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Critical phenomena in quasi-two-dimensional vibrated granular systems
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The critical phenomena associated to the liquid-to-solid transition of quasi-two-dimensional vibrated granular
systems is studied using molecular dynamics simulations of the inelastic hard sphere model. The critical
properties are associated to the fourfold bond-orientational order parameter χ4, which measures the level of
square crystallization of the system. Previous experimental results have shown that the transition of χ4, when
varying the vibration amplitude, can be either discontinuous or continuous, for two different values of the height of
the box. Exploring the amplitude-height phase space, a transition line is found, which can be either discontinuous
or continuous, merging at a tricritical point and the continuous branch ends in an upper critical point. In the
continuous transition branch, the critical properties are studied. The exponent associated to the amplitude of
the order parameter is β = 1/2, for various system sizes, in complete agreement with the experimental results.
However, the fluctuations of χ4 do not show any critical behavior, probably due to crossover effects by the close
presence of the tricritical point. Finally, in quasi-one-dimensional systems, the transition is only discontinuous,
limited by one critical point, indicating that two is the lower dimension for having a tricritical point.
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I. INTRODUCTION

The study of granular matter has attracted a large attention
not only because of its numerous applications to describe
natural and industrial processes, but also because it serves as
an excellent prototype of nonequilibrium systems, where it is
possible to test different hypotheses and models. For example,
and to simply mention a few, it has been possible to study in
detail the fluctuation theorems [1–3], the extension of kinetic
theory when the spatio-temporal scales are not completely
separated [4–6], the effect of correlations in the development
of giant density fluctuations [7], or the formation of patterns
and structures [8].

Of particular interest is the quasi-two-dimensional (Q2D)
geometry, where grains are placed in a shallow box which
is vertically vibrated. Here, if the box height is smaller than
two grain diameters, it is possible to follow experimentally the
motion of all grains. Together with the possibility to manipulate
the interparticle interactions, this access to the global response
and motion at the grain scale make this geometry particularly
relevant to build the statistical thermodynamics of nonequi-
librium systems [9]. Q2D systems have been extensively
analyzed both numerically and through simulations [10–16].
In the pioneer works of Olafsen and Urbach [10] and Losert
et al. [11], it was shown that a Q2D granular gas presents
both clustering and ordering transitions for low vibration
amplitudes. For large vibration amplitudes, it was shown that
when the vibration amplitude or filling density surpasses a
certain threshold, a solid-liquid-like transition takes place, and
furthermore, different solid phases appear depending on the
filling fraction and box height [12,13]. This phase separation
is produced by a negative compressibility in the associated
2D state equation, and it was shown that in the transition, the
pressure as a function of the density reaches a plateau as in
the van der Waals case [15]. Other aspects of the dynamics
of Q2D as the effect of forcing, dissipation, and inelasticity,

together with the implementation of effective 2D models, have
been studied in detail as well (see the review [9] and references
therein).

Using two Q2D configurations of different heights and
global densities, it was shown experimentally that the liquid-to-
solid transition could be either continuous or discontinuous for
the crystalline order parameter when increasing the vibration
amplitude [17]. In the continuous case, five critical exponents
were measured, which present universality properties when
compared to other experiments where the plate mechanical
properties were changed [17,18]. Our objective in this article
is twofold: on one hand, we aim to reconcile the fact that
the transition has two different characters when changing the
height, and, on the other hand, to test the universality of
the exponents found experimentally. To do so, we analyze
the system through molecular dynamics (MD) simulations
[19,20]. This approach has an inherent advantage: the pa-
rameters, particularly the height of the box, can be varied
continuously unlike in the experimental counterpart. It is
found that a tricritical point appears in the amplitude-height
parameter space, where the continuous and discontinuous tran-
sitions converge. The universality is analyzed by considering
dissipation coefficients that are quite different from those
used experimentally. We observe, also, that two is the lower
critical dimension for the existence of the tricritical point
as quasi-one-dimensional systems do not show continuous
transitions.

