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a b s t r a c t

Renewable energy has experienced a significant growth on its rate of deployment as a clean and
competitive alternative for conventional power sources. The reduction on the installation costs for PV
systems has converted this technology into a relevant player regarding the electricity matrix. However, a
larger penetration of PV systems is restricted to the availability of affordable technological options for
storage. The integration of thermal energy storage to CSP systems is, on the other hand, straightforward
through technologies already available in the market. Hence, the hybridization of CSP and PV systems has
the potential for reducing operational and installation costs, as well as increasing significantly the ca-
pacity factor of solar power plants. The present study describes a methodology for design and sizing such
hybrid plants, by implementing a transient simulation model, coupled to an evolutionary optimization
algorithm, allowing to address the trade off between costs and capacity factor. The simulation model is
applied to a case study considering the characteristics of a location in northern Chile. The results are
presented in terms of the Pareto Frontiers that summarizes the compromise between the economic
performance and the capacity factor of the plant. It is observed that the capacity factor achieves values
higher that 85%, and the LCOE is lower than those observed for stand alone CSP plants. The methodology
developed constitutes a useful tool for decision makers, who can assess the performance of the hybrid
plant based in a detailed transient simulation and selecting the best configuration according to market
constraints or its willingness for achieving certain level of capacity factor.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The growing awareness regarding global warming has
encouraged the scientific community to carry out research on
sustainable substitutes for the fossil fuels, which utilization pre-
sents environmental impacts and is subject to resource depletion
due to its non-renewable feature. In that context, during the last
decade renewable energy technologies have been deployed at a
high rate and show potential to become a relevant players on
electricity supply, before 2030 [1]. Indeed, the installed capacity
has grown significantly for wind and solar technologies, where
the biggest player regarding deployment of new renewable pro-
jects is China, but significant projects have been deployed also at
tarke).
the European Union (wind); India and USA (PV); Africa and Latin
America (hydro) [1].

Among the renewable technologies, PV systems stands out with
a meaningful growth on its installed capacity and daytime pene-
tration, propelled by its significant cost reduction. Despite the effort
devoted to improvements on the grid and demand response
infrastructure, the potential contribution of PV to the electricity
supply is limited by the availability of affordable technological
options for energy storage [2]. Indeed, several authors have re-
ported that is unlikely for PV technologies to supply a share of
world's electricity matrix larger than 10%, without any striking
change on costs for electricity storage [3,4]. Solar and wind re-
sources have a complementary nature and can be operated as a
hybrid renewable energy system (HRES) [5,6], however both pre-
sent an intermittent availability. Due to that feature, such sources
demands reliable energy storage solutions in order to improve their
operational performance and reliability (mis-balances among other

mailto:allan.starke@lepten.ufsc.br
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2017.12.116&domain=pdf
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
https://doi.org/10.1016/j.energy.2017.12.116
https://doi.org/10.1016/j.energy.2017.12.116
https://doi.org/10.1016/j.energy.2017.12.116


A.R. Starke et al. / Energy 147 (2018) 490e503 491
issues in grid management). One alternative that has been analyzed
is the hybridization with other energy sources, as suggested in
Ref. [7]. Among the options for hybridization, one of the most
promising schemes is the CSP þ PV, which combines the low
installation cost of PV, with the storage of CSP, allowing to reduce
the LCOE, as well as increase the capacity factor.

The performance of hybrid CSP þ PV plants has been analyzed
by several authors [8e12], who performed an optimization pro-
cedures, minimizing the LCOE and considering the capacity factor
as a constrain. Green et al. [8] analyzed the effect of PV tilt angle,
optimizing it in terms of the capacity factor. Their conclusions state
that at higher tilt angles, the system achieves an annual capacity
factor higher than 80%, reducing the seasonality effects. Platzer [9]
shows that hybrid CSP þ PV plants could achieve capacity factors
above 70% and provide lower energy costs than CSP-only plants, by
reducing the size of the storage and solar field size. Petrollese and
Cocco [10] studied a hybrid CSPþ PV plant inwhich the CSP section
consist of linear Fresnel collectors using thermal oil as heat transfer
fluid, a two-tank direct TES system and an Organic Rankine Cycle
(ORC). For the PV section, the PV array is considered as coupled to a
battery bank for electrochemical storage. The authors showed that
the hybrid scheme becomes highly cost-effective for base-load
production. Cocco et al. [11] determined the improvements on
dispatchability using a hybrid CSP þ CPV (Concentrating Photo-
voltaic) plants. The authors showed the advantages of using an
integratedmanagement strategy to satisfy a constant power output
profile. Optimization of the CSP and CPV power share leads to an
effective use of the dispatch capabilities of the CSP plant, owe to the
operation of TES, while the CPV plant is fully exploited during the
hours of high solar radiation. In a previously publication of our
group, Starke et al. [12] presented a power generation and eco-
nomic analysis of two hybrid CSP þ PV plant models, considering a
range of plant capacities based on parabolic trough or central
receiver plants, combined with a PV field. The authors optimized
the plants, minimizing the LCOE and considering a capacity factor
higher than 80% as a constraint. In that context, solar multiple,
storage size and PV tilt angle were considered as decision variables.
The results showed that CSP þ PV hybrid schemes increases the
domain of solutions with a high capacity factor, so a plant with a
smaller CSP solar field can achieve capacity factors of 80% or higher.
Therefore, the main advantage of the hybridization of a CSP plant
with a PV array is reducing the size of the CSP solar field, while
maintaining a high capacity factor and lowering the LCOE.

Within the studies that analyze the performance of CSP þ PV
systems, it results clear the trade-off between LCOE and capacity
factor, which constitutes two objective functions, rather than a
constraint. In that regard, the present article describes the use of
multi-objective optimization for designing such systems. Multi-
objective optimization has been extensively used for the design
and optimization of thermal systems [13e17]. Lazzaretto and Tof-
folo [13] demonstrated the use of an evolutionary algorithm to
optimize and design a thermal system using energy, economy, and
environmental attributes as objective functions. Magnier and
Haghighat [14] presented a methodology to optimize the thermal
comfort and energy consumption in a residential house. Since
optimizing a building is a time-consuming process, the authors
used an artificial neural network approach (ANN) to characterize
the thermal behavior of the building, and a multi-objective genetic
algorithm to perform the optimization procedure. The results show
a significant reduction in energy consumption and an improvement
in thermal comfort, revealing several potential designs and a wide
degree of compromise between thermal comfort and energy con-
sumption. Ahmadi et al. [15] performed a multi-objective optimi-
zation procedure for designing a combined cycle power plant
considering exergetic, economic, and environmental factors. They
showed that the optimization procedure for a combined cycle po-
wer plant requires a practical and comprehensive approach that
enables the utilization of multi-objective optimization. Asadi et al.
[16] described a multi-objective optimization scheme for retrofit-
ting a building. The methodology consisted of optimizing the
retrofit cost, energy savings, and thermal comfort of a residential
building. The results demonstrated the enforceability of providing
decision support in an actual configuration, allowing simultaneous
consideration of all available combinations of retrofit actions. Li
et al. [17] presented a multi-objective optimization of solar-dish
Brayton system driven by a hybrid system composed of a fossil
fuel burner and solar energy collectors. The authors considered the
maximum power output, thermal efficiency and ecological per-
formance as objective functions and the NSGA-II algorithm was
used for the optimization process. Regarding the solution selection
three decision making approaches were compared: Shannon En-
tropy, LINMAP and TOPSIS.

