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Abstract
The construction of affine interval exchange maps (IEMs) with wandering 
intervals that are semi-conjugate to a given self-similar IEM is strongly related 
to the existence of the so-called minimal sequences associated with local 
potentials, which are certain elements of the substitution subshift arising from 
the given IEM. In this article, under the condition called unique representation 
property, we characterize such minimal sequences for potentials coming from 
non-real eigenvalues of the substitution matrix. We also give conditions on the 
slopes of the affine extensions of a self-similar IEM that determine whether it 
exhibits a wandering interval or not.
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1. Introduction

Let I = [0, 1) and A be a finite alphabet. An interval exchange map (IEM) is a bijective map 
T : I → I  such that for a partition of I by intervals (Ia; a ∈ A) of length (|Ia|; a ∈ A) and a 
vector δ = (δa; a ∈ A) ∈ RA we have T(t) = t + δa if t ∈ Ia. In a similar way, an affine IEM 
is a bijective map f : I → I  such that for a vector � = (�a; a ∈ A) ∈ RA with positive entries 
and a vector d= (da; a ∈ A) ∈ RA we have f (t) = �at + da if t ∈ Ia. The vector � is called 
the slope vector of f. An IEM T is self-similar if the first return map of T to a proper interval 
[0,α) ⊆ I  is, up to rescaling, equal to T.

An affine IEM f is semi-conjugate to an IEM T if there exists a continuous, surjective and 
non-decreasing map h : I → I  such that h ◦ f = T ◦ h. We refer to f as an affine extension of 
T. It can be visualized as an ‘affine perturbation’ of T in the sense that it can be obtained from 
the graph of T by perturbing the slopes.

Given an IEM T, the existence of an affine IEM f semi-conjugate to T and having wan-
dering intervals has been studied in several works during the last twenty years. As was 
established in [MMY10], this situation is generic in the space of parameters describing 
interval exchange maps, although there are some restrictions on the possible slope vectors � 
(log � = (log �a; a ∈ A) which should expand at a rate given by the second largest Lyapunov 
exponent of the associated Rauzy–Veech–Zorich cocycle).

Aside from [MMY10], most results concern self-similar IEMs. In this context, the pioneer-
ing work [CG97] established that there exists an affine IEM with slope vector � that is semi-
conjugate to the IEM T if and only if the length vector λ = (|Ia|; a ∈ A) of T is orthogonal to 
log �. This condition is also equivalent to the fact that log � is generated by eigenvectors differ-
ent from the Perron–Frobenius eigenvector of the matrix M associated with T. In subsequent 
works [CG97, Cob02, BHM10, BBH14] and [CGRM17], the existence of such an affine IEM 
having wandering intervals is shown to be related to the spectral properties of M.

More precisely, it was proved in [BHM10] that, if M admits a real eigenvalue β > 1 different 
from the Perron–Frobenius eigenvalue, but Galois conjugate to it, and an associated eigenvec-
tor γ = (γa; a ∈ A), then there exists an affine IEM with slope vector � = (exp(−γa); a ∈ A) 
which is semi-conjugate to T and has wandering intervals. Then, in [CGRM17] this result 
was extended to the case of a non-real eigenvalue β with |β| > 1 such that β/|β| is not a root 
of unity and under the so called unique representation property for β and some associated 
eigenvector Γ (see definition 2.5). More precisely, it was proved that for almost all complex 
eigenvectors γ in the complex vector space generated by Γ there exists an affine IEM with 
slope vector (exp(−Re(γa)); a ∈ A) that is semi-conjugate to T and has a wandering interval. 
When log � is an eigenvector of M associated with β and |β| � 1, then any affine IEM which 
is semi-conjugate to T is indeed conjugate and, therefore, does not have wandering intervals 
(see [CG97, Cob02] and [BBH14]).

The construction of affine perturbations of the IEM T with wandering intervals is somehow 
difficult. The strategy followed in [BHM10] and [CGRM17], when T is self-similar, is the one 
proposed by Camelier and Gutiérrez in [CG97]. It consists of ‘blowing up’, à la Denjoy, the 
orbits of specific points of the interval called distinguished points of a complex vector γ ∈ CA. 
The set of orbits of distinguished points is finite for each γ (see [Cob99] and [MMY10]). 
These points are intimately related to the so called minimal sequences of the substitutive sub-
shift Ωσ associated with the self-similar IEM T. More precisely, given ω ∈ Ωσ and a complex 
vector γ ∈ CA, define γn(ω) = γω0 + · · ·+ γωn−1

 and γ−n(ω) = −(γω−n + · · ·+ γω−1) for 
n � 0. The sequence ω is said to be minimal for γ if Re(γn(ω)) � 0 for all n ∈ Z. Then, the 
main technical step in the strategy devised in [CG97] requires a sequence ω ∈ Ωσ for a com-
plex vector γ ∈ CA such that the series 

∑
n∈Z exp(−Re(γn(ω))) is convergent. A necessary 

M Cobo et alNonlinearity 31 (2018) 1121



1123

condition is that ω is minimal (up to a shift) for γ. Conversely, the main result [CGRM17] 
states conditions under which minimal sequences always correspond to itineraries of dis-
tinguished points with respect to (Ia; a ∈ A). In the aforementioned works, even if minimal 
sequences are constructed from eigenvectors γ associated with particular choices of eigen-
values β as described before, very little is known about their nature, besides their existence.

We think that minimal sequences are interesting in their own. In particular, they are related 
to the extreme points in the boundary of some ‘fractal’ sets associated with the expansive 
eigenspaces of integer matrices arising from substitutions. These fractals sets were first intro-
duced by Dumont and Thomas in [DT89] to study numeration systems associated with sub-
stitutions. They are, in some sense, ‘dual’ to the classical Rauzy fractals, which are associated 
with the contractive eigenspaces substitution matrices. They are also studied in [ABB11] in 
the particular case of the cubic Arnoux–Yoccoz map. Besides these two works, very little is 
known about them and understanding minimal sequences can shed light on such fractal sets.

In this article we characterize the set of minimal sequences and provide a method to com-
pute them assuming the same hypotheses as in [CGRM17]. That is, β is a non-real eigenvalue 
of the matrix associated with the self-similar IEM T with |β| > 1 such that β/|β| is not a root 
of unity and under the unique representation property for β and some associated eigenvector 
Γ. In theorems 3.3 and 3.4, we state that minimal sequences can be obtained iterating another 
map H that turns out to be conjugate to an IEM in its minimal components. This map is in fact 
the main novelty of this article that we think can play an interesting role in studying minimal 
sequences associated with general substitutive subshifts or can be extended to study minimal 
sequences associated with more general minimal subshifts, such as linearly recurrent systems. 
Corollary 3.5 states that for almost every eigenvector γ in the complex vector space generated 
by Γ the set of minimal sequences is finite. Finally, in theorems 3.7 and 3.6, we give condi-
tions on the eigenvector γ in the complex space generated by Γ that determine whether the 
affine extensions of T with slope vector � = exp(−Re(γ)) have a wandering interval or not.

We illustrate our results in the cubic Arnoux–Yoccoz map. We prove that for almost every 
complex eigenvector as before there are exactly two orbits of minimal sequences (and there-
fore exactly two orbits of distinguished points). Interestingly, the construction along the dif-
ferent minimal sequences produce different affine IEMs with different wandering intervals but 
the same slope vector. This shows that more than one affine IEM with the same slope vector 
can be semi-conjugate to the cubic Arnoux–Yoccoz map. Since it was remarked at the end of 
section 3.7.2 of [MMY10] that almost all IEMs are expected to have only one orbit of distin-
guished points, to our knowledge such examples are new.

In the next section we introduce the necessary background. We state our main results in 
section 3. Section 4 is devoted to presenting the main technical consequences of our hypothe-
ses. The map allowing to characterize minimal sequences is defined in section 5 together with 
its main properties. Finally, our main results are proved in section 6. To illustrate our main 
results, the cubic Arnoux–Yoccoz map is studied in section 7 and an associated appendix.

2. Background and preliminaries

2.1. Self-similar IEMs

Let A be a finite alphabet and T : [0, 1) �→ [0, 1) be an IEM exchanging the intervals of the 
partition (Ia; a ∈ A) of [0, 1), i.e. T(t) = t + δa if t ∈ Ia, where δ ∈ RA is the translation vec-
tor. We suppose that T is self-similar on the interval [0,α) with α < 1. That is, up to rescaling, 
the induced map on [0,α) is equal to T. Then T is uniquely ergodic and minimal (every orbit 
of T is dense in [0, 1)). For more details on uniquely ergodic IEMs see [Vee78].
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For each a ∈ A, define the interval I(1)
a = αIa ⊆ [0,α) and denote by R the renormaliza-

tion matrix given by Ra,b = |{0 � k � rb − 1; Tk(I(1)
b ) ⊆ Ia}|, where rb is the first return time 

of I(1)
b  to [0,α). By the minimality of T, some power of R is a positive matrix. We have that 

α−1 > 1 is its Perron–Frobenius eigenvalue and it is easy to see that the vector of lengths 
λ = (|I(1)

a |; a ∈ A) is an eigenvector of R associated with α−1. Also, the translation vector δ is 
an eigenvector of the transpose matrix M  =  Rt associated with α.

2.2. Substitution subshifts and minimal sequences

Let A be a finite set or alphabet and let A∗ be the set of all words in A. For w ∈ A∗, |w| denotes 
its length, i.e. the number of letters in w. The empty word is denoted by ε.

A substitution is a map σ : A→ A∗ \ {ε}. It naturally extends to the set of two-sided 
sequences AZ  by concatenation. That is, for ω = (ωm)m∈Z ∈ AZ the extension is given by

σ(ω) = . . . σ(ω−2)σ(ω−1) · σ(ω0)σ(ω1) . . . ,

where the central dot separates negative and nonnegative coordinates. A further natural con-
vention is that σ(ε) = ε.

We define the matrix Mσ associated with σ by: the entry Mσ
a,b is the number of times the 

letter b appears in σ(a) for any a, b ∈ A. The substitution is said to be primitive if a power 
of Mσ is strictly positive. This means that for some n � 0 any letter in A appears in the n-th 
iterate of the substitution of any other letter in A.

Let Ωσ ⊆ AZ be the subshift defined from σ. That is, ω ∈ Ωσ if and only if any subword of 
ω is a subword of σn(a) for some integer n � 0 and a ∈ A. We denote by S the left shift in Ωσ. 
We call (Ωσ , S) the substitution subshift associated with σ. This subshift is minimal whenever 
σ is primitive.

If σ is primitive, by the recognizability property (see [Mos92]), given a point ω ∈ Ωσ there 
exists a unique sequence ( pm, cm, sm)m�0 ∈ (A∗ × A× A∗)N such that for each integer m � 0 
we have σ(cm+1) = pmcmsm and

. . . σ3( p3)σ
2( p2)σ

1( p1) p0 · c0s0σ
1(s1)σ

2(s2)σ
3(s3) . . .

is the central part of ω, where the dot separates negative and nonnegative coordinates. This 
sequence is called the prefix–suffix decomposition of ω.

We refer to [Que87] and [Fog02] and references therein for the general theory of 
substitutions.

To a self-similar IEM T we associate a substitution subshift in the following way. Given 
t ∈ [0, 1) we construct a symbolic sequence ω = (ωm)m∈Z ∈ AZ by the rule ωm = a if and 
only if Tm(t) ∈ Ia. The sequence ω is called the itinerary of t. Let ΩT ⊆ AZ be the closure of 
the set of sequences constructed in this way for every t ∈ [0, 1). Clearly the sequence asso-
ciated with T(t) corresponds to S(ω), where S : AZ → AZ is the left shift map. Moreover, 
it is classical that there exists a continuous and surjective map πT : ΩT → [0, 1) such that 
T ◦ πT = πT ◦ S. The map πT  is invertible up to a countable set of points corresponding to the 
orbits of discontinuities of T. Since T is self-similar, the restriction of S to ΩT  is minimal and 
ΩT  is a subshift associated with a substitution. The substitution is constructed in the following 

way: σ(a) = w0 . . .wra−1 if and only if Tm(I(1)
a ) ⊆ Iwm for every integer 0 � m � ra − 1 and 

a ∈ A. We then have that the matrix of the substitution Mσ is the transpose of the renormaliza-
tion matrix R associated with T, i.e. Mσ = M = Rt. Furthermore, ΩT = Ωσ  and σ is primitive. 
For details see [CG97].
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2.3. Minimal sequences for a vector γ

Let σ be a primitive substitution in the alphabet A. Given a vector γ = (γa; a ∈ A) ∈ CA 
and a word w = w0 . . .wn−1 ∈ A∗ we define γ(w) = γw0 + . . . γwn−1

. For a sequence ω =
(ωm)m∈Z ∈ Ωσ we define γ0(ω) = 0, γn(ω) = γ(ω0 . . . ωn−1) and γ−n(ω) = −γ(ω−n . . . ω−1) 
for n � 1. It is easy to see that if γ is an eigenvector of Mσ associated with β ∈ C, then for 
any integer n � 0,

γ(σn(u)) = βnγ(u). (1)

Definition 2.1. A sequence ω ∈ Ωσ is a minimal sequence for the vector γ ∈ CA if

Re(γn(ω)) � 0 for all n ∈ Z.

