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A B S T R A C T

A distribution-free approach is proposed to estimate the fracture size distribution from a given trace length
distribution, assuming that the fracture network can be represented by a Poisson-disc model. This approach
directly works on the experimental distribution of the observed trace lengths (corrected from sampling biases)
and does not need to choose a parametric model for the trace length or fracture diameter distributions. It is more
robust than existing models and provides an unbiased estimate of the cumulative distribution function of the
fracture diameters. Its simplicity of use, accuracy and versatility are illustrated through synthetic examples.

1. Introduction

A comprehensive understanding of fracture networks is critical to
the economic development of underground mining (cave ability, water
drainage, roof stability, fragmentation, gas ventilation, flow gravity),
open pit mining (slope stability, water drainage, blast ability, solution
mining, in situ leaching), tailing dam (environmental aspects), oil and
gas reservoir engineering (fractured reservoirs and unconventional re-
servoirs), generation of heat and vapor from geothermal reservoirs,
management of groundwater resources and underground nuclear
wastes disposal. The characterization of fracture networks is one of the
most important parts of the engineering characterization of rock
masses. The fracture properties that have the greatest influence at the
design stage are location, orientation, size, frequency, surface geo-
metry, genetic type and infill material [31,32].

One of the most interesting parameters of fracture networks is the
fracture intensity, i.e. the mean area of fractures per unit volume [10].
A fixed fracture intensity can be the result of very different scenarios,
such as a network of many small fractures or a network of few large
fractures. As an example, for a given fracture intensity, there is a better
connectivity with a few large fractures than with many small ones and,
in terms of fragmentation, the size of blocks that are results of the in-
tersections of the fracture network will change with different scenarios
of the fracture sizes. Hence it is important to accurately estimate the
distribution of fracture sizes.

To reach this objective, the available information usually consists of
surface observations, namely trace lengths measured on exposures, such
as natural outcrops, rock cuts and tunnel walls. One can distinguish three

types of surface samplings: (1) scan line sampling that measures the trace
lengths of the fractures that intersect a line drawn on the exposure; (2)
circle sampling that measures the trace lengths of the fractures that in-
tersect a circle drawn on the exposure; and (3) window or area sampling
that measures the trace lengths of the fractures within a finite size area
(such as a rectangle or a circular window) [3,11,8].

This paper focuses on the estimation of the fracture size distribution
from the trace length distribution. It is outlined as follows. Section 2
presents the hypotheses and problem setting and a review of existing
approaches for modeling the fracture size distribution knowing the
trace length distribution. An alternative approach and its computa-
tional implementation are then introduced in Section 3. Numerical
experiments on simulated fracture networks are presented in Section 4
to demonstrate the applicability, accuracy and robustness of the pro-
posed approach. A general discussion and conclusions follow in Section
5.

2. State of the art

2.1. Modeling assumptions and problem statement

By setting up an object at each point of a 3D Poisson process, a
Boolean model is obtained [27,28]. This object can be the same at every
point or can be random, with a different shape, size and/or orientation.
For fracture networks, the Boolean model often uses a circular disc as
the object, which is known as the Poisson-disc model. This model has
been first used for rock mechanics application by Baecher et al. [2]. The
model parameters are the intensity of the Poisson point process, which
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gives the average density of the points located in some region of space,
and the joint distribution of the fracture orientations and fracture dia-
meters. To enrich the model, other parameters such as fracture aperture
and thickness could also be considered, which can be correlated with
the fracture diameters [26,6], but will be out of the scope of this work.

The Poisson-disc model relies on the following assumptions:

(1) The fractures are modeled as two-dimensional circular discs scat-
tered in the three-dimensional space, with random positions, dia-
meters and orientations.

(2) The fracture diameters are independent and identically distributed
(i.i.d.).