As described above, the technical viability, and competitiveness
of hybridizing CSP and PV plants have been addressed by several
authors. The performance of these plants and the optimal design
considering only the minimization of the plant LCOE have been
found. However, the effect of the design parameters e size of the
solar field, thermal storage capacity, PV tilt angle and PV power
ratio (ratio between PV installed capacity and CSP nameplate ca-
pacity) e on the performance figure of merits e capacity factor and
Total investmente has not been studied yet. In fact, simultaneously
optimizing the most important figure of merits of a CSP þ PV plant,
and determining the existing trade-offs between the design pa-
rameters, providing meaningful methods for selecting the best
configuration, based on the performance parameters and the
preferences of the decision maker.

The present work aims to further analyze hybrid CSP þ PV
plants, and determine the aforementioned trade off, through the
implementation of a multi-objective optimization procedure for
designing hybrid CSP þ PV plants. The usefulness of such approach
is addressed by analyzing two type of CSP systems parabolic trough
collectors (PTC) and a central receiver system (CRS). The case study
analyzed herein considers the irradiation data from Crucero in
northern Chile, considered as one of the most interesting sites for
deploying solar energy technologies in Chile, due to its high irra-
diation levels (3389 kWh=ðm2yearÞ) and proximity to mining fa-
cilities that can act as demand centers [18]. In fact, it is located at
short distance from the site where the Cerro Dominador project is
being constructed, a CSP þ PV hybrid plant featured by a 110 MW
molten salt tower, and a 100 MW PV plant [19]. Regarding the
multi-objective optimization procedure, three objective functions
are considered: the Levelized Cost of Energy (LCOE), total invest-
ment and capacity factor. In a first approach, the LCOE and capacity
factor are simultaneously optimized, and in a second stage the
three objective functions are optimized, yielding a two and three-
dimensions Pareto frontier, respectively. Owe to the large varia-
tion on the costs reported for each component, different scenarios
of PV installed cost were considered (1.3, 1.5 and 1:9 US$=WDC).

Hence, the present work describes the development of an
evaluation tool that allows to assess the trade off between the costs
of the hybrid plant (LCOE and total cost) and its capacity factor. The
methodology consists of using a combination of tools for the
optimization scheme. The energy and economic assessment of the
CSP plant are evaluated using TRNSYS [20] energy simulation
software, coupled to GenOpt [21] to automatically run different
scenarios. Optimization procedures are performed in MATLAB
environment [22], which allows for a fast and efficient method of
multi-objective optimization when using a sort of approximation
for the fitness function (performance calculations) [23]. In addition,
since selecting a solution from the set formed by the Pareto-
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Frontier is dependent on the preferences and criteria of the deci-
sion maker, an example of the decision-making process is pre-
sented, considering the linear programming technique for
multidimensional analysis of preference (LINMAP) [24,25].
Fig. 2. Dispatch modes of power production of the CSP þ PV hybrid plant at baseload
production.
2. System description

To analyze the effect of plant configuration on the LCOE, two CSP
systemswere considered: a hybrid scheme composed of a parabolic
trough plant (PTC) and a PV field; and a central receiver system
(CRS) coupled to a fixed PV field, as illustrated in Fig. 1. The PTC
plant (Fig. 1a) consist of a standard parabolic trough field [26],
operating with thermal oil as heat transfer fluid, and an indirect
two tank molten sat thermal storage. The power block consist of a
steam Rankine cycle, which operates at middle range temperatures
ð380 �CÞ, due to the limitations of the thermal oil [26]. The CRS
plant (Fig. 1b) consist of a standard solar tower plant with a circular
external receiver operating with molten salt as heat transfer fluid.
Because the heat transfer fluid and thermal storage media are the
same, a direct two tank thermal storage is considered. Since the
molten salts can operate up to 575 �C, the steam Rankine cycle of
the CRS system operates at higher temperature and efficiency than
the PTC plant, as described in Ref. [27].

For both schemes analyzed herein, the hypothesis is that the CSP
plant dispatch responds to the PV output. That approach enables a
lower-cost solution, for a specific design capacity factor, than
developed by a stand-alone CSP plant. Therefore, such schemes
allows to configure a power plant with a high capacity factor,
without representing a significant increase on costs.

Fig. 2 depicts the operation considered in the current analysis.
As observed, the PV power output increases as the CSP power
output decreases during sunshine hours, keeping the CSP þ PV
power production almost constant and equivalent to a base-load
power profile. As the CSP power output decreases, the energy
absorbed by the CSP field is directed to the thermal storage. Thus, in
low irradiation periods (e.g. at night) that stored energy is con-
verted to electricity and dispatched to the grid. When the thermal
storage is fully charged, part of solar field should be defocused, in
order to dump the surplus of heat.
3. Methodology

The methodology used in the present study consists of a com-
bination of tools, where TRNSYS and GenOpt are used to design the
Fig. 1. CSP þ PV plants configurations: parabolic trou
numerical experiments and build a performance database for each
configuration. Then, the MATLAB environment is employed to read
these databases, build a surrogate model and perform the optimi-
zation routine using a genetic algorithm.

TRNSYS [20] is used to assess the thermal and economic per-
formance of each plant by means of an annual simulation,
considering a transient model and using a time step of 1 h. GenOpt
is used to automate the TRNSYS runs and generate a performance
database, due to its easiness for configuring automate runs when
combined with TRNSYS. Such configuration allows to vary the in-
dependent variables, generate the input files, run TRNSYS, and save
the results in a simple process. Although GenOpt is an optimization
program, it is not capable of directly handling a multi-objective
optimization. Therefore, MATLAB environment is used to aggre-
gate the performance and economic database for each plant, where
the three objective functions are assessed (LCOE, total investment
and capacity factor). Then, a surrogatemodel (e.g., response surface
approximation model) is built for each of these objective functions,
and a genetic algorithm (GA) is applied to solve the optimization
model. This approach is a very efficient method for reducing the
intrinsic computational time of GA and complex thermal system
simulations [14].

There are several methods to create surrogate models (i.e.,
polynomial, kriging, neural networks, and support vector ma-
chines). However, there is no common opinion as to which method
gh collectors (a) and central receiver system (b).



Table 1
Decision variables limits (Optimization Constraints).