Assume σ is the substitution associated with a self-similar IEM T. We adopt all notations of 
section 2.1 and we assume β is a non-real eigenvalue of M = Mσ with |β| > 1. In lemma 4.4 
in [CGRM17] it is proved that:

Lemma 2.2. For any eigenvector γ of M associated with β there exist minimal sequences.

2.4. Fractals associated with a self-similar IEM and the unique representation property

Let T be a self-similar IEM which is self-similar on the interval [0,α), and β be an eigenvalue 
of M with |β| > 1 such that β/|β| is not a root of unity. Consider an eigenvector γ of M for β. 
Recall σ is the substitution associated with T.

Denote by Āa the set of possible triples ( p, c, s) in A∗ × A× A∗ such that σ(a) = pcs. Set 
Ā=

⋃
a∈A Āa, which we call the set of labels. We define

S= {( pm, cm, sm)m�1 ∈ ĀN; ( pm+1, cm+1, sm+1) ∈ Ācm , m � 1}

and, for a ∈ A,

Sa = {( pm, cm, sm)m�1 ∈ S; ( p1, c1, s1) ∈ Āa}.

For x ∈ Sa write x = ( px
m, cx

m, sx
m)m�1. We also consider the partition of Sa by the subsets

Sa,( p,c,s) = {x ∈ Sa; ( px
1, cx

1, sx
1) = ( p, c, s)}

for ( p, c, s) ∈ Āa.
The next concepts depend on the choice of γ, nevertheless, to simplify notations we omit 

this dependence.
For each a ∈ A and n � 1 we define maps za : Sa �→ C and z(n)

a : Sa �→ C by

za(x) =
∑
m�1

β−mγ( px
m) and z(n)

a (x) =
n∑

m=1

β−mγ( px
m).

Given a ∈ A and ( p, c, s) ∈ Āa we consider the sets (referred hereafter as ‘the fractals’)

Fa = {za(x); x ∈ Sa} and Fa,( p,c,s) = {za(x); x ∈ Sa,( p,c,s)}.

We easily notice the decomposition: Fa =
⋃

( p,c,s)∈Āa
Fa,( p,c,s). We say that a sequence x ∈ Sa 

is a representation of z ∈ Fa if za(x) = z. We also consider F(n)
a = {z(n)

a (x); x ∈ Sa} and 

F
(n)
a,( p,c,s) = {z(n)

a (x); x ∈ Sa,( p,c,s)} for each n � 1.

M Cobo et alNonlinearity 31 (2018) 1121
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Definition 2.3. For each a ∈ A we define the maps

va(τ) = min
z∈Fa

Re(τz) and va,( p,c,s)(τ) = min
z∈Fa,( p,c,s)

Re(τz),

where τ ∈ S1. Analogously, for n � 1,

v(n)
a (τ) = min

z∈F
(n)
a

Re(τz) and v(n)
a,( p,c,s)(τ) = min

z∈F
(n)
a,( p,c,s)

Re(τz).

Notice that va,( p,c,s)(τ) � va(τ) and va(τ) = min( p,c,s)∈Āa
va,( p,c,s)(τ).

In lemmas 5.3 and 7.2 in [CGRM17] it is proved that:

Lemma 2.4. For every a ∈ A, va : S1 → R is continuous and has lateral derivatives at 
each τ ∈ S1.

A point z ∈ Fa is called an extreme point for the direction τ ∈ S1 if va(τ) = Re(τz). The set of 
extreme points for the direction τ is written as Ea(τ). We also set Ea,( p,c,s)(τ) = Ea(τ) ∩ Fa,( p,c,s).

The results of this article depend on the following hypothesis:

Definition 2.5. We say that T satisfies the unique representation property (u.r.p.) for β and 
the eigenvector γ if every extreme point of the associated fractals has a unique representa-
tion. That is, for any a ∈ A and any extreme point z ∈ Fa there exists a unique x ∈ Sa with 
za(x) = z.

The unique representation property implies in particular that extreme points of Fa do not 
belong to intersections Fa,( p,c,s) ∩ Fa,(p̄,̄c,̄s) for distinct ( p, c, s), (p̄, c̄, s̄) ∈ Āa. In [CGRM17] it 
is proved that this property holds for the cubic Arnoux–Yoccoz map.

3. The main results

Throughout the article we will assume the conditions of section 2. Namely, T is a self-similar 
IEM on the interval [0,α), where α < 1. Recall that this implies that the associated symbolic 
system is generated by a substitution σ. We denote its matrix by M. We fix a non-real eigen-
value β of M satisfying that |β| > 1 and that β0 = β/|β| is not a root of unity, and an eigenvec-
tor Γ for β. We assume that T satisfies the u.r.p. for β and Γ.

For a ∈ A, we denote by Ψa the set of directions τ ∈ S1 such that, for different labels 
( p, c, s) and (p̄, c̄, s̄) in Āa, we have va(τ) = va,( p,c,s)(τ) = va,(p̄,̄c,̄s)(τ). This definition is 
slightly different from the one given in [CGRM17], but the two definitions coincide under the 
u.r.p. It will be proved in lemma 4.2 that the u.r.p. implies that Ψa is finite for all a ∈ A. We 
set Ψ =

⋃
a∈AΨa.

Our main results depend on the following map. Set X = S1 × Ā and let H : X → X  be 
defined as H(τ , (q, a, r)) = (β−1

0 τ , ( p, c, s)) if va(τ) = va,( p,c,s)(τ). Clearly, the definition of 
H is ambiguous if τ ∈ Ψa, however, under the u.r.p., H is well-defined and continuous except 
at finitely many points. The map H will be extensively discussed in section 5. In particular, 
we will show that H is conjugate to an interval translation map, i.e. a piecewise isometry of 
an interval. These maps are different from interval exchange maps because they need not be 
bijective.

Our first result will be proved at the end of section 5:

Theorem 3.1. Let T be a self-similar IEM Assume that M has an eigenvalue β with |β| > 1 
such that β0 = β/|β| is not a root of unity, and that there exists an eigenvector Γ for β such 

M Cobo et alNonlinearity 31 (2018) 1121
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that T has the u.r.p. for β and Γ. Then H has finitely many minimal components and its restric-
tion to each minimal component is an IEM

We need the following definitions to state our results. In what follows [[τ − τ ′]] is the natural 
distance between τ and τ ′ in S1.

Definition 3.2. 

 (i) A direction τ ∈ S1 is good if for some constant 1 < A < |β| and every ξ ∈ Ψ we have that 
lim infn→∞ An[[ξ − βn

0τ ]] = ∞.
 (ii) Conversely, a direction τ ∈ S1 is very bad if for every ξ ∈ Ψ we have 

lim supn→∞ |β|n[[ξ − βn
0τ ]] = 0.

 (iii) An eigenvector γ of M for β is said to be good (respectively very bad) if γ = zΓ, where 
z/|z| ∈ S1 is a good (respectively very bad) direction.

Notice that if τ is a good direction then necessarily lim infn→∞ An[[ξ − βn
0τ ]] = ∞ for all 

A � |β|.
The definition of good direction is different from that of [CGRM17], but each good direc-

tion as in definition 3.2 is also a good direction in the sense of that article. Lemma 7.4 in 
[CGRM17] can be then applied to show that the set of good directions has total Lebesgue 
measure, which implies that the set of very bad directions has measure zero.

We will show in lemma 6.11 that the main result of [CGRM17], theorem 7.1, still holds for 
good directions in the sense of definition 3.2.

Our next two results characterize minimal sequences for good eigenvectors. Roughly 
speaking, the prefix–suffix decompositions of minimal sequences for these eigenvectors are 
given, up to a finite number of coordinates, by the pre-orbits of H in its minimal components.

Theorem 3.3. Assume the same hypotheses of theorem 3.1. If γ = zΓ is a good eigenvector, 
τ = z/|z| ∈ S1 and ω ∈ Ωσ is a minimal sequence for γ, then the prefix–suffix decomposition 
( pm, cm, sm)m�0 of ω satisfies that:

 • (βn
0τ , ( pn, cn, sn)) belongs to a minimal component of H for some n � 0,

 • (βm
0 τ , ( pm, cm, sm)) = H−m+n(βn

0τ , ( pn, cn, sn)), for all m � n.

Conversely, we have a way to construct minimal sequences for good eigenvectors.

Theorem 3.4. Assume the same hypotheses of theorem 3.1. If γ = zΓ is a good eigenvec-
tor, τ = z/|z| ∈ S1 and (τ , ( p0, c0, s0)) belongs to a minimal component of the map H, then, 
setting H−m(τ , ( p0, c0, s0)) = (βm

0 τ , ( pm, cm, sm)) for m � 0, we have that ( pm, cm, sm)m�0 is 
the prefix–suffix decomposition of some shift of a minimal sequence for the vector γ.

The fact that H has finitely many minimal components allows us to deduce:

Corollary 3.5. Assume the same hypotheses of theorem 3.1. If γ is a good eigenvector, then 
the set of minimal sequences for γ is finite.

Depending on the logarithm of the slope vector of an affine extension of T, the existence or 
absence of wandering intervals is ensured:

Theorem 3.6. Assume the same hypotheses of theorem 3.1. If γ is a good eigenvector, then 
no affine extension of T with slope vector exp(−Re(γ)) is conjugate to T.

Theorem 3.7. Assume the same hypotheses of theorem 3.1. If γ is a very bad eigenvector, 
then every affine extension of T with slope vector exp(−Re(γ)) is conjugate to T.

M Cobo et alNonlinearity 31 (2018) 1121
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In other words, affine extensions constructed from good eigenvectors exhibit wandering 
intervals, whereas those constructed from very bad eigenvectors do not.

An important consequence of the previous results is that one can explicitly describe mini-
mal sequences producing affine extensions with wandering intervals of a given self-similar 
IEM and, thus, construct good approximations of such extensions.

In particular, we apply our results to the cubic Arnoux–Yoccoz map. For this example there 
exists an eigenvalue β of the associated matrix M with |β| > 1 and multiplicity one. It was 
proved in [CGRM17] that the u.r.p. holds. We prove that that map H has exactly two minimal 
components and, thus:

Theorem 3.8. In the cubic Arnoux–Yoccoz map, for each good eigenvector γ associated 
with β, there are exactly two orbits of minimal sequences.

By the construction shown at the beginning of section 2 of [CGRM17], to each of these 
two orbits of minimal sequences corresponds an affine IEM with slope vector exp(−Re(γ)) 
which is semi-conjugate to T. These two affine IEM have distinct wandering intervals and are, 
therefore, not conjugate to each other.

4. Main consequences of the unique representation property

In this section we state the main technical lemmas implied by the u.r.p. that we will use to 
prove our main results. Consider T a self-similar IEM satisfying the hypotheses of theorem 
3.1. That is, M has an eigenvalue β with |β| > 1 such that β/|β| is not a root of unity, and that 
there exists an eigenvector Γ for β such that T has the u.r.p. for β and Γ. This eigenvector will 
be fixed for the rest of the article and all concepts defined in section 2.4 will be associated 
with it.

Our next lemma is a slightly more general version of lemma 7.7 in [CGRM17]. We omit 
the proof because it is essentially the same.

Lemma 4.1. Let a ∈ A and τ ∈ S1 such that va(τ) = va,( p,c,s)(τ) = va,(p̄,̄c,̄s)(τ), with 
( p, c, s) and (p̄, c̄, s̄) different elements of Āa. Then there exist finite constants 0 < D1 � D2 
such that if (τk)k�1 is a sequence in S1 converging to τ when k → ∞, then

D1 � lim inf
k→∞

|va,( p,c,s)(τk)− va,(p̄,̄c,̄s)(τk)|
[[τ − τk]]

� lim sup
k→∞

|va,( p,c,s)(τk)− va,(p̄,̄c,̄s)(τk)|
[[τ − τk]]

� D2.

The constants D1 and D2 are given by:

D1 = min{|z − z′|; z ∈ Ea,( p,c,s)(τ), z′ ∈ Ea,(p̄,̄c,̄s)(τ)},
D2 = max{|z − z′|; z ∈ Ea,( p,c,s)(τ), z′ ∈ Ea,(p̄,̄c,̄s)(τ)}.

The u.r.p. implies that Ea,(p,c,s) and Ea,(p̄,̄c,̄s) are disjoint. Since both sets are compact, we 
obtain that 0 < D1 � D2 < ∞.

As a consequence of lemma 4.1 we get:

Lemma 4.2. The set Ψa is finite for each a ∈ A.

Proof. Suppose by contradiction that for some a ∈ A the set Ψa is infinite and let (τk)k�1 be 
a sequence in Ψa that converges to τ ∈ S1 such that τk �= τ  for every k � 1.
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Without loss of generality we may assume that there exist ( p, c, s) �= (p̄, c̄, s̄) in Āa such 
that Ea,( p,c,s)(τk) �= ∅ and Ea,(p̄,̄c,̄s)(τk) �= ∅ for every k � 1. By continuity of va, va,(p,c,s) and 
va,(p̄,̄c,̄s), we have that τ ∈ Ψa. Indeed, this set is closed.