The plan of the paper is as follows. In Sec. II we describe
the configuration under study, the order parameter that char-
acterizes the liquid-to-solid transition, and its main properties.
Section III describes the simulation method and parameters
and presents the results for Q2D systems. The case of quasi-
one-dimensional systems, where larger wavelengths can be
achieved, is analyzed in Sec. IV. Finally, a discussion of the
results is given in Sec. V.
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II. LIQUID-TO-SOLID TRANSITION IN Q2D SYSTEMS

Figure 1 presents the Q2D geometry under study. N

monodisperse spherical grains of diameter σ are placed in a
shallow box of large lateral dimensions, Lx,Ly � σ , while
the height is limited to the range σ < h < 2σ . The whole box
is vibrated vertically with angular frequency ω and amplitude
A, in the presence of a gravity acceleration g. In experiments,
the oscillation waveform is sinusoidal, while in simulations
a biparabolic waveform is used for higher accuracy [21].
The collisions between grains and with the top and bottom
walls are inelastic and frictional. For fixed geometrical and
mechanical parameters, and keeping constant the frequency, a
transition takes place when increasing the amplitude. Below
the threshold amplitude a homogeneous (except for boundary
effects near the lateral walls) fluidlike state develops, and
above this threshold, a solidlike cluster forms surrounded by
the liquid phase. Depending on the height and the amplitude
of oscillation, the solid cluster presents crystalline phases of
different symmetries [13]. In the range of parameters used in
Refs. [17,18], the crystal consists of two intercalated layers of
square symmetry.

Experimentally, the density fluctuations did not reveal any
critical behavior near the transition. However, the transition
manifests when analyzing the fourfold bond-orientational
order parameter: for each particle j , we compute

χ
j

4 = 1

Nj

Nj∑
s=1

e4iα
j
s , (1)

where Nj is the number of nearest neighbors and α
j
s is the angle

of the 2D projection of the relative vector rs − rj with respect
to an arbitrary fixed axis. Note that 0 � |χj

4 | � 1, reaching its
maximum value when the particle is in a perfect square lattice.
The time average of the module of χ4,

〈|χ4|〉 =
〈

1

N

N∑
j=1

|χj

4 |
〉
, (2)

computed in the steady state, is an order parameter that
measures the fraction of particles in the ordered phase. Two
configurations were used in Ref. [17]: C1, with h = 1.83σ ,
and C2, with h = 1.94σ . In both cases, for amplitudes larger
than a threshold, 〈|χ4|〉 increases its value. For C1 there
is a discontinuous jump, while for C2 the order parameter
changes continuously although with discontinuous (apparently
diverging) derivative.

Below the threshold amplitude, still in the liquid phase,
small crystalline patches with square symmetry, of finite size

Lx

Ly

h
dσ

FIG. 1. Shallow box system of lateral dimensions Lx,Ly � σ

and height in the range σ < h < 2σ . A grain is shown as reference.
The whole box is vibrated vertically with amplitude A and angular
frequency ω in the presence of gravity.

and lifetime, coexist with the liquid environment. Their exis-
tence is evidenced by the analysis of the Fourier components
of χ4,

χ̂4(k,t) =
N∑

j=1

χ
j

4 eik·rj (t), (3)

where their fluctuations are computed with the fourfold bond-
orientational structure factor

S4(k) = 〈|χ̂4(k,t) − 〈χ̂4(k,t)〉|2〉
N

. (4)

For both configurations, it was found that S4 showed an
Ornstein-Zernike-like behavior in the limit kσ � 1, S4(k) ≈
S4(0)/[1 + (ξ4k)2], where ξ4 is the fourfold correlation length
and S4(0) is the associated static susceptibility. While no crit-
ical behavior was found for C1, for C2 two critical exponents
were found, associated to the divergence of ξ4 and S4(0) at the
transition.

