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Mass is arguably the most important property of a star: along with the initial distribution of chemical elements,

stellar mass is responsible for the evolution and structure of these objects. The only means for calculating the mass

of a star is the study of its orbital movement, for Kepler’s Third Law establishes a strict mathematical relation

between mass and orbital parameters. Since single stars do not follow orbital trajectories, the observational base

of the stellar mass catalog consists mainly of binary and multiple stars; hence the importance of studying their

orbits.

This dissertation addresses the problem of characterizing the orbits of binary stars from a Bayesian stand-

point, approximating the posterior probability density functions of orbital elements by means of the technique

known as Markov Chain Monte Carlo. A selection of 18 visual and 2 spectroscopic binary stars observed by

the SOAR telescope are analyzed with the proposed technique, obtaining not only orbit estimates of each object

(maximum a posteriori for visual binaries, expected value for spectroscopic binaries), but also a characterization

of their uncertainty in the form of posterior distributions of orbital elements. By using a mathematical formalism

developed as a part of this work, the dimension of the target parameter vector is reduced from 7 to 3 in the case

of visual binaries, and from 10 to 7 for spectroscopic binaries, enhancing the efficiency of the estimation routines.

The potential of combining astrometric and spectroscopic sources for estimating hypothesis-free parameters is

explored, concluding that good estimations can be obtained if both the apparent orbit and the radial velocity

profile of the star can be independently characterized.

This work also introduces a strategy to incorporate partial astrometric observations (measurements where

either angular separation or position angle is missing) into the proposed Bayesian framework. This strategy

combines the MCMC-based estimation of orbital parameters with the multiple imputation approach: instead of

being discarded as an input for the parameter estimation routines, incomplete observations are replaced by a

set of plausible values, incorporating this partial knowledge into the analysis. This methodology is tested on

both synthetic and real data, obtaining not only the distribution of parameters given all observations available

(complete and partial ones), but also an estimation of the spatial localization of partial measurements. Results

suggest that the incorporation of partial knowledge can lead to a decrease in the uncertainty associated to target

parameters (dramatic in some cases); however, partial measurements can also be redundant in some scenarios.



Resumen

Puede argumentarse que masa es la propiedad más determinante de una estrella: en conjunto con la distribución

inicial de elements qúımicos, la masa estelar define la evolución y estructura de estos objetos. La única manera

de estimar la masa de una estrella es a través del estudio de su trayectoria orbital, pues la Tercera Ley de

Kepler establece una estricta relación entre masa estelar y parámetros orbitales. Dado que los sistemas estelares

unitarios no describen trayectorias orbitales, la base observacional del catálogo de masas estelares está constituida

esencialmente por sistemas binarios y múltiples; de ah́ı la importancia de estudiar sus órbitas.

El presente estudio aborda el problema de caracterizar órbitas de estrellas binarias desde una perspectiva

Bayesiana, aproximando las densidades de probabilidad a posteriori de los parámetros orbitales a través de la

técnica denominada Markov Chain Monte Carlo. Una selección de 18 estrellas binarias visuales –algunas de

ellas sin órbitas publicadas previamente– y 2 binarias espectroscópicas de ĺınea doble observadas por el telesco-

pio SOAR son analizadas con la técnica desarrollada, obteniendo no sólo estimadores de las órbitas respectivas

(máximo a posteriori en el caso de binarias visuales, valor esperado en el caso de espectroscópicas) sino también

una caracterización de la incertidumbre asociada, entregada por la distribución a posteriori de parámetros. Me-

diante un formalismo matemático desarrollado en este trabajo, se logra reducir la dimensionalidad de vector de

parámetros de 7 a 3 en el caso de binarias visuales, y de 10 a 7 en el caso de binarias espectroscópicas, aumentando

la eficiencia de los algoritmos de estimación. En el caso de binarias espectroscópicas, se evalúa el potencial de

la combinación de fuentes de información –astrometŕıa y velocidad radial– para estimar paralajes, concluyendo

que el éxito de este enfoque está sujeto a que la señal de velocidad radial y la órbita aparente puedan ser bien

caracterizados de manera independiente.

Se presenta, adicionalmente, una estrategia para incorporar observaciones astrométricas parciales –mediciones

donde la separación angular o el ángulo de posición están indeterminados– al método de estimación propuesto.

La estrategia combina el método de estimación de parámetros orbitales basado en MCMC con el enfoque de

imputación múltiple: en vez de ser descartadas en la rutina de estimación, las observaciones incompletas son

reemplazadas por conjuntos de valores plausibles. El esquema desarrollado es puesto a prueba a través de su

aplicación a datos sintéticos y a datos reales, obteniendo no sólo una estimación de parámetros orbitales, sino

también de la localización de las observaciones parciales. Los resultados obtenidos sugieren que la incorporación de

conocimiento parcial puede contribuir a disminuir la incertidumbre en la estimación de parámetros; sin embargo,

la información parcial también puede ser redundante en algunos casos.
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Chapter 1

Introduction

Mass is arguably the most important property of a star, since it determines, to a great extent, its structure and
evolution. Specifically, the well-known Vogt-Russell theorem states that, provided that a star is in hydrostatic and
thermal equilibrium, its structure and its evolutionary path are uniquely determined by its initial mass content
and the distribution of chemical elements throughout its interior [Kippenhahn et al., 1990].

Binary stars, defined as gravitationally bound pairs of stars, are probably the main source of data on stellar
masses, since Kepler’s Third Law establishes a strict relation between orbital parameters and the system’s total
mass:

a3

P 2
=

G

4π2
(m1 +m2), (1.1)

where P , a and G are the orbital period, orbit’s semi-major axis1 and the gravitational constant, respectively.
Individual masses are denoted m1 (primary star) and m2 (companion star). Studying the motion of gravita-
tionally bound stars is the only direct method to calculate stellar masses –that is what makes so challenging to
estimate the mass of single stars. Multiple star systems can also be a source of stellar masses, however, their
analysis is somewhat more complicated, since Kepler’s Third Law does not apply when the number of interacting
bodies exceeds two –analysis of multiple star systems must rely on numerical methods rather than in an analytic
expression. The interest in characterizing the orbit of stellar systems stems, then, from the relevance of building
a catalog of stellar masses through which the current theories of stellar evolution, formation and structure can
be tested and improved. For example, the discovery of one of the most fundamental relationships depicting the
dependency of the star’s properties, the mass-luminosity relation2 (MLR), relied on the availability of estimates
of the stellar masses, and even today the refinement of this relation requires the addition of new mass-luminosity
points.

Theoretically, few observations may be enough to determine the orbital parameters of a double star. Docobo’s
analytic method requires as few as three observations of the apparent orbit [Docobo, 1985]; however, those
must be high quality observations in well-chosen points of the orbit. When data is obtained from real sources,
astronomers have to deal with a range of problems: noisy observations, diversity of sources, poor orbit coverage,
incomplete measurements –for example, position observations having one component missing, in either (X,Y ) or
(ρ, θ) representation. As most algorithms require a full set of measurements as an input, these partial observations
are often discarded. Aside from observational difficulties, a common issue when analyzing star motion data is
poor characterization of parameter uncertainty: methods –specially optimization-oriented ones– tend to give a
single solution of the target parameter set, but fail to offer a measure of confidence about those values.

As a means to cope with the aforementioned difficulties, this work addresses the task of estimating the orbital
parameters and characterizing their uncertainty from a Bayesian point of view. Bayesian techniques allow for the
incorporation of empirical, theoretical and statistical knowledge (represented, in this case, by the observations, the
dynamical model of binary stars and the prior knowledge of the orbital parameters) and, most importantly, they
provide naturally what optimization methods do not: uncertainty characterization in the form of a probability
density function. The following sections detail the hypotheses, objectives and structure of this work.

1Half the longest diameter of an ellipse. This work assumes elliptical paths for all the objects under study. However, some
gravitationally bound stars follow hyperbolic trajectories –gravitational interaction between components of that kind of systems will
eventually disappear.

2First discovered empirically in the early 20th century, and later on explained by the theory of stellar structure [Eddington, 1924].
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1.1 Hypotheses

This work focuses on the study of binary stars through astrometric and spectroscopic measurements, and aims
at testing the following hypotheses:

1. Markov Chain Monte Carlo is a means to characterize the posterior probability density function of orbital
parameters in two different observational settings: (i) data sets with astrometric measurements of relative
position between a primary and a companion star3; (ii) data sets containing both astrometric observations
of relative position and radial velocity measurements 4.

2. The sample-based approximation of the probability density functions provided by Markov Chain Monte
Carlo can be used to calculate estimates such as expected value and maximum a posteriori, and those
estimates lead to physically feasible orbits of the stars under study.

3. The availability of both astrometric and spectroscopic observations may allow for the estimation of hypothesis-
free parallaxes of the stellar system being analyzed.

4. Partial observations can be incorporated into the analysis through a multiple imputation scheme, and may
help decrease uncertainty about the parameters.

1.2 Objectives

1.2.1 Main objective:

Formulating a framework for the Bayesian analysis of data of visual and spectroscopic binary stars. This frame-
work must be capable of generating sample-based approximations of the probability density function of orbital
parameters as an output, and incorporating partial measurements in the inference process. The approximated
PDFs must be used to propose estimates of those parameters, provide uncertainty measures of them, and calculate
derived quantities such as stellar masses.

1.2.2 Specific objectives

The main objective can be separated into the following specific objectives:

• Implement Keplerian model to calculate relative position and radial velocity values according to a set of
orbital parameters and a specific instant of time.

• Formulate analytic expressions of non-informative prior distributions and likelihood functions for the two
settings described in Section 1.1, obtaining a expression for the posterior probability of the parameters.

• Design and implement a Markov Chain Monte Carlo routine to sample the posterior distribution formulated
previously.

• Develop a multiple imputation-based scheme to incorporate partial observations into the Bayesian routine.

• Analyze a selection of binary stars observed by the SOAR telescope with the developed tools, aiming at
checking the hypotheses presented in Section 1.1.

