Journal of Functional Analysis 274 (2018) 1155-1176

Contents lists available at ScienceDirect =

Journal of Functional Analysis

www.elsevier.com/locate/jfa

JOURNAL OF

The spherical p-harmonic eigenvalue problem in @CmssMark

non-smooth domains

Konstantinos T. Gkikas®, Laurent Véron "

& Centro de Modelamiento Matematico (UMI 2807 CNRS), Universidad de Chile,
Casilla 170 Correo 3, Santiago, Chile

Y Laboratoire de Mathématiques et Physique Théorique, (UMR 7350 CNRS),
Faculté des Sciences, Université Francgois Rabelais, 37200, Tours, France

ARTICLE INFO ABSTRACT
Article history: We prove the existence of p-harmonic functions under the
Received 18 April 2017 form u(r,0) = r~Pw(s) in any cone Cs generated by a

Accepted 24 July 2017
Available online 29 July 2017

C icated by H. Brezis . . s
ommunicated by rezis w under a Lipschitz condition on S.

spherical domain S and vanishing on 9Cgs. We prove the
uniqueness of the exponent 8 and of the normalized function

MSC: © 2017 Published by Elsevier Inc.

35J72
35J92

Keywords:

p-Laplacian operator

Polar sets

Boundary Harnack inequality
p-Martin boundary

Contents

1. Introduction . ... ... ...
2. EXistence . ... e
2.1, Estimates . .. ...
2.2, Approximations from inside . . . . .. ... L
2.3.  Approximations from outside . . . . . ... L

* Corresponding author.
E-mail addresses: kgkikas@dim.uchile.cl (K.T. Gkikas), veronl@univ-tours.fr (L. Véron).

http://dx.doi.org/10.1016/j.jfa.2017.07.012
0022-1236/© 2017 Published by Elsevier Inc.


http://dx.doi.org/10.1016/j.jfa.2017.07.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
mailto:kgkikas@dim.uchile.cl
mailto:veronl@univ-tours.fr
http://dx.doi.org/10.1016/j.jfa.2017.07.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2017.07.012&domain=pdf

1156 K.T. Gkikas, L. Véron / Journal of Functional Analysis 274 (2018) 1155-1176

3. UnIQUENESS . . . vt e e 1168
3.1.  Uniqueness of exponent 8 . ... ... ... .. ... 1168

3.2.  Uniqueness of eigenfunction . . . ... ... ... . L L 1169

3.2.1. The CONVEX CASE . . . v v v v v it e e e e e e e e e e e e e e e 1169

3.2.2.  Proof of Theorem E . . . . . ... 1170

References . . . ... . 1175

1. Introduction

Let p > 1, S a domain of the unit sphere SN~ of RY and Cg := {(r,0) : 7 > 0,0 € S}
the positive cone generated by S. If one looks for p-harmonic functions in Cg under the
form u(z) = u(r,0) = r~Pw(o) vanishing on dCs \ {0}, then w satisfies the spherical
p-harmonic eigenvalue problem on S

2

—div’ ((BQWQ + |V’w|2) = V’w) = (p—1)B(8— Bo) (5%12 + |V'w|2) N w inS

w=20 in 08
(1.1)
with 8y = % and were div’ and V'’ denote the divergence operator and the covariant

gradient on SV ! endowed with the metric induced by its isometric imbedding into RY.
Separable solutions play a key role for describing the boundary behaviour and the singu-
larities of solutions of a large variety of quasilinear equations. When N = 2 the equation
is completely integrable and has been solved by Kroll [5] in the regular case § < 0 and
Kichenassamy and Véron [4] in the singular case § > 0. In higher dimension, Tolksdorff
[13] proved the following:

Theorem A. If S is a smooth spherical domain, there exist two couples (Bg,ws) and
(B, wl) where Bs > 0 and By < 0, wg and wy are positive C*(S)-functions vanishing
on 08 which solve (1.1) with (B,w) = (Bs,ws) or (B,w) = (B%,ws). Furthermore Bs
and B are unique, and ws and wy are unique up to an homothety.

A more general and transparent proof has been obtained by Porretta and Véron [11],
but always in the case of a smooth spherical domain. The aim of this article is to extend
Theorem A to a general spherical domain. If we consider an increasing sequence of
smooth domains {S)} such that S; C Si C Sky1 and UpSy = S we prove the following:

Theorem B. Assume that S¢ is not polar. Then the sequence of the Bs, > 0 from Theo-
rem A is decreasing and converges to Bg > 0. There exists wg € WyP(S) N L>°(S) weak
solution of (1.1) with B = Bg. Furthermore Bs > 0 is the largest exponent B such that
(1.1) admits a positive solution wg € WyP(S).
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Under a mild assumption on S it is possible to approximate it by a decreasing sequence
of smooth domains S}, such that S; C g;c C Sy, and NSy, = S

o
Theorem C. Assume that S = S. Then the sequence [35;6 > 0 is increasing and converges
to Bs > 0 and there exists Og € WyP(S) N L®(S) weak solution of (1.1) with § = Bs.
Furthermore s is the smallest exponent B such that (1.1) admits a positive solution
Lp
ws € Wy (S).