Variable Lower value ðxLi Þ Upper value ðxUi Þ
Solar multiple, SM(�) 1 4
Thermal storage, TESh(h) 0 21
PV tilt angle, b (deg) 0 60
PV power ratio, PVpr(�) 0 2
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performs better than the others, since the performance of the
approximation depends on the nature of the problem addressed
and more than one performance measurement can be considered
[23]. In the present study, a linear interpolation method (without
extrapolation) was chosen to avoid local minimums in the
approximate model, as suggested in Ref. [23]. Using such method
the surrogate models were built, configuring objective functions in
the form v ¼ Fðx1; x2; x3; x4Þ. To ensure a good approximation
within the interpolationmethod, for each configuration and PV cost
scenario, 30976 numerical cases were evaluated in TRNSYS, which
are equally spaced within the analyzed domain
ð16� 16� 11� 11Þ. The total number of evaluations
(185856ethree cost cases for two plants; 6� 30976) took almost
45 days in an 8 core processor working with eight simultaneous
threads. However, this value is significantly smaller than the total
fitness evaluations used by the GA algorithm, which points out the
importance of using a surrogate model.

Regarding the annual performance of the hybrid plant, it was
estimated using the methodology described in Ref. [12]. This
simulation models use a new TRNSYS library adapted from the
open access mathematical models [26e29], of the System Advisor
Model (SAM) [30]. Each hybrid scheme (PTC þ PV and CRS þ PV) is
simulated in a unique TRNSYS deck, where CSP dispatch is
controlled as a response to the output from the PV array; delivering
a base-load output, composed of the CSP and PV production. This
coupling scheme is accomplished at each time step of the simula-
tion by modifying the turbine output fraction, which is calculated
as a function of the PV power generation. It is worth mentioning
that the standard mathematical models used in NREL system
advisor model (SAM), a widespread software used for simulating
CSP plants, do not allow this approach.

3.1. Objective functions

The aim of hybridizing CSP plants is mainly to reduce costs
(either operational or installation costs) and achieve a higher ca-
pacity factor, thus increasing the competitiveness of solar elec-
tricity. In this context, the optimization procedure for the CSP þ PV
hybrid plants proposed herein considers three objective functions:
levelized cost of electricity, capacity factor, and initial investment.

3.1.1. Levelized cost of energy
The Levelized Cost of Electricity (LCOE) is used as a figure of

merit to address the economic performance of the configuration.
The LCOE is commonly used as a measure for comparing different
power sources for electricity generation. It is an economic assess-
ment of the average total cost to build and operate a power-
generating asset over its lifetime per unit of energy delivered. The
following definition adopted, as described in Refs. [31,32],

LCOE ¼
I0 þ

Pn
t¼1

�
At

.
ð1þ iÞt

�
Pn

t¼1Wt;ele

.
ð1þ iÞt

(1)

where I0 is the initial investment, including both the PV and the CSP
costs. At is the annual cost considering O&M and insurance; and i is
the discount rate. Wt;el is the annual electricity delivered by the
system, which for the hybrid CSP þ PV system is defined as the
baseload electricity (fixed at the nameplate capacity of the CSP
plant).

3.1.2. Capacity factor
The capacity factor is a parameter commonly used for assessing

power plants ability for dispatching electricity or its availability. It is
defined as the ratio between the actual electricity output over a
given period of time, and the maximum possible electrical energy
output over the same amount of time. Hence, in an annual basis, the
capacity factor for the hybrid plant is expressed as follows,

CF ¼ Wele

8760� nameplate
(2)

where the subscript nameplate represents the net nominal capacity
of the hybrid plant, which is the base-load capacity that the plant is
able to dispatch.

3.1.3. Total initial investment
Differently from non-renewable power plants, the initial in-

vestments of CSP plants dominates the LCOE, accounting for
approximately four-fifths of the total cost [31]. Hence, LCOE has a
clear trade-off with the initial investment and capacity factor; in
contrast, the initial investment presents a linear relation with ca-
pacity factor. Therefore, it results interesting to assess the effect of
the initial investment on the behavior of the other two parameters
optimized. Including such objective function allows decision
makers to select the optimal solution, based on the commitment on
achieving high capacity factor, the willingness to invest or the
availability of financial opportunities for the project. The total
initial investment per capacity is expressed as,

C
0
total ¼

I0
Wref

(3)

where I0 is the total initial investment for the hybrid plant,
considering total direct costs and total indirect costs for CSP and PV
components of the plant. Total direct costs consist of site prepara-
tion, solar field equipment, heat transfer fluid, thermal energy
storage, power block, balance of the plant and contingency. Indirect
costs account for the land cost, EPC (Engineering, Procurement,
Construction), and sale taxes. Wref is the gross power output of the
hybrid plant, in this case 50MW.

3.2. Decision variables

As mentioned earlier, the design parameters that present major
effects on the objective functions are the size of the solar field (solar
multiple ðSMÞ), thermal storage capacity ðTEShÞ, PV tilt angle ðbÞ and
the PV power ratio ðPVprÞ, defined as the ratio between PV installed
capacity and CSP nameplate capacity. These four variable are
considered as the decision space x!¼ ðSM; TESh; b; PVprÞT , which
are subjected to variable constrains, and delimit the search domain
by its lower ðxLi Þ and upper ðxUi Þ values. The limits of the decision
variables are listed in Table 1.

3.3. Optimization framework

As mentioned before, the optimization framework of this study
consists of several steps. First, a database of cases is developed
using the simulated data from TRNSYS and GenOpt, which consists
in performance maps for each plant configuration and PV cost
scenario, generated as a function of the decision variables. Then, a



Fig. 3. Dispersion diagrams of the surrogate models for the PTC plant with a PV cost of
1.3 US$/Wdc.
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surrogate model is created for each of these cases in MATLAB, and
finally, a Pareto frontier is determined usingmulti-objective genetic
algorithm, which allows handling search domains with high dis-
continuities and non-linearities.

3.3.1. Surrogate model and validation
The first step to create the surrogate model is generating a

performance map, through a parametric analysis. For each plant
configuration and PV cost scenario, an equally spaced mesh was
applied to create a decision variable space, in terms of the variables
presented in Table 1. The performance map is delimited by the
constrains in Table 1, consisting in 30976 TRNSYS evaluations,
counting 16 numeric values for solar multiple 16 numeric values of
equivalent hours full-load thermal storage, 11 numeric values of PV
tilt angle, and 11 numeric values of PV power ratio.

The input data was used to build a performance database, and
then create the surrogate model for each objective function. Since
the performance map was created with a considerably large
amount of data, it is possible to use an interpolation tool, rather
than a polynomial function usually employed for surface methods.
The Matlab griddedInterpolant class was used to create an inter-
polant surfaces ðv ¼ Fðx1; x2; x3; x4Þ Þ, which is commonly used in
the optimization algorithms to calculate the fitness evaluation at
any query point ðxq1; xq2; xq3; xq4Þ. The interpolated value at a
query point is based on a linear interpolation of the values at
neighboring grid points in each respective dimension and no
extrapolation is allowed.