1.3 Structure

The remainder of this document consists of five chapters, which are described as follows:
Chapter 2 presents the theoretical subjects necessary for the understanding of this work: Section 2.1 describes

the Keplerian model of motion of celestial bodies; Section 2.2 provides an introduction to the concept of Bayesian
inference and a review of the sampling techniques used for Monte Carlo integration; finally, Section 2.3 explains
the theory of Multiple Imputation used to cope with incomplete data.

3These objects are referred to as “visual binaries” in this document
4In this work, these objects are referred to as “spectroscopic binaries” for the sake of simplicity, even if astrometric/visual data

is also available for them

2



Chapter 3 is a survey of the different approaches from which the problem of orbital fitting has been addressed.
Literature on both stars and exoplanets is reviewed, focusing on recent publications that adopt a Bayesian
approach.

Chapter 4 details the methodology developed to estimate orbits of binary stars and their uncertainty. The
techniques developed are applied on a selection of 18visual binaries and 2 spectroscopic binaries observed by the
SOAR telescope. Results are presented and discussed.

Chapter 5 extends the methodology presented in Chapter 4 with Multiple Imputation, allowing for the incor-
poration of partial data into the analysis. Results based on both synthetic and real data are presented, discussing
the effects of including incomplete measurements. In particular, one of the objects analyzed in the previous
chapter –visual binary HU 177, for which a partial measurement is available– is studied.

Chapter 6 contains the conclusions of this thesis and gives an insight on prospective research lines stemming
from this work.

The last pages of this document contain the bibliography and a series of appendices.

3



Chapter 2

Theoretical framework

2.1 Binary star dynamics

Under some basic assumptions, the dynamics of a binary stellar system is reduced to the two-body problem, whose
solution is the well-known Keplerian orbit. Keplerian orbits describe the motion of orbiting celestial bodies in
terms of an ellipse, parabola or hyperbola. The specific geometry of the orbit depends on the underlying physical
properties (e.g., energy) of the system under study. In this work, we are interested in systems with periodic
elliptical orbits.

An ellipse is fully described by its eccentricity, e, and its semi-major axis, a. It can be demonstrated that
both the individual bodies of the binary system and the relative position vector follow elliptical paths with the
same eccentricity and period (P ), but different phase angles (companion star is always 180◦ ahead of primary
star). With m1, m2 denoting the masses of the primary and secondary star, individual semi-major axes comply
the following relations:

a = a1 + a2 (2.1)

a1 ·m1 = a2 ·m2 (2.2)

where a1, a2 and a are the semi-major axis of the primary star, the companion star and the relative orbit,
respectively. Thus, determination of the parameters of the relative orbit between the primary and companion
star is enough to calculate the total mass of the system.

For a given epoch τ , the value of the relative position between stars is computed as follows. Let be T the
epoch when separation between primary and companion star reaches its minimum value. This value is known as
time of periastron passage. Then, the expression known as Kepler’s equation can be written:

M = 2π(τ − T )/P = E − e sinE. (2.3)

where terms M and E are called mean anomaly and eccentric anomaly, respectively1. Equation 2.3 does not
have analytic solution, and must be solved through numerical methods (in this work we use Newton-Raphson
algorithm). Once E(τ) is obtained, the term known as true anomaly is directly determined by:

tan
ν

2
=

√
1 + e

1− e
tan

E

2
. (2.4)

True anomaly ν corresponds to the angle between the main focus of the ellipse and the companion star, provided
that the periastron is aligned with the X axis and the primary star occupies the main focus of the ellipse (Figure
2.1). Evaluating ν(τ) in the following expression:

r(ν) =
a(1− e2)

1 + e cos ν
. (2.5)

1The geometrical meaning of this terms, although important in the context of Astronomy or Physics, is not relevant in this article,
and therefore won’t be explained in detail.

4



yields the position (r, ν) (polar coordinates) at a given instant τ .

Figure 2.1 Diagram with mean and eccentric anomaly

2.1.1 Observational aspects

In the previous subsection, the reference system has been chosen so that the plane of motion of the binary system
(orbital plane) coincides with the XY plane. However, the orbit of a real system may have an arbitrary orientation
in the space. What telescopes show is the projection of the real orbit in a reference plane (plane of the sky),
known as the apparent orbit. In order to explain the mathematical relation between real and apparent orbit, the
following quantities must be defined:

• i or Orbital inclination: The angle between the reference plane and the orbital plane.

• ω or Argument of the periapsis: The angle from the body’s ascending node to its periapsis, measured in the
direction of motion.

• Ω or Longitude of the ascending node: The angle from a reference direction (usually the north celestial
pole), called the origin of longitude, to the direction of the ascending node, measured in the reference plane.

Let O = {T, P, e, a, ω,Ω, i} be an arbitrary orbital configuration. Then, the apparent orbit is computed as
follows:

• Calculate the Thiele-Innes constants:

A = a(cosω cos Ω− sinω sin Ω cos i)

B = a(cosω sin Ω + sinω cos Ω cos i)

F = a(− sinω cos Ω− cosω sin Ω cos i)

G = a(− sinω sin Ω + cosω cos Ω cos i).

(2.6)

• For any given epoch τ , determine the eccentric anomaly E. With this value, calculate the auxiliary variables
(x, y).

x(E) = cosE − e (2.7)

y(E) =
√

1− e2 sinE.

5



• Finally, obtain the position in the plane of the sky by evaluating the following expressions:

X = Bx+Gy (2.8)

Y = Ax+ Fy

which define a point in the apparent orbit.

Thiele-Innes constants provide not only a straightforward way to calculate the apparent from a set of or-
bital parameters, but also an alternative mathematical characterization of a binary system. Indeed, parameters
{a, ω,Ω, i} can be substituted by {A,B, F,G} since they are mutually mapped by the following expressions:

tan(ω + Ω) =
B − F
A+G

tan(ω − Ω) =
−B − F
A−G

a2(1 + cos2 i) = A2 +B2 + F 2 +G2

a2 cos2 i = AG−BF

(2.9)

However, this representation is not free of ambiguity –given a value of a, different angles ω, Ω, i may yield the
same Thiele-Innes constants. In spite of this, Thiele-Innes representation is widely used by astronomers, since
some algorithms can take advantage of the linear dependence of the constants with respect to the values of (x, y).

2.1.2 Spectroscopic data

Astrometric observations of binary or multiple stellar systems can potentially provide enough information to
estimate the parameters of the relative orbit2. If parallax $ is known, semi-major axis a can be converted from
arcseconds to Astronomical units, thus allowing for the calculation of total mass M = m1 + m2 by means of
Equation 1.1. The determination of individual masses, however, is not feasible if a set of positions in the plane of
the sky is the only source of information available. In order to obtain individual masses, analysis must incorporate
spectroscopic data. Nonetheless, spectroscopic data must not be regarded merely as a complement of astrometric
measurements, since it is, in fact, the only source of knowledge for certain stellar systems (just a fraction of
the binary stars known have been resolved visually). A brief presentation of what spectroscopy is and how it is
applied to the study of binary stars is provided as follows.

In general terms, spectroscopy can be defined as the branch of physics that studies the spectra produced
when matter interacts with or emits electromagnetic radiation. In astronomy, spectroscopic techniques can be
used to derive a number of properties of celestial objects (galaxies, stars, etc.), such as chemical composition,
temperature, luminosity, among others. Although many of the properties mentioned previously are obtained
from certain permanent features of the spectrum, the study of temporal variations in spectra is also of great
importance, since it allows the measurement of relative motion between astronomical objects. This technique
relies on Doppler effect and is called Doppler spectroscopy. Basically, Doppler effect is the frequency variation of
a perceived signal when there exists relative motion between the observer and the source.

As illustrated in Figure 2.23, when the wave source is moving away from the observer, the whole spectrum
shifts to lower frequencies (red-shift); when the source moves towards the observer, the spectrum shifts to higher
frequencies (blue-shift). Doppler spectroscopy makes use of this effect to calculate radial velocity, that is, the
component of source’s velocity that points in direction of the radius connecting the observed object and the
observer. The size of the shift determines the magnitude of radial velocity, whereas the sign is determined by
whether the spectrum is blue or red-shifted. Although mostly applied in exo-planet detection, this technique is
equally appropriate to measure radial velocity of binary stars.

The rest of this subsection presents the equations of radial velocity equation used in this work. In Figure 2.3,
companion star occupies a point D of the orbit, having a separation r with respect to the primary star. Let z
be the radial component of the companion star’s position, which is perpendicular to the plane of the sky (where
the apparent orbit lies). Segment AB is the projection of the real position on the line of nodes (which contains
points A, B and F ); thus, angle CBD equals the orbit’s inclination i. Since true anomaly ν is measured from

2As long as there is only one set of parameters that fits the available observations.
3ESO Press photo 22e/07, April 2007
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Figure 2.2 Radial velocity variations
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Figure 2.3 Diagram for determination of z

the periastron (indicated by a red mark), and periastron measured from the line of nodes, points D, A, B define
the angle ω + ν. With this, the following equations apply:

sin(ω + ν) =
s

r
, (2.10)

sin i =
z

s
, (2.11)

allowing to isolate variable z as:
z = r sin (ω + ν) sin i. (2.12)

In order to obtain an equation for radial velocity, derivative of variable z must be calculated. A closed-form
expression for radial velocity is presented in Equation 2.13 (the detailed procedure to derive this formula is found
in Appendix A).

Vr = ż =
2πa sin i

P
√

1− e2
[cos(ω + ν) + e cosω] . (2.13)

The expression above was derived for relative position vector ~r = ~r2 − ~r1. However, similar equations hold for
individual bodies m1 (primary star) and m2 (companion star):

Vr (primary) = V0 +
2πa1 sin i

P
√

1− e2
[cos(ω + ν) + e cosω] , (2.14)

Vr (companion) = V0 −
2πa2 sin i

P
√

1− e2
[cos(ω + ν) + e cosω] , (2.15)

where a1 and a2 are the semi-major axes of the individual ellipses described by bodies m1 and m2, respectively;
and V0 corresponds to the radial velocity of the system’s center of mass. The terms outside the brackets can be
identified as the amplitude of the radial velocity and are denoted by K1 and K2:

K1 =
2πa1 sin i

P
√

1− e2
, K2 =

2πa2 sin i

P
√

1− e2
. (2.16)

One of the main motivations to include spectroscopic data in the study of binary stars is the information they
provide about individual masses. In the following paragraphs, the equations that relate orbital parameters, radial
velocity and individual masses are derived.