We prove the uniqueness of the exponent 3, under a Lipschitz assumption on S.

Theorem D. Assume that S is a Lipschitz domain, then Bg = BS and if w and W'
are two positive solutions of (1.1) in Wy'P(S), there exists a constant ¢ > 0 such that
Tl <w < e,

The proof of Theorem C is based upon a sharp form of boundary Harnack inequality
proved in [g],

w(o2)
(oo

—In §01|0'1—0'2|a V(Tl,O'QES, (12)

for some ¢; = ¢1(N,p,S) > 0 and « € (0,1). Actually we have a stronger result, much
more delicate to obtain.

Theorem E. Let S be a Lipschitz subdomain of SN~1. Then two positive solutions of
(1.1) in Wy P(S) are proportional.

The proof is based upon a non-trivial adaptation of a series of deep results of Lewis
and Nystrom [6], [7], [8], [9] concerning the p-Martin boundary of domains. General
references for the p-Laplace operator can be found in [10] and applications in [14].

Acknowledgments This article has been prepared with the support of the collaboration
programs ECOS C14E08 between Chile and France, FONDECYT grant 3140567 and
Millenium Nucleus CAPDE NC130017.

2. Existence
2.1. Estimates

Through this article we assume that S¢ is not polar, or equivalently that it has positive

SN—
“Lp

1—caupaucity.
Lemma 2.1. Assume p > 1. Then any solution w € W, P(S) of (1.1) satisfies

[wllen sy < erllwllzas) » (2.1)
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ifp>N-—-1 wherewzl—% ifp>N—1and
Hw”Lw(S) <a ||WHLp(s) ) (2.2)
if 1l <p< N —1, where ¢c; > 0 depends on p, N, 5.

Proof. Multiplying the equation by w and using Hélder’s inequality, we derive

) [ (P +1VeP) s < (s - -8 [lulPas =2
° » s (2.3)
(i) [ (B +19l) " dS < 37708 - (- o) [ ol dS it 1<p <2
S

S

Notice that these inequalities hold for all p > 1. If p > N — 1 (2.1) follows by Morrey’
inequality. Here after we assume 1 < p < N — 1. Let « > 1 and & > 0. Then ( =
min{|w|, k}* 'w is an admissible test function, hence

1-If p > 2,
[ (322 + 19 ) F (V.S = (- VBB - ) [ (32 +195P?) 7 wcas
S S
<o / IV'w[P? w? min{|w| , k}*1dS + 0261’/ |w|? min{|w|, k}*~1dS
5
/|w\p min{|w|, k}*"1dS /|V'w|p min{|w|, k}*1dS
+ea? / (WP min{|w| , k}*~LdS, (2.4)

where ¢3 = co(N, p, 8) > 0. Since

/(62(,02 + | V'w] ) = (V'w.V'¢)dS > e3(p /|V w|” min{|w|, k}*tdS,
S

it implies that there exists ¢4 = ¢4(N, p, 8) such that

/|V’w\p min{|w|, k}*1dS < C4/ |w[? min{|w|, k}*"1dS, (2.5)

which yields
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[V as e [ li)r as. (2.6
S S

where j(w) = min{|w| ,k;}OT_lw.
2-If1 <p <2, then

-2

/ (ﬁ%ﬂ + |v'w\2) VW) dS

5
= / (ﬂ2w2 + |V’w|2> e |V'w|? min{|w| , k}*~1dS
S
la—1) / (862 4 1V6l?) 7 Ve o] . (2.7)
Sn{|w|<k}
Since

/ (62w2 + \V'w|2) 2 IV'w|? min{|w| , k}*~1dS
5

_ / (8% + IV'el”) " min{le, k}*~1ds

S
— B2 / (ﬂ2w2 + |V’w|2> o min{|w|, k}*'w?dS
s s
> /|V’w|p min{|w| ,k‘}o‘_ldS—BQ/ (62w2 + |V'w|2) * min{|w|, k}* 'w?dS,
s S
we derive

/|V’w|p min{|w|,k}”‘71dS < B Y pp - (p— l)ﬁo)/|w|p min{|w| ,."c}o‘fldS7 (2.8)

S S

which leads to (2.6). Letting k — oo we infer by Fatou’s lemma,

/]v' |w|°‘£1+1]pds < 64/|w|a*1“‘ds. (2.9)
S S

If p < N —1 we derive from Sobolev inequality and putting ¢ = a« — 1+ p and s =

N-1
Noi-p = 1

/|w|sq S| < 05/|w|qu, (2.10)
S S
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and ¢; > 0 depends on N, p and S. Iterating this estimate by Moser’s method we
derive (2.10).
_ x _ m(N-1)
Ifp=N—1wehavefor 1 <m<p-1and m" = 5

co /|w|(a;1+1)m* ds S /’v/ |(.d|a771+1‘ ds S |S‘%—1C4/‘w‘(x—l+fgds’
S S S

3

and ¢ = ¢g(V, p), hence

-

t

/\w|t‘1d8 < c5/|w|qu, (2.11)
S S

m(N—1) m
1=

with t = PN = N

—. The proof follows again by Moser’s iterative scheme. 0O

Proposition 2.2. Let S; and Sy be two subdomains of SN=1 such that S; € S1 C So and
Sy not polar. Let B; > 0, j=1,2, such that there exist positive solutions w; € Wy (S;)
solutions of