(3) The fracture orientations are independent and identically dis-
tributed. We do not assume any specific restriction on this dis-
tribution; in particular, the distributions of the fracture dips and dip
directions can cover the full ranges of angles (0-90° for the dips and
0-360° for the dip directions) or any parts of these ranges.

(4) The fracture centers form a Poisson point process whose intensity is
constant in space (homogeneous process).

These assumptions are basically the same as that used by Baecher
et al. [2], Kulatilake and Wu [21], Zhang and Einstein [45], Song and
Lee [40], Jimenez-Rodriguez and Sitar [18] and Song [38], among
others. Using stereological considerations, Warburton [44] established
the following relationship between the diameter distribution of the
fractures with given orientation α (direction of the fracture pole, re-
presented as a point of the 2-sphere S2) and the distribution of their
trace lengths on a given plane P:

∫=
−

+∞
f l l

μ α
g δ dδ

δ l
( )

( )
( )

α
P

D l
α( )

2 2 (1)

where f l( )α
P( ) is the probability density function (for short, pdf) of the

trace lengths on plane P induced by the fractures with orientation α,
while μD(α) and gα(δ) are the expected value and the pdf of the dia-
meters of such fractures with orientation α.

If one further assumes that the fracture diameter and fracture or-
ientation are independent, then gα(δ) is actually independent of α and
can be denoted as g(δ). Under this additional assumption, the pdf of the
trace lengths induced by all the fractures on plane P is found by in-
tegrating Eq. (1) over all the possible orientations on the 2-sphere S2,
which gives

∫=
−

+∞
f l l

μ
g δ dδ

δ l
( )

( )

D l 2 2 (2)

where f(l) is the pdf of the trace lengths on plane P induced by all the
fractures, irrespective of their orientations, μD is the mean fracture
diameter, and g(δ) is the pdf of the fracture diameters.

Note that the probability density function f does not depend on the
particular plane P that has been chosen for observing the fracture trace
lengths, as long as fracture diameters and fracture orientations are in-
dependent [42]. It corresponds to the pdf of the trace lengths observed
on the whole plane P (equivalently, on a sampling window with an
infinite size and with fixed and known orientation), which will be re-
ferred to as the “true” trace length pdf.

In practice however, trace lengths are measures in sampling win-
dows with finite sizes and only a fraction of the fracture traces within
the window may be measured. Accordingly, the measured trace length
distribution usually differs from the true trace length distribution and
suffers from orientation, size, truncation and censoring biases
[3,11,33,21]. Several approaches have been proposed in the past dec-
ades to correct these sampling biases, which are out of the scope of this
work (e.g., [44,33,30,25,21,43,29,34,40,46]).

In the following, the true trace length distribution (after correcting

from sampling biases) will be supposed known. The problem is there-
fore to invert the integral in Eq. (2), in order to express the diameter
probability density function (g) as a function of the true trace length
probability density function (f).

Before proceeding, it is interesting to mention that the previous
model assumptions can be weakened. First, the results further presented
remain valid if the fracture diameters, fracture orientations and Poisson
intensity are replaced by independent stationary ergodic random fields.
Ergodicity guarantees that the experimental distributions observed over
a large sampling domain are representative, up to statistical fluctua-
tions, of the underlying model distributions, similarly to what happens
with i.i.d. random variables [6,5]. The only requirement is thus to as-
sume that the sampling window is large enough to observe the full
distribution ranges of diameters, orientations and intensity. Note that
randomizing the Poisson intensity converts the homogeneous Poisson
process representing the fracture centers into a doubly stochastic
Poisson process, also known as a Cox process.

Second, if the fracture diameters do not have an absolutely con-
tinuous distribution (e.g., if only a discrete set of fracture diameters are
possible), one has to replace the numerator of the integrand in Eq. (2) (g
(δ)dδ) by dG(δ), where G(δ) stands for the cumulative distribution
function (cdf) of the fracture diameters. Up to this formal modification,
all the equations and demonstrations presented hereafter remain valid.
Note that, under the abovementioned assumptions for the Poisson-disc
model, the trace length distribution is absolutely continuous and pos-
sesses a probability density function f that takes finite values except for
the discontinuity points of G, as per Eq. (2), even if the density g(δ)
takes infinite values for some specific values of δ or it is undefined (case
of a non-absolutely continuous diameter distribution).

