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Increased expression of the TRPM4 channel has been reported to be asso-
ciated with the progression of prostate cancer. However, the molecular
mechanism underlying its effect remains unknown. This work found that
decreasing TRPM4 levels leads to the reduced proliferation of PC3 cells.
This effect was associated with a decrease in total B-catenin protein levels
and its nuclear localization, and a significant reduction in Tcf/Lef tran-
scriptional activity. Moreover, TRPM4 silencing increases the Ser33/Ser37/
Thr41 B-catenin phosphorylated population and reduces the phosphoryla-
tion of GSK-3f at Ser9, suggesting an increase in -catenin degradation as
the underlying mechanism. Conversely, TRPM4 overexpression in LNCaP
cells increases the Ser9 inhibitory phosphorylation of GSK-3p and the total
levels of B-catenin and its nonphosphorylated form. Finally, PC3 cells with
reduced levels of TRPM4 showed a decrease in basal and stimulated phos-
phoactivation of Aktl, which is likely responsible for the decrease in GSK-
3B activity in these cells. Our results also suggest that the effect of TRPM4
on Aktl is probably mediated by an alteration in the calcium/calmodulin-
EGFR axis, linking TRPM4 activity with the observed effects in B-catenin-
related signaling pathways. These results suggest a role for TRPM4
channels in B-catenin oncogene signaling and underlying mechanisms, high-
lighting this ion channel as a new potential target for future therapies in
prostate cancer.
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CaM, calmodulin; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; GSK-3p, glycogen synthase kinase 3p; LNCaP,
lymph node carcinoma of the prostate; PC3, prostatic carcinoma cell line 3; ShTRPM4, short hairpin RNA against TRPM4 mRNA; TCF/LEF,
T-cell factor-1/lymphoid enhancing factor 1; TRPM4, transient receptor potential cation channel subfamily M member 4; Wnt, Wingless-Int.
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1. Introduction

Prostate cancer is one of the most frequently diag-
nosed malignancies and the fifth cause of cancer-
related deaths in men (Torre ez al., 2015). Although
the clinical and the histopathological features of these
tumors are well defined, the genetic and molecular
changes during the progression of prostate cancer are
poorly understood (Schrecengost and Knudsen, 2013;
Tindall, 2013). Prostate tumors are characterized by
multiple foci of origin (Schrecengost and Knudsen,
2013), with a large number of genetic alterations.
Some genetic abnormalities frequently found in pros-
tate cancer are the loss of important tumor suppres-
sor genes such as PTEN, NKX3.1, TP53 (Mazaris
and Tsiotras, 2013; Shen and Abate-Shen, 2010) and
the formation of oncogenic fusions such as
TMPRSS2-ERG (King et al., 2009; Tomlins et al.,
2005). Also, the activation of several signaling path-
ways including Wnt/B-catenin (Kypta and Waxman,
2012; Wang et al., 2008) has been shown to con-
tribute to the development and progression of this
cancer.

In normal nonstimulated cells, f-catenin, the main
effector of the canonical Wnt pathway (Valenta et al.,
2012), is localized at adhesion complexes in the cell
membrane, while the cytoplasmic protein levels of B-
catenin are tightly regulated (MacDonald et al., 2009)
by a multiprotein structure known as the destruction
complex. This allows the phosphorylation of B-catenin
by GSK-3p at specific Ser/Thr residues (Ser33/Ser37/
Thr41) (Stamos and Weis, 2013), which promotes its
proteasome-mediated degradation, circumventing its
nuclear translocation and ulterior transcriptional
function (MacDonald et al., 2009). The stimulation of
the Wnt/canonical pathway by specific ligands
(Rao and Kiihl, 2010), activating mutations on the
B-catenin sequence or inactivation of GSK-38 by
specific phosphorylation at Ser9, stabilizes B-catenin.
This promotes its translocation into the nucleus and
interaction with members of the Tcf/Lef family of
transcription factors (Mosimann et al., 2009), leading
to the expression of genes involved in proliferation,
apoptosis, and invasion, among other important pro-
cesses for cancer progression (Clevers, 2006; Klaus
and Birchmeier, 2008). Moreover, in prostate cancer,
increased B-catenin levels and nuclear localization cor-
relate with the progression of the disease (de la Taille
et al., 2003; Whitaker et al., 2008), suggesting a possi-
ble alteration in the regulation of this protein. How-
ever, as activating mutations on f-catenin are not
common in prostate cancer, the mechanisms of this
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misregulation are not yet clear (Kypta and Waxman,
2012).