Semi-axis a can be expressed in terms of the masses and the period P by means of Kepler’s Third Law
(equation 1.1):

a = a1 + a2 =

[
G
P 2(m1 +m2)

4π2

]1/3

. (2.17)

Furthermore, equations 2.1, 2.2 allow the formulation of a1 and a2 in terms of a, m1 and m2. Replacing a for the
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expression above, we obtain:

a1 = a
m2

m1 +m2
→ a1 =

[
G P 2

4π2(m1+m2)2

]1/3
m2, (2.18)

a2 = a
m1

m1 +m2
→ a2 =

[
G P 2

4π2(m1+m2)2

]1/3
m1, (2.19)

which can be replaced in K1 and K2, yielding:

K1 =
[
G 2π

P
1

(m1+m2)2

]1/3
m2 sin i√

1−e2 , (2.20)

K2 =
[
G 2π

P
1

(m1+m2)2

]1/3
m1 sin i√

1−e2 . (2.21)

Note that when m1 � m2, the approximation m1 +m2 ∼ m1 is a valid assumption and the classic expression for
the radial velocity of a star orbited by a planet can be recovered:

K1 =

(
2πG

P

)1/3
m2 sin i

m
2/3
1

1√
1− e2

. (2.22)

The advantage of expressing the amplitudes as shown in equations 2.20, 2.21, 2.22 is that masses are explicitly
included within the formulae, thus allowing for the estimation of their individual values.
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2.2 Sampling techniques

2.2.1 Bayesian Inference

Mathematical models of physical phenomena enable us to make predictions: given a complete description of a
system –that is, a model and the value of its current state–, it is possible to know its evolution over time. The task
of calculating the future state of a system given a model and its current value is often referred to as simulation
or forward problem. On the other hand, the problem of translating measurements into actual knowledge of the
system –such as a model proposal or a set of parameters– is called inverse problem. This kind of problem is
commonly found in science and engineering, being oceanography [Wunsch, 1996], seismology [Lailly, 1983] or
EEG/ECG techniques in medicine4 [Pascual-Marqui, 1999, Rudy, 1987] some relevant examples.

Although forward problems usually have a unique solution –at least in deterministic models–, scientists cannot
expect the same for inverse problems –frequently, they are not well-posed in the sense of Hadamard5. Thus,
multiple solutions may exist for them [Tarantola, 2005]. That is the reason why, when faced with an inverse
problem, the analysis must include as much information as possible, as well as take into account the uncertainty
associated to both the mathematical model used and the measurements taken.

The idea pointed above is what encourages the use of the Bayesian approach, since it provides a means to
incorporate prior information into the analysis. Term Bayesian refers to a series of concepts and techniques
in Probability and Statistics that are based on Bayes Theorem (Equation 2.23), which reformulates conditional
probability between two statements X and Y . In particular, term Bayesian Inference designates the kind of
statistical inference in which measurements are used to upgrade or infer the probability of certain hypothesis.

p(X|Y ) =
p(Y |X) p(X)

p(Y )
(2.23)

Notation used in Equation 2.23 is not casual: although the theorem holds for any statements X and Y , it is
most used when the variable of interest, typically called X, is studied through an observation or evidence, usually
designated by Y . The main advantage of this theorem is that, while p(X|Y ) –posterior probability of X– may

not be computable in a direct manner, terms appearing in expression p(Y |X) p(X)
p(Y ) are more likely to have a known

(possibly closed) form. Expression p(Y |X) is referred to as likelihood, whereas p(X) is known as prior probability.
In a wide range of problems, term p(Y ), called marginal probability or model evidence, does not hold the same
importance as p(Y |X), p(X), as its value is the same for all the hypotheses being considered, thus not taking any
role in determining their relative probabilities. Value of p(Y ) must be equal to the normalization factor needed
for p(X|Y ) in order to satisfy the second probability axiom,

∫
p(X|Y )dX = 1.

2.2.2 Markov Chain Monte Carlo: an introduction

Markov Chain Monte Carlo, usually shortened to MCMC, designates a wide class of sampling techniques that
rely on constructing a Markov Chain whose equilibrium distribution is the same as the one we desire to sample
from. The chain is designed to explore the domain of the target p.d.f. in such a way that it spends most of the
time in areas of high probability [Andrieu et al., 2003]. Since the implementation of the algorithm is essentially
independent of the target distribution, MCMC provides a means to efficiently draw samples from distributions
with complex analytic formulae and/or multidimensional domain. Furthermore, MCMC does not require complete
knowledge of target distribution p(X), but just being able to evaluate p(X) up to a normalizing constant. Thus,
it is particularly suitable for Bayesian inference problems, where posteriors have the form:

p(X|Y ) ∝ p(Y |X) · p(X). (2.24)

First used to perform statistical mechanics simulations in the context of the Manhattan project in Los Alamos
Laboratory, California, the technique later known as MCMC was publicly introduced in [Metropolis and Ulam,
1949], [Metropolis et al., 1953]. Although Monte Carlo integration (see The Monte Carlo principle in Section
2.2.3) was not unknown by that time, the sampling scheme presented in the latter work represents a major turn
in numerical integration methods. In that paper, authors describe a procedure to compute the equations of state

4Electroencephalogram and electrocardiogram, respectively
5A detailed definition of this concept can be found in [Kabanikhin, 2008]
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of a system of interacting molecules by sampling single-molecule configurations6 with probability exp(−E/kT )
(the Boltzmann factor) and weighting them evenly, rather than choosing them randomly and weighting them by
the Boltzmann factor, as would be done in traditional Monte Carlo. Thus, most computer time is dedicated to
highly probable configurations, instead of wasting resources in sampling states with little to none weight in the
integral. The way in which that sampling regime is achieved, as well as other theoretical aspects of this technique,
is explained in Section 2.2.3.

After the pioneering publications of Metropolis around 1950, several works on Monte Carlo simulation were
published in the physics literature; however, the potential of this approach was not fully exploited in the statistics
community until several decades later. [Hastings, 1970] generalized the Metropolis method to a larger family
of algorithms and formulated the Metropolis-Hastings algorithm, arguably the basic building block on which a
large part of modern inference techniques rely on. In the 1980s and early 1990s, a bunch of milestone papers
were published as well: in a work aimed at the computer vision community, [Geman and Geman, 1984] presented
what later would be known as Gibbs sampler; [Tanner and Wong, 1987] proposed data augmentation scheme
for Monte Carlo; [Gelfand and Smith, 1990] introduced Markov Chain Monte Carlo into the Bayesian statistics
community; [Gelman and Rubin, 1992] addressed the issue of convergence of the MCMC algorithm, introducing
the idea of running multiple chains and proposing diagnostics indicators that are used until today. Over the
last decades, MCMC has been established as a key tool within the Bayesian community, allowing to calculate
posteriors, marginals and integrals that would be otherwise intractable.

The remainder of this section presents the essential theory of the statistical tools used in this work: Subsection
2.2.3 presents the foundations of MCMC and some of its most used formulations; Subsection 2.3 introduces
multiple imputation theory.

2.2.3 MCMC theory

2.2.3.1 The Monte Carlo principle

Monte Carlo designates a wide class or algorithms based on the idea of using random sampling to obtain numerical
solutions. In Monte Carlo simulations, one draws samples from a target density π(·) and uses them to approximate
that density as a discrete collection of points:

π̂(x) =
1

N

N∑
i=1

δx(i)(x). (2.25)

Thus, integrals that depend on density π(x) (e.g., the expected value of any function f(·) on the domain of x)
can be approximated as the discrete sum of N terms:

Î(f) =
1

N

N∑
i=1

f(x(i)), (2.26)

which converges almost surely to the value of the integral I(f) =
∫
f(x)π(x)dx as N →∞ [Andrieu et al., 2003].

If variance of f(x) meets the condition σ2
f = Eπ(f2(x))− I2(f) <∞, then the variance of the approximation Î(f)

satisfies that var(Î(f)) = σ2
f/N . As a consequence of central limit theorem, the following statement holds true:

√
N(Î(f)− I(f))

d→ N (0, σ2
f ), (2.27)

that is, the error term
√
N(Î(f)−I(f)) converges in distribution to a Gaussian. The importance of this statement

is that, in addition to guaranteeing convergence, it drops some practical advice: if one desires to increase the
precision of the estimate Î(f) by a factor of n, then sample size must increase as n2.

6In classical statistical mechanics, a system’s property Q at equilibrium is calculated as an integral over the possible individual
configurations of its constituent particles:

Q =

∫
Q( ~X) · p( ~X)d ~X,

where ~X is a vector describing the microstate of a single-particle (e.g., geometrical configuration) and p( ~X) is the Boltzmann

probability, defined as p( ~X) = exp(−E( ~X)/kT )/
∫

exp(−E( ~X′)/kT )d ~X′. In a multiple particles system, Boltzmann factor represents

the fraction of particles found in the configuration ~X.
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2.2.3.2 Preceding ideas: rejection sampling, importance sampling

Aside from The Monte Carlo principle in itself, there are other concepts that have somehow influenced the
conception of Markov Chain Monte Carlo. The techniques presented next, introduced before the seminal work of
[Metropolis et al., 1953], also deal with the problem of sampling arbitrary distributions, and may be appropriate
to facilitate the understanding of MCMC:

• Rejection sampling: Arguably the simplest among the methods reviewed in this work, rejection sampling
was introduced in [Von Neumann, 1951]. If target distribution π(·) is known up to a proportionality constant,
it can be sampled by using a proposal distribution q(x) whose support contains the support of π. After
finding a constant M that meets the condition π(x) ≤ Mq(x) ∀x, M < ∞, the sampling scheme can be
carried out in the manner shown in Algorithm 1. The samples thus generated can be proven to distribute
as π(·) [Robert and Casella, 2004]. Although appealing due to its simplicity, rejection sampling suffers from
serious drawbacks: as the dimension of x increases, it is increasingly difficult to find a M constant that
meets M > π(x)/q(x) ∀x. Moreover, if the constant M is chosen to be too large, samples are rejected with
excessively high probability, leading to poor sampling (if the algorithm is programmed for a fixed number
of iterations, regardless of the acceptance or rejection of the samples) or long execution times (if algorithm
is programmed to draw fixed number of samples). The notion of a proposal distribution, however, is key to
the development of more advanced sampling techniques.