V/wj> = (p — 1)ﬂj<ﬁj — ﬁo) ( ?wf + ‘V/wj|2) 2 wj
m Sj (2.12)
wj; = 0

p—2

—div’ (( 2w? + |V’wj|2) ’

Then B1 > Ba.

Proof. Set u;j(r,0) = r~Piw;(c), Cs, = (0,00) x S; and assume 3; < 2. By Harnack
inequality wy > ¢ > 0 on S, thus

us(r, o) > er—P2 a.e. in Cg,.
For ¢ > 0 there exist r. > 0 such that
eus(z) > up(x) Vre Cs, NB,..
Let § > 0, there exists Rs > 0 such that
ui(r) <0  Vaoels NBg,.

Hence ¢ = (uy — eug — 8) 4 € WyP( gel’R‘s), where Qg‘l’R‘s ={x € Cg, :r. < |z| < Rs}.
This implies
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0= / (Va2 Vg — [V (ewn)P~2 Vew,).VCda
Qe
_ / (VP72 Tuy — [V (eun) [ V(ew). V(g — uz))de.

Qgel’Ré N{u1—eus>48}

Therefore V(u; — eus — 6)1 =0 a.e. in QTSZ’R[S

set. Letting § — 0 yields R; — oo, thus we obtain u; < eug in Cg, N E:e hence u; <0

, which leads to u; — eus < § in the same

in Cg,, contradiction. O

2.2. Approximations from inside

Proof of Theorem B. Let {Sj;} be an increasing sequence of smooth domains such that
S C Sk C Sky1. We denote by {(Bs,,wr)} the corresponding sequence of solutions of
(1.1) with 8 = Bg, and w = wy. The sequence {fg, } is uniquely determined by [13], it
admits a limit 8 := B¢, and the wy are the unique positive solutions such that

Sk
If p > 2, we have
/‘V/wk|p dS < / (ﬁg«kwi =+ |v/wk‘2)T |v/wk|2ds
Sk Sk
— (p— )55, (85, ~ o) [ (Bt + [Vea”) * wias
Sk
< 2(p*4)+ p—2 p 1o, P=2 2
<25 (p - 1), (s, — o) | (85 wh + [Viwnl” 2w} ) ds
Sk
1
< c7(N, p, Bsk)/w£d5+ 5/ |V'wi|? dsS.
Sk Sk
Since fs, < f1, we derive
/IV’Wklp dS < cs, (2.13)
Sk

from the normalization assumption with cg = 2¢7(N, p, 51).
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If 1 < p <2, we have

/|V/wk|1’ ds < / (ngkw% + |V/wk|2)§ dsS
Sk

Sk
< Bs,.(pBs), + (p — 1)50)/ (ﬁ?gkw% + |V'Wk\2) N wpdS
Sk
< 8L (0B, + (o~ 1)) [ whdS,
Sk

and we obtain (2.13) with ¢ = 82 (pB1 + (p — 1)B0).
Next we extend wy by 0 in S¢. Then there exists w € Wol’p(S) such that wp — w
weakly in Wy?(S), up to subsequence that we still denote {wy}, and wy, — w in LP(S).

Step 1: We claim that V'wy, converges to V'w locally in LP(S).

Let a € S and r > 0 such that By.(a) C S. Then for k > ko, Bo.(a) C Si. Let
¢ € C§°(Bar(a)) such that 0 < ¢ < 1, ¢ = 1 in B,(a). For test function we choose
e = C(w — wyg), then

p—2

/ (@%kwi + |V/wk|2) o (V'wi.V'ny)dS
Sk
= (p—1)Bs,(Bs, — 50)/ (ﬂ?@kwi + |V/Wk|2) 7 wpmdsS.,
Sk

By the above inequality, we have

/ < (5%}2 + \V'w|2)T Viw — (ﬂgsz + \V'wk|2)T V’wk.V’nk>dS
Bgr(a) s
— / (ﬁ2w2 + |V'w|2) o (V'w.V'n)dS
Bzr(a)

p—2
—(p—1)Bs,(Bs, — 50)/ (ﬂ%sz + |V/Wk|2> © wpkdS.
Sk
Using the weak convergence of the gradient, we have
pT—Z
lim (5%2 + |V’w\2) (V'w.V'n)dS = 0.

k—o0
sz (a)

Since wy, is uniformly bounded in Wy*(S) and wy — w in LP(S), we have
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p—2