TRPM4, a calcium-activated monovalent-selective
cation channel (Guinamard et al., 2010; Launay
et al., 2002), has been found to be overexpressed in a
variety of human tumors, including prostate cancer
(Berg et al., 2016; Holzmann et al., 2015; Pre-
varskaya et al., 2007; Suguro et al., 2006). TRPM4
expression is increased in the transition from
prostatic intraepithelial neoplasia (PIN) to prostate
cancer (Ashida et al., 2004; Singh et al., 2006). This
channel controls the frequency and magnitude of
Ca’" influx by modulating the membrane potential
and subsequently the driving force for Ca®* influx
through other Ca®’-permeable pathways (Fliegert
et al., 2007; Launay et al., 2004; Nilius and
Vennekens, 2006; Weber et al., 2010). Holzmann
et al. (2015) showed TRPM4-like currents in prostate
cancer cell lines and it has a role as a negative feed-
back for Ca®" entry. Considering intracellular cal-
cium’s extensive role as a second messenger involved
in many of the signaling pathways responsible for
cancer progression (Farfariello et al., 2015; Monteith
et al., 2007), the identification of specific pathways
that have been altered after an aberrant change in
intracellular calcium signals has been very challeng-
ing. Also, the overexpression of TRPM4 has been
shown to promote the stabilization and activity of -
catenin enhancing cell proliferation in HeLa cells, but
the underlying mechanisms have not yet been clarified
(Armisén et al., 2011).

This study presents further evidence to show that
TRPM4 regulates B-catenin signaling and enhances
the proliferation of prostate cancer cell lines, through
a calcium-dependent regulation of Aktl and GSK-3p
activity. TRPM#4 silencing resulted in a reduced pro-
liferation of PC3 cells. In these cells, diminished levels
of TRPM4 channels resulted in a decrease in total
and nuclear B-catenin protein levels and its transcrip-
tional activity, while the Ser33/Ser37/Thr41 phospho-
rylated fraction was increased. Also, these results
correlated with a reduction of phospho-Ser9 on GSK-
3B, indicating an increase in this enzyme activity.
Moreover, the overexpression of TRPM4 in LNCaP
cells increased the total levels of P-catenin and the
inhibitory phosphorylation of GSK-3B. Finally, the
knockdown of TRPM4 correlated with a decrease in
basal and stimulated phosphoactivation of Aktl, a
well-known GSK-3fB regulator, by altering the cal-
cium/calmodulin-EGFR axis, and linking the TRPM4
channel expression to the control of cellular
proliferation.
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2. Materials and methods

2.1. Cell culture

The human prostate cancer cells PC3 and LNCaP
were kept in RPMI 1640 (Corning Inc, Corning, NY,
USA). T-REx-293-TRPM4 and HEK293 cells were
kept in DMEM-low glucose (Corning Inc). All the
growth media were supplemented with 10% v/v FBS
(Corning) and  penicillin/streptomycin ~ (Hyclone
Laboratories, Logan, UT, USA). RWPE-1 cells were
kept in keratinocyte-SFM (Thermo Scientific, Wal-
tham, MA, USA) supplemented with recombinant
human epidermal growth factor (K-SFM kit) and
bovine pituitary extract (K-SFM Kkit).

2.2. Antibodies

The following antibodies were used in this study: mouse
anti-TRPM4b  (Origene, Rockville, MO, USA,
TAS500381), mouse anti-B-catenin (610154; BD Bio-
sciences, San Jose, CA, USA), mouse anti-non-phos-
phorylated S33/S37/T41-B-catenin (Millipore, Temecula,
CA, USA, 05-665), rabbit anti-phospho-Ser33/Ser37/
Thr41 B-catenin (Cell Signaling Technology, Danvers,
MA, USA, 9561), mouse anti-GSK-33 (BD Biosciences,
610201), rabbit anti-phospho-Ser9 GSK-3B (Origene,
Rockville, MO, USA, TA303847), rabbit anti-Akt1 (Cell
Signaling, 9272), rabbit anti-phospho-Ser473 Akt (Cell
Signaling, 9271), and as loading controls, mouse anti-o-
tubulin (Sigma Aldrich, St. Louis, MO, USA, T5168) or
mouse anti-HSP70 (Origene, TA309356).

2.3. Drugs and recombinant protein

For the activation of Akt, epidermal growth factor
recombinant protein (R&D Systems, Minneapolis,
MN, USA, 236-EG) was added to the growth media
(EGF, 100 ng-mL~'/15 min). 9-Phenanthrol (Sigma-
Aldrich, 211281) at 10 pm final concentration in the
growth media for 2 h was used for the inhibition of
TRPM4. DMSO was used as a vehicle. Before the
experiments, tetracycline (Sigma-Aldrich, T7660) was
added to the growth media for TRPM4 induction at a
final concentration of 1 pugmL™' for 24 h. The
calmodulin inhibitor W-7 (Tocris Bioscience, Bristol,
UK, 0369) was used at a final concentration of 100 pum
for 1 h before the incubation with EGF.

2.4. Transfection and transductions

PC3 cells were transduced with a commercial prepack-
aged lentiviral vector (SBI, Palo Alto, CA, USA)
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directing shRNA against TRPM4 mRNA (ShTRPM4)
or a scramble ShRNA (ShControl) as a control. Cells
were kept in growth media with 0.8 pg-mL~' puromy-
cin (Corning) for selection. LNCaP cells were trans-
fected with pcDNA4TO/TRPM4b (human) plasmid or
an empty vector (mock), using Lipofectamine LTX
with Plus Reagent (Invitrogen, Carlsbad, CA, USA),
and held in growth media with 50 pgmL™' zeocin
(Corning) for selection.

