (i.e., if it is
mandatory). The criticality of each requirement is defined by
the development team using the SRM tool [54]. According
to Table I, 94% of the monitored teams and 36% of the non-
monitored teams were able to address all critical requirements,
making thus possible to deploy the software.

This finding was corroborated by the stated opinions of
students and monitors. For instance, a monitor reported:
“Monitoring sessions show the students what is mandatory
in the project. Therefore, the problem is that they work only
on these features”. A member of a monitored team indicated:
“The sessions helped us to quickly identify the core [i.e., the
set of mandatory requirements]. After that, the development
became more manageable”.

Therefore, the study results support the third hypothesis
(H3: RWM makes the students work more effectively). In other
words, RWM sessions helped developers keep the focus on the
critical aspects of the product, resulting in a more effective
development.

D. Productivity

Productivity—measured as the amount of FP fulfilled per
team member in each software project—in monitored teams
(M = 13.04, SD = 3.91) and non-monitored teams (M =
14.51, SD = 4.66) showed little difference, t(30) = 0.969,

p = 0.340, d = 0.340, 95% CI = [−4.563, 1.626]. Monitored
teams were not more productive than non-monitored teams,
contradicting the fourth hypothesis. However, this aspect
seems to require further analysis. All monitors observed how
students reduced their development effort when they felt that
their project is under control. For instance, a monitor stated:
“During the sessions I am as skeptical as I can be of the
project’s success, to avoid that students slacking off in the
middle of the term”. Students change from an active attitude
that shows commitment with the project, to a speculative atti-
tude that shows commitment with the project, to a speculative
attitude where they work just to accomplish the goals. This
observation resonates with the “apprentice attitude” [19], [20]
discussed in related literature.

This change of attitude made it difficult to determine the real
impact of the monitoring activities on students’ productivity.
This attitude also affects their interest in reflecting on their own
activities. Some students believed that team reflection became
optional once they were in control of the project: “The sessions
should not be required any longer if we have the project under
control. We know that we are going to succeed; doing it earlier
does not make any difference”.

VII. DISCUSSION

The evaluation results have both similarities with, and dif-
ferences to prior findings reported in the literature. Similar
to experiences using coaches [24], [28], [29] or Scrum mas-
ters to support student teams [40]–[42], RWM uses monitors
to enhance students’ learning experience during software
projects. However, monitors do not guide nor examine stu-
dents, but instead act as facilitators for self-reflection by
team members. This probably caused the situation where
no tension with monitored students was observed during the
evaluation process. Although all these three approaches are
useful for helping students work in a coordinate fashion,
the use of RWM caused students to realize, at an early
stage of the project, the importance of coordinated working
and, eventually, of changing their behavior for the benefit
of the team. Team grades prior to the experiment and team
grades of non-monitored teams (presented in Section VIII)
did not differ significantly. Furthermore, the course evalua-
tion criteria were the same during the nine semesters covered
in the experiment and in the nine semesters prior to the
experiment.

In terms of team effectiveness, again all three approaches
show good results. However, the prior literature is not clear as
to exactly when in the project the teams supported by coaches
or Scrum masters realize that they are in control, nor how
their attitudes change after that point. RWM has been shown
to be highly effective at helping students identify the manda-
tory aspects of the project, but this has been counterproductive,
since students tend to show an “apprentice” attitude after that
point, minimizing the effort they invest in the project and
focusing only on the mandatory requirements. In future work,
topics such as deployment, application end-user feedback and
functionality will be analyzed as complementary measures for
evaluating team effectiveness.

MARQUES et al.: ENHANCING STUDENT LEARNING EXPERIENCE IN SOFTWARE ENGINEERING PROJECT COURSES 71

In terms of team monitoring capability, all three approaches
have been shown to be suitable and able to identify pro-
crastination and free riders. However, RWM achieves these
outcomes with teams using a disciplined software process with
novice developers, an instructional scenario little explored in
the literature. Moreover, monitored teams tend not to feel that
they are being observed by someone else. In this sense, this
proposal represents an advance of the state-of-the-art. Despite
the good results of applying the RWM method, there were dys-
functional teams who did not work well together, and where
personal conflicts jeopardized the effort made by the monitor
and the instructor to put the team on the right track.