In order to validate the surrogate model, a sample of 3097 cases,
different of the original and randomly selected from the 4-D deci-
sion space, was analyzed. These new cases were simulated using
TRNSYS software and the surrogate model. The dispersion between
the simulated results and the values predicted by the interpolation
models for the PTC plant are illustrated in Fig. 3, showing the
predicted values within ±3%, featuring a good agreement between
the simulation and approximation model. The Mean Absolute
Percentage Error (MAPE) for approximationmodels was considered
acceptable, since it shows 0.5% for LCOE, 0.3% for the capacity factor,
and 0.2% for the initial investment. Furthermore, the three models
presented coefficient of determination R2 close to 0.997. Similar
results were observed for the simulationmodel of a CRS system and
different PV cost scenarios.

3.3.2. Optimization method
Energy, economic and environmental modeling of thermal

systems usually leads to non-linear, or mixed integer non-linear
(MINLP) optimization problems [25]. Objective functions that in-
volves solving a system of partial and ordinary differential equa-
tions, coupled to algebraic equations, in general are solved through
an approximating function, since the system cannot achieve an
exact solution, or it results expensive in terms of computational
resources. Because of the precision of numerical solvers, a pertur-
bation on the independent variables causes a change in the
sequence of solver iterations, which causes discontinuities on the
objective function; and consequently, not continuously differen-
tiable [21]. That singularity is commonly observed when the
objective function is evaluated through a numeric simulation pro-
gram, such as TRNSYS. Based on that, it is crucial to consider an
optimization algorithm suitable to problems where traditional
optimization techniques break down, due to the irregular structure
of the search domain (i.e. absence of gradient information). For the
case of multi-objective optimization, it is required an algorithm
that yields Pareto optimal points independent of function's conti-
nuity or domain convexity. Among the methods available for Multi-
objective optimization metaheuristics methods allows to handle
“hard optimization” problems and dealing with high
discontinuities and non-linearities [33]. In that regard, Multi-
objective Evolutionary Algorithms (MOEA), which include the Ge-
netic Algorithm (GA), have been extensively employed for such
purposes [13e15,25,34]. A Genetic Algorithm applies an iterative
stochastic search strategy to find an optimal solution, imitating
simplified principles of biological evolution. Genetic Algorithms are



Fig. 4. Feasible performance space and the 2D Pareto front obtained from GA, for the
PTC plant with a PV cost of 1.3 US$/Wdc.

Fig. 5. Feasible performance space and the 3D Pareto front obtained from GA, for the
PTC plant with a PV cost of 1.3 US$/Wdc.
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a robust and flexible approach that can be applied to a wide range
of learning and optimization problems [15,35], and therefore
extensively used for optimization of thermal systems.

For purpose of the analysis described herein, the Matlab solver
gamultiobj [22] was adopted, which considers a controlled elitist
genetic algorithm (a variant of NSGA-II [36]). Furthermore, a hybrid
scheme is also applied, so gamultiobj runs with a small number of
generations to get near an optimum front; and then the solution is
used as an initial point for a second optimization procedure, using
fgoalattain (solver for goal attainment problems). Using the hybrid
approach improves the effectiveness of finding an optimal Pareto
front, however it compromises the diversity of the solution. This
drawback can be overcome by running a second stage of gamultiobj
using the final population returned during the last run, disregard-
ing the hybrid procedure. The optimization algorithm runs
considering the parameters listed in Table 2.

It is worth mentioning that, in order to reduce the chance of
obtaining a local minimum, the tolerance, generation number and
population size were enhanced with respect to the recommenda-
tions in Ref. [22]. Particular emphasis was devoted to the popula-
tion size, which specify the number of design point simultaneous
assessed in each iteration, therefore, searching the solution space
more thoroughly. The recommended number for less than five
decision variables is 200, however optimizations runs were per-
formed ranging the Population size from 100 to 3000, without
significant changes in the results. Therefore, a value of 500 was
considered, because a significant reduction in the computation
time was observed, with no change in the results.

3.3.3. Two objectives
In a first approach, the optimization problem was formulated

considering the LCOE and capacity factor as objective functions,
stated in a form that allows both objectives functions to be mini-
mized, expressed as follows,

Minimize :

�
F1ð x!Þ ¼ LCOEð x!Þ;
F2ð x!Þ ¼ �CFð x!Þ;

Subject to :
xLi < ¼ xi < ¼ xUi ; i ¼ 1;2;3;4:

(4)

where F1 and F2 are the two objective functions, and x! is a vector of
independent variables: x!¼ ðSM; TESh; b; PVprÞT . It is observed that
the optimization problem is only subject to variable constrains,
which delimits the decision space ð x!Þ by its lower ðxLi Þ and upper
ðxUi Þ values. A first optimization process was carried out considering
the optimization problem described by Equation (4). The results for
PTC collectors and a PV cost scenario of 1:3US$=WDC are depicted in
Fig. 4. This results show the Pareto front and the feasible perfor-
mance space, indicating that the optimization algorithm results in
an accurate prediction of the Pareto frontier.

3.3.4. Three objectives
The second analysis the optimization problem considered three

objective functions, accounting the LCOE, capacity factor and total
initial investment as objectives. Similarly to the analysis described
Table 2
Genetic algorithm parameters.

Population size Pareto fraction Hybrid function

500 1.0 fgoalattain
in the previous section, this optimization problem was formulated
in such form that all objective functions could be minimized, as
follows,

Minimize :

8<
:

F1ð x!Þ ¼ LCOEð x!Þ;
F2ð x!Þ ¼ �CFð x!Þ;
F3ð x!Þ ¼ C

0
totalð x!Þ;

Subject to :
xLi < ¼ xi < ¼ xUi ; i ¼ 1;2;3;4:

(5)

where F1, F2 and F3 are the three objective functions. A second
optimization procedure was carried out considering the three
objective functions described above. Its results are depicted in
Fig. 5, where PTC technology is considered and a PV cost scenario of
1:3US$=WDC. It is worth mentioning that since the three objectives
were not completely independent, (e.g. LCOE depends of the initial
investment), the 3D Pareto front becomes a 3D curve, rather than a
3D surface. Hence, Fig. 5 shows a 3-D Pareto front and the feasible
performance space.
Tolerance Max Stall Generations Max Generation

1� 10�6 3000 10000



Table 4
Economic parameters considered for the PTC plant.

Direct costs

Site improvements (US$=m2) 15

Solar field (US$=m2) 270

Heat transfer fluid (US$=m2) 80

TES (US$=kWth) 30
Fossil backup (US$=kWel) 0
Power block (US$=kWel) 850
Balance of plant (US$=kWel) 105
Contingency (as % total equipment cost) 5

Indirect Costs
Land cost (US$/acre) 0
EPC and owner cost (as % of direct cost) 11
Sales tax (%) 0

Operation and maintenance
O&M fixed (US$=kWhel=year of a nameplate power) 65
O&M variable (US$=MWhel of the annual electrical output) 3
Est. gross to net conv. factor (%) 90

Table 5
Economic parameters considered for the CRS plant.