. 2\ 2
klglgo / (5?9,&%3 + |V wy] ) wrpnkdS =0,
Bar(a)
and
. 2
Jim. / (w— wk)< (5%2 + V'l ) Vi — (ﬂgkw,ﬁ + |V wy ) v'wk.v'g>ds
Bzr(a)
=0.
Combining the above relations we infer
252 i
klgrolo << <ﬁ2w2 + | V'w| ) Viw— (ﬁskwk + |V wi| ) V' V' (w — wk)>dS
BQT(G.)
= 0. (2.14)

Next we write

/ C< <ﬁ2w2 + |V’w|2) P V- (B%sz + |V’wk|2) 2 V' V' (w — wk)>dS

B2r (a)

1 =N =

=3 [ (B 1vel) T (Bk+ Tal) T ) - w0 as
sz(a)
1 2 2 ro2 pT_2 2 2 / 2 %

w3 [ (P4 1vel) T - (Bt 4 Ival)
B27v(a)

x (IV'wf + %2 = BE,wf — [V'wil*) dS
1
2

5 [ (e vel) T - (Bt 1val) T ) (% - ) ds
B, (a)
(2.15)

If p > 2, we have from (2.4),
p—2 p—2

/ < (B2w2 + |[V'w| ) Vi — (ngwﬁ + |V'wk|2) o

Bar(a

V' V' (w — wk)>dS

/ ¢ v’w|”*2+|v’wk|p*2) V' (w — wi)|* dS

Bzr a

l\3|>—
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1 = P2
) / ¢ ((ﬂ2w2 =+ ‘V/w|2) - (5‘%sz + |v/wk|2) ) (52 7 - ngw?@) ds
Bgr(a)

> min{271, 2277} / ¢V (w —wp)|"dS
By, (a)
1 232 232
-5 / c((52w2+w|2) — (B30 + [Venl’) )(52 ? - B5,wf) ds.
B27‘(a)

(2.16)

Since wy, — w in LP(S), Bs, — B and wy, w are uniformly bounded in Wol’p(S), we derive

/ 4((/3%2 +IVl®) - (i + |V’wk~|2)2) (8% — B5,7) dS = 0
Bzr(a)

as k — oo. Jointly with (2.14) we infer that
: / P _
klingo |V (OJ - wk)| dS = 0. (217)
B,.(a)
If 1 < p <2, then

/ g< (,3%2 n |V’w\2) I v (5§kw,§ n |v’wk\2) VoV (w — wk)>dS

BQTV(CL)

= / C< (ﬁ%kw% + |V’w|2) P V- (ﬁ%kw% + |V’wk|2) 2 V'wp V' (w — wk)>d5’
BQT(a) b2 b
+ / (< <(ﬁ2w2 + |V'w\2) s (ﬁ%kwi + |V’w|2> ’ ) V'w V' (w— wk)>d5’.
B2T((l)

(2.18)

Up to extracting a subsequence, we have that wyp — w a.e. in S and that there exists
® € L'(S) such that

lwe|? + |w|P < @ a.e.in S and Vk > 1. (2.19)

Since

p—2 p—1

(8302 +1Vwl) * 1wl < (B30F +IVwl®) < Bg Wl + VWl

and
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p—2

(2 + 1Vwl®) 7 Vel < 8Pt 4 [V

we derive that

p—2

‘@%P+Ww2f¥(%wﬁ+waXT|vw320%1@’u|vaﬁ,

which implies that
2 2 2 1)2;2 2 2 2 pTd ’
C((B W + |V w| ) - (@gkwk +|Vw| ) )V’w 0 in L”(S)
where p’ is the conjugate of p, and finally

/ C<((ﬂ2w2+|v/w|2)p2 (5Skwk+|v Wl ) >VwV (w—wg))dS — 0
By, (a)
as k — oo. (2.20)

For the last term on the right-hand side of (2.18), we have, for v € R, and A,B € R¥,

p—2 p—2

(v+BP) " B-(v+1AP) © A

)

pP—2

((+imsa-0aP)™ @B a-na)d

Sl

p—2

(v+ 1B+ -0AP) " dt | (B-A)

I
o— _

1 —4
/ v+ [tB + ( 1—t)A|) B+ (1-t)A.B—A)(tB + (1 — t)A)dt.
0
This implies
(v+1BI) T B=(y+IAP) T A.B-A)

p=2

1
_ /(7+\tB+(1—t)A\2) at| B-AP
0

1 p—4
/ v+ [tB + 1—t)A|) B+ (1—t)A.B— A)2dt
0
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We observe that

1 ped
/ 7+|tB+ 1—t)A|) B+ (1-1)A.B— A)2dt
0

1

< |B—A\2/(7—|—|tB+(1—t)A|2>Tdt,
0

and since 1 < p < 2, we finally obtain

(v+B2) T B (1+1aP) T AB-A)

p—2

> (p—1) /(7+|tB+(1—t)A|2)Tdt B — AJ? (2.21)

pP—=2
> (p-1)[B-AP (y+1+[B] +|AP) °

We plug this estimate into (2.18) with v = fZw?, A = V/w and B = V'wy, then

/ (Bt + 1Vwl?) V0w — (BRwd+ IVarl) * Vir V' (w — wi))dS

B
p—2

/ CIV/ (@ — wp) 2 (5,§w,3+1+|vwk|2+ |V’w|2)TdS. (2.22)