Consider sequences zk ∈ Fa,( p,c,s) and z′k ∈ Fa,(p̄,̄c,̄s) attaining the minimum for the di-
rection τk, that is, va(τk) = Re(τkzk) = Re(τkz′k). We may assume that zk → z and z′k → z′ 
when k → ∞. Then clearly z ∈ Ea,( p,c,s)(τ) and z′ ∈ Ea,(p̄,̄c,̄s)(τ). Thus the hypotheses 
of lemma 4.1 are satisfied. Since va,(p̄,̄c,̄s)(τk) = va,( p,c,s)(τk) for all k � 1, this lemma en-
sures that min{|z − z′|; z ∈ Ea,( p,c,s)(τ), z′ ∈ Ea,(p̄,̄c,̄s)(τ)} = 0. Therefore, the intersection 
Ea,( p,c,s)(τ) ∩ Ea,(p̄,̄c,̄s)(τ) is nonempty, since these sets are closed, contradicting the u.r.p. □ 

5. The skew product H

In this section we thoroughly study the map H. We always assume the u.r.p. for β and Γ. We 
will see that H is conjugate to a piecewise translation on the interval, that it has finitely many 
minimal components and that, when restricted to each minimal component, it is an interval 
exchange map.

Recall that Āa is the set of possible triples ( p, c, s) in A∗ × A× A∗ such that σ(a) = pcs 
and that Ā=

⋃
a∈A Āa.

Lemma 5.1. For each a ∈ A and ( p, c, s) ∈ Āa the set

Ja,( p,c,s) = {τ ∈ S1; va(τ) = va,( p,c,s)(τ)}

is a finite union of closed intervals. Moreover, if ( p, c, s) and (p̄, c̄, s̄) are different elements in 
Āa, then the interiors of Ja,(p,c,s) and Ja,(p̄,̄c,̄s) are disjoint.

Proof. We prove that each Ja,(p,c,s) is closed and has a finite number of connected comp-
onents. Let (τk)k�1 be a sequence in Ja,(p,c,s) that converges to τ ∈ S1. Let (zk)k�1 be a sequence 
in Fa,( p,c,s) such that Re(τkzk) = va(τk). Since Fa,( p,c,s) is compact, we can assume that (zk)k�1 
converges to z ∈ Fa,( p,c,s). Therefore, by continuity of va we have that Re(τz) = va(τ). By 
definition, we conclude that τ ∈ Ja,( p,c,s) and thus Ja,(p,c,s) is closed.

Now, since each of the sets Ja,(p,c,s) is closed, then the boundary of a connected component 
in Ja,(p,c,s) is contained in Ψa. By the u.r.p., Ψa is finite (see lemma 4.2). Then each Ja,(p,c,s) has 
finitely many connected components and thus is a finite union of closed intervals.

Finally, Ja,( p,c,s) ∩ Ja,(p̄,̄c,̄s) is contained in Ψa. So again by finiteness of Ψa their interiors 
are disjoint. □ 

Notice that, for each a ∈ A, the union of the closed intervals composing the sets Ja,(p,c,s) 
covers S1. Therefore, if each of such closed intervals is redefined to be left-closed and right-
open we get a partition of S1 by intervals.

Recall that X = S1 × Ā and that H : X → X  is given by

H(τ , (q, a, r)) = (β−1
0 τ , ( p, c, s))

if va(τ) = va,( p,c,s)(τ). Equivalently, H(τ , (q, a, r)) = (β−1
0 τ , ( p, c, s)) if τ ∈ Ja,( p,c,s). The 

definition is ambiguous if τ ∈ Ψa (there is more than one choice for ( p, c, s)). Nevertheless, 
by lemma 4.2, Ψ is finite when the u.r.p. holds, so H is well defined and continuous except at 
finitely many points. Therefore, we can fix the ambiguity by setting H to be right-continuous. 
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This is possible since the ambiguities are determined by the boundaries of the closed intervals 
defining each Ja,(p,c,s). Observe that the definition of H is independent of q and r.

5.1. Orbits of H and extreme points

Let H be the set of all possible maps defined as H by omitting the right-continuous hypothesis, 
including H. As discussed in previous paragraph, this set is clearly finite. Also, any element in 
H is aperiodic because β0 is not a root of unity. First we notice that:

Remark 5.2. The existence of H̃ ∈ H satisfying H̃(τ , (q, a, r)) = (β−1
0 τ , ( p, c, s)) is equiv-

alent to the fact that va(τ) = va,( p,c,s)(τ), i.e. it is equivalent to the existence of x ∈ Sa,( p,c,s) 
such that va(τ) = Re(τza(x)).

Let πS1 : X → S1 and πĀ: X → Ā be the projections to the first and second coordinates of 
X respectively.

Lemma 5.4 below establishes a relation between the orbits of maps in H with the represen-
tations in Sa of extreme points in Fa for any direction. Indeed, it tell us that such representations 
are the same as forward orbits of maps in H. We remark that such orbits are by definition in Sa.

To prove it we recall lemma 5.6 in [CGRM17]:

Lemma 5.3. If x = ( px
m, cx

m, sx
m)m�1 ∈ Sa is a representation of an extreme point in Fa for 

the direction τ, then the shift S(x) = ( px
m+1, cx

m+1, sx
m+1)m�1 ∈ Scx

1
 is a representation of an 

extreme point in Fcx
1
 for the direction β−1

0 τ .

This is called the continuation property.

Lemma 5.4. Let τ ∈ S1 and a ∈ A. A sequence x ∈ Sa is the representation of an extreme 
point in Ea(τ) if and only if there exists H̃ ∈ H such that

( px
m, cx

m, sx
m) = πĀ(H̃

m(τ , (q, a, r))) for all m � 1,

for any (q, a, r) ∈ Ā.

Proof. Let x = ( px
m, cx

m, sx
m)m�1 ∈ Sa be the representation of an extreme point for the di-

rection τ. That is, va(τ) = Re(τza(x)). Fix some m � 0 and put px
0 = q, cx

0 = a and sx
0 = r , 

where q and r are chosen such that (q, a, r) ∈ Ā. By the continuation property (lemma 5.3), 
the shifted sequence Sm(x) belongs to Scx

m,( px
m+1,cx

m+1,sx
m+1)

 and is a representation of an extreme 
point for the direction β−m

0 τ . From remark 5.2, there exists Hm ∈ H such that

Hm(β
−m
0 τ , ( px

m, cx
m, sx

m)) = (β
−(m+1)
0 τ , ( px

m+1, cx
m+1, sx

m+1)).

Since the ambiguity points to define H are finite, for some m0 � 1 the sequence 
(β−m

0 τ , ( px
m, cx

m, sx
m))m�m0 does not contain any such point. Thus, Hm can be taken to be H for all 

m � m0 . Since β0 is not a root of unity, the finite sequence (β−m
0 τ , ( px

m, cx
m, sx

m))0�m�m0−1 can-
not repeat any ambiguity point. Thus the map H̃  in H that is equal to Hm in (β−m

0 τ , ( px
m, cx

m, sx
m)) 

for 0 � m � m0 − 1 and equal to H elsewhere is well defined. We conclude that

H̃(β−m
0 τ , ( px

m, cx
m, sx

m)) = (β
−(m+1)
0 τ , ( px

m+1, cx
m+1, sx

m+1)), for all m � 0.

Conversely, suppose that x = ( px
m, cx

m, sx
m)m�1 ∈ Sa is obtained from the trajectory by some 

H̃ ∈ H of (τ , (q, a, r)) with (q, a, r) ∈ Ā. Set px
0 = q, cx

0 = a and sx
0 = r .
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From remark 5.2, if H̃(β−m
0 τ , ( px

m, cx
m, sx

m)) = (β
−(m+1)
0 τ , ( px

m+1, cx
m+1, sx

m+1)) for m � 0, 
then there exists a representation xm ∈ Scx

m,( px
m+1,cx

m+1,sx
m+1)

 of an extreme point of the fractal Fcx
m
 

in the direction β−m
0 τ : vcx

m
(β−m

0 τ) = Re(β−m
0 τzcx

m
(xm)).

Then, using recursively the properties of each xm and the continuation property we get:

va(τ) = Re(τza(x0))

= Re(β−1τΓ( px
1)) + |β|−1vcx

1
(β−1

0 τ)

= Re(β−1τΓ( px
1)) + |β|−1 Re(β−1

0 τzcx
1
(x1))

= Re(β−1τΓ( px
1)) + Re(β−2τΓ( px

2)) + |β|−2vcx
2
(β−2

0 τ)

=

n∑
m=1

Re(β−mτΓ( px
m)) + |β|−nvcx

n
(β−n

0 τ)

= Re

(
τ

n∑
m=1

β−mΓ( px
m)

)
+ |β|−nvcx

n
(β−n

0 τ)

= Re(τz(n)
a (x)) + |β|−nvcx

n
(β−n

0 τ).

Taking the limit when n → ∞ we conclude that Re(τza(x)) = va(τ). □ 

5.2. Minimal components of maps in H

Any map in H can be visualized as an interval translation map (i.t.m.) We recall that a map 
defined in an interval I is an i.t.m. if it is a piecewise translation with finitely many disconti-
nuities. Contrary to IEMs these maps need not be injective or surjective. Basic properties of 
i.t.m. can be found in [BK95].

To simplify notations we only illustrate this construction with the right-continuous map 
H. For other maps in H it is analogous. Partition the interval I = [0, 1) into |Ā| consecutive 
intervals of the same length, each one associated with an element ( p, c, s) ∈ Ā. Call I(p,c,s) 
such interval and assume it is left-closed and right-open. Observe that the substitution σ asso-
ciated with the IEM T is injective (indeed, the associated matrices are invertible), so for each 
( p, c, s) ∈ Ā there exists a unique a ∈ A such that σ(a) = pcs.

The map H naturally induces a map on I that we also call H in the following way. For 
each ( p, c, s) ∈ Ā let i( p,c,s) : S1 → I( p,c,s) be an orientation preserving linear identi-
fication of both sets such that i( p,c,s)(1) is the left extreme point of the interval I(p,c,s). If 
H(τ , (q, a, r)) = (β−1

0 τ , ( p, c, s)) on X then H(i(q,a,r)(τ)) = i( p,c,s)(β
−1
0 τ) on I (see figure 2). 

Since H on X has finitely many discontinuities, the map H seen on I is an i.t.m. Moreover, 
since β0 is not a root of unity, H is an aperiodic i.t.m.

We need to define the notion of minimal component for H seen in I. Since H is not continu-
ous we need to adapt the classical definition from topological dynamics. This is done by using 
a standard procedure in IEM theory that can be adapted to the context of an i.t.m. and which 
we sketch here. It follows the discussion in section 2 of [BK95].

First we call H̃ ∈ H the left continuous version of H, that is, H̃(t) = lims↗t H(s). Now we 
define a new space Î. Let D be the set of discontinuities of H together with its preimages and 
images by H̃ . Then we build the ordered set Î = I ∪ D− ∪ {1}, where D− = {t−; t ∈ D} is a 
disjoint copy of D putting every point t− immediately to the left of t. That is, we introduce little 
holes in I at positions t ∈ D calling the left side of the hole t− and the right side t. The order 
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of I naturally extends to this new set. The set Î endowed with the order topology is a compact 
metric space. Finally, let Ĥ : Î → Î  be the map defined as H in I, Ĥ(t−) = (H̃(t))− for t ∈ D 
and Ĥ(1) is defined by continuity (notice that Ĥ  is increasing in a neighbourhood of 1).

One proves that Ĥ  is a continuous map on the compact metric space Î. Moreover, Ĥ  leaves 
I invariant and Ĥ|I  (the restriction of Ĥ  to I) coincides with H as a map.

Definition 5.5 ([ST00]). We say that J ⊆ I  is a minimal component for the i.t.m. H if 
J = Ĵ ∩ I, where Ĵ is a minimal component of Ĥ . That is, Ĥ(Ĵ) = Ĵ  and every point in Ĵ has 
a dense orbit by Ĥ  (for the corresponding topology).

By definition of Ĥ , if Ĵ is a minimal component for Ĥ  then its restrictions to I and D− are 
invariant by Ĥ . Moreover, if 1 ∈ Ĵ  then Ĥ(1) = 1. Then, J = Ĵ ∩ I is strongly invariant by H, 
that is, H(J) = J . We also have that J ⊆ OrbH(t)  for any t ∈ J , and that two different mini-
mal components are disjoint.

Figure 1. The dot shows an extreme point of one of the Arnoux–Yoccoz fractals in the 
direction of the line (see section 7).

Figure 2. The map induced by H on I. In the top part we illustrate the action of H on 
X = S1 × Ā, in the bottom part, the action on I.
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Using the fact that H is an aperiodic i.t.m. and theorem 2.4 in [ST00] we get:

Lemma 5.6. H has a finite number of minimal components.

Recall that we have mapped each t ∈ I to a unique point (τ , ( p, c, s)) ∈ X . This map can 
be extended to Î by sending each t− to the same (τ , ( p, c, s)) ∈ X  as t for every t ∈ D. We call 
this map e: Î → X .