Third, if the fracture diameter and fracture orientation are not in-
dependent, Eq. (2) is no longer valid and one has to use Eq. (1) instead.
One can therefore determine the diameter distribution of the fractures
with a given orientation α (density gα) by considering only the trace
lengths on the sampling plane P induced by the fractures with or-
ientation α (density fα

P( )), and repeat the procedure for different choices
of the fracture orientation on the 2-sphere S2. In practice, it is usual to
distinguish a few fracture sets comprising approximately parallel frac-
tures of the same type and age (for instance, fracture clusters whose
distribution of orientations has a small dispersion). Based on Eq. (1),
the formalism hereafter described can be applied to each fracture set
separately.

2.2. Inverse and forward modeling

An inverse relationship for Eq. (2) is well-known in the fields of
stereology and stochastic geometry [36,37,19,16]:

∫= −
−

⎧
⎨⎩

⎫
⎬⎭

+∞
g δ

μ δ
π l δ

d
dl

f l
l

dl( )
2 1 ( )D

δ 2 2 (3)

This equation has been used by Tonon and Chen [41] to obtain the
explicit expressions of the fracture diameter distribution for several
commonly used trace length distributions (uniform, exponential,
gamma and power law). For other trace length distributions such as the
lognormal, the same authors propose a numerical approximation of Eq.
(3). Other numerical methods have been suggested by Kulatilake and
Wu [22], Song and Lee [40], Song [38], Song [39] and Zhu et al. [46],
among others, to obtain the probability density function g(δ) of the
fracture diameter distribution using the relationship between trace
length and fracture diameter distributions (Eqs. (1) and (2) or equiva-
lent stereological relationships). However, Eq. (3) involves the deriva-
tive of f(l)/l, the estimation of which lacks robustness in practice: a
small variation of f(l) may indeed produce a large variation of the de-
rivative of f(l)/l, thus a large variation of g(δ), making the problem of
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determining g(δ) from f(l) an ill-posed problem [13].
To avoid this drawback, forward modeling techniques are often

used instead, which consist in assuming a parametric density model for
g(δ) (such as lognormal, negative exponential or gamma distributions)
and determining the parameters, for instance by trial and error, so as to
fit the distribution f(l) of observed trace length data [43,24,9,45].
However, these forward techniques rely on choosing a family of frac-
ture diameter distributions, so that different fits are obtained depending
on the initial choice of this family of distributions. Also, the fitted
distribution may not entirely agree with the experimentally observed
trace length distribution, in particular, with its high-order moments.

In the following section, we propose an alternative approach for
determining the cumulative distribution function of the fracture dia-
meters (denoted as G(δ)) instead of their probability density function g
(δ). This approach avoids the definition of a given parametric model
and results in a robust estimate of the fracture diameter distribution.

3. Proposed approach

3.1. Theoretical relationship between trace length and fracture diameter
distributions

For δ ≥ 0, let us consider the following integral:

∫=
−

+∞
I δ

f l dl
l δ

( )
( )

δ 2 2 (4)

Accounting for Eq. (2), this integral can be expressed as follows:
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Using Fubini’s theorem, one obtains:
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Let us denote by G the cumulative distribution function of the fracture
diameters. From Eqs. (4) and (7), one obtains the following relationship
between G and f:

∫− =
−

+∞
G δ

μ
π

f l dl
l δ

1 ( )
2 ( )D

δ 2 2 (8)

For δ = 0, one must have G(0) = 0, which entails that f(l)/l must be
integrable over [0, +∞[. In particular, a necessary condition is that f
(0) = 0: the density of true trace lengths must be zero for a zero length.
This condition is sometimes (mistakenly) ignored when modeling the
trace length distribution, e.g., when considering a uniform or an ex-
ponential distribution [35,4,2,7,17,33,20,1] (a justified example is
given in Appendix A).