III. SIMULATIONS OF QUASI-TWO-DIMENSIONAL
SYSTEMS

We study the system through three-dimensional MD simula-
tions, using the inelastic hard sphere model [19,20], with iden-
tical spherical grains and using periodic boundary conditions
for the lateral walls. The fixed parameters of the simulation
are the Q2D number density φ2D ≡ Nσ 2/LxLy = 0.9875,
with Lx = Ly , and the normalized frequency of oscillations
of the container ω

√
σ/g = 5. Also fixed are the grain-grain

and grain-wall friction coefficients μ = 0.03 and restitution
coefficients α = 0.998, respectively. These values were chosen
by inspection to ensure the appearance of clusters with square
symmetry in the range of heights 1.73σ � h � 1.85σ .

We remark that the friction coefficients chosen in this work
are one order of magnitude below the experimental values. This
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FIG. 2. Cluster with square symmetry obtained in simulations in
a system of N = 1580 particles in a box with lateral size 40σ × 40σ

and height h = 1.8σ . The amplitude is A = 0.2σ . The color code
indicates the absolute value of χ4 for each particle. Grains have been
drawn at a smaller size, with diameter ≈ 0.8σ , to appreciate the
crystalline structure of the cluster. Had they been depicted with their
real size, the two layers would have overlapped when projected in two
dimensions [12].
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FIG. 3. Liquid-to-solid transition as evidenced by the order pa-
rameter 〈|χ4|〉 when increasing the amplitude. Above the transition
amplitude, stable solid clusters form. The error bars indicate the stan-
dard deviation. Top: discontinuous transition for h = 1.74σ , where
the inset evidences the existence of bistability. Bottom: continuous
transitions for h = 1.8σ . The solid line is the fit close to the transition
to determine the critical exponent.

difference has its origin in that in simulations, particles are per-
fectly spherical and the plates are also perfectly flat, contrary
to experiments, where slight roughness and imperfections are
present. Hence, in simulations using dissipation coefficients
similar to the experimental ones, the particles reach states
with no horizontal motion [22]. For a quantitative comparison
with experiments at comparable densities, simulations had to
include explicitly these effects to achieve fluidized states in
experiments even for low particle concentrations [23].

Nonetheless, using perfect spheres and flat walls, our simu-
lations reproduce the geometrical properties of the solid cluster
and are therefore appropriate for the purposes declared in the
Introduction. Figure 2 shows a cluster in its stationary regime.
Its size and shape remain approximately constant unlike its
orientation, which displays Brownian rotation.

A. Fourfold bond-orientational parameter: Phase space

As in the experiments, depending on the height h we found
two kinds of transitions for 〈|χ4|〉 as a function of the amplitude
A (see Fig. 3). For the continuous transition, 〈|χ4|〉 can be
modeled as χL

4 + 	χ4, where χL
4 = aA + b is the linear trend

TABLE I. Critical exponent β and amplitude Ac for different
values of system sizes and box heights in the region of the continuous
transition. The values are obtained using the fitting protocol described
in Ref. [17].

Lx/σ Ly/σ N h/σ β Ac/σ

40 40 1580 1.8 0.56(18) 0.093(1)
60 60 3555 1.82 0.51(1) 0.094(1)
71 71 5000 1.82 0.40(1) 0.091(1)
71 71 5000 1.825 0.44(1) 0.094(1)
80 80 6320 1.83 0.50(1) 0.095(1)
90 90 7999 1.83 0.44(1) 0.094(1)
90 90 7999 1.84 0.52(1) 0.101(1)
100 100 9875 1.84 0.52(1) 0.099(1)
100 100 9875 1.85 0.54(2) 0.109(1)

observed prior to the transition, and

	χ4 = c(A − Ac)β (5)

is the powerlike behavior observed after the transition. Fitting
the results to the model as described in Ref. [17], we obtain
β = 0.56 ± 0.18 and the nonuniversal parameters a, b, c, and
Ac; the fitted parameters for different heights and system sizes
are presented in Table I.