BZr(a)

Set ¢(.) = w2 + 1 + |V'wi|> + |[V'w[?, then

/ V'w — V'wg|? dS = / V' — VP o™ =25 ds

By (a) B,(a)

[NIS]
M
IS

< /|V'w—V’wk|2¢p2;2dS /¢%ds

Br(a) B (a)

Jointly with (2.14) and (2.22) we conclude that (2.17). Step 1 follows by a standard
covering argument.

Step 2: We claim that wy, converges to w in WyP(S).

Up to a subsequence that we denote again by {k}, we can assume that w, — w and
V'w, — V'w a.e. in S. Let ¢ € C§°(S5), then there exists k. € N such that the support
K of ¢ is a compact subset of Si for all k > k.. If 1 < p < 2,
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pP—2
2

2\ 2 -1
(B30t + IVenl®) ™ [Vl < [Vl

which bounded in Lp/(K ), then uniformly integrable in K and by Vitali’s convergence
theorem

p—2

p—2
(B2 + IVr') * Vi > (8 + 19wl®) 7 Vo,

!
in Lj,,

(S). Similarly

p—2
2

p=2
(ﬂgkwi + |V’wk|2> T wp o (BQwQ + |V’w\2) w,

. 1
in Ly,

(S). Ifp>2

p=2
2 — -1
(B3t + 1Vrl) T 1Vl < e (ol + Vel

and we conclude again by Vitali’s convergence theorem that the previous convergences
hold. Since

/ (ﬁ%kwﬁ + |V'wk|2) = (V'wi.V'¢)dS
Sk
=(p—1)Bs,(Bs, — 50)/ (ﬂ%sz + |V’wk|2) ' wi(dS

Sk

we conclude that w is a weak solution of (1.1) with g = Ss.
2.8. Approximations from outside

Proof of Theorem C. Since S° has a non-empty interior, the existence of a sequence
{wy,} corresponding to solutions of (1.1) in S} with 3 = g, is the consequence of [11].
The fact that {Bs; } is increasing follows from Proposition 2.2. We denote by B = Bs
its limit, and it is smaller or equal to Bs. Estimates (2.4) are valid with S}, w; and Bg;
instead of S, w and . If we extend wj, by 0 in S} ¢ these estimates are valid with SN-1
instead of S},. Then up to a subsequence the exists w € WP(SN=1) and a subsequence
still denoted by {k} such that w, — w weakly in W1P(SN=1) strongly in LP(SV~1) and
a.e. in SN~!. Furthermore, as in the proof of Theorem A, for any compact set K C S,
V'wj, — V'w' in LP(K). This is sufficient to assert that w is a weak solution of

p—2

—div’ ((320/2 + |V/w'|2) ’

p—2

z .
W' in S.

V) = (o= BB - o) (B + 197
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Moreover w'[s; belongs to W, P (S,) for all k. Since w), = 0 in S¢ and converges a.e.
to w, this last function vanishes a.e. in UpSf = (N Sk)® = S°. Therefore w vanishes a.e.
in S° and since it is quasi continuous, it vanishes, (1 — p)-quasi everywhere in S°. From
Netrusov’s theorem (see [1, Th 10.1.1]-(iii)) there exists a sequence {n,} C C§°(S) which
converges to w in WHP(S), thus w € Wy?(S). O

3. Uniqueness

3.1. Uniqueness of exponent B

Proof of Theorem D. If S is Lipschitz, Cy is also Lipschitz. We fix z € S ~ SN =1NdCq
and we apply [8, Th 2] in G, = Cs N B%(z) to two separable p-harmonic functions
u(r,0) = r~Pw(o) and o/ (r,0) = r~7"w' (). There exist v € (0, 1),c10 > 0and o € (0,1)
such that

U «a
(y2)) ‘ < c1p ‘yl — y2| Vyl,y2 S CS N B,Y(Z) (324)
2

w(y2)
w'(y1) w'(y2)

’ <ciolyr —v2l® VYynye e SN B, (2). (3.25)

We denote by £(z,y) the geodesic distance on SN~! and by £(x, K) the geodesic distance
from a point z € SV~ to a subset K. Since the set S, = {0 € S : £(0,05) < 1} can be
covered by a finite number of balls with center on 95, we infer that

—In w(yz2)

< . 2
o () ()| = c11 Vyi,y2 €5y (3.26)

In S\ Sy we can use Harnack inequality to obtain
2

w(y1)
w(y2)

—c12 < 1In < ¢ Yy1,y2 € S\E% st L(y1,y2) < 3. (3.27)