Despite the good reports of using e-portfolios and sim-
ilar tools as instruments to enhance and monitor these
experiences [25]–[27], in RWM it is not mandatory to use
a shared repository. The use of these tools is compatible
with RWM only if they are not actively used by the instruc-
tor to monitor students during the project. In practice, this
strategy has shown to promote students’ empowerment, com-
mitment, and sense of belonging - attitudes that needed
reinforcement in these experiences. This result of the RWM
sessions was recognized by members of both monitored and
non-monitored teams.

An aspect that has not been deeply explored in the literature
yet is the impact these experiences have on the instructional
process. At the end of the course the monitors organized their
annotations chronologically and wrote a brief diagnosis of
the team and project over the whole period, and gave these
diagnoses and the comments to the instructor, who indicated
that these RWM results helped him determine weaknesses and
opportunities to improve the software process that guides these
projects. For instance, the monitoring sessions showed that it
took students too long to take control of the project. Therefore,
the new version of the software process used in the course
includes a conception phase before the two increments, which
has helped mitigate this limitation. This unexpected result indi-
cates that the RWM method not only helps students to enhance
their learning experience, but also helps instructors to improve
the process that guides these activities.

VIII. THREATS TO VALIDITY

Although the reported study results are valuable, there may
be an issue with the quality of the data collected from the peer-
assessment. Students are expected to make this assessment
fairly, but sometimes they do not evaluate their peers as they
should. To mitigate this threat some outlying opinions were
removed and the results were corroborated with the monitors’
records once the course ended.

The instrument used in the peer-assessment is the result
of an empirical study done by Silvestre et al. [43], [50], on
12 software teams (74 students) working in a scenario similar
to that studied here. The instrument has shown consistently
valid results, but has not been evaluated enough as to consider
it infallible.

On the other hand, the estimation of function points accom-
plished by the teams during their projects could be biased,
since such an activity is error prone. This threat was mitigated

with the help of two external and experienced software engi-
neers who estimated the FP of the students’ projects separately,
based on historical information of the effort required by stu-
dents to develop standard components for Web information
systems in that course. The differences between the external
estimations and those reported in Table I were not significant
(maximum difference of 18%) and can be taken as a reason-
able variation between the three estimations, which makes thus
suitable to compare the development efforts in the students’
projects.

Finally, the evaluation process captured the reality of a par-
ticular software engineering project course, and that may
be specific to the Department of Computer Science of the
Engineering School at the Universidad de Chile. Therefore,
conducting a similar experience in other universities may not
yield the same results. Replicating the experience in a different
scenario would help assess to what extent these results could
be generalized.

IX. CONCLUSION

This paper described the RWM method, designed to
help students of software engineering project courses to
reflect on their individual and team performance when using
a disciplined software process. Thus, this method enhances
the students’ learning experiences during these instructional
activities.

After applying RWM in 18 out of 32 teams, the results
obtained indicate that the monitoring sessions helped students
increase their coordination, effectiveness, and sense of belong-
ing to a team, but did not necessarily help their productivity,
which was negatively affected by the apprentice attitude of the
students. Given the success of this study, the RWM method
has been incorporated as a standard practice in the instructional
approach since 2016.

These sessions also allowed monitored teams to make
a more accurate diagnosis of their projects and team status,
since they had a weekly space for reflection. This allowed
them to quickly react in case of problems, detect risks early,
and learn from past experiences. The internal work climate
was also favored by these weekly discussions.

Conversely, many non-monitored teams failed in determin-
ing what team and project challenges had to be addressed in
their development projects. The lack of a formal reflection
space may be why they were slow to identify these, and thus
why most teams tended to react late.

RWM’ benefits are similar to those of other approaches, like
the use of coaches, Scrum masters, and e-portfolios. However,
RWM sums up the benefits of all of these using disciplined
processes and without generating tension between students.
Instructors can also take advantage of the RWM monitoring
information to improve the software process used to guide
these experiences.

The RWM method was designed for use in software engi-
neering courses, but this does not prevent its use in other
engineering project courses whose students work in teams
using a disciplined process to solve a problem, although, the
results shown in this study may not be representative of other
scenarios.

72 IEEE TRANSACTIONS ON EDUCATION, VOL. 61, NO. 1, FEBRUARY 2018

A following step in this research is to perform a more
in-depth study of students’ productivity, to understand their
variability and to confirm the findings of this study. Based on
the current study results, it could be hypothesized that team
productivity is more related to the size of the system core and
to student engagement, than to the development capability of
team members.