Algorithm 1 Rejection sampling

Rejection Sampling

•k = 0
while k < Nsamples do
→ x′ = x, with x ∼ q(x)
→ u′ = u, with u ∼ U(0, 1).

→ r =
π(x′)

Mq(x′)
if u′ < r then
• Accept sample (if not, sample is said to be rejected)
→ X[k] = x′

→ k = k + 1
end if

end while

• Importance sampling is another sampling scheme proposed before the formulation of MCMC. According
to [Geweke, 1989, Rubinstein and Kroese, 2016], the idea of importance sampling can be traced back to
1940s. If q(x) is a proposal distribution whose support includes that of the target distribution, integrals
involving π(x) can be rewritten as follows:

I(f) =

∫
f(x)w(x)q(x)dx, (2.28)

where w(x) is defined as w(x) = π(x)/q(x) and is referred to as importance weight. Accordingly, if N
samples are drawn from distribution q(x), integral I(f) can be approximated as:

Î(f) =

N∑
i=1

f(x(i))w(x(i)), (2.29)

provided that one can evaluate w(x). The estimate Î(f) can be proven, under weak assumptions, to satisfy
almost sure convergence to the integral I(f). Under this approach, estimate Î(f) can be interpreted as the
integral of function f(x) with respect to the discrete approximation of π:

π̂(x) =

N∑
i=1

w(x(i)) δx(i)(x). (2.30)
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It remains unclear, however, how to choose the proposal distribution q(x). A possible criterion is to choose
a distribution that minimizes the variance of the estimate Î(f):

varq(x)(f(x)w(x)) = Eq(x)(f
2(x)w2(x))− I2(f). (2.31)

Since term I2(f) does not depend on the proposal distribution, efforts must be focused on Eq(x)(f
2(x)w2(x)).

Following Jensen’s inequality7, that term satisfies:

Eq(x)(f
2(x)w2(x)) ≥

(
Eq(x)(f(x)w(x))

)2

, (2.32)

which reaches equality by adopting the proposal distribution q∗(x) = |f(x)|w(x)∫
|f(x)|w(x)dx

. Although the result

may not be of straightforward practical usefulness –sampling from |f(x)|w(x) is virtually impossible in any
non-trivial case–, it gives an insight about how proposal distributions should be chosen: higher sampling
efficiency is achieved when samples concentrate in regions where |f(x)|p(x) (rather than p(x) alone) has
high values. That is what justifies the name of importance sampling. A telling example of this concept
comes from communication networks [Smith et al., 1997]: being the event of interest the bit error rate,
authors focus on sampling the region where bit errors occur rather than on the whole domain of events.

2.2.3.3 A discrete analogy of MCMC

The main innovation introduced by MCMC with respect to previous numerical integration schemes is its focus
on the sampling in itself rather than in weighting the samples (as in Equation 2.30). Proposed as a solution
to a practical problem (namely, how to compute the equation of state of a system of interacting particles), and
probably unaware of the theoretical implications of their ideas, authors in [Metropolis et al., 1953] state: “instead
of choosing configurations randomly, then weighting them with exp(−E/kT ), we choose configurations with a
probability exp(−E/kT ) and weight them evenly.”8

In order to understand the theoretical basis of MCMC, a discrete analogy may be useful. Let X be a discrete
space of size S: X = {x1, x2, . . . , xS}. A stochastic process x(i) is a Markov Chain if:

Pr(x(i)|x(i−1), . . . , x(1)) = T (x(i)|x(i−1)), (2.33)

that is, the probability of state x(i) is completely determined by the previous state x(i−1). This definition allows
for the representation of the stochastic process in terms of a probability vector p and a transition matrix T:

p(i|i−1) =



p(1,i)

...
p(k,i)

...
p(S,i)

 =



T(1,1) . . . T(1,S)

...
...

...
T(k,1) . . . T(k,S)

...
...

...
T(S,1) . . . T(S,S)





p(1,i−1)

...
p(k,i−1)

...
p(S,i−1)

 , (2.34)

where p(i|i−1) is a vector containing the probability mass function (p.m.f. hereinafter) of state x(i) given the
p.m.f. of the previous state, x(i−1). Thus, terms in p(i|i−1) represent the probability of a particular state:
p(k,i) = Pr(x(i) = xk). Terms in matrix T represent individual transition probabilities: T(k1,k2) = T (xk1 |xk2). In
this formulation, the sum of terms in the same column must equal 1.

A chain is said to be homogeneous if transition probabilities remain invariant throughout the stochastic process
(that is, T is independent of i); thus, x(i) depends only on a fixed transition matrix and previous state x(i−1).
Some chains stabilize at a fixed probability vector after a number of transition steps: let µ be any probability
vector for the initial state; then, after n iterations:

p(n) = Tnµ = p∗, (2.35)

7In the context of probability theory, φ(E(x)) ≤ E(φ(x)), being φ(·) any convex function.
8Physical meaning of term exp(−E/kT ) was explained in the Subsection 2.2.2.
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and the probability vector remains at p∗ even after a new transition step is applied:

p(n+1) = Tp∗ = p∗. (2.36)

This stability behaviour plays a fundamental role in MCMC simulation, particularly in the choice of transition
probabilities: if properly designed, the chain will converge to the target distribution π(·) for any starting point.
In discrete Markov processes, the chain converges to a stable distribution p∗ as long as matrix T satisfies the
following conditions:

• Irreducibility: the probability of visiting all other states is always positive, regardless of the current state.
From an algebraic point of view, this is equivalent to state that matrix T cannot be decomposed as a set of
separate smaller matrices. From a graph-theoretic standpoint, irreducibility is equivalent to the connectivity
property of the transition graph.

• Aperiodicity: the property of not getting trapped in loops.

If these properties hold, then p∗ is the invariant distribution. If T does not meet the irreducibility condition, the
chain may still converge to a probability vector, but that vector would depend on the initial probabilities µ. If
aperiodicity does not apply, the chain may get trapped in cycles, so that it does not converge.

One way to ensure that the properties mentioned above apply is to study the reversibility condition. A chain
is reversible if it satisfies the detailed balance condition:

Pr(xk1)T (xk2 |xk1) = Pr(xk2)T (xk1 |xk2). (2.37)

Summing over xk2 yields:

Pr(xk1) =
∑
xk2

Pr(xk2)T (xk1 |xk2). (2.38)

Thus, if Pr is found to meet the detailed balance condition, then Pr is the stationary distribution p∗. An
interpretation of detailed balance is that, regardless of the other states, the probability of moving from xk1 to
xk2 is the same that that of moving from xk2 to xk2 . Reversibility guarantees stationarity (i.e., it is a sufficient
condition), but stationarity does not require detailed balance. Reversibility is stronger than stationarity in the
sense that it implies that a record of the successive transitions looks the same when viewed forwards or backwards.

From equations 2.36, 2.38 it can be noticed that vector p∗ is the right eigenvector of matrix T with corre-
sponding eigenvalue 1. By means of the Perron-Frobenius theorem from linear algebra, it can be proven that all
the remaining eigenvalues are smaller in absolute value than 1. Second largest eigenvalue determines the rate of
convergence of the chain. In MCMC samplers, a major part of the efforts are focused on designing chains that
converge as quickly as possible.

Although discrete Markov chains are of little use in the context of sampling techniques, the concepts presented
to this point give an insight of how MCMC works. The leap to the continuous is made through the definition of
the transition probabilities in those spaces: instead of a discrete collection of probabilities of moving from one
state to another T (xk1 |xk2), an integral kernel K representing the conditional density of x(i+1) given x(i) is used:∫

p(x(i))K(x(i+1)|x(i))dx(i) = p(x(i+1)), (2.39)

whereas the probability vector is replaced by a probability density function.

2.2.3.4 Metropolis/Metropolis-Hastings algorithm

Proposed in [Metropolis et al., 1953] as a practical solution, MCMC algorithm took time to be formalized –at
first, concepts such as stationarity, proposal distribution, transition kernel were implied rather than explicitly
stated. In [Hastings, 1970], Metropolis work is analyzed mathematically and generalized to a wider family of
algorithms, the so-called Metropolis-Hastings (MH) method. A major part of the sampling could be considered
particular cases or extensions of the MH algorithm, hence the importance of studying it in detail.

Given a target distribution π(·) (known up to a constant), MH performs sampling by drawing a new value x′

from a proposal distribution q(x′|x) (which depends on a previous sample x), and accepting it with probability
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A = min{1, π(x′)·q(x(i−1)|x′)
π(x(i−1))·q(x′|x(i−1))

}. If x′ is rejected, the chain remains at x. This procedure is summarized in

Algorithm 2.

Algorithm 2 Metropolis-Hastings algorithm

Metropolis-Hastings sampler

• Initialization
→ x(0) = x, with x ∼ PriorDist
for i = 1, . . . , Nsteps do
→ x′ = x, with x ∼ q(x|x(i−1))
→ u′ = u, with u ∼ U(0, 1).

→ A = min{1, π(x′)·q(x(i−1)|x′)
π(x(i−1))·q(x′|x(i−1))

}
if u′ < A then
• Accept sample
→ x(i) = x′

else
→ x(i) = x(i−1)

end if
end for

Analogous to the discrete approach presented previously, in MCMC the chain runs following a transition
probability (here defined by an integral kernel K) that achieves a stationary regime that generate samples as if
they were drawn directly from π. That is, instead of the stationary probability vector p∗, MCMC has π as its
stationary distribution. As long as the initial samples of the chain are representative of target distribution, the
routine is guaranteed to mimic the action of sampling from π. However, most times the chain takes a number of
iterations before reaching an stationary regime; that set of samples is called burn-in period and is often discarded.