Direct cost

Site improvements ( US$=m2) 15

Solar field ( US$=m2) 180

Heat transfer fluid ( US$=m2) 0

TES (US$=kWth) 30
Fossil backup (US$=kWel) 0
Power block, (US$=kWel) 1200
Balance of plant, (US$=kWel) 350
Fixed tower cost, (MioUS$) 3
Tower scaling factor, (�) 0.0113
Receiver reference cost, (MioUS$) 110
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4. Simulation parameters

4.1. Weather data

The data used in this study are hourly averages of direct mea-
surements of DNI taken in the vicinity of Crucero with a Rotating
ShadowBand Irradiometer, model RSBR2x, manufactured by Irra-
diance, Inc. It is a large desert plain located in extremely arid
conditions, considered one of the sites of most interest for
deploying solar energy technologies in northern Chile, due to its
high solar resource and the ease of connecting to the grid. Most of
northern Chile shares the high radiation endowment of Crucero
[18]. This location has been selected as representative of the cli-
matic conditions, and as a place of relevance in terms of energy
demand for the mining industry. The main characteristics of this
location are summarized in Table 3.

The design point regarding DNI for the plants simulated in this
study was defined as the irradiance equivalent to 90% of the cu-
mulative distribution function (CDF), considering the nonzero
values of DNI weighted by the cosine of the incident angle. This
means that for 90% of the insolation time, a value of DNI lower than
1027 W=m2 should reach the collector mirror.

4.2. CSP and PV parameters

For both CSP systems, a power block of 50MW of gross electric
power was considered, owing to its significance in the CSP market.
The configuration of the PTC plant is analogous to that observed in
an actual plant located in South Spain, Andasol 1 [38]. Hence, the
model considers EuroTrough ET150 solar collectors and UVA3
Schott PTR70 receivers. Additionally, the heat transfer fluid Ther-
minol VP-1 is considered, where the design temperature is
approximately 393 �C. The rated efficiency of the Rankine cycle is
38.1%, and the design cycle pressure is 100 bar.

The CRS plant is considered analogous features of Gemasolar
project, also located in Spain [39]. Therefore, the model considers
an external receiver and SENER heliostats (10.9� 10.9m). More-
over, the plant is modeled operating with molten salt as a heat
transfer fluid and storage media, stating a design temperature of
565 �C. The rated efficiency of the Rankine cycle is 41.2%, whereas
the rated cycle pressure is also 100 bar.

In addition, a molten salt mixture of 60% NaNO3 - 40% KNO3 was
considered as storage media for the two-tank indirect thermal
storage of the PTC plant, whereas the CRS plant uses the same salt
mixture. Finally, in order to address a suitable solution for Chilean
desert conditions, both plant configuration were simulated
considering a dry cooling system.

The CSP plants were simulated coupled, in parallel, with a fixed
PV field. To address the performance of the field in actual condi-
tions, the performance data of actual modules was considered. In
that context, the Sun Power 128-Cell Module and the Siemens
SINVERT PVS1401 inverter [40] were adopted. The effect of the total
capacity of the PV array on the LCOE of the hybrid plant is inves-
tigated by scaling the rated PV capacity with respect to the gross
Table 3
Main characteristics of Crucero, Chile.

Parameter Values

Latitude (�) 22.24 S
Longitude (�) 69.51W
Altitude (m.a.s.l.) 1146
Design point DNI (irradiance, W=m2) 1027

Yearly total for DNI (kWh=m2year) 3389

Yearly total for GHI (kWh=m2year) 2541
Solar database source [37]
output of the CSP cycle. This procedure allows to the properly size
the PV field; and show the existence of an optimal hybrid capacity,
as evidenced in the following sections.

4.3. Economic considerations

The main economic parameters used to evaluate the perfor-
mance of hybrid plants are based on those described in Ref. [12].
Table 4 list the parameters for the PTC plant, which is based on the
information reported in Ref. [38]. These values are consistent with
information informed in Ref. [41], as estimated costs for 2015. The
exception is the cost for the indirect 2-tank TES, which cost was
adopted based on the information reported in Ref. [42]. Based on
that, the TES cost varies significantly, and is influenced by the
design parameters. For instance, a TES capacity of 2 h presents a
cost of US$80=ðkWhthÞ; and a 12 h system has a cost of
US$30=ðkW hthÞ. Since the CSP þ PV hybrid plants need a large
storage system in order to ensure continuous base-load production,
the cost of the large system was adopted ðUS$30=ðkw hthÞÞ. The
main economic parameters of the CRS plant are listed in Table 5,
Receiver reference area, (m) 1571
Receiver scaling factor, (�) 0.7
Contingency (as % total equipment cost) 5

Indirect Cost
Land cost (US$/acre) 0
EPC and owner cost (as % of direct cost) 11
Sale tax (%) 0

Operation and maintenance
O&M fixed (US$=kWhel=year of a nameplate power) 65
O&M variable (US$=MWhel of the annual electrical output) 3
Estimated gross to net conversion factor (%) 90



Fig. 6. Two objectives Pareto optimal frontiers. Optimal design selected by LINMAP
decision maker is highlighted.
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which are based on the information reported in Ref. [43], and in
agreement with the current baseline stated in Ref. [44]. The dis-
count rate is assumed as 10%, according to current Chilean legis-
lation. Finally, the project lifetime was established at 25 years, and
no subsidies were considered, because such incentives do not exist
in Chile for CSP projects.

For the PV system, owe to the large variation in the costs re-
ported for each component, different scenarios of total installed
cost per capacity were considered (1.3; 1.5 and 1.9 US$/WðdcÞ)
[45,46]. In addition, a cost of 20 US$/kW/year was adopted
regarding the O&M costs of the PV system, and an annual insurance
rate of 0.5% of the total cost [45].