REFERENCES

[1] A. Begel and B. Simon, “Novice software developers, all over again,”
in Proc. 4th Int. Workshop Comput. Educ. Res. (ICER), New York, NY,
USA, 2008, pp. 3–14.

[2] A. M. Moreno, M.-I. Sánchez-Segura, F. Medina-Dominguez, and
L. Carvajal, “Balancing software engineering education and industrial
needs,” J. Syst. Softw., vol. 85, no. 7, pp. 1607–1620, Jul. 2012.

[3] Y. Sedelmaier and D. Landes, “Active and inductive learning in software
engineering education,” in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw.
Eng. (ICSE), Florence, Italy, 2015, pp. 418–427.

[4] J. E. Tomayko and O. Hazzan, Human Aspects of Software Engineering
(Electrical and Computer Engineering Series). Rockland, MA, USA:
Charles River Media, 2004.

[5] M. John, F. Maurer, and B. Tessem, “Human and social factors of
software engineering: Workshop summary,” ACM SIGSOFT Softw. Eng.
Notes, vol. 30, no. 4, pp. 1–6, 2005.

[6] D. Broman, K. Sandahl, and M. A. Baker, “The company approach to
software engineering project courses,” IEEE Trans. Educ., vol. 55, no. 4,
pp. 445–452, Nov. 2012.

[7] M. Gehrke et al., “Reporting about industrial strength software engi-
neering courses for undergraduates,” in Proc. 22rd Int. Conf. Softw.
Eng. (ICSE), Orlando, FL, USA, May 2002, pp. 395–405.

[8] Y. Sedelmaier and D. Landes, “Practicing soft skills in software
engineering: A project-based didactical approach,” in Overcoming
Challenges in Software Engineering Education: Delivering Non-
Technical Knowledge and Skills: Delivering Non-Technical Knowledge
and Skills. Hershey, PA, USA: IGI Glob., 2014, p. 161.

[9] J. D. Tvedt, R. Tesoriero, and K. A. Gary, “The software factory:
Combining undergraduate computer science and software engineering
education,” in Proc. 23rd Int. Conf. Softw. Eng. (ICSE), Toronto, ON,
Canada, May 2001, pp. 633–642.

[10] T. Markham, “Project based learning: A bridge just far enough,” Teacher
Librarian, vol. 39, no. 2, pp. 38–42, 2011.

[11] D. Dietsch, A. Podelski, J. Nam, P. M. Papadopoulos, and
M. Schäf, “Monitoring student activity in collaborative software
development,” CoRR, vol. abs/1305.0787, 2013. [Online]. Available:
http://dblp.uni-trier.de/rec/bibtex/journals/corr/abs-1305-0787

[12] H. Song, G. Si, L. Yang, H. Liang, and L. Zhang, “Using project-based
learning and collaborative learning in software engineering talent culti-
vation,” in Proc. 10th IEEE Int. Conf. Trust Security Privacy Comput.
Commun. (TrustCom), Changsha, China, 2011, pp. 1288–1293.

[13] P. N. Robillard and M. Dulipovici, “Teaching agile versus disciplined
processes,” Int. J. Eng. Educ., vol. 24, no. 4, pp. 671–680, 2008.

[14] Y. Sedelmaier and D. Landes, “Software engineering body of
skills (SWEBOS),” in Proc. Glob. Eng. Educ. Conf. (EDUCON),
Istanbul, Turkey, 2014, pp. 395–401.

[15] L. B. Sherrell and S. G. Shiva, “Will earlier projects plus a disci-
plined process enforce SE principles throughout the CS curriculum?”
in Proc. 27th Int. Conf. Softw. Eng. (ICSE), St. Louis, MO, USA, 2005,
pp. 619–620.

[16] V. Mahniè, “Scrum in software engineering courses: An outline of the
literature,” Glob. J. Eng. Educ., vol. 17, no. 2, pp. 77–83, 2015.

[17] M. Hoegl and H. G. Gemuenden, “Teamwork quality and the success
of innovative projects: A theoretical concept and empirical evidence,”
Org. Sci., vol. 12, no. 4, pp. 435–449, 2001.

[18] M. Marques, “A prescriptive software process for academic scenarios,”
Ph.D. dissertation, Dept. Comput. Sci., Universidad de Chile, Santiago,
Chile, 2017.