Under the assumption that f(0) = 0, one can integrate Eq. (8) by
parts as follows:
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where f′(l) is the derivative of the probability density function f(l) of the
true trace lengths. The probability density function g(δ) of the fracture
diameters can be found by differentiation and application of Leibniz
integral rule (derivation under the integral sign):
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This expression is the same as Eq. (3), which demonstrates that the
approach we propose (Eq. (8)) is consistent with the existing modeling
approaches. It is also worthy to note the similarity between this new
approach and the one established by Emery et al. [12] in the field of
mineral processing, when estimating the diameter distribution of air
bubbles in a flotation cell.

3.2. Examples

To illustrate the proposed approach, let us assume that the fracture
diameters have a beta distribution with shape parameters (a,b) and
scale parameter Dmax, i.e., their density g is:

=
⎧
⎨
⎩

− < <+ − −( ) ( )g D if D D

otherwise
( ) 1 0

0

a b
D a b

D
D

a D
D

bΓ( )
Γ( )Γ( )

1 1
maxmax max max

(11)

One can then calculate the density f of the trace lengths (Eq. (2)) by
numerical integration. In turn, using the latter density, it is possible to
re-calculate, by numerical integration, the complementary cumulative
distribution function 1 – G of the fracture diameters (Eq. (8)) and to
compare it with the true complementary cumulative distribution
function of the original beta distribution. When applied to three ex-
amples of beta distributions, the match between true and calculated
distributions turns out to be perfect, up to machine precision error
(Fig. 1).

3.3. Moments of the diameter distribution

For p > 0, define the moment of order p of the fracture diameter
distribution as:

∫=
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Then, one has:
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Accounting for Eq. (8), this becomes:
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[14]. Accordingly, the

moment of order p of the fracture diameter distribution, if it exists, is
equal to

= +
−( )

μ
p μ

π
μ

Γ

Γ( )D
p D

p

p l
p( ) 2

1
2

( 1)

(15)

where ∫=− +∞ −μ l f l dl( )l
p p( 1)

0
1 is the moment of order p – 1 of the trace

length distribution. This formula agrees with the one given by Zhang
and Einstein [45] when p is an integer, but is actually valid for any
positive real-valued p, which is a novel result with respect to the current
literature. In particular, for p = 2 and p= 3, one obtains:

=μ
μ
π

μ
4

D
D

l
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and
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3.4. Computational implementation

In practice, the true trace length density f is approximated by a
sample trace length density ̂f that can be represented through the form
of an histogram, i.e., ̂f l( ) is assumed constant over intervals [δi, δi+1[
with i= 0,…, n (δ0 = 0 and δn+1 = +∞, while ̂ ̂= =f δ f δ( ) ( ) 0n0 ). In
such a case, Eq. (8) can be approximated in the following fashion for
δ= δi:
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Because μD is unknown, it is actually more convenient to estimate

= −δ G δ
μ

φ( ) 1 ( ) :
D

̂∑≈ ⎛

⎝
⎜

− + +

− + +
⎞

⎠
⎟

=

−
+ +

δ
π

f δ
δ δ δ δ

δ δ δ δ
φ( ) 4 ( )ln

2 2

2 2
i

j i

n

j
j i j i

j i j i

1
1 1

(19)

For i= 0, one obtains
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This formula allows estimating the mean diameter μD by putting 1/
φ(0). Alternatively, if one considers that the distribution of fracture
diameters is bounded by δi for some i > 0, one can also estimate μD as
1/φ(δi), which may result in a more robust estimate than 1/φ(0) (see
next section).