2.5. Immunoblotting

Protein lysates were prepared in a RIPA buffer
(25 mm Tris/HCI pH 7.6, 150 mm NaCl, 5 mm EDTA,
1% v/v Triton X-100, 1% w/v sodium deoxycholate,
0.1% w/v SDS) and a protease (Calbiochem, San
Diego, CA, USA) and phosphatase (Roche Life
Sciences, Mannheim, Germany) inhibitor cocktail. Pro-
tein lysates (30 ug per lane) were resolved on 8%
sodium dodecyl sulfate/polyacrylamide gel elec-
trophoresis (SDS/PAGE), and proteins were trans-
ferred onto a nitrocellulose membrane. Membranes
were blocked in 5% w/v BSA (Winkler, Santiago,
Chile) and then incubated with primary antibodies at
4 °C overnight. All primary antibodies were detected
using appropriate HRP-conjugated secondary antibod-
ies and a chemiluminescence reagent (SuperSignal
WestPico Chemiluminescent Substrate; Thermo Scien-
tific), and images were obtained using the ChemiS-
cope3500 Mini chemiluminescence imaging system
(Clinx Science Instruments, Shanghai, China).

2.6. Quantitative PCR

Total RNA was extracted using TRIzol (Invitrogen),
followed by DNase treatment (TURBO DNase;
Ambion, Austin, TX, USA). One microgram of RNA
was reverse-transcribed using the AffinityScript qRT-
PCR cDNA Synthesis Kit (Agilent Technologies, Inc.,
Santa Clara, CA, USA) and diluted five times. Quanti-
tative expression analysis was performed using specific
oligonucleotide primers and Brilliant II SYBR Green
gqRT-PCR Master Mix (Agilent). The reactions were
quantified with an Eco Real-Time (Illumina, San
Diego, CA, USA) using the following program: 95 °C
for 15s, 58 °C for 15s, and 72 °C for 15s at 40
cycles. Expression values were calculated using the
AAC, method and expressed as the fold change relative
to control samples. GAPDH was used as a housekeep-
ing gene. The primers sequences (5'—3') are as fol-
lows:

GAPDH (Fw GTTGCTGTAGCCAAAT TCGTT

GT, Rv GGTGGTCTCCTCTGACTTCAACA),
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BIRCS (Fw GCTTCGCTGGAAACCTCTGGA,
Rv TCTGGGCAGATGGCTGTTGG),

MYC (Fw ACAGCCCACTGGTCCTCAAGA, Rv
ACCTGGGGCTGG TGCATTTT),

CCND1 (Fw CACTTGCATGTTCGTGGCCTC
TA, Rv ATTGCGGCCAGGTTCCACTT),
TRPM4 (Fw TCGGCAAAGTACAGGGCAAC,
Rv AGGCGCAAGTGGGAGATGAC)

AXIN2 (Fw AGCCAAAGAAACTGGCAGGTGT,
Rv GTCAAGCTCTGAGCCTTCAGC).

2.7. Indirect immunofluorescence

Cells were fixed (4% w/v formaldehyde; Sigma-
Aldrich), permeabilized, blocked, and incubated with
anti-B-catenin (1 : 250) followed by anti-mouse cou-
pled with Alexa-Fluor546 (Invitrogen, 1 : 1000). Cells
were stained and mounted in Prolong-DAPI (Invitro-
gen). Images were recorded in an inverted microscope
(IX81 Spinning Disk Confocal; Olympus, Center Val-
ley, PA, USA) and analyzed using IMAGEJ software
(Rasband, 2015) to measure the relative levels of
nuclear and cytoplasmic B-catenin fluorescence.

2.8. TOP/FOP luciferase reporter assay

Cells were transiently transfected with 0.5 pg of consti-
tutively active vector encoding Renilla luciferase (Pro-
mega, Madison, WI, USA) and 2 pg of B-catenin
responsive firefly luciferase reporter plasmid TopFlash
or the negative control FopFlash (Merck Millipore, Bill-
erica, MA, USA). Cells were harvested 24 h after trans-
fection and firefly and Renilla luciferase activities were
measured in triplicate using the dual luciferase kit
(Dual-Glo Luciferase Assay System; Promega). The fire-
fly luciferase activity was normalized against the Renilla
luciferase activity, following Armisén et al. (2011).

2.9. Calcium measurements

Cells were seeded on 25-mm glass coverslips. At 70%
confluence, growth media were replaced with an extra-
cellular buffer with calcium (ECM + Ca®": 145 mm
NaCl, 5 mm KCI, 1 mm MgCl,, 1 mm CaCl,, 10 mm
HEPES, pH 7.4), and the cells were loaded with Fura-2
(2 puM; Molecular Probes, Eugene, OR, USA) for 1 h at
37 °C. Then, the ECM + Ca?* solution was removed
and cells were washed twice with calcium-free ECM
(plus 5 mm EGTA). After baseline recording, the
SERCA inhibitor thapsigargin (1 um) was perfused.
After a transient increase in cytosolic calcium concen-
tration [denoted as endoplasmic reticulum (ER) calcium
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leak], the calcium-free external solution was replaced
with ECM + Ca®>" buffer to record calcium influx
(after stored depletion). The ratiometric fluorescence
(R340/380) of the Fura-2 calcium indicator was measured
in an inverted microscope (IX81 Spinning Disk Confo-
cal; Olympus) and recorded and analyzed by the CELLR
IMAGING software (Olympus) as described in Echeverria
et al. (2014).