Analyzing 〈|χ4|〉 it is possible to build the transition diagram
in the amplitude-height phase space, which is shown in Fig. 4
for N = 1580, together with typical configurations in the
vicinity of the transition line. Increasing the amplitude, the
liquid-to-solid transition takes place, where a solid cluster

FIG. 4. Amplitude-height phase space of the transition for N =
1580 particles, where the shaded region represents the bistablilty of
the system. The dashed lines denote the discontinuous transitions,
whereas the solid lines the continuous ones. The tricritical point is
indicated by an empty circle and the upper critical point at the end of
the continuous transition by a black circle. The arrow indicates that
up to the highest values of A the discontinuous transition is present,
without any evidence of a lower critical point. In all cases we explore
the phase space until no transition was found. The positions of the
tricritical and critical points for other values of N are indicated in
Table II. Typical configurations for special points in the parameter
space are displayed.
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FIG. 5. Order parameters Pc to the power γ (top), 	 (middle),
and c (bottom) as a function of the box height h, for N = 1580
particles, where Pc has been averaged over the range A = 0.108 to
A = 0.148. The discontinuous transition line, the tricritical point, and
the upper critical point are identified by the vanishing of Pc, 	, and
c, respectively. The inset (top) shows the probability density function
for h = 1.615 as an example. The exponent γ has been fitted to 1.5,
for which P γ

c vanishes linearly.

forms. For small heights the transition is discontinuous with a
small region of bistability, while for larger heights the transition
is continuous. A tricritical point separates the two cases. In
the explored region of parameters, the discontinuous transition
does not show a lower critical point and apparently the transi-
tion exists up to large values of A. The continuous transition,
on the other hand, ends in an upper critical point. The position
of the transition line and the critical points are identified
with adequate order parameters. The discontinuous transitions
line is characterized noting that the solidlike cluster remains
with finite size until the transition. Computing the probability
distribution function for 〈|χ4|〉 it is found that it presents two
peaks, one corresponding to the homogeneous liquid phase and
another, at higher values, associated to the cluster. The order
parameter Pc is the area below this second peak (the probability

TABLE II. Position (amplitude A and height h) of the tricritical
and upper critical points in Q2D systems for different system sizes,
indicated by the number of particles N . The thermodynamic limit
N = ∞ is obtained extrapolating all measured values with X(N ) =
X∞ − X1/N .

N Atri/σ htri/σ Aup.cri/σ hup.cri/σ

1580 0.077 1.770 0.090 1.800
3555 0.086 1.805 0.102 1.830
5000 0.088 1.815 0.105 1.840
6320 0.086 1.815 0.119 1.850
7999 0.088 1.822 0.113 1.850
9875 0.089 1.825 0.109 1.850
∞ 0.091(1) 1.834(1) 0.117(3) 1.861(2)

to get a cluster), which vanishes continuously when decreasing
h for fixed amplitude, with a power law Pc ∼ (h − h1)0.66,
marking the position of the transition line (see Fig. 5, top). The
bistability region is recognized by direct observations of the
configurations at different instants of time for fixed parameters.
The position of the tricritical point is determined by analyzing
	, the jump of 〈|χ4|〉 at the discontinuous transition, when
increasing A at fixed heights (see Fig. 3, top). Figure 5, middle,
shows 	, which vanishes at the tricritical point, with a power
law 	 ∼ (h2 − h). Finally, the upper critical point that ends
the continuous line is determined by the study of the fitting
parameter c in Eq. (5), which measures the amplitude of the
ordered phase, and vanishes at the upper critical point as
c ∼ (h3 − h) (see Fig. 5, bottom).

We also analyzed different system sizes, keeping all
the intensive parameters fixed. Similar qualitative behaviors
are found up to largest studied case, N = 9875, finding
the same values for the critical exponent β and similar values
for the two critical points (see Tables I and II). In particular,
the tricritical and upper critical points remain always at finite
distance along the transition line and converge to finite values
in the thermodynamic limit.