Once provided with an estimate of the mean diameter μD, Eq. (19)
yields an estimation of the diameter cumulative distribution function

G(δ) = 1 – μD φ(δ). Likewise, the moment of order p of the fracture
diameter distribution can be estimated as follows (Eq. (15)):

̂∑

∫=

≈ −

+∞ −

=

−

+

+

+

( )

( )
( )

l f l dl

f δ δ δ

( )

( )( )

μ
μ

p

π
p

π i

n

i i
p

i
p

Γ( )

Γ 0
1

Γ

Γ 0

1

1

D
p

D

p

p

p

p

( )
2

1
2

2
1

2 (21)

4. Numerical experiments

4.1. Assumptions

In this section, we consider a fracture network consisting of a
Poisson-disc model with a scaled beta distribution as the distribution of
fracture diameters. Each of the experiments presented in the next sub-
sections consists of the following steps:

(1) Choose an integer N (sample size).
(2) Choose an integer P (number of realizations or repetitions).
(3) Choose parameters for the fracture diameter distribution: Dmax

(maximum diameter), a and b (shape parameters) (Eq. (11)).
(4) Simulate a sample of N trace lengths. This is done by using an ac-

ceptance-rejection technique [23], based on the numerical calcu-
lation of the trace length density given in Eq. (2).

(5) Determine the histogram of the simulated trace lengths, which
provides a discrete estimate of the probability density function f(l).
For practical calculations, unless for the third experiment, the range
of possible trace length values (0 to Dmax) is binned into regular
intervals with a width of 1 unit.

(6) Apply the proposed approach (Eq. (19)) to determine
= −δ G δ μφ( ) [1 ( )]/ D.

(7) Repeat steps (4) to (6) P times in order to obtain P independent
estimates of φ(δ) and compare these estimates with the true value
of φ(δ), which can be calculated as the complementary cumulative
distribution function of a beta distribution, properly rescaled.

(8) Estimate the mean fracture diameter μD as 1/φ(0) (option 1) or 1/
φ(1) (option 2) and compare the estimates obtained over the P
realizations with the true value.

Fig. 1. True and estimated complementary cumulative distribution func-
tions of fracture diameters. In all the cases, the scale parameter Dmax is set to
400.
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The choice of the beta distribution at step (3) is motivated because
this distribution takes on very different shapes on the interval in which
it is defined, depending on its parameters. Other distributions could
have been considered, although one should take care of the use of
distributions that are not compactly supported (i.e., that differ from
zero on an unbounded interval), such as the lognormal. Indeed, the
associated trace length distribution would have the same property,
which makes challenging the acceptance-rejection algorithm at step
(4). In practice, such non-compactly supported diameter distributions
have to be truncated to a sufficiently high maximum value, as shown in
Appendix B, to implement the acceptance-rejection algorithm.

4.2. First experiment: Influence of the distribution shape

In the first experiment, three runs are performed with the same
maximum fracture diameter (Dmax = 400), same number of realizations
(P = 50) and same sample size (N = 1000), but different shape para-
meters (a, b) for the distribution of fracture diameters (Table 1).

The estimates of φ(δ) are displayed in Fig. 2 (green curves), together
with the results of the first realization (blue curve), the average esti-
mate over the 50 realizations (red curve) and the true value of φ(δ)
(black curve). One observes that, in all the cases, the estimated (green)
curves fluctuate around the true (black) curve, and that their average
(red curve) almost perfectly matches the true curve, which means that
the estimator of φ(δ) proposed in Eq. (19) is unbiased.

Concerning the mean fracture diameter, its estimation by 1/φ(1)
appears to be slightly more accurate, with a smaller average error over
the 50 realizations, than by 1/φ(0) (Table 2). As the influence of dia-
meters smaller than 1 over the mean value is marginal (due to their low
probability of occurrence), the former estimator may be preferred to the
latter.

4.3. Second experiment: Influence of the sample size

In the second experiment, we consider the fracture diameter dis-
tribution of experiment 1C (a beta distribution with shape parameters

Table 1
Parameters for first experiment.