Lemma 5.7. The minimal components of Ĥ  and H are finite unions of intervals of positive 
length.

Proof. Let J be a minimal component of H. Then, by definition J = Ĵ ∩ I for a minimal 
component Ĵ of Ĥ .

For each ( p, c, s) ∈ Ā define Ĵ( p,c,s) as the projection on S1 of e(Ĵ ∩ Î( p,c,s)), where 
Î( p,c,s) = I( p,c,s) ∪ {t−; t ∈ D ∩ I( p,c,s)}. We will prove that 

⋃
( p,c,s)∈Ā Ĵ( p,c,s) = S1.

Let t̂ ∈ Ĵ  and let (τ , ( p, c, s)) = e(̂t) ∈ X . For any integer m � 0 we have that the 
first coordinate of e(Ĥm(̂t)) is β−m

0 τ . Since the rotation by β−1
0  is irrational, we get that 

S1 = {β−m
0 }m�0. Moreover, we can find subsequences converging to every point in S1 

from above and below. Since Ĵ is compact, we obtain that S1 =
⋃

( p,c,s)∈Ā Ĵ( p,c,s). Notice 

that we have used the convergence in the topology of Î . A similar argument shows that 
each Ĵ( p,c,s) is closed. Then, there exists ( p, c, s) ∈ Ā such that Ĵ( p,c,s) contains an open 
interval K ⊆ S1.

Let K̂ ⊆ Ĵ  be the set of the ̂t ∈ Ĵ ∩ Î( p,c,s) such that the first coordinate of e(̂t) belongs to 

K. Since K is an open interval, there exist s, r ∈ I  such that for every s  <  t  <  r either t or t− 
belongs to K̂ . Since Ĵ is closed, we deduce that both t and t− belong to K̂  for every s  <  t  <  r, 
so K̂  is an open interval in Ĵ.

By minimality, there exists n � 1 such that 
⋃n

m=0 Ĥm(K̂) = Ĵ . Since I and D− are invari-
ant for Ĥ , we obtain that J =

⋃n
m=0 Hm(K̂ ∩ I). To conclude, we have that 

⋃n
m=0 Ĥm(K̂) and ⋃n

m=0 Hm(K̂ ∩ I) are finite unions of intervals of positive length, since the image of an interval 
by either Ĥ  or H is a finite union of intervals (recall that it is an i.t.m.) □ 

Given (τ , ( p, c, s)) ∈ X  there always exists a minimal component contained in the closure 
of its orbit by H. Indeed, let t ∈ I such that e(t) = (τ , ( p, c, s)). The closure of its orbit by 
Ĥ  contains a minimal component Ĵ. Then, J = Ĵ ∩ I satisfies J ⊆ OrbĤ(t) ∩ I ⊆ OrbH(t) 
(notice that the topology of Î is stronger than the one of I). We conclude by mapping back 
these objects to X.

Lemma 5.8. There exists N � 0 such that for any (τ , ( p, c, s)) ∈ X  we have that 
HN(τ , ( p, c, s)) belongs to a minimal component contained in the closure of its orbit by H. 
In particular, there exists a unique minimal component contained in the closed orbit of any 
point in X.

Proof. We prove the lemma using the map H as seen on I. Consider the element t ∈ I such 
that e(t) = (τ , ( p, c, s)). Let J be a minimal component contained in OrbH(t) . By definition 
J = Ĵ ∩ I, where Ĵ is a minimal component for Ĥ  with Ĵ ⊆ OrbĤ(t)  as discussed just before 
the lemma.

By lemma 5.7, we have that Ĵ has nonempty interior. Since Ĵ is contained in OrbĤ(t) , there 
exists n � 0 such that Ĥn(t) attains the interior of Ĵ. This implies in particular that OrbĤ(t)  
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contains a unique minimal component. Thus, OrbĤ(t) =
⋃

m�0 Ĥ−m(Ĵ). But Ĵ has non-
empty interior and Ĥ  is continuous, so by compactness there exists N � 1 such that 
OrbĤ(t) =

⋃N
m=0 Ĥ−m(Ĵ) and then ĤN(t) ∈ Ĵ. Using a similar argument as the one developed 

in the proof of the previous lemma to pass from Ĵ to J, one deduces that HN(t) ∈ J.
To conclude that N can be chosen uniformly, we observe from lemma 5.6 that H and Ĥ  

have finitely many minimal components. □ 

5.3. Proof of theorem 3.1

Let ΛH  be the limit set of H: ΛH =
⋂

m�1 Hm(X). As a consequence of the previous lemma 
and the fact that minimal components for H are strongly invariant (see the comment after the 
definition of minimal components), there exists N � 0 such that Hm(X) = HN(X) if m � N . 
In the nomenclature of [BK95], this property means that H is of finite type. By lemma 5.8, 
every point (τ , ( p, c, s)) attains the minimal component in the closure of its orbit in N steps. 
Moreover, H is surjective when restricted to a minimal component. Therefore, ΛH = HN(X) 
is equal to the disjoint union of the minimal components of H. We collect all this observations 
in the following corollary for future reference.

Corollary 5.9. There exists N � 0 such that ΛH = HN(X). Moreover, ΛH  is equal to  
the disjoint union of the minimal components of H and thus is a finite union of intervals of 
positive length.

Proof of theorem 3.1. It was already proved in lemmas 5.6 and 5.7 that H has finitely 
many minimal components each of which is a union of intervals. We need to prove that the 
restriction of H to a minimal component is a minimal IEM At each minimal component H is 
surjective, but since it is an i.t.m. it is also injective, so it is an IEM □ 

6. Construction of minimal points

We continue under the same assumptions of the previous sections. In particular, we fix the 
eigenvector Γ used to define fractals and related concepts in section 2.4.

The following result is implied by lemma 7.4 in [CGRM17], since Definition 3.2 is weaker 
than the one in that article.

Lemma 6.1. Almost every τ ∈ S1 is a good direction.

A direct consequence of the lemma is that almost every eigenvector γ in the complex space 
generated by Γ is good.

6.1. Technical lemmas

Our first lemma is a slight modification of lemma 5.7 in [CGRM17]. We omit the proof since 
it is almost identical.

Lemma 6.2. There exists a constant C  >  0 such that for all τ ∈ S1, a ∈ A, ( p, c, s) ∈ Āa 
and n � 0,

0 � v(n)
a,( p,c,s)(τ)− va,( p,c,s)(τ) � C|β|−n.
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We will also need a stronger result.

Lemma 6.3. There exists a constant C  >  0 such that for all τ ∈ S1, a ∈ A, (q, a, r) ∈ Ā 
and n � 1, we have that if Hm(τ , (q, a, r)) = (β−m

0 τ , ( pm, cm, sm)) for m � 1 and 
x = ( pm, cm, sm)m�1 ∈ Sa, then

0 � Re(τz(n)
a (x))− va(τ) � C|β|−n.

Moreover, if x ∈ Sa,( p,c,s) then

0 � Re(τz(n)
a (x))− va,( p,c,s)(τ) � C|β|−n.

Proof. By lemma 5.4, va(τ) = Re(τza(x)). Then,

va(τ) = Re


τ

∑
m�1

β−mΓ( pm)




= Re

(
τ

n∑
m=1

β−mΓ( pm)

)
+ |β|−n Re


β−n

0 τ
∑

m�n+1

βn−mΓ( pm)




= Re(τz(n)
a (x)) + |β|−n Re


β−n

0 τ
∑

m�n+1

βn−mΓ( pm)


 .

We conclude using that the series 
∑

m�n+1 β
n−mΓ( pm) is uniformly bounded with respect to 

a ∈ A, (q, a, r) ∈ Ā and n � 1. The second statement of the lemma is analogous. □ 

The next lemma is the crucial step in the proofs of our main results. It will allow to charac-
terize the prefix–suffix decompositions of minimal sequences.

Lemma 6.4. Let τ ∈ S1 be a good direction and a ∈ A. Assume (mk)k�1 is an in-
creasing sequence of positive integers such that va(β

mk
0 τ) = va,( p,c,s)(β

mk
0 τ) for all k � 1 

with ( p, c, s) ∈ Āa. There exists k0 � 1 such that if, for some k � k0, x ∈ Sa satisfies 
v(mk)

a (βmk
0 τ) = Re(βmk

0 τz
(mk)
a (x)), then x ∈ Sa,( p,c,s).

Proof. We proceed by contradiction. Without loss of generality, suppose that there 

exists (p̄, c̄, s̄) �= ( p, c, s) in Āa and a sequence xk ∈ Sa,(p̄,̄c,̄s) such that v(mk)
a (βmk

0 τ) =

Re(βmk
0 τz

(mk)
a (xk)) for all k � 1.

Consider also the sequence (yk)k�1 given by

yk = (πĀ(H
m(βmk

0 τ , (q, a, r))))m�1 for a fixed (q, a, r) ∈ Ā.

By lemma 4.2 the set Ψa is finite. Then, since β0 is not a root of unity, after extracting a 
subsequence we can assume that βmk

0 τ /∈ Ψa. Then, by hypothesis and definition of H, it fol-
lows that each yk ∈ Sa,( p,c,s) and

va,(p̄,̄c,̄s)(β
mk
0 τ) > va,( p,c,s)(β

mk
0 τ) for all k � 1.
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Without loss of generality we assume that βmk
0 τ → ξ ∈ S1. By continuity of va and va,(p,c,s), 

va(ξ) = va,( p,c,s)(ξ). On the other hand, by lemma 6.2 used in the sequence (xk)k�1 we have 
that va(ξ) = va,(p̄,̄c,̄s)(ξ) and thus ξ ∈ Ψa.

Therefore, the hypotheses of lemma 4.1 hold and there exists k0 � 1 such that for every 
k � k0:

va,(p̄,̄c,̄s)(β
mk
0 τ)− va,( p,c,s)(β

mk
0 τ) �

1
2

D[[ξ − βmk
0 τ ]],

where D is strictly positive.

Since, by hypothesis, Re(βmk
0 τz

(mk)
a (xk)) = v(mk)

a,(p̄,̄c,̄s)(β
mk
0 τ) � va,(p̄,̄c,̄s)(β

mk
0 τ), we get:

Re(βmk
0 τz(mk)

a (xk))− va,( p,c,s)(β
mk
0 τ) �

1
2

D[[ξ − βmk
0 τ ]]. (2)

On the other hand, by lemma 6.3, we obtain that:

−Re(βmk
0 τz(mk)

a (yk)) + va,( p,c,s)(β
mk
0 τ) � −C|β|−mk . (3)

Taking (2)+(3) yields:

Re(βmk
0 τz(mk)

a (xk))− Re(βmk
0 τz(mk)

a (yk))

�
1
2

D[[ξ − βmk
0 τ ]]− C|β|−mk

� |β|−mk

(
1
2

D|β|mk [[ξ − βmk
0 τ ]]− C

)
.

Finally, since τ is a good direction, then |β|mk [[ξ − βmk
0 τ ]] → ∞ as k → ∞. Therefore, if 

k is sufficiently large, Re(βmk
0 τz

(mk)
a (xk))− Re(βmk

0 τz
(mk)
a (yk)) > 0, which contradicts the 

hypothesis that v(mk)
a (βmk

0 τ) = Re(βmk
0 τz

(mk)
a (xk)) for all k � 1. □ 

Definition 6.5. Let a ∈ A and an integer n � 0. By changing the indices of the letters 
we can decompose the word σn(a) as a pointed word σn(a) = w = w−N . . .w−1 · w0 . . .wN′, 
where N, N′ � 0. We use the notation w = SN(σn(a)) to refer to this kind of decomposition.

We say that w = SN(σn(a)) is minimal for σn(a) and the vector γ if Re(γm(w)) � 0 for all 
−N � m � N′.

Observe that this is equivalent to Re(γ(w−N . . .w−1)) � Re(γ(w−N . . .wm)) for every 
−N � m � N′ (see lemma 4.3 in [CGRM17]), so w−N . . .w−1 is a proper prefix of σn(a) 
satisfying Re(γ(w−N . . .w−1)) � Re(γ(w′)) for any proper prefix w′ of σn(a).

The next lemma provides a finite prefix–suffix decomposition for w = SN(σn(a)).

Lemma 6.6. Let a ∈ A, n � 1 and w = SN(σn(a)) with N � |σn(a)| − 1. That is, 
w = w−N . . .w−1 · w0 . . .w|σn(a)|−1−N. Then, there exists a finite prefix–suffix decompo-
sition ( pm, cm, sm)0�m�n−1 such that σ(cm+1) = pmcmsm for every 0 � m � n − 1 and 
pn−1cn−1sn−1 = σ(a) satisfying w = σn−1( pn−1) . . . p0 · c0s0 . . . σ

n−1(sn−1). In other  
words, finite words that are shifts of iterates of letters have an analogue of a prefix–suffix 
decomposition.
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Proof. If n  =  1, then w = p0 · c0s0 with ( p0, c0, s0) ∈ A∗ × A× A∗ satisfying 
p0c0s0 = σ(a), so the result holds in this case.