Hence there exists a constant ¢;3 > 0 such that (3.27) holds for any y,y2 € S\ S~ , with
2

c12 replaced by ci3. Furthermore w’ satisfies the same inequality in S\ S~. Combining
2

the two inequalities we obtain

—2613 < In w(y1) 7 yl) < 2613 Vyl,yg S S\gl (328)
wly2 w'(y2) 2

Combining this estimate with (3.25) we derive that it holds for all y;,y. € S. This
implies
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w(y2)

672613 w(yQ) W(yl) < 62613
N "(y2)

W'(y2) ~ w(y1) w

Vyi,y2 € S. (329)

Assume now that there exist two exponents 8 > ' > 0 such that r—Pw(.) and
r‘ﬁlw’(.) are p-harmonic and positive in the cone Cg and vanishes on dCs. Put 6 = £,
n=uw'?and

7o) = —di' ( (02 + 90°) 7 'n) = = 0503 — o) (8207 + (9'0) 7
then

T = —0m2 (8% + [VW/P) 7 (88w + (p— D96 — 1) [V) <.

Up to multiplying w’ by A, we can assume that n < w and that the graphs of n and
w are tangent in S. Since w’ < cw, N = o(w) near AS. Hence there exists oy € S such
that w(og) = n(op) and the coincidence set of n and w is a compact subset of S. We put
w = w — 1, since Vw(og) = Vn(og) we proceed as in [12, Th 4.1] (see also [3] in the flat
case) and derive that w satisfies, in a system of local coordinates (o1, ...,0n_1) near oy,

0 ow ow
= — P — R PR >
Lw ; T, (AM agj) + ;cj 90, + Cw >0,

where the matrix (A, /) is smooth, symmetric and positive near oy and the C; and C
are bounded. Hence w is locally zero. By a standard argument of connectedness, this
implies that the zero set of w must be empty, contradiction. Hence g = §'.

3.2. Uniqueness of eigenfunction

The proof is based upon a delicate adaptation of the characterisation of the p-Martin
boundary obtained in [8], but we first give a proof in the convex case.

3.2.1. The convex case

Theorem 3.1. Assume S is a convex spherical subdomain. Then two positive solutions of
(1.1) are proportional.

Proof. We recall that a domain S is (geodesically) convex if a minimal geodesic joining

two points of S is contained in S. If § ¢ SN—1

is convex, the cone Cy is convex too. Since
S is convex, it is Lipschitz and by Theorem D, 8g = BS := . Let w and w’ be two positive
solutions of (1.1) satisfying supgw = supgw’ = 1. We denote by u,(z) = |#|Pw(.) and
U (z) = |2|7Pw’(.) the corresponding separable p-harmonic functions defined in Cg. If
0 <a<b, weset Cg’b = CsN(By\ By). Then for 0 < € < 1 we denote by u. the unique

function which satisfies
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—Apuc =0 in C’g’l
ue = e Pw in Cs NOB, (3.30)
ue =0 in (CsNOBy)U (0Cs N (By\ B)) .
Then
(uy — 1)y <uc<w, inCg. (3.31)

Furthermore € — wu. is increasing. When € | 0, ue | ug where ug is positive and
p-harmonic in Cg°, vanishes on 0\ {0} and satisfies (3.30) with € = 0. In particular

Bug(r,0) = w(o) locally uniformly in S. (3.32)

lim r

r—0
We construct the same approximation . in Cg’l with w’ instead of w. Mutadis mutandis
(3.31) holds and u’ | u{, which is positive and p-harmonic in C, satisfies

(U — 1) < ugy < uyy in Cé’o,
and thus
lim rPuf(r, o) = W' (o) locally uniformly in S. (3.33)
r—

However, by [8, Th 4] ug and u{, are proportional. Combined with (3.32), (3.33) it implies
the claim.

3.2.2. Proof of Theorem E

In what follows we borrow most of our construction from [8] that we adapt to the case
of an infinite cone a make explicit for the sake of completeness. The next nondegeneracy
property of positive p-harmonic functions is proved in [8, Lemma 4.28].

Proposition 3.2. Let Q C RN be a bounded Lipschitz domain and 1 < p < co. Then there
exist constants p > 0, c14,c15 > 0 depending respectively on Q (for p), and p, N and the
Lipschitz norm M of OQ (for c1a4 and c15) with the property that for any w € 9Q and
any positive p-harmonic function u in 0, continuous in an Egp(w) and vanishing on
o0 N B,(w), one can find £ € SN, independent of u, such that

c1—41% < (Vu(y),§) < |Vu(y)| < C14%, (3.34)

for all y € Cs N B yjw (w).

€15

If Q is replaced by a cone Cg, the nondegeneracy property still holds uniformly on
0Cs \ {0}.
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Corollary 3.3. Let 1 < p < oo, S € SN~ is a Lipschitz domain and Cs the cone
generated by S.