Experiment a b Maximum
fracture
diameter
(Dmax)

Mean
fracture
diameter

Number of
realizations
(P)

Number of
fracture
traces (N)

1A 1 5 400 66.5 50 1000
1B 2 5 400 114.4 50 1000
1C 2 10 400 66.6 50 1000

Fig. 2. Estimates of φ(δ) (blue and green), mean estimate (red) and true value (black) for experiments 1A, 1B and 1C.
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a= 2 and b= 10, rescaled between 0 and 400) and we modify the
sample size, i.e., the number of observed fracture trace lengths, as
stated in Table 3.

The estimates of φ(δ) still prove to be unbiased, insofar as the
average over the realizations (red curve) is always close to the true
(black) curve (Fig. 3). The fluctuations around the true curve decrease
when the sample size increases, showing that the proposed estimator (Eq.
(19)) is consistent, i.e., the estimation error tends to zero when the
number of observed fracture trace lengths is very large.

Also, the fluctuations turn out to be more important for small dia-
meters than for large ones and the estimate of φ(0) is generally less
robust (the red curve deviates more from the black curve at the origin)

Table 2
Estimates of mean diameter μD for first experiment.

Experiment Estimator of μD Minimum over
P realizations

Maximum over
P realizations

Average over
P realizations

True value of μD

1A 1/φ(0) 59.7 81.9 70.4 66.5
1A 1/φ(1) 52.8 81.4 68.0 66.5
1B 1/φ(0) 106.2 128.8 116.7 114.4
1B 1/φ(1) 97.9 128.8 115.6 114.4
1C 1/φ(0) 61.8 73.2 68.2 66.6
1C 1/φ(1) 60.0 73.0 67.2 66.6

Table 3
Parameters for second experiment.

Experiment a b Maximum
fracture
diameter
(Dmax)

Mean
fracture
diameter

Number of
realizations
(P)

Number of
fracture
traces (N)

2A 2 10 400 66.6 50 100
2B 2 10 400 66.6 50 1000
2C 2 10 400 66.6 50 10,000

Fig. 3. Estimates of φ(δ) (blue and green), mean estimate (red) and true value (black) for experiments 2A, 2B and 2C.
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than that of φ(1). This behavior is confirmed by the more accurate
results obtained by estimating the mean diameter by 1/φ(1) rather than
by 1/φ(0) (Table 4).

4.4. Third experiment: Influence of class binning

In the following experiment, we consider the same parameters as in
experiment 1 C for the fracture diameter distribution (a = 2, b= 10,
Dmax = 400), number of realizations (P = 50) and sample size
(N = 1000), but we modify the class width used for binning the his-
togram of simulated trace lengths, as specified in Table 5.

As observed in Fig. 4, the estimates of φ(δ) fluctuate around the true

Table 4
Estimates of mean diameter μD for second experiment.

Experiment Estimator of μD Minimum over
P realizations

Maximum over
P realizations

Average over
P realizations

True value of μD

2A 1/φ(0) 53.0 91.5 69.6 66.6
2A 1/φ(1) 46.2 91.5 68.9 66.6
2B 1/φ(0) 61.8 73.2 68.2 66.6
2B 1/φ(1) 60.0 73.0 67.2 66.6
2C 1/φ(0) 66.4 70.0 68.1 66.6
2C 1/φ(1) 64.4 69.1 66.6 66.6

Table 5
Parameters for third experiment.

Experiment a b Maximum
fracture
diameter
(Dmax)

Mean
fracture
diameter

Number of
realizations
(P)

Number
of
fracture
traces
(N)

Binning
class
width
for trace
lengths

3A 2 10 400 66.6 50 1000 1
3B 2 10 400 66.6 50 1000 2
3C 2 10 400 66.6 50 1000 4
3D 2 10 400 66.6 50 1000 8

Fig. 4. Estimates of φ(δ) (blue and green), mean estimate (red) and true value (black) for experiments 3A, 3B, 3C and 3D.
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curve without bias, irrespective of the binning class width, although, as
the latter increases, the resolution of the estimates decreases. In prac-
tice, when applying Eq. (19), there is no impediment to choose a small
binning class width, so that the user can obtain the desired resolution
for φ(δ).