We now assume that n � 2 and proceed by induction. That is, we as-
sume that any shift of σn−1(a) has a finite prefix–suffix decomposition. Let 
w′ = SN′

(σn−1(a)), where N′ � |σn−1| − 1 is chosen so w = Sk(σ(w′)) with the minimum 
possible k � 0. Let ( p′m, c′m, s′m)0�m�n−2 be the finite prefix–suffix decomposition of w′. We 
have that w′ = σn−2( p′n−2) . . . p′

0 · c′0s′0 . . . σ
n−2(s′n−2). By minimality of k, we conclude that 

k � |σ(c′0)| − 1. We write the word Sk(σ(c′0)) as p0 · c0s0 and then define the finite prefix–
suffix decomposition of w as ( p0, c0, s0)( p′0, c′0, s′0) . . . ( p′n−2, c′n−2, s′n−2). By definition of k 
and w′, this sequence satisfies the desired properties. □ 

The following lemma allows to relate the finite prefix–suffix decompositions of minimal 
words with extreme points of finite order.

Lemma 6.7. Let a ∈ A, n � 1 and w = SN(σn(a)) with N � |σn(a)| − 1. Assume w is mini-
mal for σn(a) and γ and let ( pm, cm, sm)0�m�n−1 be its finite prefix–suffix decomposition. If 
γ = τΓ for τ ∈ S1 and the first n coordinates of x ∈ Sa coincide with ( pn−m, cn−m, sn−m)1�m�n , 
then v(n)

a (βn
0τ) = Re(βn

0τza(x)).

Proof. Put w = w−N . . .wN′ with N, N′ � 0. By definition of the finite prefix–suffix decom-
position, we have that σn−1( pn−1) . . . p0 = w−Nw−N+1 . . .w−1. Applying γ, using (1) and 
taking real parts, we obtain:

|β|n Re

(
n∑

m=1

β−mγ( pn−m)

)
= |β|n Re(βn

0τz
(n)
a (x)) � Re(γ(w′))

for every prefix w′ of σn(a). On the other hand, for any y ∈ Sa there exists a prefix w′ of σn(a) 
such that |β|n Re(βn

0τz
(n)
a (y)) = Re(γ(w′)). Indeed, we can take w′ = σn−1( py

n−1) . . . py
0. 

Thus Re(βn
0τz

(n)
a (x)) � Re(βn

0τz
(n)
a (y)) for all y ∈ Sa. □ 

The following corollary of previous lemma was implicit in the proof of lemma 5.13 in 
[CGRM17].

Corollary 6.8. Let ( pm, cm, sm)m�0 be the prefix–suffix decomposition of a minimal se-
quence ω for the vector γ = τΓ for some τ ∈ S1. Let a  =  cn and x ∈ Sa be such that its first n 

coordinates coincide with ( pn−k, cn−k, sn−k)1�k�n. Then v(n)
a (βn

0τ) = Re(βn
0τz

(n)
a (x)).

Finally, using the following lemma we only have to consider minimal sequences with infi-
nitely many non-empty prefixes and suffixes. This argument was given in the proof of proposi-
tion 7.8 in [CGRM17], but we state it here for convenience.

Lemma 6.9. Let ( pm, cm, sm)m�0 be the prefix–suffix decomposition of a minimal sequence 
ω for the vector γ = τΓ for some τ ∈ S1. Then, there exist infinitely many m � 0 such that 
sm �= ε. Analogously, there exist infinitely many m � 0 such that pm �= ε.

Proof. Assume by contradiction that sn0+m = ε for some integer n0 � 0 and every 
m � 0. We will show that ( pm, cm, sm)m�0 is eventually periodic, which contradicts lem-
ma 5.8 in [CGRM17]. We have that σ(cn0+m+1) = pn0+mcn0+m for every m � 0. Then, for 
every m � 0, the value of cn0+m+1 determines a unique possible value for pn0+m and cn0+m.  
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By induction, it is easy to see that ( pm, cm, sm)m�n0 is periodic. Proving that infinitely many 
pm’s are nonempty is completely analogous. □ 

6.2. Proof of theorem 3.3

We have already proved in theorem 3.1 that the restriction of H to each minimal component 
corresponds to a minimal IEM In this way we can refer to the inverse of H on each minimal 
component.

Under the hypothesis of theorem 3.3 we need to prove that: for every good direction 
τ ∈ S1 and every minimal sequence ω ∈ Ωσ for γ = τΓ, its prefix–suffix decomposition 
( pm, cm, sm)m�0 satisfies:

 (a) for some n � 0, (βn
0τ , ( pn, cn, sn)) belongs to a minimal component of H; 

 (b) (βm
0 τ , ( pm, cm, sm)) = H−m+n(βn

0τ , ( pn, cn, sn)) for all m � n.

Proof of theorem 3.3. Let τ ∈ S1 be a good direction. We claim there exists m0 � 1 such 
that for every m � m0 + 1 we have

H(βm
0 τ , ( pm, cm, sm)) = (βm−1

0 τ , ( pm−1, cm−1, sm−1)).

If this holds, from theorem 3.1 we have that HN of any point of S1 × Ā is contained 
in a minimal component of H, where N � 0 is a universal constant. Therefore, by taking 
n  =  m0  +  N  +  1 we get (a) and (b).

We prove the claim by contradiction. Assume there exists an increasing sequence of inte-
gers (mk)k�1 such that

H(βmk
0 τ , ( pmk , cmk , smk)) �= (βmk−1

0 τ , ( pmk−1, cmk−1, smk−1)).

Without loss of generality we may assume that for all k � 1: cmk = a and there exists 
( p, c, s) �= (p̄, c̄, s̄) in Āa such that:

 • H(βmk
0 τ , ( pmk , cmk , smk)) = (βmk−1

0 τ , ( p, c, s)); and
 • ( pmk−1, cmk−1, smk−1) = (p̄, c̄, s̄).

By remark 5.2 we have that va(β
mk
0 τ) = va,( p,c,s)(β

mk
0 τ) for all k � 1.

On the other hand, let xk ∈ Sa,( p,c,s) be a point such that its first mk coordinates coincide 
with ( pmk−m, cmk−m, smk−m)1�m�mk . Since ( pm, cm, sm)m�0 is the prefix–suffix decomposition 

of a minimal sequence, by corollary 6.8 we have that v(mk)
a (βmk

0 τ) = Re(βmk
0 τz

(mk)
a (xk)) for all 

k � 1. This contradicts lemma 6.4 since ( p, c, s) �= (p̄, c̄, s̄). □ 

6.3. Proof of theorem 3.4

Under the hypotheses of theorem 3.4 we need to prove that, for every good direc-
tion τ ∈ S1, if (τ , ( p0, c0, s0)) belongs to a minimal component of H and 
H−m(τ , ( p0, c0, s0)) = (βm

0 τ , ( pm, cm, sm)) for every m � 0, then ( pm, cm, sm)m�0 is the pre-
fix–suffix decomposition of some shift of a minimal sequence for the vector γ = τΓ. Let T be 
the set of sequences in (A∗ × A× A∗)N that are the prefix–suffix decomposition of a point in 
Ωσ. It is not difficult to prove that:
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T= {( pm, cm, sm)m�0;σ(cm) = pm−1cm−1sm−1, m � 1}.

Proof of theorem 3.4. Let τ ∈ S1 be good direction. Consider a sequence ω ∈ Ωσ such 
that its prefix–suffix decomposition is the one given in the statement of the theorem, i.e. 
( pm, cm, sm)m�0.

We will start by proving that sm is not empty for infinitely many m � 0. An analogous proof 
shows that pm is not empty for infinitely many m � 0.

Assume by contradiction that the suffixes are eventually empty. Then, we have that 
( pm, cm, sm)m�0 is eventually periodic as in the proof of lemma 6.9. Thus, there exists m0 � 0 
and � � 0 such that ( pm+k�, cm+k�, sm+k�) = ( pm, cm, sm) for every m � m0  and k � 0.

Let a = cm0  and xk ∈ Sa such that its first k� coordinates are

( pm0+1+k�−m, cm0+1+k�−m, sm0+1+k�−m)1�m�k�.

By lemma 6.3, we have that Re(βm0+k�
0 τz

(k�)
a (xk))− va(β

m0+k�
0 τ) � C|β|−k�. Let x ∈ Sa be 

the limit of (xk)k�1, which is periodic. By taking appropriate subsequences we get that x is an 
extreme point in Fa for some direction in S1. This contradicts lemma 5.8 in [CGRM17] which 
states that eventually periodic elements cannot represent extreme points.

The sequence ( pm, cm, sm)m�0 induces a partition of the non-zero integers in the fol-
lowing way: the set Am is defined by the coordinates covered by σm( pm) or σm(sm) in 
σm( pm) . . . p0 · c0s0 . . . σ

m(sm), where the dot separates negative and non-negative coordi-
nates. Since infinitely many pm’s and sm’s are nonempty, we have that 

⋃
m�0 Am = Z \ {0}. 

We define um(ω) = minn∈Am Re(γn(ω)), Bm =
⋃

n�m An and vm(ω) = minn∈Bm Re(γn(ω)).
Suppose now by contradiction that ω is not in the trajectory by the shift of a minimal se-

quence for the vector γ = τΓ. Then, there exists an increasing sequence of integers (mk)k�1 
such that (umk−1(ω))k�1 is strictly decreasing and equal to (vmk−1(ω))k�1. Let nk ∈ Amk−1 such 
that Re(γnk(ω)) = umk−1(ω). Without loss of generality, we assume that cmk = a for every 
k � 1.

Let ( p(k)
m , c(k)

m , s(k)
m )m�0 be the prefix–suffix decomposition of Snk(ω). We have that 

c(k)
mk = cmk = a and that, by definition, v(mk)

a (βmk
0 τ) = Re(βmk

0 τza(xk)), where xk ∈ Sa is such 
that its first mk coordinates are ( p(k)

mk−m, c(k)
mk−m, s(k)

mk−m)1�m�mk . Since by definition nk ∈ Amk−1, 
we have that:

( p(k)
mk−1, c(k)

mk−1, s(k)
mk−1) �= ( pmk−1, cmk−1, smk−1).

We may assume that for every k � 1: (pmk−1, cmk−1, smk−1) = ( p, c, s) and 

(p(k)
mk−1, c(k)

mk−1, s(k)
mk−1) = (p̄, c̄, s̄).

By definition of H, ( p, c, s) is chosen so that va(β
mk
0 τ) = va,( p,c,s)(β

mk
0 τ) for all k � 1. This 

fact contradicts lemma 6.4 since ( p, c, s) �= (p̄, c̄, s̄). □ 

6.4. Proof of corollary 3.5

We start by showing that the orbits of minimal sequences are finite:

Lemma 6.10. Given a good direction τ ∈ S1, there are finitely many orbits of minimal 
sequences for the eigenvector γ = τΓ.
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Proof. Let Ωτ
σ be the set of sequences in Ωσ whose prefix–suffix decomposition is the pro-

jection on Ā of (H−m(τ , (q, a, r)))m�0 for some (τ , (q, a, r)) belonging to a minimal comp-
onent of H. Since Ā is finite, we obtain that Ωτ

σ is finite.
Let ( pm, cm, sm)m�0 be the prefix–suffix decomposition of a minimal sequence ω for the 

vector γ = τΓ. By theorem 3.3 there exists n � 0 such that:

 • (βn
0τ , ( pn, cn, sn)) belongs to a minimal component of H; and

 • (βm
0 τ , ( pm, cm, sm)) = H−m+n(βn

0τ , ( pn, cn, sn)) for every m � n.

Let ω̄ ∈ Ωτ
σ be the sequence whose prefix–suffix decomposition is the projection on Ā of 

(H−m+n(βn
0τ , ( pn, cn, sn)))m�0. We have that the prefix–suffix decomposition of ω and ω̄  coin-

cide for every m � n. But, by lemma 6.9, infinitely many sm’s and pm’s are nonempty. There-
fore ω belongs to the orbit of ω̄  by the shift action on Ωσ. This concludes the proof. □ 

Fix a slope vector � = (�a; a ∈ A) ∈ RA and for ω = (ωm)m∈Z ∈ Ωσ, denote 
�n(ω) =

∏n−1
m=0 �ωm and �−n(ω) =

∏−1
m=−n �

−1
ωm

 for n � 0. Let

Σ(ω, �) =
∑
n∈Z

�n(ω),

which might be equal to ∞ (observe that every term of the series is positive). If 
w = w−N . . . ω−1 · ω0 . . . ωN′ is a finite (pointed) word, we similarly define �n(w) =

∏n−1
m=0 �wm 

and �−n(w) =
∏−1

m=−n �
−1
wm

 for n � 0. Letting |w|+ = N′ + 1 and |w|− = N , we set 

Σ(w, �) =
∑|w|+

n=−|w|− �n(w). The main result of [CGRM17], theorem 7.1, states that if ω is a 

minimal sequence for a good eigenvector γ and � = exp(−Re(γ)), then Σ(ω, �) < ∞. In the 
next lemma we will prove a similar result for a sequence of finite words which are minimal 
in the sense of definition 6.5 and eigenvectors which are good in the sense of definition 3.2.