(i) Then there exist constants p < %, c14, 15 > 0 depending respectively on S (for
p), and p, N and the Lipschitz norm M of 0S and diam(S) (for c14 and c15) with the
property that for any w € dCs and any positive p-harmonic function u in Cg, continuous
in Cg ﬁ§20|w|(w) and vanishing on 0Cg O§p|w|(w) continuous, one can find & € SN~1,
independent of u, such that

u(y)
dist (y, 0Cs)’

-1 u(y)

U Gt g, 005 = (Ve):€) < [Vu(y)] < e

(3.35)
forally € B (w)NCs.

(i) Then there exist positive constants k and ci6,c17 depending on S (for k), and p,
N and the Lipschitz norm M of S and diam(S) (for c¢i6,c17) such that for any a > 0
and any positive p-harmonic function u in C% vanishing on 0Cs N B, there holds

1 u(y) u(y)
I A < )
€16 st (5, 005) = v W = s g eg)
Vy € Cg"" s.t. dist (y,0Cs) < Kk y]. (3.36)

Let w,w’ € Wy?(S)NC(S) be positive solutions (1.1). Since % is bounded from above
and from below in S by positive constants, we can assume, as in the proof of Theorem D,
that w > w’ in S and that the graphs of w and w’ are tangent. Hence, if w # w’, then
w > w' in S and there exists a sequence {0, } converging to og € 9S as n — oo such
that

!
lim w(on)
n—oo W Un)

=1

We define é; = sup{d > 0: dw < w'}. For t € (41,1), we set

¢y =sup {w',tw} and 1, = inf {%w’,w} (3.37)

We also set
Vg, (1, 0) = r75¢t(0) and vy, (r,0) = riﬂwt(o) Y (r,o) € (0,00) x S. (3.38)

Lemma 3.4. The functions ¢; and v; are respectively a subsolution and a supersolution
of (1.1) in Wol’p(S), v, and vy, are respectively a subsolution and a supersolution of
—A, in Cs, and there exists 7 € Wy'*(S) solution of (1.1) such that

W <o <n<ihy Sw vt € (61,1). (3.39)



1172 K.T. Gkikas, L. Véron / Journal of Functional Analysis 274 (2018) 1155-1176

If Sy is the subset of n € W&’p(S) solutions of (1.1) and satisfying (3.39), then w, =
sup{n : n € St} belongs to Si. It is increasing with respect to t with uniform limits w'

when t | 01 and w when t 1 1. Finally, if 0; = i:gll , there holds

¢r < Opw + (1 — O0p)w’ < 2. (3.40)

Proof. Clearly ¢; and ; are respectively a subsolution and a supersolution of the opera-
tor T, they belong to Wol’p(S) N L>(S) and they satisfy v’ < ¢ < 1by < w. Furthermore,
by Dini convergence theorem

lim ¢ = w = lim and lim ¢; = ' = lim 1,
tT1¢t tﬂ% twl(bt tifsl,(/)t

uniformly in S. Moreover, in spherical coordinates,

—2 —2

pP—= N _ 1 pP—=
—Apu(r,o) = — ((u% +7r72 |V’u|2) ’ ur> -— <u% +r72 |V’u|2) *u,
. r

) p-2
_ T_Zdi,ul <<u% + 2 |V’u|2) 2 V/u) .
Hence, if u(r, o) = r=Pn(o),

~Ayulr ) = B2 DED LT (),

Thus vy, is a subsolution —A, in Cg and vy, is a supersolution. Since the operator 7 is a
Leray-Lions operator, it follows by [2] that there exists n € Wy (S) N L>(S) satisfying
T(n) = 0and ¢, < n < 1 in S. We denote by S; the set of n € W,"*(S) N L>(S)
satisfying T(n) = 0 and ¢; < n < ¢ in S. Then there exists a sequence {n,} C
Sy and w; € WyP(S) N L>®(S) such that 1,(0) 1 wi(o) for all o € ¥, where X is a
countable dense subset of S. By Lemma 2.1 {#,} is bounded in LP(S), hence in C7(S)
for some 7 € (0,1). By the estimates of the proof of Theorem B-Step 2, {n,,} is bounded
in I/VO1 P(S). By standard regularity theory, we can also assume that 7, — w; in the
Cl.(S)-topology. Hence w; is a weak solution of (1.1), it belongs to WyP(S) N L>(S)
and satisfies ¢; < wy < 9. Therefore it is the maximal element of S;. The monotonity
of w; is a consequence of the monotonicity of ¢; and v, and the last statement (3.40) is
a straightforward computation. 0O

Next we recall the deformation of p-harmonic functions already used in [8]. If 7 € (0, 1)
and 0 < a < b, we denote by v; 4 the p-harmonic function defined in C’g’b satisfying

a Prw+ (1 - T)w’)(%) ifx € CsNOB,

Urap(z) =4 0 if z € Cs N OBy (3.41)
0 if 1 € 0Cs N (B \ Ba) -
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Lemma 3.5. The mapping (7,b) +— vrqp IS continuous and increasing. If vrq =
hm Ur,a,bs then it is a positive p-harmonic function in Cg™ wvanishing on 0S N B,

and there holds
Uy (2) < g (2) S vr o) < vy (2) Sup(z) Voe g™, (3.42)

where 7* = (1 — §1)7 + 91 and as a consequence

lim sup |z|” (u,(z) — Vro(z)) =0 and lim sup |z|” (Vra(z) — U (z)) =0 (3.43)