4.5. Fourth experiment: Mixture of distributions

In the fourth experiment, the trace length sample is extracted from a
mixture of two populations: the first one corresponds to the true trace
length distribution and is associated with the same diameter distribu-
tion as in Experiment 1 C (a beta distribution with shape parameters
a = 2 and b= 10 and a scale parameter Dmax = 400), while the second
population corresponds to noise, with a beta distribution with shape
parameters a = 5 and b= 5 and a scale parameter 5. The numbers of
observed trace lengths from these two distributions are set to
N1 = 1000 and N2 = 100, respectively.

The estimates of φ(δ) are seen to fluctuate around the true fracture
diameter distribution without bias for diameters greater than 5 (Fig. 5).
Below this value, the curves deviate from the true one due to the pre-
sence of the noise distribution. Such a deviation complicates the esti-
mation of the mean diameter μD of the underlying true distribution,
since φ(0) and φ(1) are no longer representative of this distribution and
their reciprocal are therefore biased estimates of μD. One solution is to

estimate μD by 1/φ(5) in lieu of 1/φ(0), but this leads to a slight un-
derestimation of φ(0) because φ(δ) is a non-increasing function, and
thus a slight overestimation of μD. Another solution is to (i) replace the
estimates of φ(0) to φ(4) by the estimate of φ(5) in order to remove the
contribution of the noise, then (ii) consider the rescaled function φ(δ)/
φ(0), which provides an estimate of the complementary cumulative
distribution function 1 – G(δ), and finally (iii) integrate this function,
which directly yields an estimate of the mean value of the distribution.
Indeed, the expectation of a nonnegative random variable is equal to
the integral of its complementary cumulative distribution function
[15]:

∫= −
+∞

μ G δ dδ[1 ( )]D 0 (22)

The estimates obtained with this last option prove to be more accurate
than those obtained by considering 1/φ(0) or 1/φ(5) (Table 6).

5. Discussion and conclusions

The proposed approach (Eq. (19)) is distribution-free, insofar as it
does not require choosing a parametric model for the trace length
distribution or for the fracture diameter distribution. In this sense, it
outperforms the forward modeling techniques, which must assume a
priori that the fracture diameter distribution belongs to a certain family
of distributions. Since the trace length distribution is moderately in-
sensitive to large changes in the fracture diameter distribution, very
different fracture diameter distributions can reasonably fit the observed
trace length distribution, making the choice of the family of distribu-
tions a critical decision in all forward modeling techniques.

The proposed approach also outperforms the current inverse mod-
eling techniques based on estimating, either analytically or numeri-
cally, the probability density function of the fracture diameters, which
turns out to be an ill-posed problem. A substantial gain in robustness is
obtained by estimating the cumulative distribution function instead of
the density, allowing an unbiased estimation of this function. As ob-
served in the numerical experiments, the dispersion of the estimation
error decreases when the sample size increases (i.e., when more frac-
ture trace lengths are observed) or when the diameter gets larger.
Another benefit is the ability to estimate the mean and the higher-order
moments (even for non-integer orders) of the fracture diameter dis-
tribution (Eqs. (20) and (21).

The proposed approach therefore appears as a simple and efficient
alternative to estimate the fracture diameter distribution from an ex-
perimental estimate of the trace length distribution, requiring mild
hypotheses. In addition to the assumptions of the Poisson-disc model,
the only requirement to calculate Eqs. (18) to (21) is that the sample

Fig. 5. Estimates of φ(δ) (blue and green), mean estimate (red) and true value (black) for
experiment 4.