[19] B. W. Boehm and D. Port, “Educating software engineering students to
manage risk,” in Proc. 23rd Int. Conf. Softw. Eng. (ICSE), Toronto, ON,
Canada, May 2001, pp. 591–600.

[20] J. C. Schlimmer, J. B. Fletcher, and L. A. Hermens, “Team-oriented
software practicum,” IEEE Trans. Educ., vol. 37, no. 2, pp. 212–220,
May 1994.

[21] J. Chen, H. Lu, L. An, and Y. Zhou, “Exploring teaching methods in
software engineering education,” in Proc. 4th Int. Conf. Comput. Sci.
Educ. (ICCSE), Nanning, China, 2009, pp. 1733–1738.

[22] A. Heredia, R. Colomo-Palacios, and A. Amescua-Seco, “A systematic
mapping study on software process education,” in Proc. SPETP SPICE,
2015, pp. 7–17.

[23] M. R. Marques, A. Quispe, and S. F. Ochoa, “A systematic mapping
study on practical approaches to teaching software engineering,” in
Proc. 44th Annu. Frontiers Educ. Conf. (FIE), Madrid, Spain, 2014,
pp. 1–8.

[24] Y.-P. Cheng and J. M.-C. Lin, “A constrained and guided approach for
managing software engineering course projects,” IEEE Trans. Educ.,
vol. 53, no. 3, pp. 430–436, Aug. 2010.

[25] N. L. Carroll, L. Markauskaite, and R. A. Calvo, “E-portfolios for devel-
oping transferable skills in a freshman engineering course,” IEEE Trans.
Educ., vol. 50, no. 4, pp. 360–366, Nov. 2007.

[26] J. A. Macías, “Enhancing project-based learning in software engineer-
ing lab teaching through an E-portfolio approach,” IEEE Trans. Educ.,
vol. 55, no. 4, pp. 502–507, Nov. 2012.

[27] V. Mahniè and A. Èasar, “A computerized support tool for conducting
a scrum-based software engineering capstone course,” Int. J. Eng. Educ.,
vol. 32, pp. 278–293, Jan. 2016.

[28] R. Bareiss and M. Griss, “A story-centered, learn-by-doing approach to
software engineering education,” ACM SIGCSE Bull., vol. 40, no. 1,
pp. 221–225, Mar. 2008.

[29] G. Rodríguez, A. Soria, and M. Campo, “Measuring the impact of agile
coaching on students’ performance,” IEEE Trans. Educ., vol. 59, no. 3,
pp. 202–209, Aug. 2016.

[30] B. A. D. Jong and T. Elfring, “How does trust affect the performance
of ongoing teams? The mediating role of reflexivity, monitoring, and
effort,” Acad. Manag. J., vol. 53, no. 3, pp. 535–549, 2010.

[31] G. R. Jones, “Task visibility, free riding, and shirking: Explaining the
effect of structure and technology on employee behavior,” Acad. Manag.
Rev., vol. 9, no. 4, pp. 684–695, 1984.

[32] R. Rico, M. Sánchez-Manzanares, F. Gil, and C. Gibson, “Team implicit
coordination processes: A team knowledge based approach,” Acad.
Manag. Rev., vol. 33, no. 1, pp. 163–184, 2008.

[33] M. A. Marks and F. J. Panzer, “The influence of team monitoring
on team processes and performance,” Human Perform., vol. 17, no. 1,
pp. 25–41, 2004.

[34] V. Garousi, “Applying peer reviews in software engineering education:
An experiment and lessons learned,” IEEE Trans. Educ., vol. 53, no. 2,
pp. 182–193, May 2010.

[35] J. S. Collofello and M. Hart, “Monitoring team progress in a software
engineering project class,” in Proc. 29th Annu. Frontiers Educ. Conf.
(FIE), vol. 1. Piscataway, NJ, USA, 1999, pp. 11B4/7–11B410. [Online].
Available: http://ieeexplore.ieee.org/abstract/document/839226/

[36] M. A. Bakar, N. Jailani, Z. Shukur, and N. F. M. Yatim, “Final
year supervision management system as a tool for monitoring com-
puter science projects,” Proc. Soc. Behav. Sci., vol. 18, pp. 273–281,
Jan. 2011.