2.10. MITS assay

Cells were seeded in 24-well plates (10 x 10° cells/well)
and allowed to attach overnight. Cell proliferation was
assessed using the Cell-Titter 96 AQueous-MTS Kit
(Promega) at 24, 48, and 72 h. Absorbance was mea-
sured at 490 nm in the Cytation 3 Multi-Mode Reader
(Biotek Instrument, Winooski, VT, USA).

2.11. DNA synthesis/BrdU Incorporation

DNA synthesis evaluated by bromodeoxyuridine
(BrdU)/propidium iodide (PI) staining was as follows:
exponentially growing cells were incubated with 25 um
of BrdU (Santa Cruz Biotechnology, Santa Cruz, CA,
USA) for 45 min before harvesting. Cells were fixed in
80% methanol at —20 °C and kept overnight at the
same temperature. Double staining with 50 pg-mL ™'
PI and FITC-anti-BrdU antibody (BD Biosciences
Pharmingen, San Diego, CA, USA) was performed
according to the manufacturer’s protocol. Cell cycle
profiles and BrdU uptake were determined by FACS
(BD Bioscience), and the data were analyzed with the
BD FACSDIVA software (BD Bioscience).

2.12. Statistical analysis

gqRT-PCR, western blot, and functional assays were
examined by Student’s #-test with Welch correction or
the ANOVA test, whichever is applicable. P < 0.05
was considered statistically significant. At least three
independent experiments were performed for each
analysis. Statistical analysis was performed using PRISM
5.0 (GraphPad Software, San Diego, CA, USA).
Material and Methods for supplemental results can be
found in Data S1.

3. Results
3.1. TRPMA4 regulates p-catenin activity and cell
proliferation in prostate cancer cells

TRPM4 mRNA expression was analyzed in a nontrans-
formed prostate epithelial RWPE-1 cell line and two
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Fig. 1. TRPM4 expression affects protein levels and phosphorylation status of B-catenin. (A) mRNA expression of TRPM4 gene in PC3 WT
and LNCaP WT cells relative to nontumoral RWPE-1 prostate cells. RT-gPCR were performed at least three times. T-test with Welch
correction, "P > 0.05, **P < 0.01, ***P < 0.001. (B) Western blot was performed to detect TRPM4 expression in prostate cancer cell lines.
Representative western blots and their densitometries from three independent experiments. Mean + SEM. T-test with Welch correction,
*P < 0.05. (C) Knockdown of TRPM4 in PC3 cells resulted in a significant decrease in total B-catenin protein levels, along with the
nonphosphorylated B-catenin (‘active’), and an increase in phosphorylated B-catenin at Ser33/37/Thr41 residues. T-test with Welch
correction, **P < 0.01. (D, E) TRPM4-transfected LNCaP cells show an increase in total and nonphosphorylated B-catenin protein levels
compared to MOCK-transfected cells. T-test with Welch correction, *P < 0.05, **P < 0.01. Representative western blots and their
densitometries from at least three experiments. Mean 4+ SEM are shown.

cancer-derived cell lines, LNCaP and PC3. As shown in
Fig. 1A, PC3 cells express 10-fold more TRPM4
mRNA than LNCaP and RWPE-1 cells. At the protein
level, LNCaP cells showed a significantly lower TRPM4
expression than PC3 cells (Fig. 1B). To assess the role
of TRPM4 in prostate cancer, knockdown and

Molecular Oncology 12 (2018) 151-165 © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

overexpression of TRPM4 were performed in PC3 and
LNCaP cells, respectively. Immunoblot and qPCR anal-
ysis were used to determine the knockdown efficiency
and possible off-target effects (Figs S1 and S2).
Previous work showed a positive relationship
between the expression of TRPM4 channel and total
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Fig. 2. TRPM4 expression effects, nuclear distribution, and transcriptional activity of B-catenin. (A, B) Knockdown of TRPM4 in PC3 cells
decreases B-catenin nuclear localization. Representative images of intracellular B-catenin detected by immunofluorescence in PC3 ShControl
(upper) and PC3 ShTRPM4 (bottom). Scale bar 20 um. Graph shows arbitrary units of fluorescence of B-catenin nuclear/cytoplasmic ratio
quantified in at least three independent experiments. Mean 4+ SEM are shown. T-test with Welch correction, ***P < 0.001. (C) Knockdown
of TRPM4 in PC3 cells decreases B-catenin cotranscriptional activity. PC3 ShTRPM4 and PC3 ShControl cells were transfected with plasmid
pTOP or pFOP and pTK-Renilla as normalizer. Normalized TOP/FOP Luciferase activity is shown. T-test with Welch correction, ***P < 0.001.
(D, E) Relative mRNA expression of B-catenin target genes. Axin2, survivin, c-Myc, and cyclin D1 genes were analyzed in PC3 ShTRPM4
compared to PC3 ShControl cells with RT-gPCR assay. All experiments were performed at least three times. Mean + SEM are shown. T-

test with Welch correction, ***P < 0.001.