Table 6
Estimates of mean diameter μD for fourth experiment.

Experiment Estimator of μD Minimum over
P realizations

Maximum over
P realizations

Average over
P realizations

True value of μD

4 1/φ(0) 24.3 28.3 26.1 66.6
4 1/φ(5) 65.6 81.7 73.4 66.6
4 Integral of 1 – G(δ) 57.0 72.3 64.6 66.6

Table 7
Parameters for fifth experiment.

Experiment Logarithmic mean Logarithmic standard
deviation

Mean fracture
diameter

Number of realizations
(P)

Number of fracture
traces (N)

Truncation threshold
δn

1 – G(δn)

5A 4.605 0.333 105.7 50 1000 700 2.65 × 10−9

5B 5.000 0.500 102.0 50 1000 1000 7.33 × 10−7

5C 4.174 1.000 107.2 50 1000 2000 3.06 × 10−4
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trace length distribution has an upper bound, so that it has a discrete
representation through a histogram ̂f with a finite number of bins,
which is always the case in practice (i.e., the sampled trace lengths
always have a finite maximum value beyond which the trace length
density can be assumed identically zero). As indicated in Section 2.1,
the fracture diameter distribution needs not be absolutely continuous:
even if this distribution is discrete or partially discrete, the trace length
distribution will be absolutely continuous and possess a finite prob-
ability density function, except at the discontinuity points of G (cdf of

the diameter distribution), and the proposed approach is therefore
applicable.
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Appendix A

Tonon and Chen [42] established the conditions that the trace length distribution should fulfill in order to provide a legitimate distribution for
the fracture diameter:

(1) For all δ > 0,
−

f l dl

l δ

( )
2 2

is integrable on [δ,+∞];

(2) f(l) is positive in a positive neighborhood of zero;
(3) f(l) decreases sufficiently fast as l tends to infinity.

Condition (1) is equivalent to stating that the integral in Eq. (8) is finite, i.e., the calculated complementary cumulative distribution function
1 – G(δ) exists and is finite. Conditions (2) and (3) are needed to ensure that G(δ) is a non-decreasing function, from 0 when δ = 0 to 1 when δ→
+∞.

However, the statement in condition (1) is incomplete, insofar as this condition should also be fulfilled for δ = 0. For example Tonon and Chen
[42] argue that a uniform trace length distribution between 0 and b > 0 provides a valid distribution for the fracture diameters. However, Eq. (8)
gives the following complementary cumulative distribution function of the fracture diameters:

Fig. 6. Estimates of φ(δ) (blue and green), mean estimate (red) and true value (black) for experiments 5A, 5B and 5C.
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∫− =
⎧
⎨
⎩

<
−G δ

δ b
1 ( )

if

0 otherwise

μ
πb δ

b dl

l δ

2 D
2 2

(23)

For δ < b, with the change of variable l= δt, one obtains:

∫− =
−

= ⎛

⎝
⎜ + ⎛

⎝
⎞
⎠

− ⎞

⎠
⎟G δ

μ
πb

dt
t

μ
πb

b
δ

b
δ

1 ( )
2

1

2
ln 1D b δ D

1

/

2

2

(24)

The right-hand side member of this equation tends to infinity as δ tends to zero, which is inconsistent with a genuine complementary cumulative
distribution function. Accordingly, the uniform distribution is not a valid model for the trace length distribution.

Appendix B

In this appendix, we conduct an experiment (experiment 5) similar to the one described in Section 4.2 (experiment 1), but we replace the beta
distribution for the fracture diameter by a lognormal distribution. In practice, since the latter distribution has an unbounded support, it is necessary
to define an upper limit, i.e., to consider the distribution truncated to a finite interval [0,δn], in order to generate a sample of trace lengths and to
subsequently apply Eqs. (19) to (21). Choosing an upper limit greater than the 99.9%-quantile of the true lognormal distribution yields results with
no perceptible bias (Table 7 and Fig. 6).
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