Lemma 6.11. Let γ = τΓ be a good eigenvector and let � = exp(−Re(γ)). Fix a ∈ A and 
for every n � 0 let w(n) be minimal for σn(a) and γ. Then, there exists a constant K  >  0 such 
that Σ(w(n), �) < K  for all n � 0.

Let us remark that the proof of this lemma uses the same techniques as those of theorem 
7.1 in [CGRM17], but the present result seems stronger. Indeed, observe that if ω is a mini-
mal sequence for the vector γ and ( pm, cm, sm)m�0 is its prefix–suffix decomposition, then 
for all n � 0  the pointed word whose prefix–suffix decomposition is ( pm, cm, sm)1�m�n−1 is 
minimal for σn(cn) and γ. Therefore, this lemma easily implies theorem 7.1 of [CGRM17], 
namely, that Σ(ω, �) < ∞. We tried hard to prove the converse, unsuccessfully. For this rea-
son, a new proof, although with very similar arguments to that of theorem 7.1 in [CGRM17], 
seemed to us unavoidable. Moreover, we need to account for the different definition of good 
eigenvector.

Proof. We will prove the lemma only for the series associated with the positive coordinates 

of w(n), i.e. we will prove that 
∑|w(n)|+

m=0 �m(w(n)) are uniformly bounded. The proof for the 

negative part is similar.
Let 1 < A < |β| such that lim infn→∞ An[[ξ − βn

0τ ]] = ∞ for every ξ ∈ Ψ, which exists 

by definition of good direction. Let η = A−1
A |β| ∈ (0, |β| − 1), which satisfies |β|

|β|−η = A. 

Let ρ = log(|β|−η)
log(α−1+η)

> 0. It is sufficient to prove that there exist constants C1, C2 > 0 such 

that �m(w(n)) � C1 exp(−C2mρ) for every 0 � m � |w(n)|+ and for every sufficiently large n.  
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This is the same as saying that Re(γm(w(n))
mρ � C2 − log C1

mρ  for 1 � m � |w(n)|+. To prove this, it 

is enough to show that

lim inf
n→∞

min
1�m�|w(n)|+

Re(γm(w(n)))

mρ
> 0.

We proceed by contradiction and suppose that there exists subsequences of natural num-
bers (nk)k�1 and (mk)k�1 such that 0 � mk � |w(nk)|+ and

lim
k→∞

Re(γmk(w
(nk)))

mk
ρ

= 0. (4)

Let w̄(nk) = Smk(w(nk)) for every k � 1. Denote by ( p(nk)
m , c(nk)

m , s(nk)
m )0�m�nk−1 and 

(p̄(nk)
m , c̄(nk)

m , s̄(nk)
m )0�m�nk−1 be the finite prefix–suffix decompositions of w(nk) and w̄(nk)  

respectively.

By taking subsequences if necessary, we can assume that there exist distinct elements 
( p, c, s), (p̄, c̄, s̄) ∈ Aa such that, for k � 1:

 (i) ( p(nk)
nk−1, c(nk)

nk−1, s(nk)
nk−1) = ( p, c, s); 

 (ii) (p̄(nk)
nk−1, c̄(nk)

nk−1, s̄(nk)
nk−1) = (p̄, c̄, s̄); and 

 (iii) limk→∞ βnk
0 τ = ξ ∈ S1.

Now, since w̄(nk) = Smk(w(nk)) with mk � 0, we have that

σnk−1(p̄(nk)
nk−1) . . . p̄(nk)

0 = σnk−1( p(nk)
nk−1) . . . p(nk)

0 w(nk)
0 . . .w(nk)

mk−1 (5)

for every k � 1.
We will now reverse the indexes of the finite prefix–suffix decompositions of w(nk) and w̄(nk) 

in order to obtain sequences in Sa. Let (xnk)k�1 and (ynk)k�1 be the sequences in Sa obtained 

by reversing the coordinates of ( p(nk)
m , c(nk)

m , s(nk)
m )0�m�nk−1 and (p̄(nk)

m , c̄(nk)
m , s̄(nk)

m )0�m�nk−1 and 
such that p

xnk
m = p

ynk
m = ε for each m � nk + 1.

Without loss of generality we will assume that xnk  converges to x∞ ∈ Sa,( p,c,s). By lemma 
5.12 in [CGRM17], x∞ is the representation of an extreme point in Ea(τ). We will show that 
any limit point of ynk  in Sa,(p̄,̄c,̄s) is the representation of an extreme point in Ea(τ) and there-
fore τ belongs to Ψa.

Applying γ to (5), using the definitions of xnk  and ynk , and multiplying by τ |β|−nk , we get 
that for every k � 1:

βnk
0 τ

nk∑
m=1

β−mΓ( p
ynk
m ) = βnk

0 τ

nk∑
m=1

β−mΓ( p
xnk
m ) + |β|−nkγmk(w

(nk)).

Let us write τk = βnk
0 τ  for k � 1. By taking real parts and rearranging the previous expres-

sion we obtain:

Re(τk(za(ynk)− za(xnk))) = |β|−nk Re(γmk(w
(nk)).
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Furthermore, Re(τkza(xnk)) � Re(τkza(ynk)) since w(nk) is minimal. Then we get

0 � Re(βnk
0 τ(za(ynk)− za(xnk))) = |β|−nk Re(γmk(w

(nk)). (6)

On the other hand, since w(nk)
0 . . .w(nk)

mk−1 is a subword of σnk(a) and |σnk(a)| grows as α−nk  

(recall that α−1 > 1 is the Perron–Frobenius eigenvalue of M), we have that mk � (α−1 + η)nk 
for sufficiently large k � 1. Therefore, by definition of ρ,

m−ρ
k � (α−1 + η)−nkρ = (|β| − η)−nk � |β|−nk .

From assumption (4), we obtain that

lim
k→∞

(|β| − η)−nk Re(γmk(ω
(nk))) = lim

k→∞
|β|−nk Re(γmk(ω

(nk))) = 0.

In particular, from equation (6) we obtain that any limit point y∞ of ynk  in Sa,(p̄,̄c,̄s) is such that 
za(y∞) is an extreme point for the direction τ = limk→∞ βnk

0 , that is, va(τ) = Re(τza(y∞)). 
Therefore, τ belongs to Ψa.

Recall that A = |β|
|β|−η ∈ (1, |β|) is the constant in the definition of good direction. Ampli-

fying equation (6) by Ank, we find that

0 � Ank Re(τk(za(ynk)− za(xnk))) = (|β| − η)−nk Re(γmk(ω
(nk))

for all sufficiently large k. Hence,

lim
k→∞

Ank Re(τk(za(ynk)− za(xnk))) = 0. (7)

Since x(nk) is minimal,

v(nk)
a (τk) = v(nk)

a,( p,c,s)(τk) = Re(τkza(xnk)).

We also know that Re(βnk
0 za(ynk)) � v(nk)

a,(p̄,̄c,̄s)(β
nk
0 ) and therefore that

Re(τk(za(ynk)− za(xnk))) � v(nk)
a,(p̄,̄c,̄s)(τk)− v(nk)

a,( p,c,s)(τk) � 0. (8)

On the other hand, since x∞ ∈ Sa,( p,c,s) and y∞ ∈ Sa,(p̄,̄c,̄s) are representations of extreme 
points for the same direction τ, the unique representation property we are assuming implies 
that za(x∞) �= za(y∞).

Using lemma 6.2 we conclude that for each k � 1:

v(nk)
a,(p̄,̄c,̄s)(τk)− v(nk)

a,( p,c,s)(τk) � va,(p̄,̄c,̄s)(τk)− va,( p,c,s)(τk)− 2C|β|−nk (9)

for a constant C  >  0 which does not depend on k.
Finally, by (8) and (9) and lemma 4.1 we conclude that

Re(τk(za(ynk)− za(xnk))) � D[[ξ − τk]]− 2C|β|−nk

for infinitely many k � 1. Since γ is a good eigenvector and ξ ∈ Ψa, by definition, 
lim infk→∞ Ank [[ξ − τk]] = ∞. This contradicts (7). □ 
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Proof of corollary 3.5. Let ω ∈ Ωσ be a minimal sequence for the vector γ = τΓ. We 
have that Sn(ω) is also a minimal sequence for some n ∈ Z if and only if Re(γn(ω)) = 0. By 
lemma 6.11, we have that there exists n0 � 1 such that Re(γn(ω)) > 0 for every n ∈ Z with 
|n| � n0. This concludes the proof. □ 

6.5. Proof of theorem 3.6

Proof of theorem 3.6. For t ∈ [0, 1), let ι(t) ∈ Ωσ  be its itinerary by T with respect to 
the partition (Ia; a ∈ A). Let f be an affine IEM with slope � = (�a; a ∈ A) which is semi-
conjugate to T. Then there exists a continuous surjective map h : [0, 1) → [0, 1) such that 
h ◦ f = T ◦ h. Let µ = (ι ◦ h)∗Leb be the pushforward by ι ◦ h of the Lebesgue measure on 
[0, 1), that is, µ(J) = Leb((ι ◦ h)−1(J)) for any Borel set J of Ωσ. It is easy to see that

µ(S(J)) = �aµ(J)

for every J ⊆ Ωa, where Ωa = {ω ∈ Ωσ;ω0 = a}. More generally, if w = w−k . . .wk′ and 
Ωw = {ω ∈ Ωσ;ωm = wm,−k � m � k′}, then if J ⊆ Ωw:

µ(Sk′(J)) = �k′(w)µ(J) and µ(S−k(J)) = �−k(w)µ(J). (10)

For each a ∈ A and n � 0, denote ra,n = |σn(a)| and let Ωa,n = Ωσn(a). We have that I is the 
union of the sets Sm(Ωa,n) with a ∈ A and 0 � m � ra,n − 1. Therefore,

1 = µ(Ωσ) �
∑
a∈A

ra,n−1∑
m=0

µ(Sm(Ωa,n)).

We obtain that there exist δ > 0, a ∈ A and a subsequence (nk)k�1 of the natural numbers 
such that, for every k � 1,

ra,nk−1∑
m=0

µ(Sm(Ωa,nk)) � δ. (11)

Now assume by contradiction that there exists an affine IEM f with slope vector 
� = exp(−Re(γ)) which is conjugate to T. That is, we assume that h is injective. We will 
show that this contradicts inequality (11).

Let (w(nk))k�1 be a sequence of locally minimal words for σnk(a) and the vector γ, i.e. there 
exists 0 � mk � ra,nk − 1 such that

w(nk) = Smk(σnk(a)) = w(nk)
−mk

. . .w(nk)
−1 .w(nk)

0 . . .w(nk)
ra,nk−1−mk

with Re(γn(w(nk))) � 0 for every −mk � n � ra,nk − 1 − mk. By lemma 6.11, there exists a 
constant K  >  0 such that Σ(w(nk), �) < K  for every k � 1. Note that Ωw(nk) = Smk(Ωa,nk) and 
Sm(Ωa,nk) = Sm−mk(Smk(Ωa,nk)) = Sm−mk(Ωw(nk)). Thus, by equation (10),

µ(Sm(Ωa,nk)) = �m−mk(w
(nk))µ(Ωw(nk)).
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Therefore,

ra,nk−1∑
m=0

µ(Sm(Ωa,nk)) = µ(Ωw(nk))

rnk−1∑
m=0

�m−mk(w
(nk))

= µ(Ωw(nk))Σ(w
(nk), �) � Kµ(Ωw(nk))

for all k � 1. Finally, let ω ∈ Ωσ be a limit point of (w(nk))k�1. We have that 
lim infk→∞ µ(Ωw(nk)) � µ({ω}). Since h is invertible and ι is injective, we have that 
µ({ω}) = 0, so

lim inf
k→∞

ra,nk−1∑
m=0

µ(Sm(Ωa,nk)) = 0,

contradicting (11). □ 

6.6. Proof of theorem 3.7

We start by showing that minimal components of H contain directions in Ψ.

Lemma 6.12. If Y is a minimal component of H, then there exists (ξ, (q, a, r)) ∈ Y  such 
that ξ ∈ Ψa.

Proof. Assume that for each (ξ, (q, a, r)) ∈ Y  there exists a unique ( p, c, s) ∈ Āa with 
va(ξ) = va,( p,c,s)(ξ). Let (ξ, (q, a, r)) ∈ Y  and let Z ⊆ Y  be the maximal interval containing 
(ξ, (q, a, r)). That is, Z = J × {(q, a, r)}, where J ⊆ S1 is the maximal interval containing ξ 
such that Z ⊆ Y . We will prove that J = S1.

By hypothesis, Hm(Z) = β−m
0 J × {( pm, cm, sm)} for some ( pm, cm, sm) ∈ Ā and each 

m � 0. By minimality, there exists n � 1 such that Hn(Z) ∩ Z �= ∅, which implies that 
( pn, cn, sm) = (q, a, r). We obtain that:

Z ⊆ Z ∪ Hn(Z) = (J ∪ β−n
0 J)× {(q, a, r)} ⊆ Y .