B-catenin protein levels in HeLa cells (Armisén et al.,
2011); therefore, the effect of TRPM4 knockdown on
B-catenin was explored in PC3 prostate cells. As
expected, a significant decrease in the total amount of
B-catenin was found in PC3 ShTRPM4 cells compared
to PC3 ShControl cells. The nonphosphorylated frac-
tion of B-catenin (Ser37 and/or Thr41) also decreased,
while the phosphorylated population (Ser33, Thr37 or
41) increased (Fig. 1C), suggesting a rise in B-catenin
degradation in PC3 ShTRPM4 cells. Conversely,
LNCaP cells overexpressing TRPM4 showed a signifi-
cant increase in total B-catenin (Fig. 1D) and in the
nonphosphorylated fraction, compared to mock-trans-
fected cells (Fig. 1E). As depicted in Fig. 2A,B, PC3
ShTRPM4 cells also showed a significant decrease in
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nuclear B-catenin. Consequently, PC3 ShTRPM4 cells
display a lower specific Tcf/Lef transcriptional reporter
activity compared to control cells (Fig. 2C), suggesting
an alteration in the B-catenin transcription co-activator
activity. To examine further the effect of TRPM4
knockdown and B-catenin transcriptional activity, the
expression of survivin, axin2, cyclin D1, and c-Myc by
RT-qPCR was analyzed. PC3 ShTRPM4 cells showed
a significant decrease in all these B-catenin target genes
(Niehrs and Acebron, 2012; Tapia et al., 20006)
(Fig. 2D.E). As c-Myc and cyclin D1 genes are posi-
tive regulators of cell proliferation, we evaluated the
effect of TRPM4 knockdown in prostate cancer cell
proliferation through MTS and BrdU incorporation
assays. These analyses showed that PC3 ShTRPM4

Molecular Oncology 12 (2018) 151-165 © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
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Fig. 3. TRPM4 knockdown reduces proliferation of PC3 cells. (A) Cell proliferation was evaluated in PC3 ShTRPM4 and PC3 ShControl cells,
by MTS assay. Three independent assays were performed, in triplicate, and proliferation was assessed 24-72 h after culturing.
Mean 4+ SEM are shown. Two-way ANOVA, **P < 0.005, ***P < 0.001. (B) PC3 ShTRPM4 and ShControl cells were pulsed with BrdU for
45 min under normal culturing conditions. Positive cells that incorporated BrdU were detected using a FITC-conjugated anti-BrdU antibody.
Cells in S-phase were selected according to DNA content (propidium iodide signal). All experiments were performed in at least three
independent experiments. Mean + SEM are shown. Mann-Whitney test, *P < 0.05.

cells have a significantly reduced proliferation

(Fig. 3A,B). In order to assess whether the reduced 3.2. TRPM4 inhibits GSK-3f activity

viability observed in PC3 ShTRPM4 cells was a result
of an increased cell death, caspase-3 activation, as well
as caspase 3/7 activities, was assessed in PC3
ShTRPM4 and control cells. No significant differences
were detected either in total and cleaved caspase-3
form or in caspase 3/7 activities (Fig. S3). These data
suggest that TRPM4 silencing causes a decrease in
cellular proliferation.
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Given that PC3 ShTRPM4 cells have increased levels
of B-catenin GSK-3B-dependent phosphorylated resi-
dues, we hypothesized that TRPM4 silencing increases
the activity of this kinase. GSK-3f activity was then
assessed by evaluating its inhibitory phosphorylation
in  Ser9 residue (McManus et al., 2005). PC3
ShTRPM4 cells exhibit a significantly lower Ser9 phos-
phorylation compared to control cells, which is
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Fig. 4. TRPM4 levels are positively related to the inhibitory phosphorylation of GSK-3B. (A) PC3ShTRPM4 cells show decreased
phosphorylation of Ser9 in GSK-3p, relative to PC3 ShControl cells. No changes in total GSK-3 were detected. Representative western
blots and densitometries of three independent experiments (mean &+ SEM) are shown. T-test with Welch correction, **P < 0.01. (B)
Overexpression of TRPM4 in LNCaP cells correlated with an increase in phosphorylated Ser9 in GSK-3p compared to control cells. No
changes in the total amount of GSK-3p were detected. T-test with Welch correction, *P < 0.05.

Molecular Oncology 12 (2018) 151-165 © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. 157



TRPM4 regulates p-catenin and cell proliferation

consistent with this enzyme’s higher activity (McMa-
nus et al., 2005). Also, no differences in GSK-3f total
protein levels were observed (Fig. 4A). Subsequently,
the inhibitory Ser9 phosphorylation of GSK-3p was
determined in LNCaP cells overexpressing TRPM4. A
significant increase in phospho-Ser9 GSK-3f in
LNCaP-TRPM4 cells was detected compared to con-
trol cells (Fig. 4B), indicating a positive relationship
between TRPM4 expression and the status and activity
of GSK-3B/Ser9 phosphorylation.