B. Fourfold structure factor

We analyze the fourfold bond-orientational structure factor,
S4(k), to obtain the critical properties when approaching the
transition. For both kinds of transitions, an Ornstein-Zernike
behavior is found in the limit of small wave number kσ � 1,
S4(k) ≈ S4(0)/[1 + (ξ4k)2], as shown in Fig. 6. We focus our
interest in the continuous case since it was found experimen-
tally that both S4(0) and ξ4 diverge, following a power law just
before the transition. In order to have the largest amount of
data, we analyzed the biggest system (N = 9875) considering
that 	k scales as 1/Lx/y . Nevertheless, neither S4(0) nor ξ4

reveal any critical behavior close to the continuous transition
and present a rapid increase only after the transition, due to
the presence of a stable cluster, which does not correspond
to critical fluctuations. Figure 7 presents both S4(0) ξ4 for a
box height close to the upper critical point. Similar figures
are obtained for all values of h between the tricritical and
upper critical point. We interpret this suppression of critical
fluctuations as resulting from crossover effects of the tricritical
point, which is always close to the upper critical one (see
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FIG. 6. Fourfold structure factor S4(k) for N = 3555 and h =
1.82σ , before (blue) and after (red) the transition, for increasing values
of a amplitude as indicated by the arrow. The critical amplitude is
Ac ≈ 0.094σ .

Table II). The same phenomena are found for the smaller
systems with the exception of the smallest one (N = 1580)
for which it was not possible to fit S4(k) due to the large value
of 	k.

IV. SIMULATIONS OF QUASI-ONE-DIMENSIONAL
SYSTEMS

We investigate whether the lack of critical behavior in ξ4 and
S4(0) is due to finite size effects. To limit the computational
costs of the simulation, we use a rectangular system of
dimensions Lx = 180 and Ly = 40, with N = 7110, keeping
the same value for φ2D as in the square systems. At the same
time, this allows us to achieve smaller wave numbers, obtaining
more accurate Lorentzian fits to S(k). Figure 8 reveals the
nature of the clusters that appear in this system: they are
rings in this toroidal geometry (due to the periodic boundary
conditions). Rotation is practically forbidden since it would
imply the rupture of the cluster, which is energetically costly.

Performing the same analysis as in the previous section, we
sketch the phase space associated to the transition in Fig. 9. It
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FIG. 8. Typical cluster in the rectangular geometry for h = 1.8σ

and A = 0.1σ . The cluster consists of a rectangular strip that crosses
the periodic boundary.

is found that the continuous transition is absent, and that the
discontinuous one ends up abruptly in an upper critical point.
Thus, no information could be obtained regarding the critical
behavior in this geometry. Other choices of the simulation
parameters give consistent results.

V. DISCUSSION

The compatibility between the discontinuous and contin-
uous liquid-to-solid transitions obtained in the experiments
is understood by analyzing the amplitude-height phase space
using molecular dynamics simulations. A tricritical point is
found in this space, where the two types of transitions merge.
For heights smaller than the tricritical value, the transition
is discontinuous, while for higher values the transition is
continuous, presenting some critical properties (with five
critical laws measured in experiments, while in simulations
we achieved to measure only one). The continuous transition
ends in an upper critical point. For the studied parameters,
the distance between tricritical and upper critical points is not
large enough, resulting in important crossover effects that for
large systems blur any critical behavior related to the fourfold
bond-orientational structure factor S4(k) in the continuous
transitions.

In this article we have also given evidence of the uni-
versality of the critical behavior associated to the fourfold
bond-orientational parameter 〈|χ4|〉. Varying the system size
and the box height, and using friction coefficients different to
experiments, we obtained a very robust value of the exponent
β = 1/2, in total agreement with the experimental results.
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FIG. 9. Phase space of the rectangular system. The dashed line
indicates a discontinuous transition, ending in a critical point (gray
circle). The arrow indicates that the discontinuous transition is present
up to the highest A, without any evidence of a lower critical point.
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Nevertheless, the situation is totally different regarding the
fourfold structure factor, for which no critical dynamics is
found near the transition point. In fact, both S4(0) and ξ4 do
not present divergences close to the transition.

Rectangular systems revealed a different situation. The
new topological nature of the clusters changes the type of
transitions obtained in the system, eliminating the continuous
one. This modification of the phase space can be related
to the effective dimensional reduction, as the rectangular

geometry behaves like a quasi-one-dimensional system. We
can speculate, therefore, that two is the lower dimension in
order to have a tricritical point.
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