If J was a proper subset of S1, then it would also be a proper subset of J ∪ β−n
0 J . This contra-

dicts the maximality of J. Therefore, Z = S1 × {( p, a, s)}.
Now, by minimality, there exists n � 0 such that 

⋃n
m=0 Hm(Z) = Y . Assume that n is mini-

mal with this property. By hypothesis, we deduce that:

Y = S1 × {( pm, cm, sm); 0 � m � n}

and that H(τ , ( pm, cm, sm)) = (β−1
0 τ , ( pm+1, cm+1, sm+1)) for every m � 0 and τ ∈ S1. We 

conclude that the projection πĀ of any pre-orbit by H is periodic. Fixing a good eigenvector 
γ, by theorem 3.4 we obtain that there exist ultimately periodic minimal sequences for γ.  
This contradicts lemma 5.8 in [CGRM17]. □ 

Lemma 6.13. Under the hypotheses of theorem 3.3, if γ = τΓ is a very bad eigenvector,  
ω is a minimal sequence for γ and � = exp(−Re(γ)), then Σ(ω, �) = ∞.
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Proof. Let ( pm, cm, sm)m�0 be the prefix–suffix decomposition of ω. We claim that there 
exist a subsequence (nk)k�1 and distinct labels ( p, c, s) and (p̄, c̄, s̄) in Āa such that, for every 
k � 1:

 (i) cnk = a; 
 (ii) τk = βnk

0 τ → ξ when k → ∞; 
 (iii) ( pnk−1, cnk−1, snk−1) = ( p, c, s); and
 (iv) va(ξ) = va,( p,c,s)(ξ) = va,(p̄,̄c,̄s)(ξ).

From these conditions we can prove that Σ(ω, �) = ∞. Indeed, let xk be an element of Sa 
whose first nk coordinates coincide with ( pnk−m, cnk−m, snk−m)1�m�nk. Clearly, xk ∈ Sa,( p,c,s).

By definition of xk and the fact that ω is minimal, we obtain from lemma 6.7 that 

v(nk)
a (τk) = v(nk)

a,( p,c,s)(τk) = Re(τkz
(nk)
a (xk)).

Let yk ∈ Sa,(p̄,̄c,̄s) be such that v(nk)
a,(p̄,̄c,̄s)(τk) = Re(τkza(yk)) for every k � 1. Clearly, 

v(nk)
a (τk) � v(nk)

a,(p̄,̄c,̄s)(τk) and from lemmas 6.2 and 4.1, there exists C  >  0 such that, for every 

sufficiently large k,

0 � v(nk)
a,(p̄,̄c,̄s)(τk)− v(nk)

a,(p,c,s)(τk) � va,(p̄,̄c,̄s)(τk)− va,(p,c,s)(τk) + 2C|β|−nk

� |β|−nk(2D2|β|nk [[ξ − τk]] + 2C)

and therefore, from the fact that τ is a very bad direction, we conclude that, for some constant 
C2  >  2C and every sufficiently large k,

Re(τkza(yk))− Re(τkza(xk)) = v(nk)
a,(p̄,̄c,̄s)(τk)− v(nk)

a,(p,c,s)(τk) � C2|β|−nk . (12)

If p̄c̄ is a prefix of p, then

σnk−1( pxk
1 ) . . . pxk

nk−1 = σnk−1( pyk
1 ) . . . pyk

nk−1ω0ω1 . . . ωmk−1

for some increasing sequence (mk)k�1. Therefore,

Re(γmk(ω)) = |β|nk Re(τkza(xk))− |β|nk Re(τkza(yk)) � 0

and, since ω is a minimal sequence, we obtain that Re(γmk(ω)) = 0 for every k � 1.  
We conclude that �mk(ω) = exp(−Re(γmk(ω))) = 1, so Σ(ω, �) = ∞.

If pc is a prefix of p̄, then

σnk−1( pyk
1 ) . . . pyk

nk−1 = σnk−1( pxk
1 ) . . . pxk

nk−1ω0ω1 . . . ωmk−1

for some increasing sequence (mk)k�1. Therefore,

Re(γmk(ω)) = |β|nk Re(τkza(yk))− |β|nk Re(τkza(xk).

By (12), we obtain that

Re(γmk(ω)) = |β|nk Re(τkza(yk))− |β|nk Re(τkza(xk)) � C2

for all sufficiently large k. We conclude that �mk(ω) = exp(−Re(γmk(ω))) � exp(−C2),  
so Σ(ω, �) = ∞.
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We will now prove that we can find a sequence (nk)k�1 such that (i)–(iv) hold. We consider 
two complementary cases:

 Case 1. Assume that there exists m0 � 1 such that, for all m � m0 ,

H(βm
0 τ , ( pm, cm, sm)) = (βm−1

0 τ , ( pm−1, cm−1, sm−1)).

  That is, up to finitely many terms, the prefix–suffix decomposition of ω is obtained by 
the projection πĀ of a pre-orbit by H. By lemma 5.8 we have that (βm0

0 τ , ( pm0 , cm0 , sm0)) 
belongs to a minimal component Y of H and, therefore, that (βm

0 τ , ( pm, cm, sm)) belongs 
to Y for all m � m0 .

  By the previous lemma, there exists (ξ, (q, a, r)) ∈ Y  such that ξ ∈ Ψa. Since H−1 is 
minimal, we can find a sequence (nk)k�1 such that (βnk

0 τ , ( pnk , cnk , snk)) converges to 
(ξ, (q, a, r)). We can also assume that ( pnk−1, cnk−1, snk−1) = ( p, c, s) is constant. We then 
obtain claims (i)–(iii).

  By definition of H, we have that va(τk) = va,( p,c,s)(τk) and, by continuity, we obtain 
that va(ξ) = va,( p,c,s)(ξ). Since ξ ∈ Ψa, there exists ( p, c, s) �= (p̄, c̄, s̄) ∈ Āa such that 
va(ξ) = va,(p̄,̄c,̄s)(ξ). In this way, we obtain (iv), and the claim holds in this case.

 Case 2. Assume that there exists a subsequence ( pnk , cnk , snk)k�1 such that

H(βnk+1
0 τ , ( pnk+1, cnk+1, snk+1)) �= (βnk

0 τ , ( pnk , cnk , snk))

  for every k � 1. Without loss of generality, we may assume that there exists a ∈ A and 
distinct labels ( p, c, s), (p̄, c̄, s̄) ∈ Āa such that, for all k � 1:

 (i) cnk = a; 
 (ii) τk = βnk

0 τ → ξ when k → ∞; 
 (iii) ( pnk−1, cnk−1, snk−1) = ( p, c, s); and

and H(βnk
0 τ , ( pnk , cnk , snk)) = (βnk−1

0 τ , (p̄, c̄, s̄)).

We therefore have conditions (i)–(iii) of our claim, and we must prove that (iv) holds.

Notice that, by continuity of va and definition of H, va(ξ) = va,(p̄,̄c,̄s)(ξ). To obtain (iv), it is 
enough to show that va(ξ) = va,( p,c,s)(ξ).

Let xk ∈ Sa such that its first nk coordinates are ( pnk−m, cnk−m, snk−m)1�m�nk. Clearly, 
xk ∈ Sa,( p,c,s). By definition of xk and the fact that ω is minimal, we obtain from corollary 6.8 

that v(nk)
a (τk) = v(nk)

a,( p,c,s)(τk) = Re(τkz
(nk)
a (xk)). Therefore, if x is any limit point of in Sa,( p,c,s) 

of (xk)k�1, then va(ξ) = Re(ξza(x)). Thus, ξ ∈ Ψa. We conclude that our claim also holds in 
the second case. □ 

Proof of theorem 3.7. Consider an affine extension f of T with slope vector 
� = exp(−Re(γ)). Let h : I → I  be a continuous, surjective and non-decreasing map such 
that h ◦ f = T ◦ h. We claim that if h is not injective, then there exists a minimal sequence 
ω ∈ Ωσ for which the series Σ(ω, �) is finite.

Indeed, let t0 ∈ I be such that J0 = h−1({t0}) ⊆ I  is an interval of positive length (that is, 
J0 is a wandering interval for f). Let ω ∈ Ωσ be the itinerary of t0 by T. Observe that, since h 
is non-decreasing, for any n ∈ Z:

f n(J0) = f n(h−1(t0)) = h−1(Tn(t0))
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so f n(J0) ⊆ h−1(Iωn) for every n ∈ Z. Since, for every a ∈ A, the slope of f on the interval 
h−1(Ia) is �a, we obtain that, for every n ∈ Z,

Leb( f n(J0)) = �n(ω)Leb(J0),

where Leb is the Lebesgue measure on I. The intervals f n(J0) are pairwise disjoint, so
∑
n∈Z

Leb( f n(J0)) =
∑
n∈Z

�n(ω)Leb(J0) = Σ(ω, �)Leb(J0) � 1,

which shows that Σ(ω, �) � 1
Leb(J0)

< ∞. The sequence ω must then be minimal up to a shift. 
The proof follows by the previous lemma. □ 

7. The cubic Arnoux–Yoccoz map

In the cubic Arnoux–Yoccoz IEM (A-Y IEM) we illustrate the main theorems of the article. In 
particular, we construct the map H together with its minimal components. We have to mention 
that this example is not really self-similar in the sense of this article, but the natural symbolic 
coding is substitutive and the substitution satisfies the conditions of this article. In any case, it 
can be transformed in such a way that the resulting IEM fully satisfies our conditions, but the 
extra notation is unnecessary to understand the phenomenon. Details on this transformation 
can be found in [LPV07].

Let α be the unique real number such that α+ α2 + α3 = 1 and let Gt0,t1 be the map 
exchanging both halves of the interval [t0, t1) while preserving orientation. That is,

Gt0,t1(t) =




t + (t0 + t1)/2 t ∈ [t0, (t0 + t1)/2),
t − (t0 + t1)/2 t ∈ [(t0 + t1)/2, t1),
t t /∈ [t0, t1).

Then, the A-Y IEM is given by T = G0,1 ◦ G0,α ◦ Gα,α+α2 ◦ Gα+α2,1. Properties of T were 
extensively discussed in [ABB11]. In particular, it is proved that the map T is equal, up to 
rescaling and rotation, to the map induced on the interval [0,α) and, by considering an appro-
priate refinement of continuity intervals of T into nine intervals, one may encode the relation 
of orbits by T for this partition and the orbits of the induced system for the induced partition 
by the following substitution σ on the alphabet A= {1, . . . , 9}:

σ(1) = 35 σ(4) = 17 σ(7) = 29
σ(2) = 45 σ(5) = 18 σ(8) = 2
σ(3) = 46 σ(6) = 19 σ(9) = 3.

One then has that ΩT = Ωσ . It is easy to check that σ is primitive. The characteristic polyno-
mial of M is (1 − t3)(t3 + t2 + t − 1)(−t3 + t2 + t + 1), where the last two factors are irre-
ducible. The roots of t3 + t2 + t − 1 are α, β and β̄, whereas the roots of −t3 + t2 + t + 1 
are α−1, β−1 and β̄−1, where α−1 is the Perron–Frobenius eigenvalue. We assume that β is 
the eigenvalue with positive imaginary part. Numerically, β ≈ −0.771 845 + 1.115 14i . It is 
proved in [Mes00] that (β−1)n is never real for any n ∈ Z. Furthermore, we have that the 
eigenspace associated with β has dimension 1. In fact, it is generated by

Γ = (β2 + β + 1,−β,−β,−β2 − β − 1,β + 1,β + 1,−β2 − β − 2,−1,−1).
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In what follows β and Γ are the corresponding eigenvalue and eigenvector of M used in 
previous sections. By lemma 8.8 in [CGRM17] we have that this example satisfies the u.r.p. 
for the selected β and Γ. Also, the boundaries of the associated fractals are Jordan curves (see 
lemma 8.5 and corollary 8.7 in [CGRM17]).

First we compute the sets Ψa where we can find extreme points in different sub-fractals. 
Since F2 = F3, F5 = F6 and F8 = F9 (proved in [ABB11]), we focus on the subalphabet  
{1, 2, 4, 5, 7, 8}.

Lemma 7.1. One has

Ψ1 = {−iβ4
0 , η1} Ψ5 = {iβ5

0 ,−β0η1}
Ψ2 = {iβ2

0 ,−iβ2
0} Ψ7 = {iβ5

0 , η7}
Ψ4 =

{
iβ5

0 , i |β
−1+β−3|

β−1+β−3

}
Ψ8 = ∅

,

where φ− π
2 < arg(η1) < 2φ− 3π

2  and 4φ− 9π
2 < arg(η7) < 2π, φ = arg(β0) ∈ [0, 2π).

Proof. The bounds on η1 and η7 were found computationally and then proved analytically. 
The proof is tedious but elementary, so we omit it here. See the appendix for computations.
 □ 

Using the previous lemma it is possible to compute the right-continuous map H somewhat 
explicitly (it will depend on the bounds for η1 and η7). The bounds on η1 and η7 are sufficiently 
good so that H restricted to its minimal components does not depend on their exact values.

Lemma 7.2. The map H has exactly two minimal components shown in figure 3.

Proof. By iterating H, we see that H30(S1 × Ā) = H31(S1 × Ā), so the limit set 

ΛH =
⋂

n�0 Hn(S1 × Ā) = H30(S1 × Ā). In addition, the restriction of H to ΛH  coincides 
with the map in figure 3. □ 

Lemma 7.3. Let A  >  1 be a real number and let τ , ξ ∈ S1 be algebraic. Then, 
lim infn→∞ An[[ξ − βn

0τ ]] = ∞.