To determine whether TRPM4 activity is required
to regulate the status of B-catenin and GSK-3p phos-
phorylation, the T-REx-293-TRPM4 cell model system
was used to overexpress the channel in a tetracycline
(Tett)-dependent manner (Armisén et al., 2011) and 9-
phenanthrol, a TRPM4 activity inhibitor (Grand
et al., 2008), was used (DMSO was used as a vehicle

A
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9-phenanthrol (2 h) - + - +
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e “ oy u B-Catenin (S33/37/T41)
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control). As expected, overexpression of TRPM4 was
accompanied by an increase in the total amount of -
catenin and a decrease in its phosphorylated fraction,
compared to noninduced (Tet—) cells (Fig. 5A,B). Sig-
nificantly, the incubation with 9-phenanthrol inhibited
the effect of TRPM4 overexpression on the total B-
catenin levels and the phosphorylated fraction of this
protein (Fig. 5A,B). Consistent with previous findings
in LNCaP cells, TRPM4 overexpression also resulted
in an increased inhibitory phosphorylation of GSK-3f/
Ser9 in Tet+ compared to Tet— cells (Fig. SA, lane 1
vs. 3, Fig. 5B). Accordingly, a significant decrease in
the Ser9 phosphorylation was observed upon incuba-
tion with 9-phenanthrol (Fig. 5A, lanes 1 and 2,
Fig. 5B). These results suggest that TRPM4 channel
activity is required for GSK-3f regulation and B-cate-
nin stabilization.
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Fig. 5. Activity of TRPM4 channel is required for B-catenin stability and GSK-3pB inhibitory phosphorylation. Overexpression of TRPM4 in T-
REx 293 (TREX) cells was induced by previous incubation with tetracycline 1 pg-mL~" (Tet). Cells were incubated for 2 h with the specific
TRPM4 inhibitor 9-phenanthrol at 10 um or DMSO (vehicle) before protein extraction. (A, B) TRPM4 overexpression enhances B-catenin
protein levels, decreases its inhibitory phosphorylation, and increases the GSK-3p S9 phosphorylation. The presence of 9-phenanthrol reverts
the effects of the TRPM4 overexpression on these intracellular proteins. (A) Representative western blots and the densitometries of at least
three independent experiments (mean + SEM) are shown. *P < 0.05; **P < 0.01; ***P < 0.001, multiple ttest comparisons using t-test

with Welch correction.
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In several cell types, TRPM4 activity has been
shown to modulate intracellular calcium concentration,
through changes in membrane potential and in calcium
electrochemical driving force (Fliegert et al., 2007;
Gonzales et al., 2010; Launay et al., 2004). Given that

TRPM4 regulates p-catenin and cell proliferation

assessed by measuring ER calcium leak (in zero exter-
nal calcium after SERCA inhibition with thapsi-
gargin), and calcium entry was estimated by measuring
cytosolic calcium upon external calcium replenishment
after ER depletion. As shown in Fig. 6A,B, decreased

TRPM4 channel expression in PC3 cells did not affect
ER calcium leak. However, a significant decrease in
calcium influx was observed when compared to control
cells. To determine whether external calcium influx
plays a role in the regulation of GSK-3p activity, PC3

calcium function is an intracellular second messenger
(Berridge et al., 2003), we sought to determine whether
TRPM4 expression modulates any component of cal-
cium dynamics in PC3 cells. With the calcium-specific
probe Fura-2, the calcium content in the ER was
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Fig. 6. Modulation of calcium entry by TRPM4 in PC3 cells. (A, B) Intracellular calcium release and extracellular calcium entry were
assessed through the incubation of thapsigargin (1 pm) and the restitution of extracellular calcium, respectively, using Fura-2. A
representative figure of one experiment is shown in (A). In (B), integrated data from six different experiments for PC3 ShControl and seven
experiments for PC3 ShTRPM4 are shown. At least 10 cells were recorded in every experiment. TRPM4-knockdown cells displayed a
decrease in extracellular calcium entry compared to control cells. One-way ANOVA, "P > 0.05, *P < 0.05. (C) PC3 WT cell lines were
incubated with or without calcium and Ser9 phosphorylation of GSK-3p was assessed with western blot assay. A representative western
blot and the densitometries from three independent experiments are shown. Mean + SEM are shown. T-test with Welch correction,
**P < 0.01.
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cells were incubated for 30 min in an extracellular
medium free of calcium. A significant reduction in
Ser9 inhibitory phosphorylation of GSK-3f was
observed (Fig. 6C), indicating that intracellular cal-
cium concentration is important for this event.