The kernel that represents the transition probability defined by Algorithm 2 is:

KMH(x(i+1)|x(i)) = q(x(i+1)|x(i))A(x(i), x(i+1)) + δx(i)(x(i))r(x(i)), (2.40)

from which it can be noticed that transition probability does not depend solely on proposal distribution q(·),
but also on the acceptance and rejection probabilities. Second term δx(i)(x(i))r(x(i)) represents the probability of
remaining at the previous sample x(i):

r(x(i)) =

∫
X
q(x′|x(i))(1−A(x(i), x′))dx′. (2.41)

By construction, the MH kernel defined in Equation 2.40 meets the detailed balance condition:

π(x(i))KMH(x(i+1)|x(i)) = π(x(i+1))KMH(x(i)|x(i+1)), (2.42)

and this proves that the chain defined by KMH admits π as a stationary distribution. MH algorithm satisfies
irreducibility (since q can be chosen to contain the support of π) and aperiodicity (there is always a probability
of rejection, therefore the chain cannot get trapped in loops). Under this conditions, asymptotic convergence is
guaranteed [Tierney, 1994].

MH encompasses a wide range of algorithms, since depending on the choice of proposal distribution q one can
recover algorithms that were proposed before the publication of [Hastings, 1970]. When the next sample does not
depend on the current state, q(x′|x) = q(x′) and then the acceptance probability takes the form:

A(x(i), x′) = min

{
1,
π(x′) · q(x(i))

π(x(i)) · q(x′)

}
= min

{
1,

w(x′)

w(x(i))

}
, (2.43)

which is an independent sampler close to the idea of important sampling (but with correlated samples). If
proposal distribution is symmetric (i.e., q(x′|x) = q(x|x′)), then q(·) terms in A cancel out, recovering the
Metropolis algorithm:

A(x(i), x′) = min

{
1,

π(x′)

π(x(i))

}
. (2.44)
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In summary, the key of MH –and MCMC in general– is that kernels are constructed in such a way that
the chains they induce always lead to stationary distributions that correspond with π(·). However, in practice
the choice of proposal distributions affects to a great extent the chances of convergence of the chain –both the
distribution q in itself (for example, a Gaussian) and its parameters (e.g., the value pf σ if q is a Gaussian) must
be chosen according to the target distribution.

2.2.3.5 Kernel composition and Gibbs sampler

As long as two different kernels K1, K2 admit the same distribution π(·) as their stationary distribution, they can
be combined to generate new samplers. According to [Tierney, 1994], both the cycle hybrid kernel (K1 ·K2) and
the mixture hybrid kernel (αK1 +(1−α)K2) are transition kernels with invariant distribution π. Algorithmically,
cycle hybrid kernel corresponds to the sequential application of two or more kernels, whereas mixture hybrid
kernel is equivalent to applying K1 with probability α and K2 with probability 1 − α (this scheme is extensible
to more than two kernels).

Kernel composition can be used to explore the feature space in a sensible way, depending on the particular
aims of the problem. For example, a kernel K1 may provide a means to explore the domain of π(·) globally,
whereas K2 has a local scope intended to discover finer details (e.g., narrow peaks).

An important case of cycle hybrid kernel is the well-known Gibbs sampler [Geman and Geman, 1984], which
relies on the sequential sampling of conditional probabilities. On the long run, such scheme is equivalent to
drawing samples from the joint target distribution. Provided that samples are defined as ~x = [x1, . . . , xd], Gibbs
algorithm operates as follows:

Algorithm 3 Gibbs sampler

• Initialize x(1)

for i = 2, . . . , Nsteps do
for j = 1, . . . , d do

→ x
(i)
j ∼ π(xj |x(i)

1 , . . . , x
(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
d )

end for
end for

Formally, the proposal distribution of Gibbs sampler is defined for each component j ∈ {1, . . . , d}:

q(x′|x(i)) =

{
π(x′j |x

(i)
1 , . . . , x

(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
d ) If components other than j are equal in x(i) and x′

0 Otherwise

(2.45)
Thus, acceptance probability is always 1:

A(x(i), x′) = min

{
1,

π(x′) · q(x(i)|x′)
π(x(i)) · q(x′|x(i))

}
= min

{
1,
π(x′) · π(x

(i)
j |x

(i)
1 , . . . , x

(i)
j−1, x

(i)
j+1, . . . , x

(i)
d )

π(x(i)) · π(xj |x′1, . . . , x′j−1, x
′
j+1, . . . , x

′
d)

}

= min

{
1,

π(x′j |x′1, . . . , x′j−1, x
′
j+1, . . . , x

′
d)

π(x
(i)
j |x

(i)
1 , . . . , x

(i)
j−1, x

(i)
j+1, . . . , x

(i)
d )

}
= 1 (x′ and x(i) are equal except for xj),

where the rewriting of π(x) in terms of conditional probability was used from step 2 to step 3: π(x) = π(xj |x1, . . . ,
xj−1, xj+1, . . . , xd) · π(x1, . . . , xj−1, xj+1, . . . , xd). Although explained in terms of one-dimensional components,
Gibbs sampling admits component grouping as well. If conveniently blocked, sub-components may have condi-
tional probabilities with a standard form (Gaussian, Poisson, Gamma, etc.), thus being easier to sample than the
target joint probability. If conditional probabilities do not follow a standard form, one can draw “conditional”
samples by means of other sampling schemes. In particular, being Gibbs algorithm a special case of Metropolis-
Hastings (namely, that with Equation 2.45 as proposal distribution), MH steps can be included within the Gibbs
sampler. The resulting procedure is summarized in Algorithm 4, where an auxiliary proposal distribution q′j is

defined: let x
(i)
−j be [x

(i)
1 , . . . , x

(i)
j−1, x

(i)
j+1, . . . , x

(i)
d ] (all components other than j), then q′j(x|x(i)) is a distribution
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that induces leaps only on the j-th component (i.e., x−j remaining equal to x
(i)
−j and xj being the result of a

random variation on x
(i)
j ). This scheme is appropriate to sample multivariate distributions of large dimension,

since sequential sampling of parameters prevents the algorithm from falling in zones of near-zero probability.

Algorithm 4 MH-within-Gibbs

• Initialize x(1).
for i = 2, . . . , Nsteps do
• Retrieve value from the last iteration:
→ x(i) = x(i−1)

for j = 1, . . . , d do
→ x′ = x, with x ∼ q′j(x|x(i))
→ u′ = u, with u ∼ U(0, 1).

→ A = min
{

1,
f(x′)·q′j(x(i)|x′)
f(x(i))·q′j(x′|x(i))

}
if u′ < A then
• Accept sample (if not, x(i) remains at the current value):
→ x(i) = x′

end if
end for

end for

Up to this point, the basic MCMC techniques have been presented. Other important MCMC and MCMC-
based methods, such as Slice sampler [Damien et al., 1999], Hybrid Monte Carlo [Duane et al., 1987], Reversible
jump MCMC [Green, 1995] have been left out from this review. However, Chapter 3 examines some of the MCMC
techniques that have been used in exoplanet research and binary/multiple star analysis.
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2.3 Multiple imputation theory

The presence of incomplete or missing data occurs in a wide range of statistical situations. Since standard
inference methods are conceived to be used with complete data sets, missing values imply a challenge for data
analysts. Several approaches can be taken to deal with partial or missing data. The most straightforward strategy
is discarding data entries with partial measurements and apply a standard technique on the subset of complete
measurements. However, the validity and efficiency of complete-data based methods cannot be guaranteed when
data are incomplete [Rubin, 1976].

A number of techniques specifically aimed at addressing the problem of missing or partial measurements have
been proposed. For example, [Dempster et al., 1977] uses Expectation-Maximization (EM hereinafter) algorithm
to calculate maximum likelihood estimate from incomplete data. Another approach is to fill in the blank spaces
due to missing data with plausible values9 –referred to as imputations–, thus generating a set of observations on
which complete-data based methods can be applied. Regardless the specific manner in which imputations are
generated, methods that proceed like that can be labeled as “single imputation techniques”. Both Expectation-
Maximization and single imputation techniques have certain drawbacks: EM is not suitable when the object
of interest is the likelihood or posterior distribution rather than just a maximizer (and the curvature at that
point, at most); on the other hand, single imputation techniques omit the sources of uncertainty associated to the
imputation process, which may lead to biased results. These sources of uncertainty are enumerated as follows:
One is the uncertainty associated to the modeling of the joint distribution of the response variables Y (observed
and unobserved) and missingness indicators R (Equation 2.47); the second is the uncertainty of the imputation
model, assuming that values of the observed data and the model parameters are known (associated with the term
later identified as conditional predictive distribution); the third is the uncertainty about the model parameters
(θ) themselves, i.e., p(θ|Y ). Further details are explained throughout this section.

Introduced in [Rubin, 1987], the approach known as multiple imputation is aimed at performing inference
from incomplete data while taking into account the uncertainty sources that single imputation techniques ignore.
Multiple imputation relies on replacing missing values with not one, but multiple plausible values, thus generating
several complete data sets which differ from each other only in the imputed values –entries with complete data
remain the same. These data sets are analyzed individually with standard techniques and the final inference is
performed by combining the individual results (e.g., by calculating an average).

Certain definitions must be introduced in order to formalize the problem of missing data and the techniques to
address it. Let Y be an observation matrix, with each row yi being a single multivariate observation of dimension
p drawn from a probability distribution p(y|θ) governed by the model parameter vector θ. Components of
missingness indicator R are defined as:

rij =

{
0 if yij is observed,

1 if yij is missing.
(2.46)

Defining Pr(rij = 0|yij) = pij (and Pr(rij = 1|yij) = 1 − pij), the value of R is subject to a probability
distribution p(R|ξ, Y ) which depends on parameters ξ. Thus, by virtue of the chain rule of of probability, joint
distribution of Y and R can be expressed as:

p(Y,R|θ, ξ) = p(Y |θ) · p(R|ξ, Y ), (2.47)

where term p(Y |θ) is the conditional distribution of the observations given the model parameters. It has been
assumed that p(Y |θ, ξ) = p(Y |θ) and p(R|ξ, θ, Y ) = p(R|ξ, θ). Values within Y can be separated into Ymis (values
in Y such that rij = 1) and Yobs (values in Y such that rij = 0). Since conclusions about the target parameters θ
must be based on the joint probability model (Equation 2.47), the manner in which the missingness depends on
Y must be taken into account when performing inference. [Little and Rubin, 1987] identifies three missingness
mechanisms:

• Missing completely at random (MCAR): p(R|ξ, (Ymis, Yobs)) = p(R|ξ). For example, in a clinical trial
participants would flip a coin to decide whether they fill in a depression survey.