Proof. We will use Baker’s theorem, which relies on the following definition: given an 
algebraic number whose minimal primitive polynomial is p(t) =

∑d
m=0 pmtm, we define its 

height as max0�m�d | pm|.
Let n � 0. First observe that [[ξ − βn

0τ ]] = [[ξτ−1 − βn
0 ]] and that ξτ−1 is algebraic. Let 

φ, θ ∈ [0, 2π] such that exp(iφ) = β0 and exp(iθ) = ξτ−1. We have that 2π and φ are linearly 
independent over the rational numbers, since β0 is not a root of unity. Moreover,

[[ξ − βn
0τ ]] = [[ξτ−1 − βn

0 ]] = min
m∈Z

|2mπ + θ − nφ|

and, since θ,φ ∈ [0, 2π], the number m ∈ Z attaining the minimum in the previous equa-
tion has absolute value at most n. Therefore,

[[ξ − βn
0τ ]] = min

−n�m�n
|2mπ + θ − nφ|.

We consider several cases:
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If ξτ−1 is neither a root of unity nor a rational power of β0, then 2π, φ and θ are linearly 
independent over the rational numbers. The height of m is |m| � n. By Baker’s theorem, we 
obtain that |2mπ + θ − nφ| � n−C  for every −m � m � n, where C  >  0 is a constant inde-
pendent of n. Therefore, [[ξ − βn

0τ ]] � n−C.
If ξτ−1 is a root of unity, then θ = 2qπ with q a rational number. Therefore,

[[ξ − βn
0τ ]] = min

−n�m�n
|2(m + q)π − nφ|.

If n is larger than both the numerator and denominator of q, then the height of m  +  q most n2  +  n 
for every −n � m � n. Baker’s theorem then shows that |2(m + q)π − nφ| � (n2 + n)−C 
for every −n � m � m with m �= −q , where C  >  0 is a constant independent of n. Ob-
serve that the minimum cannot be attained at m  =  −q except for finitely many n. Therefore, 
[[ξ − βn

0τ ]] � (n2 + n)−C for sufficiently large n.
If ξτ−1 is a rational power of β0, then θ = qφ for some rational number q. Therefore,

[[ξ − βn
0τ ]] = min

−n�m�n
|2mπ + (q − n)φ|.

If n is larger than the numerator and denominator of q, then the height of q  −  n is at most n2  +  n. 
By Baker’s theorem, we obtain that |2mπ + (q − n)φ| � (n2 + n)−C for every −n � m � m 
and n �= q, where C  >  0 is a constant independent of n. Therefore, [[ξ − βn

0τ ]] � (n2 + n)−C 
for sufficiently large n.

In any case, for n sufficiently large, [[ξ − βn
0τ ]] is bounded from below by p(n)−C, where p 

is a polynomial and C  >  0 is a constant independent of n. This fact rules out the exponential 
rate of convergence. □ 

8. Possible additional examples

In this section we present a class of IEMs for which we think it is possible to find new examples 
verifying the hypotheses of our main results. These hypotheses are: the existence of a suitable 
eigenvalue, that is, a non-real expanding eigenvalue β such that β/|β| is not a root of unity, 

Figure 3. Each circle represents a minimal component for the map H associated with 
the cubic Arnoux–Yoccoz map. The map H acts as a rotation by β−1

0  in each circle and 
the labels in Ā change in accordance with the partitions of each circle.
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and the unique representation property. The family of examples satisfies the first hypothesis. 
Nevertheless, to determine if the unique representation property holds for a specific example 
in this class one needs to understand the topology of the associated fractals. We expect that 
algebraic conditions similar to the ones in [BHM10] are sufficient. Indeed, conditions of this 
nature should imply that the fractals are ‘well-behaved’ in a broad sense since this is true for 
classical Rauzy fractals.

We will make use of the notion of Rauzy–Veech algorithm and related concepts such as 
Rauzy classes. For more details on these notions we suggest [Via06] and [Yoc10].

8.1. Suitable eigenvalue hypothesis

We will restrict the discussion to IEMs which are periodic for the Rauzy–Veech algorithm. 
This is a natural class of self-similar IEMs as explained in [CGRM17, section 7.2].

First observe that IEMs exchanging five intervals or less cannot satisfy this hypothesis. 
Indeed, any reciprocal quintic polynomial of a primitive matrix has at least three real roots. If 
the remaining roots β, β−1 are non-real, then |β| = 1 as they are complex conjugates.

However, it is possible to construct an infinite family of self-similar IEMs exchanging six 
intervals whose induction matrices have suitable eigenvalues by finding appropriate cycles in 
a Rauzy class as done in [BHM10, section 6]. Indeed, consider the hyperelliptic permutation

π =

(
1 2 3 4 5 6
6 5 4 3 2 1

)
.

We consider three cycles on the Rauzy class of π (see figure 4):

 (1) alternating top and bottom operations until coming back to π; 
 (2) alternating bottom and top operations until coming back to π; and 
 (3) three bottom operations, followed by 2n top operations and two more bottom operations, 

for an integer n � 0.

The induction matrices M1, M2 and M3 obtained from these three cycles are, respectively, the 
following:

M1 =




1 0 0 0 0 1
0 2 10 10 5 1
0 7 54 54 28 1
0 22 156 161 84 1
0 42 298 306 162 1
0 26 185 190 100 1




, M2 =




1 100 190 185 26 0
1 162 306 298 42 0
1 84 161 156 22 0
1 28 54 54 7 0
1 5 10 10 2 0
1 0 0 0 0 1




M3 =




1 0 n 0 0 0
1 1 2n 0 0 0
1 0 1 + n 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1




.

Let M = M1M3M2. We will show that M has a non-real expanding eigenvalue.
A straightforward computation shows that its characteristic polynomial is given by
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p(t) = 1 − (196 351 + 51 729n)t + (740 715 + 183 764n)t2 − (1092 962 + 269 314n)t3

+ (740 715 + 183 764n)t4 − (196 351 + 51 729n)t5 + t6.

Let α−1 be the Perron–Frobenius root of p and s = α+ α−1. Let β, β−1, γ, γ−1 be 
the other four roots of p and u = β + β−1, v = γ + γ−1. By expanding the equality 
p(t) = (t − α)(t − α−1)(t − β)(t − β−1)(t − γ)(t − γ−1), we obtain that:

 • s + u + v = 196 351 + 51 729n; 
 • 3 + su + uv + vs = 740 715 + 183 764n; and 
 • suv + 2(s + u + v) = 1092 962 + 269 314n.

This can be reduced to

 • s + u + v = 196 351 + 51 729n; 
 • su + uv + vs = 740 712 + 183 764n; and 
 • suv = 700 260 + 165 856n.

Therefore, we have that

q(t) = (t − s)(t − u)(t − v)

= −(700 260 + 165 856n) + (740 712 + 183 764n)t − (196 351 + 51 729n)t2 + t3.

The discriminant of the cubic polynomial q is negative for all n � 0, which implies that it 
has one real root and two non-real conjugate roots. Since s is real, we obtain that u and v 
are non-real and satisfy u = v̄. Therefore, β is non-real. Moreover, if |β| = 1, then β−1 = β̄ 
and u = β + β̄ would be real. We obtain (without loss of generality) that |β| > 1. Finally, 
p is an irreducible polynomial if n mod 3 = 2. Indeed, its modulus-three reduction is 
1 + 2t + t2 + 2t3 + t4 + 2t5 + t6 in such case, which is readily seen to be irreducible over F3. 
We obtain that β and α−1 are Galois-conjugates. By [CGRM17, lemma 7.9], we conclude that 
β/|β| is not a root of unity.

Figure 4. The Rauzy class of π, which is marked with a grey dot. Solid arrows represent 
top operations, while dashed arrows represent bottom operations. Observe that the first 
cycle traverses the entire right ‘half’ of the Rauzy class, while the second cycle traverses 
the entire left ‘half’.
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Appendix

In this section we detail the computation of the set Ψ for the Arnoux–Yoccoz fractals. These 
fractals are extensively studied in section 8 of [CGRM17].

For any a ∈ A, ( p, c, s) ∈ Āa and τ ∈ S1 it is possible to compute v(n)
a,( p,c,s)(τ) numerically 

by using a dynamic programming approach. This fact and the next lemma allow to compute 
the first coordinates of the representation of an extreme point.

Lemma A.1. Let a ∈ A, τ ∈ S1 and ( p, c, s), (p̄, c̄, s̄) ∈ Āa. There exists C  >  0 such that for 
any n � 1 one has that

va,( p,c,s)(τ)− va,(p̄,̄c,̄s)(τ) � v(n)
a,( p,c,s)(τ)− v(n)

a,(p̄,̄c,̄s)(τ) + C|β|−n.

Therefore, if v(n)
a,( p,c,s)(τ) < v(n)

a,(p̄,̄c,̄s)(τ)− C|β|−n, then va,( p,c,s)(τ) < va,(p̄,̄c,̄s)(τ).

Proof. We have that va,( p,c,s)(τ) � v(n)
a,( p,c,s)(τ). Moreover, by lemma 6.2, we have that 

v(n)
a,(p̄,̄c,̄s)(τ)− va,(p̄,̄c,̄s)(τ) � C|β|−n for some C  >  0. By adding both inequalities we obtain the 

desired result. □ 

The optimal constant C  >  0 of the previous lemma is max{−va(τ); a ∈ A, τ ∈ S1}. Any 
larger constant is valid as well, so we may choose any C  >  0 such that |z| � C for every 
z ∈ Fa and a ∈ A. A simple choice is C =

∑
m�1 |β|−m|Γ( p)|, where ( p, c, s) ∈ Ā is chosen 

so that |Γ( p)| � |Γ(p̄)| for every (p̄, c̄, s̄) ∈ Ā.
For the case of the Arnoux–Yoccoz fractals, the prefix p  =  2 satisfies the previous condi-

tion, so |Γ( p)| = |β| and we choose C = |β|
|β|−1 ≈ 3.807.

The strategy to compute Ψ is the following: first notice that, since σ(8) = 2, one has that 
Ψ8 = ∅. We will then assume that a ∈ {1, 2, 4, 5, 7}. lemma A.1 allows us to know in which 
subfractal is the minimum attained. By using a binary search approach, we can obtain suf-
ficiently good bounds for exactly two distinct directions in Ψa. The next lemma shows that 
these are the only elements of Ψa.

Lemma A.2. Assume that σ(a) = bc. One has that |Ψa| = 2 for every a ∈ A.

Proof. By the previous discussion, |Ψa| � 2. We will show that |Ψa| � 2.
By corollary 8.7 and lemma 8.8 in [CGRM17], we know that T has the u.r.p. for β and that 

each Fa is the closure of the Jordan interior of a Jordan curve Ca.
Since σ(a) = bc, we have that Fa = Fa,(ε,b,c) ∪ Fa,(b,c,ε). By lemma 8.6 in [CGRM17], 

we have that the interiors of Fa,(ε,b,c) and Fa,(b,c,ε) are disjoint. Assume by contradiction that 
τ1, τ2, τ3 ∈ S1 are distinct elements of Ψa. Let z1, z2, z3 ∈ Fa,(ε,b,c) and z′1, z′2, z′3 ∈ Fa,(b,c,ε) be 
extreme points for the directions τ1, τ2 and τ3, respectively. By the u.r.p., z1 �= z′1, z2 �= z′2 and 
z3 �= z′3.
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Since Fa,(ε,b,c) is the closure of the Jordan interior of a Jordan curve, it is homeomor-
phic to a closed disc, so there exists a curve κ : [0, 1] → Fa,(ε,b,c) such that κ(0) = z1, 
κ(1/2) = z2, κ(1) = z3 and κ(t) lies in the interior of Fa,(ε,b,c) for every t /∈ {0, 1/2, 1}. We 
have that κ(t) /∈ Fa,(b,c,ε) for every t ∈ [0, 1].

Let Δ be the unique 2-simplex with z1, z′1, z2, z′2, z3, z′3 ∈ ∂∆. Note that it is not possible 
that z1 = z2 = z3 or z′1 = z′2 = z′3, so Δ is indeed a non-degenerate 2-simplex. By definition, 
one has that κ(t) /∈ ∂∆ if κ(t) /∈ {0, 1/2, 1}. Therefore, ∆ \ κ([0, 1]) has at least two arc-
connected components, one of which contains Fa,(b,c,ε). Each connected component intersects 
at most two of the three line segments in ∂∆, which is a contradiction since Fa,(b,c,ε) intersects 
the three lines. □ 

Lemma A.1 then allows to compute the first coordinates of the extreme points for the upper 
and lower bound for the directions in Ψa. We observe that, in most cases, these coordinates are 
equal after a few steps, even if they start in different subfractals. This fact produces an equa-
tion for some elements of Ψa.

For the other cases, the coordinates do not appear to become equal after any numbers of 
steps. For these directions we can only obtain bounds and we are not able to compute the exact 
values. Nevertheless, the bounds are good enough to compute the exact minimal components 
of H.
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