The cost values for the tower and receiver were scaled according
to the equations described in Ref. [47]:

Ctower ¼ Ctower;f exp
�
ctower

�
htower � hrec

2
þ hh

2

��
(6)

Crec ¼ Crec;ref

 
Arec

Arec;ref

!crec

(7)

where the scaling factor ðcÞ used in Equation (6) and Equation (7) is
presented in Table 5. The variables htower , hrec and hh are the heights
of the tower, receiver and heliostat, respectively; and Arec is the
actual area of the receiver. These four quantities are calculated by
the DELSOL3 code [48]. The power block and balance of plant costs
listed in Tables 4 and 5 are scaled to the power block size consid-
ered in this study, as describes the following equation [49]:

CPB;BP ¼ CePB;BPPB;ref

 
PPB

PPB;ref

!cPB;BP

(8)

where PPB is the actual capacity of the power block, and the scaling
factor ðcPB;BPÞ for the power block and balance of plant was
assumed as 0.7, as suggested in Ref. [45]. The specific costs ðCePB;BPÞ
are listed in Tables 4 and 5, while the reference sizes for the power
block ðPPB;ref Þ are those reported in Refs. [38,43], 50 and 115MW for
the PTC and CRS plants, respectively.
5. Results

5.1. Two objectives functions

Fig. 6 depicts the Pareto frontiers derived from the two objec-
tives ðLCOE � CFÞ optimization process, for the three PV costs sce-
narios and the different technologies analyzed. The illustration
clearly shows the trade-off between the two objectives, configuring
the negotiation region. In that regard, the Pareto front aids the
decision maker chose a single solution from the set of optimal so-
lution based in the preferences for implementing a CSP þ PV plant
that develops larger capacity factors or lower LCOE. It is also
demonstrated the effect of reducing the PV cost on the Pareto
frontiers, which dislocates the curves to lower values of LCOE,
without significant change on the values of the capacity factors.

The optimal solutions for PTC þ PV plants (Fig. 6a) show three
distinct regions, where LCOE slightly increases as the capacity
factor increases up to 87.5%. A further increment on the capacity
factor, from 87.7% to 91% (point B), yields a moderate increase on
the LCOE, however a larger increase on the capacity factor shows a
drastically increase on the LCOE. For instance, considering the PV
cost scenario of 1:3US$=WDC, the first region (capacity factor up to
87.5%) shows a variation on the LCOE between 118US$/MWh and
121US$/MWh. For the region with moderate change in the LCOE, it
ranges from 121US$/MWh to 136US$/MWh, and the last region
shows an increment on the LCOE from 136US$/MWh to 155US$/
MWh. It is shown in Fig. 6a that also for a PV cost of 1.3US$/WDC the
maximum capacity factor exist at point A (91.5%), associated to the
higher LCOE (155 US$/MWh). Theminimum LCOE occurs on point C
(118 US$/MWh), with a capacity factor of 81%. It is worth
mentioning that design point A is the optimal solution when the
capacity factor is the only objective function, while design point C is
the optimal condition for a single optimization of the LCOE. It is also
observed in Fig. 6a that the difference between the capacity factors
at point A and B is not significant, while the difference on cost is
relevant. Therefore, the region considered for design is between
points C to B, where the changes in the LCOE are not expressive.
This regions constitutes the negotiation, regionwhere the decision-
makers can chose one of the optimal solutions depending on spe-
cific preferences and criteria.

To assist the optimal design of the PTC þ PV plant, the following
expression can be used for a PV cost of 1.3US$/WDC, which is
derived from region C to B of the Pareto optimal curve, and is valid
for capacity factor between 0.81 and 0.91,

LCOE ¼ 1342CF45:98 þ 118:1 (9)

Similarly, for the CRS þ PV plant (Fig. 6b) it is observed a three
regions on the Pareto front. A first region where the LCOE slightly
increases as the capacity factor increases up to 93.5%. Varying the
capacity factor from 93.5% to 97% (point B) generates a moderate
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increment on the LCOE, while a further increase on the capacity
factor shows a substantial gain on the LCOE. Again, considering the
PV cost scenario of 1.3US$/WDC as example, the first region (ca-
pacity factor up to 93.5%) shows a variation on LCOE from 146.2US$/
MWh to 148.1US$/MWh. A moderate change region is configured,
where the LCOE changes from 148.1US$/MWh to 163.9US$/MWh,
and in the last region the LCOE increases from 163.9US$/MWh to
196US$/MWh. The points A and C are the design point when the
maximization of capacity factor and minimization of LCOE are
considered as single objective functions. The maximum capacity
factor exist at point A (98.2%), associated to the higher value of
LCOE (196US$/MWh). While the minimum LCOE occurs on point C
(146.2US$/MWh), with a capacity factor of 87%. Similar to the
PTC þ PV results, the negotiation region is between points C to B,
where the changes on the LCOE are not expressive.

To assist the optimal design of the PTC þ PV plant, the following
expression can be used for a PV cost of 1.3US$/WDC, which is
derived from region C to B of the Pareto optimal curve, and is valid
for capacity factor between 0.87 and 0.97,

LCOE ¼ 85:95CF54:53 þ 147:7 (10)

These results suggest that PTC þ PV plants present a more
attractive LCOE, while the CRS þ PV plants can achieve capacity
factors of almost 100%, providing base-load electricity. However, as
suggested by Starke et al. [12], increasing the size of the CRS plant
allows reducing the electricity cost (i.e., economy of scale). The
authors showed that increasing cycle's gross power output of the
LCOE ¼ 82158:4CF4 � 639635:9CF3 þ 2277603:2CF2 � 2820333:2CF þ 1106299:0

CF3 þ 8487:3CF2 � 15564:8CF þ 7136:5

C
0
total ¼

�3:221CF4 þ 16:36CF3 � 22:38CF2 þ 9:596CF � 0:3191

CF2 � 1:844CF þ 0:8504

(11)
CRS þ PV plant to 100 MWe150 MW, can reduce the LCOE to 140
US$/MWh and 130US$/MWh, respectively. On the other hand, for
the PTC þ PV plant that economy of scale is restricted.
5.2. Three objectives functions

Fig. 7 depicts the Pareto frontiers for the three objectives
ðLCOE � CF � C

0
totalÞ optimization process, considering the different

scenarios and technologies analyzed. It is also presented the 2D
planes of the 3D Pareto front for better visualization. The inclusion
of the total investment as objective function provides means for
decision makers to select an optimal solutions, based on their
commitment for investing on the project. In addition, the analysis
considering three objectives functions allows assessing a wider
range of capacity factors, and therefore a wider zone of negotiation.
That is particularly interesting in cases where a high capacity factor
is not a project constraint. Naturally, at lower initial investment and
lower capacity factor scenarios, the plant delivers less energy,
presenting a larger LCOE.

It is shown in Fig. 7a, that for a PV cost scenario of 1.3US$/WDC,
that the total investment increases linearly as the capacity factor
increases, up to 80%. Increasing the capacity factor from 80% to 90%
(point B) results in a moderate increment on the total cost, while a
further increase in the capacity factor yields a drastically increase in
the total cost. Concomitant to the increase on capacity factor, the
LCOE significantly decreases to 55% (point D). Increasing the
capacity factor to larger values than 55%, allows reducing the LCOE
to a minimum value, then, a further increase on the capacity factor
yields to a sharp growth on the LCOE. The same minimum point of
the LCOE is observed on the total investment versus LCOE chart.
Three additional points are noticed in Fig. 7a. Design point A is the
optimal solution when the capacity factor is the only objective
function (91.5%), which results in a maximum LCOE (155.1US$/
MWh) and maximum total investment (9.5US$/W). Design point C
is the optimal solution when the minimization of LCOE is consid-
ered as a single optimization problem (128.4US$/MWh), which
yields a capacity factor of 90% and an initial investment of 7.63US$/
W. Finally, design point E is the optimal solution when the initial
investment is the priority (2.45US$/W considering the design pa-
rameters constrains), which also results in a low capacity factor
(26.4%) and a higher LCOE (155US$/MWh). Based on the relations
between capacity factor, initial cost and LCOE it is possible to
establish that the useful region is between points B and D, where
the changes on the capacity factor do not present significant vari-
ation on the LCOE and the Initial cost. Within this region the ca-
pacity factor varies between 90% and 55%, while the LCOE ranges
from 128.4US$/MWh to 126.9US$/MWh, and the initial cost varies
between 7.63US$/W and 4.45US$/W.