• Missing at random (MAR): p(R|ξ, (Ymis, Yobs)) = p(R|ξ, Yobs), i.e., occurrence of data loss depends only

9The way in which these “plausible values” can be generated ranges from replacing blank spaces with average values, to problem-
specific probability models.
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on the observed values. Following the example above, male participants could be more likely to refuse
to complete the depression survey, regardless their individual levels of depression (“they tend to skip the
survey just because they are male”).

• Missing not at random (MNAR): p(R|ξ, (Ymis, Yobs)) 6= p(R|ξ, Yobs), that is, occurrence of data loss may
depend on unobserved values. In the clinical trial mentioned above, male participants might be more
reluctant to complete the survey as their level of depression is higher (“they tend to skip the survey because
they are depressed”).

Terms θ and ξ are said to be distinct if their joint probability can be expressed as a product of independent
marginal PDFs [Rubin, 1976]. If that condition holds, and if either MCAR or MAR applies, inferences based on
observed-data likelihood function L(θ, ξ|Yobs, R) will be the same as those based on L(θ|Yobs). In those cases, the
missingness mechanism is said to be ignorable. However, the precision of the inference thus performed is reduced
if a large portion of the information is missing. That is what motivates the multiple imputation approach.

Conditional probability of Ymis given Yobs can be derived by integrating over the parameter space of θ, that
is:

p(Ymis|Yobs) =

∫
p(Ymis|Yobs, θ)p(θ|Yobs)dθ. (2.48)

Term p(Ymis|Yobs, θ) is identified as conditional predictive distribution of Ymis given Yobs and θ. Term p(Ymis|Yobs)
is identified as the posterior predictive distribution of Ymis given Yobs, and must be understood as the condition pre-
dictive distribution averaged over the observed-data posterior distribution of θ, p(θ|Yobs). Although p(Ymis|Yobs)
is seldom found in a closed form, expressions for both p(Ymis|Yobs, θ) and p(θ|Yobs) may be found in certain
situations. On the other hand, p(Ymis|Yobs, θ) depends on the imputation model adopted. Examples of standard
imputation models existing in the literature are the predictive model method [Little and Rubin, 1987] and the
propensity score method [Lavori et al., 1995], which are only applicable when data follows a monotone missing
pattern10.

Let Q be any quantity of interest to be estimated from the observed data. Then, the core of the multiple
imputation approach is the estimation of Q by averaging the completed-data posterior, p(Q|Yobs, Ymis), over the
feasible values of Ymis given Yobs (which are represented by the distribution p(Ymis|Yobs) and depend, ultimately,
on the chosen imputation model):

p(Q|Yobs) =

∫
p(Q|Yobs, Ymis)p(Ymis|Yobs)dYmis. (2.49)

This integral can be approximated as the discrete average of the values of Q obtained from a finite, possibly
small, number of data sets filled in with imputations. [Zhang, 2003] presents a discussion on how the number of
imputations affects the estimation variance.

2.3.1 MCMC for multiple imputation

When data loss is not governed by a monotone pattern, imputation models such as the predictive model method
and the propensity score method cannot be applied. To imput the missing values in cases with arbitrary missing
patterns, more advanced techniques must be used. The data augmentation algorithm introduced in [Tanner and
Wong, 1987], which is formally a Markov Chain Monte Carlo method, appears as a useful tool for those cases.

The data augmentation algorithm is motivated by the representation of the desired posterior distribution found
in Equation 2.49, where the quantity of interest Q is typically a parameter vector θ. Term p(θ|Yobs) depends, in
turn, on p(Ymis|Yobs). In [Tanner and Wong, 1987], authors prove, by a fixed point-based argument, that under
mild conditions the scheme presented next converges to p(θ|Yobs):

1. Generate Y
(i,1)
mis , . . . , Y

(i,m)
mis from the current approximation of the predictive posterior distribution, pi(Ymis|Yobs).

This can be accomplished by: (i) drawing a sample θi from pi(θ|Yobs); (ii) sampling m values of Ymis from
p(Ymis|θi, Yobs).

10Monotone missing pattern implies that if certain datum yij in the data matrix Y is missing, then all subsequent yik (k > j) are
also missing.
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2. Update the approximation of the desired posterior, pi(θ|Yobs), by averaging the results obtained from the
completed data sets:

pi+1(θ|Yobs) =
1

m

m∑
j=1

p(θ|Y (i,j)
mis , Yobs) (2.50)

3. If a stopping criterion has been reached, stop. If not, go to step 1.

Steps 1 and 2 are referred to as I-step (Imputation step) and P-step (Posterior step), respectively, in analogy to
the Expectation and Maximization steps of the EM algorithm. The evaluation of function p(θ|Ymis, Yobs) in step
2 is replaced by a sampling procedure in certain situations (e.g., if p(θ|Ymis, Yobs) is known up to constant, if the
distribution is not known in a closed form but it is possible to sample from, etc.).

Authors in [Tanner and Wong, 1987] suggest that even a value of m as small as m = 1 leads to a correct
approximation, in the sense that the average of the posterior distribution across the iterations –that obtained in
the step 2– will converge to p(θ|Yobs). This motivates the MCMC scheme actually used in later publications on
missing data [Zhang, 2003] and commercial software implementations [Yuan, 2010]. That scheme is described in
Algorithm 5.

Algorithm 5 MCMC for multiple imputation

• Initialize θ(0).
for i = 1, . . . , Nsteps do
• Imputation step:

→ Y
(i)
mis = Y ′mis, with Y ′mis ∼ p(Ymis|θ(i−1), Yobs)

• Posterior step:

→ θ(i) = θ′, with θ′ ∼ p(θ|Y (i)
mis, Yobs)

end for

By following the scheme presented above during a sufficiently large number of iterations, one obtains a sequence

{θ(i), Y
(i)
mis}i=0,··· ,Nsteps

whose stationary distribution is p(θ, Ymis|Yobs). Marginalizing out Ymis yields the desired
posterior distribution p(θ|Yobs), whereas by marginalizing out θ one obtains the posterior predictive distribution
p(Ymis|Yobs).
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Chapter 3

State of the art

This section presents a general review of the techniques that have been used in the astronomical community
to address the problem of fitting stellar orbits and radial velocity curves. Although classic techniques such as
Thiele-Innes-Van den Bos [Thiele, 1883] have not been excluded from the survey, this review is focused on recent
works that adopt a Bayesian approach. Since both apparent orbits and radial velocity curves are manifestations
of the same underlying physical phenomenon –the motion of celestial bodies that are gravitationally bound–, the
tools suitable for analyzing one kind of data are usually also suitable for the other. Moreover, from a purely
kinematic point of view there are no major differences between studying binary/multiple stars and sub-stellar
objects such as brown dwarfs with multiple components or planetary systems –all of them behave according to
Newton’s laws of motion1. That is why this section covers certain advances made in exoplanet research and brown
dwarfs analysis in addition to the available tools for the study of visual stellar systems.

3.1 Classic orbit fitting techniques

The method proposed in [Thiele, 1883] is the first to provide a solution to the problem of finding the elliptic
orbit of a visual binary star given a set of observations of relative position. After further refinements made by
other authors, that technique came to be known as Thiele-Innes-Van den Bos method during the 20th century. It
relies on the selection of three complete observations of the form (τ, ρ, θ) and an areal constant c (obtained from
additional data), which are used to formulate an auxiliary system of equations whose solution is a set of orbital
parameters that matches the chosen measurements. A similar approach is taken in [Cid Palacios, 1958], where
three complete observations of the form (τ, ρ, θ) and one partial observation of the form (τ, θ) are required as
input. In line with the aforementioned works, the technique presented in [Docobo, 1985] also uses three complete
observations, but explores the dependency of eccentricity e as a function of an independent auxiliary angular
variable V instead of the areal constant c. That method yields different orbital solutions depending on the chosen
value of V . This class of methods depends to a great extent on the quality of the selected observations –the output
orbit passes through those points–, which does not facilitate the incorporation of observational uncertainty into
the model. Furthermore, even though these techniques have a physical basis –all of them are based on the
invariability of areal velocity–, their approach is heuristic rather than formal (at least from a statistical point of
view).

3.2 Orbital fitting as an optimization problem

The consistent progress in computing power during the last decades led to the popularization of computationally
intensive algorithms to solve optimization, estimation and simulation problems that were previously intractable.
The availability of both computer power and theoretical knowledge enabled researchers to address the task of
fitting stellar orbits as an optimization problem. Rather than the unique solution of an algebraic problem derived
from physical equations, orbital fitting can be seen as the search of a configuration that maximizes (or minimizes)
certain merit function. In [Tokovinin, 1992], orbital parameters are found by minimizing the weighted sum of the

1The incorporation of additional phenomena such as mass transfer and relativistic effects into the model is also applicable to both
stellar and sub-stellar systems to some extent.
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squared differences between observations and model-generated values. To do so, the author uses the Levenberg-
Marquardt algorithm, which interpolates between gradient-descent and Newton-Gauss methods [Levenberg, 1944],
[Marquardt, 1963]. A similar approach is found in [MacKnight and Horch, 2004], where authors develop a downhill
simplex minimization technique to estimate orbital parameters. This method has been extensively used by Horch
and his collaborators (e.g., [Horch et al., 2015]).