™ jz|>a ™40 |z>a

Furthermore

o — Uy 1
0< e Ura U’a<<__l>“7',a Vo<r<7 <L (3.44)

- -7 01

Proof. The uniqueness and the (strict) monotonicity of (7,b) — v, 4 follow from the
monotonicity of 7+ 7w + (1 — 7)w’ and the strong maximum principle. The continuity
is a consequence of uniqueness and regularity theory for p-harmonic functions. It follows
from (3.40) with ¢ = 7* and the fact that vg_. and vy_. are respectively a subsolution
and a supersolution of —A,, that we have

U (2) S Vg () S Vrgp(x) < vy . (2) <up(z) Ve C’g’b,

which yields (3.42). Similarly, we have on 9C%"

0 < Yrab Z0nab g < (07 = D < (071 = 1)vran, (3.45)
T —T
equivalently
0<vrap < (1+ (7 =7)(67" = 1)) vrap. (3.46)

By the maximum principle (3.45) holds in C’a’ This implies (3.44). O

As a consequence of (3.44), 8,v, 4 exists for almost all 7 € (0,1) in W, ?(C&") for all
b > a and it is a solution of

Lw=V. ((p —9) [V, <vum.vz>vum)
Z 0?0 g (3.47)
B O0x; 33: B

where
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OV7 ¢ OVr o

8$j axi

bij(x) = |Vo,q| " ((p -2) + 63 |vvm2> )

L satisfies the following ellipticity condition

min{1,p — 1} [Vor o €7 <D bij(@)€&; < max{lp— 1} |V, 0° [¢]* V€€ RN,
i,

(3.48)

It is important to notice that Lv, , = (p — 1)Apv, 4 = 0. The estimate (3.48) combined
with (3.36) and the decay of v, , and 0;v; o implies that they satisfy Harnack inequality
and boundary Harnack inequality in C¢. There exists a constant & > ¢17 > 1 (see 3.36)
such that

1 0;v; a(ma) ﬁfvfa(:c) Aa‘rvﬂra(xa) .
[— k) ) < s .
¢ vT,a(xa) o 'U'r,a(l'> =€ 'U'r,a(l'a) Vz € CS ) (3 49)

where x, = (éa, 0¢) for some o € S fixed. We set

077 a(7) o Orvr4(z)
M(t)= sup ————= and m(t) = inf ————= YVt >a 3.50
z€CY VUra(T) 2eCl Uro(w) ( )
Lemma 3.6. For t > ca there holds
. . -1
M(ét) —m(ét) < (M(t) —m(t)). (3.51)

241

Proof. There holds
Orvro(x) = m(t)vro(z) >0 and M(t)vro(z) — Orvre(z) >0 Vo € CF.

Estimate (3.49) is valid for any couple of positive solutions (1, he) of Lh = 0 in Cg van-
ishing on 0C¢N B, in particular for (9;vr o —m(t)Vr a4, Vra) and (M (¢)vr g — 07 Vs 4, Vr.a)-

Hence
(Pt i) < Ol gy < o (%0 ) ey,

(3.52)

This implies

| =

<8Tv7,a($a)

Vra(Ta)

- m(t)) < m(ét) —m(t),

and
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E);:;_,éz)n) —m(t) < &E(m(et) —m(t)) Vo e CL.
Finally
M (et) —m(t) < & (m(et) —m(t)). (3.53)
Similarly
M(t) — m(ét) < &2(M(t) — M(ét)). (3.54)

Summing the two inequalities we get
(M(t) = m(t) + (M(ét) — m(et)) < & (M(t) —m(t)) — (M(et) —m(et))),
which yields (3.51).

End of the proof. By the differentiability property of v, , with respect to 7, there exists
two countable dense sets {(r,} C [a,00) and {0,} C [a,00) such that Orv;q(ry,0.)
exists for almost all 7. We put z, ,, = (,,0,), hence

(2 () (2l (2
_ /1 <aTvT,a(xV,M> ) 6Tv7,a<x,,u,)> e

Vra(Ty,p) Vra(Tupr)

g

0

Using the continuity of % and the density of {o,,} we derive

‘m (“’(”) ) —In (”("/) ) ’ < M(r)—m(r,) VY(o,o')€SxS. (3.56)

w'(o) w'(o’)

We can assume that r, > éma for some sequence {v, } tending to infinity with n, hence

‘m (“’(") ) “In <°’("/) )‘ <Om (M(&) —m(@))  Y(o,0') €S xS VneN,

w'(a) w'(a’)
(3.57)
where 6 = zzjr} < 1. Letting n — oo implies the claim.
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