To assist the optimal design of the CSP þ PV plant, a parametric
equation (LCOE and C

0
total as a function of capacity factor) can be

used for a PV cost of 1.3US$/WDC, which is derived from region D to
B of the Pareto optimal curve, valid for a capacity factor between
0.55 and 0.9,
For the hybrid CRS þ PV plant (Fig. 7b), considering also the PV
cost scenario of 1.3US$/WDC, it is observed a similar behavior.
However it shows slightly higher cost and capacity factors. Design
point A (capacity factor as only objective) results in a maximum
capacity factor of 98.3% with a LCOE of 197.5US$/MWh and initial
investment of 12.64US$/W. The minimum LCOE is observed in
point C (LCOE as sole objective), with a value of 148.3US$/MWh, a
capacity factor of 92.2% and initial investment of 8.68US$/W. In
turn, design point E (only the initial investment per capacity as
objective) yields a minimum initial investment of 4.18US$/W, with
a capacity factor of 29.1% and LCOE of 240.8US$/MWh. Addition-
ally, considering the region with moderate variation in the LCOE
and initial cost, is possible to define two additional relevant
points: B and C, with a capacity factor of 97% and 63%, respectively.
The space between B and D constitutes the negotiation region,
where the LCOE varies from 165.2US$/MWh to 166US$/MWh,
passing trough a minimum point of 148.3US$/MWh, and the
initial cost varies from 10.31US$/W to 6.495US$/W. Within the
negotiation region, the changes on the LCOE are nor expressive, so
decision makers can rank the optimal solutions according specific
criteria.

Similar to the configurations described above, the following
equation can be used to assist the optimal design of the CRS þ PV
plant, which is derived from region D e B of the Pareto set, valid for
capacity factor between to 0.63 and 0.97,



LCOE ¼ 3143543:5CF4 � 11300842:0CF3 þ 17059187:6CF2 � 13021965:2CF þ 4127027:1

CF3 þ 10257:6CF2 � 22573:8CF þ 12339:8

C
0
total ¼

9418:3CF4 � 23692:8CF3 þ 23626:8CF2 � 15258:3CF þ 5940:5

CF3 þ 879:7CF2 � 1956:8CF þ 1077:7

(12)
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5.3. Final optimal solution through decision-making process

To fully demonstrate the usefulness of the optimization process,
a decision-making method was applied to select the final optimal
solution from the Pareto frontiers. Such method is required since
the dimensions of objective functions are different, and it should be
unified. In this study, the Linear Programming Technique for
Multidimensional Analysis of Preference (LINMAP) developed by
Srinivasan and Shocker [24] was adopted. In this approach, each
objective function is subjected to a Euclidian non-
dimensionalization [25], defined as follows,

Fnij ¼
FijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1


Fij
�22

q (13)

where Fnij is the “i” nondimensionalized objective, and Fij denotes
the “j” points of the “i” objective on the Pareto frontier.

After the nondimensionalization procedure of the objective
functions, the LINMAP method is applied, consisting of calculating
the spacial distance between each point from the Pareto frontier
and an ideal point, as follows,

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

�
Fij � FIdeali

�22

vuut (14)

where dj denotes the distance between the “j” point and the ideal
point, while “i” stands for each objective function and n denotes the
number of objectives. FIdeali is the ideal value of the ith objective,
defined from the information derived from a single-objective
optimization procedure. Hence, the ideal solution is the point
that optimizes each objective function, disregarding the other ob-
jectives. The final optimal solution is selected as the solution pre-
senting the minimum distance from the ideal point. Therefore, it is
defined as

jfinal ≡ j2min


dj
�

(15)

The final optimal solution for each plant is highlighted by a
circular marker in Figs. 6 and 7. Table 6 shows these final optimal
solutions, listing the values of the objectives functions and the
design variables. From those results, it is clear that the PTC þ PV
plant provides the lowest LCOE, between 121 US$/MWh to 133 US$/
MWh, disregarding the number of objectives considered. Mean-
while CRS þ PV plants provides electricity cost between 152US$/
MWh to 160US$/MWh. For the two objectives case, the capacity
factor of the PTCþ PV is around 88%, while the capacity factor of the
CRS þ PV arises close to 94%. For the three objective case, the ca-
pacity factor values are reduced to 65% and 79% for the PTC þ PV
and CRS þ PV, respectively. The inclusion of the initial investment
as third objective, induced designing plants with lower capital
costs, at the same level of LCOE, but with a significant reduction on
the capacity factor.
For the two objective analysis, the differences between final
optimal solutions lies on the increase of the LCOE and initial in-
vestment, due to variations on the PV costs, with a small change on
the solar multiple. However, for the three objectives analysis, an
increase on the PV cost reduces the advantage of hybridization,
forcing a reduction on the PV power ratio, compensated by an in-
crease on the solar multiple (keeping a constant capacity factor).
This occurs since one of the objectives aims to minimize the initial
investment, which increases for higher PV costs. It is also important
to mention that the minimization of the initial investment should
be addressed with a lower solar multiple and thermal storage. For
example, the final solution of the PTC þ PV plant considering a PV
cost scenario of 1.3US$/W(dc) and two objectives, considering a
solar multiple of 2.179 and TES hour of 14.012, while for the three
objective case the final solution presents a solar multiple of 1.429
and TES hour of 9.984.

The concrete benefit of hybridization is fully demonstrated
when comparing the performance of these plants against the
stand-alone PTC and CRS plants. By designing an equivalent PTC
plant without hybridization, optimizing only the LCOE, it is possible
to achieve a LCOE of 128.4US$/MWh and a capacity factor of 80.1%,
where the solar multiple is 3.3 and the TES size is 14.3 h. Similarly,
for the stand-alone CRS plant a LCOE of 154.5US$/MWh and ca-
pacity factor of 85.9% are achieved, where the solar multiple and
TES size are 3.0 and 15 h, respectively. Comparing these values to
those presented in Table 6, results evident that the hybridization
can simultaneously reduce the LCOE, increasing the capacity factor,
but the most important effect is the significant reduction on the
solar field size.