Other methods rely on randomness to find optimal or sub-optimal solutions to the problem. One of the
pioneers in the application of such kind of algorithms to orbital fitting is [Pourbaix, 1994], where author uses the
Simulated Annealing method [Kirkpatrick et al., 1983] to find a set of orbital elements that minimizes differences
between measurements and model-generated values (the same merit function used in [Tokovinin, 1992]). This
trial-and-error approach, as described by its author, is an adaptation of the Metropolis algorithm previously
explained in this work. Whereas Metropolis and MCMC methods in general are focused on sampling (for either
integration or p.d.f. characterization purposes), Simulated Annealing is aimed at optimization. Like Metropolis
algorithm, Simulated Annealing is a physically-inspired method2: let s be a vector encoding the configuration of
a system, with an energy level E(s) associated. A transition from sn to sn+1 is always allowed if it leads to a

lower energy level (that is, E(sn+1) ≤ E(sn)), but can also be accepted with probability exp
(
−E(sn+1)−E(sn)

kT

)
if E(sn+1) > E(sn). As in the real physical systems that inspire this algorithm3, temperature T decreases
progressively over time. At high temperatures, configurations of higher energy are more likely to be accepted,
whereas at lower temperatures the system undergoes smaller configuration leaps –it has reached a point of
minimum energy. That scheme, which it outlined in Algorithm 6, can be used for general optimization purposes
–it just requires configuration s to be replaced by the set of parameters the user desires to optimize and energy
function E(·) to be replaced by an adequate merit function.

Algorithm 6 Simulated annealing

• Pick a random initial state:
→ s = s0

for n = 1, . . . , Nsteps do
• Choose a temperature according to the cooling schedule:
→ T = temperature(n)
• Pick a random neighbor:
→ s′ = neighbor(s)
• Perform the Boltzmann probability test:
→ u′ = u, with u ∼ U(0, 1).

if u′ < exp

(
−E(s′)− E(s)

kT

)
then

• Move to new state:
→ s = s′

end if
end for

In Algorithm 6, temperature(·) is a function that assigns a value of T to each step n according to a pre-
determined cooling schedule, and neighbor(·) is a function that outputs a new configuration in the vicinity of
input value s. In [Pourbaix, 1994], s is a vector with the seven orbital elements (Thiele-Innes representation):
s = [P, T, e, A,B, F,G], whereas merit function has the form of a weighted mean squared error:

E(s) =

N∑
j=1

wi
(
(xobs(i)− xmodel(i; s))2 + (yobs(i)− ymodel(i; s))2

)
. (3.1)

Later developments by the same author extend this scheme to binary stars with visual and spectroscopic ob-
servations [Pourbaix, 1998]. Both works refine the results obtained by Simulated Annealing by adding a second
optimization stage: Powell’s method in [Pourbaix, 1994] and Broyden–Fletcher–Goldfarb–Shanno local search

2Boltzmann constant k is kept just in order to show the physical analogy explicitly, but from an algorithmic point of view, the
only value that matters is temperature T . Term kT can be replaced for a single value C that varies over time.

3Annealing is technique used in metallurgy to modify certain physical and chemical properties of a metal. It involves heating the
material and then cooling it in a controlled way, thus altering the structure of its crystal lattice.
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method in [Pourbaix, 1998].
A major disadvantage of Simulated Annealing is the need of a cooling schedule –formulating a sensible cooling

schedule requires some degree of trial-and-error, since not all schemes to decrease the value of T generate good
results. Another drawback has relation with uncertainty characterization: Simulated Annealing gives a single
solution to the optimization problem, but does not provide a means to evaluate how solutions are distributed
–required for establishing a confidence intervals, for example. This problem may be alleviated to some extent
by computing an analytic estimate of the covariance matrix during a later stage (i.e., once Simulated Annealing
algorithm has given an output). That estimate relies on the calculation of Fisher information matrix J (provided
that merit function E(·) is differentiable) and is used by Levenberg-Marquardt algorithm and [Pourbaix, 1994].
In turn, this J-based estimate of covariance matrix has some limitations: it depends on the solution found (where
J function is evaluated) and may be a good approximation of the covariance matrix in that vicinity, but not from
a global point of view (for example, if merit function has several peaks); furthermore, it does not drop a hint on
the shape of the merit function –if merit function admits a statistical interpretation, it may make a difference
whether the solution is located at the top of a narrow peak or in a plateau-shaped surface.

3.3 Bayesian estimation of orbital parameters

In a Bayesian setting, a p.d.f. encodes the current state of knowledge of a variable of interest (parameter, state)
rather than a probability of occurrence. In other words, parameters do not distribute over the range in which the
p.d.f. is defined –they have a definite value–, but certain points in the parameter space are more likely to be the
actual value. Thus, the Bayesian approach is at its core a tool to accomplish what optimization methods do not
naturally provide: uncertainty characterization.

During the last years, the Bayesian approach has become somewhat of a standard in exoplanet research
–MCMC and MCMC-inspired techniques have been profusely applied to estimate posterior distributions of pa-
rameters of multi-planet systems. However, that kind of analysis has not been systematically applied to visual
binary stars. Endeavors made in the Bayesian analysis of exoplanets, brown dwarfs and binary stars are covered
in the remainder of this section.

3.3.1 Bayesian analysis of exoplanet parameters

The breakthrough discovery of the first known planet orbiting a main-sequence star other than the Sun [Mayor
and Queloz, 1995] paved the way for a new era of astronomical research. Up to this day, thousands of extrasolar
planets have been discovered, mainly through radial velocity and –more recently– transit methods [IPAC Caltech,
2017]. However, it was not until mid 2000s that MCMC established as a mainstream technique for analyzing
exoplanet radial velocity data. The pioneering works of Ford [Ford, 2005] and Gregory [Gregory, 2005] established
guidelines for the application of MCMC to exoplanet research.

In [Ford, 2005], author introduces the concept of uncertainty quantification of orbits of extrasolar planets,
being one of the first scholars to address orbital fitting as a p.d.f. estimation rather than as an optimization
problem. To do so, the posterior distribution of the parameter vector of a single-planet system4 (Equation 3.2)
is estimated by means of a Metropolis-within-Gibbs scheme.

x = [P,K, e, ω, T, VCoM ]. (3.2)

The scheme is extended to multiple-planet systems by using a multi-Keplerian model for the radial velocity signal
of the host star:

V (t) =

Np∑
i=1

Ki(cos(ωi + ν(t;Pi, Ti, ei)) + ei cosωi) + VCoM , (3.3)

4Actually, author uses an alternative parameter vector that accelerates MCMC convergence:

x = [logP, logK, e cosω, e sinω,M0, VCoM ],

where: (i) parameters P (orbital period) and K (amplitude) are explored in the logarithmic space in accordance to the scaling
arguments suggested in [Gelman et al., 2003]; (ii) elements e and ω are reparametrized as e cosω and e sinω in order to avoid
parameter correlation; (iii) term M0 is the mean anomaly at time of periastron passage T and VCoM the velocity offset of the
spectroscopic data.
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where ν(·) is the true anomaly and Np the number of planets. As the number of planets increases, so does the
dimension of parameter vector. Although MCMC is not free from the so-called curse of dimensionality, it is more
efficient than other algorithms in high-dimensional scenarios [Ford, 2005], hence the popularity it has achieved in
exoplanet research.

In [Gregory, 2005], the author uses Parallel Tempering Markov Chain Monte Carlo (PT-MCMC hereinafter)
to analyze radial velocity data of the yellow dwarf HD 73526, and compares the results with those previously
obtained in [Tinney et al., 2003]. Both works detect the presence of a planet orbiting HD 73526: by performing
a nonlinear least-squares analysis, [Tinney et al., 2003] finds a planet with an orbital period around 190 days;
[Gregory, 2005], on the other hand, uses PT-MCMC to estimate the posterior distribution of the parameters of
a single-planet model, finding three possible orbits –three modes in the p.d.f.– that fit the data, one of them
corresponding to that found in [Tinney et al., 2003]. However, that peak is not the one with the most significant
probability –another orbit, with a period about 376 days, is found to be formally more probable, for its vicinity
contains a volume of parameter space with larger probability density. This is an example of the sort of analyses
that Bayesian approach allows for.

Introduced by [Swendsen and Wang, 1986], Parallel Tempering (also known as Replica Exchange algorithm)
may not be part of the “classical” arsenal of MCMC techniques, but it provides a means to cope with distri-
butions with widely separated peaks –a problem the raw Metropolis-Hastings algorithm might struggle with.
Like Metropolis sampler and Simulated Annealing, PT-MCMC is a thermodynamics-inspired method. A formal
description of a basic version of this technique is presented as follows:

Let π(x) be the posterior distribution of interest, π(x) = p(x|y) ∝ p(x) · p(y|x), where x is a parameter or
state vector and y a observation vector. Flattened versions of π are obtained by raising the likelihood term to
the reciprocal of temperature T :

p′(x|y) ∝ p(x) · p(y|x)1/T . (3.4)

Although not physically meaningful, reciprocal β = 1/T is preferred over T for practical reasons (T ∈ (0,∞),

whereas β ∈ (0, 1]). A collection of values for β is defined: ~β = [β1, . . . , βNchains
], with β1 = 1, β2 > β3 >

· · · > βNchains
> 0. This array of values induces a collection of probability density functions: let pj(·) be

pj(x|y) = p(x) · p(y|x)βj (the function to evaluate target distributions is not necessarily normalized). Then, a
chain –also called “replica”– is run for each β, and state swaps between replicas with adjacent5 values of β occur
with fixed probability Pexchange –hence the original name of the algorithm. A proposal distribution qj(·) must be
defined for each chain, taking into account that “hotter” chains may require larger jumps to be properly explored.
The routine is summarized in Algorithm 7.

The underlying idea is that in chains with flatter, “hotter” versions of π, significantly different configurations
can arise from one step to the next, whereas in low temperature chains the current state is given the chance of
refine itself. Thus, if a dramatically different configuration –possibly another mode– is discovered at the bottom
of the ladder (where “hotter” versions of π lie), it can climb to the upper, “colder” chains through successive
state swaps. The inference is usually performed at the chain with temperature T = 1 –that is, the chain with the
π itself as its target distribution.