[37] C. Jones, “Using subversion as an aid in evaluating individuals working
on a group coding project,” J. Comput. Sci. Colleges, vol. 25, no. 3,
pp. 18–23, Jan. 2010.

[38] W. Poncin, A. Serebrenik, and M. van den Brand, “Mining student
capstone projects with FRASR and ProM,” in Proc. ACM Int. Conf.
Companion Object Orient. Program. Syst. Lang. Appl. Companion,
Portland, OR, USA, 2011, pp. 87–96.

[39] J. Kay, N. Maisonneuve, K. Yacef, and O. Zaïane, “Mining patterns of
events in students’ teamwork data,” in Proc. Workshop Educ. Data Min.
8th Int. Conf. Intell. Tutoring Syst. (ITS), Jun. 2006, pp. 45–52.

[40] V. Mahnic, “A capstone course on agile software development using
scrum,” IEEE Trans. Educ., vol. 55, no. 1, pp. 99–106, Feb. 2012.

[41] G. Rodríguez, Á. Soria, and M. Campo, “Virtual scrum: A teaching
aid to introduce undergraduate software engineering students to scrum,”
Comput. Appl. Eng. Educ., vol. 23, no. 1, pp. 147–156, 2015.

[42] A. Scharf and A. Koch, “Scrum in a software engineering course:
An in-depth praxis report,” in Proc. 26th Int. Conf. Softw. Eng. Educ.
Train. (CSEE T), San Francisco, CA, USA, 2013, pp. 159–168.

[43] L. Silvestre, S. F. Ochoa, and M. Marques, “Understanding the design of
software development teams for academic scenarios,” in Proc. 34th Int.
Conf. Chil. Comput. Sci. Soc. (SCCC), Santiago, Chile, 2015, pp. 1–6.

[44] J. H. Hayes, T. C. Lethbridge, and D. Port, “Evaluating individual con-
tribution toward group software engineering projects,” in Proc. 25th Int.
Conf. Softw. Eng., May 2003, Portland, OR, USA, 2003, pp. 622–627.

http://dblp.uni-trier.de/rec/bibtex/journals/corr/abs-1305-0787
http://ieeexplore.ieee.org/abstract/document/839226/

MARQUES et al.: ENHANCING STUDENT LEARNING EXPERIENCE IN SOFTWARE ENGINEERING PROJECT COURSES 73

[45] G. G. Mitchell and J. D. Delaney, “An assessment strategy to determine
learning outcomes in a software engineering problem-based learning
course,” Int. J. Eng. Educ., vol. 20, no. 3, pp. 494–502, 2004.

[46] M. W. Ohland et al., “The comprehensive assessment of team member
effectiveness: Development of a behaviorally anchored rating scale for
self and peer evaluation,” Acad. Manag. Learn. Educ., vol. 11, no. 4,
pp. 609–630, 2012.

[47] C. Hastie, K. Fahy, and J. Parratt, “The development of a rubric for peer
assessment of individual teamwork skills in undergraduate midwifery
students,” Women Birth, vol. 27, no. 3, pp. 220–226, 2014.

[48] P. Fernandes, A. Sales, A. R. Santos, and T. Webber, “Performance eval-
uation of software development teams: A practical case study,” Electron.
Notes Theor. Comput. Sci., vol. 275, pp. 73–92, Sep. 2011.

[49] S. Huang et al., “Toward objective and quantitative assessment and
prediction of teamwork effectiveness in software engineering courses,”
SIGSOFT Softw. Eng. Notes, vol. 38, no. 1, pp. 7–9, Jan. 2013.

[50] L. Silvestre, “Design of software teams in academic scenarios
(in Spanish),” M.S. thesis, Dept. Comput. Sci., Univ. Chile, Santiago,
Chile, 2011.

[51] D. P. Freedman and G. M. Weinberg, Handbook of Walkthroughs,
Inspections, and Technical Reviews: Evaluating Programs, Projects, and
Products, 3rd ed. New York, NY, USA: Dorset House, 2000.

[52] L. Johns-Boast and S. Flint, “Simulating industry: An innovative soft-
ware engineering capstone design course,” in Proc. IEEE Frontiers Educ.
Conf. (FIE), 2013, pp. 1782–1788.

[53] A. Martínez-Monés et al., “Multiple case studies to enhance project-
based learning in a computer architecture course,” IEEE Trans. Educ.,
vol. 48, no. 3, pp. 482–489, Aug. 2005.

