Tabla de Contenido

1. Introducción1
1.2 Objetivos1
1.2.1 Objetivos generales1
1.2.2 Objetivos específicos1
1.3 Hipótesis1
1.4 Ubicación y vías de acceso2
1.5 Metodología3
1.5.1 Espectrometría de reflectancia3
1.5.2 Fundamentos teóricos4
1.5.3 Características de la mineralogía Espectral identificable5
1.5.4 Grupo de las Micas Blancas y Esmectitas9
1.5.5 Grupo de los Sulfatos10
1.5.6 Caolinitas11
1.5.7 Epidotas12
1.5.8 Clorita13
2. Marco Geológico Regional15
2.1 Basamento Paleozoico y Mesozoico15
2.2. Volcanismo Cenozoico16
2.3 Tectónica y estructuras19
2.4 Alteración y Mineralización20
3. Geología Local del Prospecto y Resultados
3.1 Basamento
3.1.1 Plutón Pircas Coloradas (ca. 270 Ma) (Mpodozis y Kay, 1990).
3.2 Rocas estratificadas23
3.2.1 Formación La Ternera (Triásico Superior-Lias) (Bruggen, 1950; enmend. Jensen, 1976)23
3.2.2 Formación Lagunillas (Jurásico) (Jensen, 1976)24
3.2.3 Estratos de Rio Nevado (Eoceno) (Mpodozis et al., 1991)25

3.3.4 Unidades Pórfidos Andesiticos-Daciticos Sur	26
3.3 Intrusivos porfídicos y brecha intrusión	30
3.3.1 Unidad Pórfido Dacítico A (Intermineral Temprano)	30
3.3.1 Unidad Pórfido Dacítico B (Intermineral)	30
3.3.3 Unidad Pórfido Dacítico C (Post Mineral)	31
3.3.4 Unidad brecha de intrusión (Intermineral)	31
3.4 Estructuras	33
3.4.1 Falla Inversa Cachitos	33
3.4.2 Falla Normal Plaza	33
4. Alteración Hidrotermal	34
4.1.1 Alteración Potásica	34
4.1.2 Alteración Propilítica	36
4.1.3 Alteración Argílica Intermedia	36
4.1.4 Alteración Sericitica	38
4.1.5 Alteración Argílica Avanzada	38
5. Mineralización y Geoquímica	42
5.1 Oro	42
5.2 Cobre	42
5.3 Distribución Geoquímica de los Elementos Pb-Zn-Mo-Cu e Pórfido	en un 43
6. Discusiones	50
7. Conclusiones y Recomendaciones	55
8. Bibliografía	60
9. Anexos	64
9.1 Anexos Públicos	
9.1.2. Mapa de área total del prospecto Aquino (2100 hectáreas	s), 65
	-,. 00

Índice de Figuras

Figura 1.1: Ubicación del proyecto Aquino recuadro en rojo, editado de Figura 1.2: A. Ilustración esquemática del espectrómetro ASD TerraSpec (Kerr et al., 2011). B. Registro de espectro en dependencias de Guanaco Muestra procesos de interacción entre la energía Figura 1.3: electromagnética (luz) y la materia......4 Figura 1.4: Espectro electromagnético, detalla las regiones de interés asociada a la espectroscopia infrarroja/visible. Región visible (390 a 750 nm), infrarroja cercana (NIR; 750 a 1300 nm) e infrarroja de onda corta (SWIR; 1300 A 2500 nm) (Kerr et al., 2011).5 Figura 1.5: Espectros de absorción en SWIR (Spectral interpretation Field Manual, 2012)......7 Figura 1.6: Detalle de las características del espectro de la caolinita obtenida con el espectrómetro PIMA II, (Thompson et. al, 1999)......8 Figura 1.7: Principales rangos de absorción que pueden observarse en el espectro electromagnético. La forma y profundidad de cada uno de ellos está en función de las características químicas de las moléculas del mineral analizado (Páez, 2008).9 Figura 1.8: Espectros típicos de moscovita, montmorillonta e illita. Tomados de la base de datos del programa SIMIS Feature Search.....10 Figura 1.9: Espectros típicos de alunita, yeso y jarosita. Tomados de la Figura 1.10: Espectros típicos de caolinita de alta cristalinidad y de menor cristalinidad. Tomados de la base de datos del programa SIMIS Feature Search......12 Figura 1.11: Espectro típico de epidota. Tomados de la base de datos Figura 1.12: Espectros típicos de cloritas, Mg-clorita (rojo) y Mg-Feclorita (negro). Tomados de la base de datos del programa SIMIS Feature Search.....14 Figura 2.1: Marco geológico regional de la Franja de Maricunga. Modificado de Vila y Sillitoe, 1991......18 Figura 2.2: Contexto tectónico regional de la Franja de Maricunga. Modificado de Muntean y Einaudi, 2001......20

Figura 3.2: A. Monzogranitos de Biotita. B. Granodiorita de biotita Figura 3.5: A. Arenisca roja grano medio. B. Conglomerado polimíctico matriz soportado.......25 Figura 3.6: Estrato de paquete de areniscas rojas con estratificación paralela que alternan con conglomerados, pertenecientes al miembro Cocambico de la Formación Lagunillas......25 Figura 3.7: A. Estratos Eoceno sobreyace a Jurásico superior por discordancia angular, al este del rio Cachitos. B. Brecha polimíctica matriz soportada de color violáceo. C. Brecha conglomerádica Figura 3.9: Perfil esquemático DC, prospecto Aquino. Mapa de referencia Figura 3.10: Mapa geología básica con énfasis en las zonas rectangulares A y B, las cuales demarcan la distribución de las Figura 3.11: A. Pórfido Dacítico A con textura obliterada. B. Roca perteneciente al Pórfido Dacítico B. C. Contacto entre Pórfido Dacítico C (PD.C) y Brecha de Intrusión (BX.I). D. Brecha de intrusión, Fragmentos Figura 4.1: Porcentaje de reemplazo por asociaciones minerales de Mapa de distribución geoquímica del oro (Au) y Figura 5.1: Mapa de distribución geoquímica del oro (Au) y Figura 5.2: mineralización con énfasis en la zona B.45 Figura 5.3: Mapa de distribución geoquímica del cobre (Cu) y Figura 5.4: Mapa de distribución geoguímica del cobre (Cu) y mineralización con énfasis en zona B.47 Figura 5.5: Mapa de razón geoquímica Pb+Zn/Cu, zona demarcada en rojo muestra el posible borde de un sistema porfírico......48 Figura 5.6: Mapa de razón geoquímica Pb/Mo, zona demarcada en rojo

Índice de Tablas

Tabla 1.1 Resumen: Relación entre la composición y las bandas de Tabla 3.1: Resumen principales características de unidades intrusivas Tabla 4.1: Detalle tipos de alteraciones argílicas intermedias y sus Tabla 4.2: Principales características de la alteración hidrotermal en el Tabla 5.1: Resumen contenidos de Au y Cu, según estilo de mineralización en el prospecto Aquino......43 Tabla 6.1: Resumen relación espacial de mayores contenidos promedios de oro en el prospecto Aquino, zona A.50 Tabla 6.2: Resumen de características de alteración hidrotermal y Tabla 6.3: Recopilación de principales características de los pórfidos auríferos de la Franja de Maricunga.53 Tabla 9.2: Interpretación de mineralogía por espectrometría de reflectancia, valores 0 y 1 representan ausencia y presencia de mineral.