3.3. Akt1 activation is regulated by Ca%*/CaM and
TRPMA4 in prostate cancer cells

Aktl kinase activation after EGFR stimulation is a
process that involves Ca’"/CaM (Deb et al., 2004;
Rokhlin et al., 2007) interaction in breast cancer cell
models (Dong et al., 2007). After activation, Aktl
phosphorylates GSK-3p at Ser9 and inhibits its func-
tion (Manning and Cantley, 2007). On the other hand,
deregulation of Akt signaling is a common alteration in
prostate cancer (Li ef al., 2005). The status of Aktl
activity was measured by detecting its phosphorylation
at specific residue Ser473 (Sarbassov et al., 2005).
Under basal conditions and after EGF stimulation,
Aktl phosphorylation was lower in PC3 ShTRPM4
cells compared to control cells (Fig. 7A,B). Conversely,
the overexpression of TRPM4 in LNCaP cells induced
an increase in the Aktl activating phosphorylation
compared to WT and mock cells (Fig. S4), indicating a
direct relationship between TRPM4 levels and Aktl
activation. Moreover, EGF-induced GSK-3f phospho-
rylation in Ser9 was also reduced in PC3 ShTRPM4
cells compared to control cells (Fig. 7C), which is con-
sistent with the reduced Aktl kinase activity in these
cells. Finally, in order to explore the importance of
EGF-Ca”" /CaM signaling in both Aktl and GSK-3p
phosphorylation, the effect of EGF stimulation was
assessed in the presence of W-7, a Ca>*/CaM inhibitor.
PC3 ShControl cells preincubated with W-7 showed a
decrease in Aktl and GSK-3B phosphorylation levels
after EGF stimulation, displaying phosphorylation
levels similar to those detected in PC3 ShTRPM4 cells
(Fig. 7D). Although a decrease in Aktl phosphoryla-
tion was detected in PC3 ShTRPM4 cells incubated
with W-7, the inhibitor had no effect on GSK-3f
phosphorylation in these cells. These results highlight
the importance of the TRPM4/Ca®" /Aktl axis on the
regulation of GSK-3f activity and consequently the
B-catenin stability in prostate cancer cell lines.

4. Discussion

Several studies on prostate cancer have suggested that
the expression of TRPM4 is a relevant event in the
progression of this tumor (Holzmann et al., 2015;
Schinke et al., 2014). Moreover, TRPM4 expression
seems to have clinical relevance.

A. I. Sagredo et al.

Berg et al. (2016) described a positive correlation
between the overexpression of TRPM4 in prostate can-
cer samples and an increased risk of recurrence after
radical prostatectomy. Schinke ez al. (2014) showed
that the TRPM4 gene is involved in the progression of
the androgen-independent growth stage, a late step in
the progression of this tumor with no satisfactory
treatment, indicating that this gene is an important
candidate for study as a possible target for therapy in
these patients.

TRPM4 could modulate a plethora of different sig-
naling pathways given its intrinsic capacity to regulate
the intracellular calcium concentration (Nilius and
Vennekens, 2006), and could become an important
player in different cellular processes, such as cell pro-
liferation (Launay et al., 2004), migration (Holzmann
et al., 2015; Shimizu et al., 2009), and apoptosis
(Simon et al., 2010). Recently, Holzmann et al. (2015)
described the role of TRPM4 in the regulation of
store-operated currents in prostate cancer cell lines
and its potential impact on cellular migration. Using a
siRNA against TRPM4, the primary human prostate
epithelial cells (WPEC) and DUI145 cells display an
increase in SOCE, but no effect was observed in PC3
cells. In our work, PC3 ShTRPM4 cells display a
decrease in SOCE (Fig. 6). This apparent discrepancy
could be explained by several technical factors such as
different cell culture conditions, extracellular bath
solutions, and the use of a siRNA or shRNA against
TRPM4 mRNA. The different approaches were used
for knocking down TRPM4, which generates an acute
or chronic reduction in TRPM4, and therefore, a dis-
tinct effect on gene expression could have an effect
beyond the TRPM4 gene. Our group has previously
shown that stable TRPM4 knockdown modifies the
cellular  phenotype, reversing the endothelial
(Echeverria et al., 2015) or epithelial/mesenchymal
transition (A. I. Sagredo, K. Marcelain & R. Armisén,
unpublished data), suggesting new biological roles for
TRPM4 expression beyond its function as a local cal-
cium regulator. Intriguingly, Holzmann’s group
reported that the decrease in TRPM4 expression in
DU145 and PC3 cell lines did not affect cell prolifera-
tion (Holzmann et al., 2015). Nevertheless, our data
are consistent with previously published results in
HelLa cells (Armisén et al., 2011) and with reduced
levels of c-Myc and cyclin DI mRNA found after
TRPM4 knockdown in our PC3 cell models.