[54] S. F. Ochoa, J. A. Pino, L. A. Guerrero, and C. A. Collazos, “SSP: A
simple software process for small-size software development projects,”
in Proc. IFIP 19th World Comput. Congr. 1st Int. Workshop Adv.
Softw. Eng. Expanding Front. Softw. Technol., Santiago, Chile, 2006,
pp. 94–107.

[55] P. N. Robillard, P. Kruchten, and P. d’Astous,
“YOOPEEDOO (UPEDU): A process for teaching software pro-
cess,” in Proc. 14th Conf. Softw. Eng. Educ. Train., Charlotte, NC,
USA, 2001, pp. 18–26.

[56] S. F. Ochoa, A. Quispe, A. Vergara, and J. A. Pino, “Improving require-
ments engineering processes in very small software enterprises through
the use of a collaborative application,” in Proc. 14th IEEE Int. Conf.
Comput. Supported Cooper. Work Design (CSCWD), Shanghai, China,
Apr. 2010, pp. 116–121.

[57] D. A. Schön, “Teaching artistry through reflection-in-action,” in
Educating the Reflective Practitioner. San Francisco, CA, USA:
Jossey-Bass, 1997, pp. 22–40.

[58] M. K. Smith. (2001). Donald Schön: Learning, Reflection
and Change. Accessed on Aug. 25, 2017. [Online]. Available:
http://www.infed.org/thinkers/et-schon.htm

[59] M. A. Marks, J. E. Mathieu, and S. J. Zaccaro, “A temporally based
framework and taxonomy of team processes,” Acad. Manag. Rev.,
vol. 26, no. 3, pp. 356–376, 2001.

[60] (May 2007). También Hay Que sustituir ‘Spanish’ por ‘Spanish’
Porque en Inglés va Siempre Con Mayúscula. [Online]. Available:
http://www.puce.edu.ec/sitios/publicaciones/Centro_de_Publicaciones/
Revistas/Publicaciones/Revista%2081.pdf#page=125

[61] W. S. Humphrey, A Discipline for Software Engineering. Boston, MA,
USA: Addison-Wesley, 1995.

Maíra Marques received the B.Sc. degree in chemical engineering from the
Universidade Federal de São Carlos, Brazil, and the M.Sc. and Ph.D. degrees
in computer science from the Universidad de Chile in 2011 and 2017, respec-
tively. Her research interest areas include software processes, collaborative
work, and software engineering education. Her current research is on software
product lines and software engineering education.

Sergio F. Ochoa (M’12) received the Ph.D. degree in computer science from
the Pontificia Universidad Católica de Chile. He is an Associate Professor of
computer science with Universidad de Chile. His research interests include
computer-supported collaborative work, software engineering, educational
technology, and mobile and ubiquitous computing. He is a member of ACM
and the Chilean Computer Science Society and the steering committee of
Latin American and Caribbean collaborative ITC Research Initiative.

María Cecilia Bastarrica received the degree in informatics engineer-
ing from the Universidad Católica del Uruguay, the M.Sc. degree from
Pontificia Universidad Católica de Chile, and the Ph.D. degree in computer
science and engineering from the University of Connecticut, USA. She is an
Associate Professor with the Department of Computer Science, Universidad
de Chile. Her research interests are software engineering, model-driven
engineering, and software process modeling and formalization. She is cur-
rently engaged in technology transfer projects, specifically in small software
enterprises.

Francisco J. Gutierrez received the Diplôme d’Ingénieur (equivalent to the
M.Sc. degree in engineering) degree from École Centrale de Nantes, France
and the Ph.D. degree in computer science from the Universidad de Chile.
His research interests are in social computing, human-computer interaction,
empirical studies in software engineering, and computer science education. He
is currently committed to studying interpersonal communication and coopera-
tive practices of group work as a way to inform the design of new technology
to connect people and innovate in educational settings.

http://www.infed.org/thinkers/et-schon. htm
http://www.puce.edu.ec/sitios/publicaciones/Centro_de_Publicaciones/Revistas/Publicaciones/Revista%2081.pdf#page=125
http://www.puce.edu.ec/sitios/publicaciones/Centro_de_Publicaciones/Revistas/Publicaciones/Revista%2081.pdf#page=125

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