6. Conclusions

A methodology for rating and design CSP þ PV hybrid systems
has been presented, which has the potential for helping to reduce
their operational and installation costs, as well as increasing the
capacity factor of hybrid plants. Using a multi-objective routine, the
trade off between the LCOE, initial investment and capacity factor,
has been demonstrated, and then determined. Two case studywere
presented for demonstrating the usefulness of this methodology,
namely, parabolic trough collectors (PTC) and a central receiver
system (CRS), coupled to a PV array. Three objective functions were
considered in the multi-objective optimization procedure: the
Levelized Cost of Energy (LCOE), total investment and capacity
factor. Regarding the design variables, four variables were consid-
ered, such as: the size of the solar field, thermal storage capacity, PV
tilt angle and PV power ratio.

First, the LCOE and capacity factor were simultaneously opti-
mized, yielding a clear trade-off between these two figures of
merits. With this result, it was possible to identify the negotiation
region. Seeking for a wide range of optimal capacity factor, the total
investment was also considered as objective, which yields a three-
dimensions Pareto frontier. This result provides useful insights
about the trade off between these three figures of merits, and en-
ables identifying a wider zone of negotiation. That is particularly
interesting in cases where a higher capacity factor is not a project
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constraint. Identifying such Pareto frontier, and negotiation region,
also allow us derive equations for the Pareto optimal points for each
objective, which are useful tools for design such plants. It is also
demonstrated that reducing the PV cost dislocates the Pareto
frontiers to lower values of LCOE. The results also suggest that
PTCþ PV plants present a more attractive LCOE, while the CRSþ PV
plants can achieve capacity factors of almost 100%, providing base-
load electricity.

Regarding the selection of final optimal solutions, it is evident
that the PTC þ PV plant provides the lowest LCOE, between 121
US$/MWh and 133 US$/MWh, disregarding the number of objec-
tives considered. Meanwhile CRS þ PV plants provides electricity



Table 6
Final optimal solutions specified by LINMAP decision maker.

PV cost
�
US$
Wdc

�
CF (�)

LCOE
�

US$
MWh

�
C

0
total

�
US$
W

�
Solar multiple (�) TES hour (h) PV tilt angle (�) PVpr (�)

Two-obj. PTC 1.30 0.880 121.677 7.074 2.179 14.012 30.107 1.404
1.50 0.882 126.335 7.323 2.200 14.255 30.110 1.402
1.93 0.869 133.681 7.744 2.054 14.058 29.734 1.394

CRS-MNS 1.30 0.947 152.922 9.133 2.257 16.478 29.680 1.400
1.50 0.943 155.870 9.419 2.169 16.770 30.181 1.400
1.93 0.933 160.833 9.651 2.009 15.531 29.856 1.392

Three-obj. PTC 1.30 0.648 122.690 5.112 1.429 9.984 34.606 0.975
1.50 0.653 124.254 5.266 1.992 10.712 33.915 0.390
1.93 0.657 124.570 5.344 2.407 11.557 15.702 0.011

CRS-MNS 1.30 0.780 153.301 7.523 1.608 12.536 31.267 1.080
1.50 0.796 154.763 7.756 2.588 13.732 39.766 0.069
1.93 0.781 156.170 7.667 2.549 13.869 42.859 0.029
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costs of 152 US$/MWh to 160US$/MWh. For the two objectives
case, the capacity factor of the PTC þ PV is around 88%, while the
capacity factor of the CRS þ PV arises close to 94%. For the three
objective case, the capacity factor values are reduced to 65% and
79% for the PTC þ PV and CRS þ PV, respectively. Designing an
equivalent PTC and CRS plants with no hybridization, it is possible
to demonstrate the benefit of hybridization. A stand-alone PTC
plant, optimizing only the LCOE, achieve a LCOE of 128.4US$/MWh
and capacity factor of 80.1%, with a solarmultiple and TES size of 3.3
and 14.3 h, respectively. Similarly, a stand-alone CRS plant, achieve
a LCOE of 154.5US$/MWh and capacity factor of 85.9%, with a solar
multiple and TES size of 3.0 and 15 h, respectively. Comparing these
values to those obtained in the multi-objective optimization, evi-
dence that the hybridization can simultaneously reduce the LCOE,
increases the capacity factor, but the most important effect is the
significant reduction on the solar field size.

Sizing a hybrid CSP þ PV plant is a multi-objective optimization
problem, featured by multiple and competing objectives with clear
trade offs. These kinds of problems are difficult to solve and time
consuming in terms of simulation and engineering processes.
Therefore, the proposed methodology contributes to the proper
assessment of such systems, through a practical and comprehen-
sive approach, which allows to address several factors (indepen-
dent variables and objectives) simultaneously. The Pareto frontiers
provides useful tools to analyses the trade offs between the ob-
jectives, providing decision-making mechanisms to aid a proper
design.
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Nomenclature

At Annual cost, (US$)
Arec Receiver area
CF Capacity factor, (�)
C Cost
C0

total Initial investment per capacity, (US$/kW)
d Distance between the Pareto frontier and Ideal point
F1 First objective
F2 Second objective
F3 Third objective
Fij Value of the “jth” point of the “ith” objective of the Pareto
frontier

h Heights, (m)
i Discount rate
j Index of final solution
I0 Initial investment of the plant, (US$)
LCOE Levelized Cost of Energy, (US$/MWh)
nameplate Net nominal capacity of the plant, (MW)
PVpr PV power ratio, (�)
SM Solar multiple, (�)
TESh Thermal storage capacity in hours, (h)
Wt;ele Annual electricity delivered by the plant, (MWh)
Wref Gross power output of the hybrid plant
x! Decision variables space
xi “ith” variable of the decision space
Acronyms
ANN Artificial Neural Networks
CRS Central Receiver System
CPV Concentrating Photovoltaic
CSP Concentrating Solar Power
CDF Cumulative Distribution Function
DC Direct Current
DNI Direct Normal Irradiance
EPC Engineering, Procurement, Construction
GenOpt Generic Optimization Program
GA Genetic Algorithm
GHI Global Horizontal Irradiance
HRES Hybrid Renewable Energy System
LINMAP Linear Programming Technique for Multidimensional

Analysis of Preference
MAPE Mean Absolute Percentage Error
MINLP Mixed Integer Non-Linear Problem
MOEA Multi-Objective Evolutionary Algorithm
O&M Operation and Maintenance
ORC Organic Rankine Cycle
PV Photovoltaic
SAM System Advisor Model
TOPSIS Technique for Order of Preference by Similarity to Ideal

Solution
TMY Typical Meteorological Year
TRNSYS Transient System Simulation Program
Greek symbols
b PV tilt angle, (deg )
c Scaling factor, (�)
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Subscript
t Years
BP Balance of plant
ele Electrical
final Final
f Fixed
h Heliostat
i Objective number
PB Power block
rec Receiver
ref reference
j Solution points
tower Tower

Superscript
Ideal Ideal point
L Lower
n Nondimensionalized
U Upper
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