We previously reported the effect of TRPM4 chan-
nel on cell proliferation through the regulation of the
oncoprotein B-catenin in HeLa cancer cells (Armisén
et al., 2011), which promoted its stability and
transcriptional function. This current work strongly
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supports a relationship between TRPM4 levels and -
catenin stability and function in prostate cancer cell
lines. Here, an increase in the activity of GSK-3f in
TRPM4-knockdown cells is shown to correlate with a
reduction in the total amount of B-catenin, a change
in its intracellular localization, and its function in the
transcription of genes related to cell proliferation.
Consistently, the role of TRPM4 in the regulation of
B-catenin signaling through GSK-38 has been
described in a colon cancer cell study (Major et al.,
2008). Importantly, the analysis of 10 gene expression
datasets from patients with prostate cancer and their
controls shows that the most enriched pathway coex-
pressed with the TRPM4 gene is the Wnt signaling
pathway, supporting our in vitro results and sustaining
a relationship between the expression of this channel
and the activity of this signaling pathway in prostate
cancer (Fig. S5). Interestingly, we did not observe a
significant increase in B-catenin protein levels in PC3
ShControl and PC3 ShTRPM4 cells upon Wnt3a
ligand stimulation, suggesting that the canonical path-
way is already activated in these cells (Fig. S6). More-
over, these results suggest that the effect of TRPM4
over B-catenin stability could be through a different
molecular mechanism. Although TRPM4 and B-cate-
nin are in adhesion complexes (Caceres et al., 2015;
Valenta et al., 2012), we did not detect an interaction
between these proteins (Fig. S7), suggesting a nonpro-
tein—protein interaction effect of TRPM4 over B-cate-
nin activity.

While Wnt and Akt/PKB are the canonical regula-
tors of GSK-3p function, a number of reports have
shown that calcium-regulated proteins also participate
in the modulation of GSK-3B activity. GSK-3p is
phosphorylated in vitro by classical protein kinase C
isoforms (Goode et al., 1992), and this phosphoryla-
tion results in GSK-3B inactivation (Goode et al.,
1992). It has also been shown that the inhibitory
phosphorylation of GSK-3f in serine 9 is reversed by
protein phosphatases such as calcineurin (CaN) and
PP2A (Kim et al., 2009). In addition, it has been
shown that calpain, a calcium-dependent intracellular
protease (Medina and Wandosell, 2011), cleaves GSK-
3B, removing the GSK-3B N-terminal inhibitory
domain with the net result of an increase in GSK-3
activity (Goni-Oliver et al., 2007). Finally, the mecha-
nism described in this work involves Ca®" /calmodulin
(CaM), the principal Ca®" sensor in eukaryotes
(Hoeflich and Ikura, 2002), and EGF receptor signal-
ing. It has been shown that Aktl activation after
EGFR signaling requires Ca’>"/CaM binding to Aktl
(Dong et al., 2007). In this work, the activation of
Aktl under basal conditions is significantly reduced in
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TRPM4-knockdown cells and correlates with a
decrease in Ser9 GSK-3f3 phosphorylation and B-cate-
nin signaling. Therefore, as the knockdown of TRPM4
channel is associated with a reduction in extracellular
calcium influx, we propose that TRPM4 modulates the
Ca’" /CaM signaling and indirectly regulates the acti-
vation of Aktl affecting the downstream signaling
events Ser9 GSK-3f phosphorylation and [-catenin
stability. To support these results, we used the CaM
inhibitor W-7, before EGFR stimulation, and then
detected the activation of Aktl (pSer473) and pGSK-
3B (pSer9). Interestingly, the inhibition of calmodulin
in PC3 ShControl cells resembles the results found for
PC3 ShTRPM4 on Aktl activity, suggesting a dimin-
ished activity of CaM in TRPM4-knockdown cells.
These results indicate a signaling axis composed of
TRPM4-Ca®" /CaM and EGFR-Aktl. We tested the
role of Aktl as the main Ca’"-regulated kinase on
TRPM4 activity, evaluating GSK-3p Ser9 phosphory-
lation postincubation with the drug TCN (Dieterle
et al., 2009), a specific inhibitor of Akt (Fig. S8). We
observed that the effect of EGFR stimulation on
GSK-3f phosphorylation was reduced in PC3 ShCon-
trol cells incubated with TCN, to levels similar to
those for nonstimulated condition and PC3 ShTRPM4
cells. These results indicate that the main kinase
responsible for the phosphorylation of GSK-3f is
Aktl in our model. Nevertheless, further work will be
needed to determine whether other calcium-dependent
kinases are involved in this process.

Finally, this work shows the involvement of
TRPM4-dependent calcium signaling in the regulation
of B-catenin and provides a framework to understand
the contribution of a series of ion channels whose
expression and/or function is altered in the tumor pro-
gression process (Farfariello et al., 2015; Flourakis
and Prevarskaya, 2009; Prevarskaya et al., 2011).
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Fig. S1. TRPM4 expression in prostate cancer cell
lines.

Fig. S2. Specificity of ShRNA used against TRPM4.
Fig. S3. No difference is observed in basal apoptosis
levels of PC3 ShControl and TRPM4-Knockdown
cells.

Fig. S4. Overexpression of TRPM4 increases the acti-
vation of Aktl.

Fig. S5. TRPM4 coexpression signature across 10 pro-
static cancer datasets.

Fig. S6. Wnt pathway activation in PC3 cells did not
significantly increase the total B-catenin protein levels.
Fig. S7. TRPM4 does not interact with B-catenin.

Fig. S8. Aktl is the main kinase responsible for GSK-
3B phosphorylation.

Data S1. Materials and methods.
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