Additionally, [Gregory, 2005] presents a control system to automatically tune the σ-values of Gaussian pro-
posal distributions qj(·). Subsequent works by Gregory extend the methodology presented in [Gregory, 2005]
with enhancements in the control system, incorporation of crossover operations inspired by genetic algorithms
[Gregory and Fischer, 2010], and the formulation of an alternative parametrization of Keplerian elements, aimed
at improving the performance of MCMC in presence of target distributions with highly correlated parameters
[Gregory, 2011]. This methodology has been consistently used by Gregory and other researchers to analyze exo-
planet spectroscopic data: in [Gregory, 2007a], [Gregory, 2007b], for example, author uses PT-MCMC to study
objects HD 208487 and HD 11964, finding evidence of additional bodies orbiting the main star.

Although not the focus of exoplanet research, methodological aspects of MCMC have been a matter of concern
for certain authors in the area: the choice of priors, proposal distributions and the specific class of MCMC method
to be used is a non-trivial task –there is no technique suitable for all cases. Akin to the control system introduced in
[Gregory, 2005], other scholars have proposed a number of different schemes to automatically tune the mechanism
to propose new samples. An interesting case –and one that certainly influenced this work– is the use of Differential
Evolution Markov Chain (DE-MC hereinafter) [Nelson et al., 2014]. That work presents a updated study of the
planets orbiting star 55 Cancri A using DE-MC as a tool of analysis, arguing that this technique helps accelerate
the burn-in phase in presence of a covariant structure among model parameters. As shown next, a particularly

5That is, only pairs of the form (βk, βk+1) are eligible.
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Algorithm 7 Parallel tempering MCMC

• Pick a random initial state for each chain:
for j = 1, . . . , Nchains do
→ xj(0) = x, with x ∼ Priorj

end for
• Run chains in parallel:
for i = 1, . . . , Nsteps do
for j = 1, . . . , Nchains do

• Make a proposal for x
(i)
j :

→ x′j = x, with x ∼ qj(x|xj(i− 1))
• Accept or reject proposal:
→ u′ = u, with u ∼ U(0, 1).

→ A = min{1,
pj(x

′
j |y) · qj(x(i−1)

j |x′j)

pj(x
(i−1)
j |y) · qj(x′j |x

(i−1)
j )

}

if u′ < A then
→ x

(i)
j = x′j

else
→ x

(i)
j = x

(i−1)
j

end if
end for
• Perform state swap with probability Pexchange:
→ s′ = s, with s ∼ U(0, 1).
if s′ < Pexchange then
• Choose a pair of adjacent chains at random:
→ Draw j′ from {1, . . . , Nchains − 1} with uniform probability.
• Accept or reject swap with probability A′:

→ A′ = min{1,
pj′(x

(i)
j′+1 |y) · pj′+1(x

(i)
j′ |y)

pj′(x
(i)
j′ |y) · pj′+1(x

(i)
j′+1 |y)

}

→ a′ = a, with a ∼ U(0, 1).
if a′ < A′ then
→ x

(i)
j′ = x

(i)
j′+1

→ x
(i)
j′+1 = x

(i)
j′

end if
end if

end for

appealing property of DE-MC is that it exempts the user from determining an appropriate proposal distribution
–relying on the mutual learning between chains run in parallel, the algorithm adjusts itself to the particular
structure of the distribution being sampled.

Introduced in [Braak, 2006] and refined later in [Vrugt et al., 2009], DE-MC is a population-based MCMC
algorithm that integrates MCMC and Differential Evolution [Storn and Price, 1997], “a simple and efficient
heuristic for global optimization over continuous spaces” as described by its authors. Mutual learning between
chains is accomplished by using a proposal distribution based on the DE jumping step considered in [Storn and
Price, 1995]. In DE-MC, the proposal sample xproposal of each chain is obtained by adding to the previous sample
(xprevious) the difference between the current values of two other randomly chosen chains (say R1, R2):

xproposal = xprevious + γ(xR1 − xR2) + w, (3.5)

where coefficient γ is a term to modulate the difference vector (its optimal value depends on the dimension of
the feature space, d), and w is an additional perturbation drawn from a distribution with unbounded support
(e.g., a normal) and small variance with respect to that of the objective distribution π. Term w is aimed at
guaranteeing the irreducibility condition of MCMC. In practice, the additional noise term is useful to explore the
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feature space at a local level, whereas term γ(xR1−xR2) contributes to make larger leaps without falling in zones
of low likelihood. By using this scheme, jumps between consecutive steps of the algorithm are given in accordance
to the scale and orientation for the target distribution. Algorithm 8 details how DE-MC works. In [Braak, 2006],
the technique is proven to meet the reversibility, aperiodicity and irreducibility conditions required for MCMC.

Algorithm 8 Differential Evolution Markov Chain

• Initialize x(1,j) for j = 1, . . . , Nchains.
for i = 2, . . . , Nsteps do
for j = 1, . . . , Nchains do
• Randomly select two chains:
→ Draw j1 from {1, . . . , Nchains}\{j} with uniform probability.
→ Draw j2 from {1, . . . , Nchains}\{j, j1} with uniform probability.
• Propose a new sample:
→ w(i,j) = w, with w ∼ S.
→ x′ = x(i−1,j) + γ(x(i−1,j1) − x(i−1,j2)) + w(i,j)

• Calculate acceptance probability through Metropolis-Hastings ratio:

→ A = min
{

1,
π(x′)

π(x(i−1,j))

}
• Accept or reject the proposed sample:
→ u′ = u, with u ∼ U(0, 1)
if u′ < A then
→ x(i,j) = x′

else
→ x(i,j) = x(i−1,j)

end if
end for

end for

As a final remark, the relevance of MCMC as a tool for analyzing exoplanet data extends to these days: besides
making up an important part of the Kepler Mission data processing pipeline (see [Rowe et al., 2014], [Gautier III
et al., 2012] for example), recent findings such as the celebrated discovery of seven temperate terrestrial planets
orbiting ultra-cool dwarf star TRAPPIST-1 [Gillon et al., 2017] relied to some extent on MCMC (although applied
to planet transit data rather than radial velocity measurements). Of course, much of the work done in exoplanet
data analysis has been left out, since this survey does not intend by any means to be extensive, but rather focused
in: (i) publications that have shaped the development of this area; (ii) publications that have directly influenced
this work. In [Loredo et al., 2010], several lines of research regarding extrasolar planet data analysis are listed,
such as the incorporation information-theoretic criteria into the sampling routines, the aforementioned Differential
Evolution approach, and other adaptive MCMC methods. However, most part of the research is actually done
based on the available tools, rather than introducing methodological innovations.

3.3.2 Bayesian approach applied to astrometric data

The application of Bayesian techniques to perform inference from astrometric observations has not been as
extensive as in extrasolar planet research. However, a few relevant examples can be enumerated. In [Sahlmann
et al., 2013], authors study a series of position measurements of ultra-cool dwarf DENIS-P J082303.1-491201 over
two years, detecting a signal of orbital motion after parallactic, proper motion and chromatic refraction effects
were corrected. This additional signal is explained by the presence of a low-mass companion –an unseen planet
orbiting the main star. Authors perform a joint estimation of the orbital elements of the companion (i.e., P , T , e,
a, ω, Ω, i) and parameters related to parallactic, proper motion and chromatic refraction effects. To do so, they
separate the estimation into two stages: first, an optimal (or sub-optimal) set of parameters is found by means
of Genetic Algorithms; then, the results of the previous stage are used to seed MCMC, in order to characterize
the uncertainty of the parameters being estimated.

In [Lucy, 2014], the problem of estimating orbital parameters of visual binary stars is addressed from a Bayesian
point of view. By virtue of a dimensionality reduction in the parameter space6, the posterior mean of orbital

6The author takes advantage of the Thiele-Innes representation of orbital elements, in which the linearity of positions X, Y with
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elements is calculated as a triple integral of the likelihood function7 over period P , time of periastron passage
T and eccentricity e. Numerical integration is carried out with a grid-based method. Besides introducing the
Bayesian approach in the study of visual binaries in a formal way, a relevant aspect of [Lucy, 2014] is the support
of the so-called “Eggen’s effect”: a good estimate of the total mass of a binary star (∝ a3/P 2) can be found even
if parameters P and a are not well-constrained. Numerical results obtained in [Lucy, 2014] suggest that if orbital
coverage exceeds 40%, the total mass of the system can be reasonably estimated.

An example of joint estimation of orbital (the aforementioned P , T , e, a, ω, Ω, i) and radial velocity-related
parameters (amplitudes K1, K2 and velocity of the center of mass, VCoM ) is found in [Burgasser et al., 2015].
That works extends the MCMC-based methodology introduced in [Burgasser et al., 2012], where authors use it to
analyze radial velocity data of a brown dwarf, to include astrometric observations, thus allowing the estimation of
a, Ω and i. Although applied to a brown dwarf, the approach presented is applicable to binary stars as well, since
they are similar to brown dwarfs from the point of view of dynamics —aspects such as mechanisms of formation
or chemical composition play no role in orbital motion.

respect to Thiele-Innes constants A, B, G, F allows for the analytic calculation of the least-squares solution of these parameters.
7Uniform priors were assumed, therefore they do not play any role in the integration.
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Chapter 4

MCMC for orbit calculation

4.1 Motivation

As suggested by [Eggen, 1967], the quotient a3/P 2 can often be well-determined even if the individual values of a
and P are not accurately known –this is often referred to as the Eggen’s effect [Lucy, 2014]. Thus, if the estimate
of P suffers a dramatic change after new observations are incorporated into the analysis, a may undergo a shift
such that compensates that variation, yielding a a3/P 2 that falls not far from the previous value. The numerical
results presented in [Lucy, 2014] strongly support this conjecture, as they suggest that, if orbital coverage exceeds
40%, a reasonable estimate of a3/P 2 can be obtained. Of course, there are additional factors to take into account,
such as the quality of the observations, the specific orbital section being covered (points near the periastron
are significantly more informative that those that are far from it) and even the particular orbital configuration
being observed –some orbits may be intrinsically more challenging to examine than others; think of cases with
inclination (i) very close to 90◦, for example.

As long as the observations provide a minimal orbital coverage of the object under study, the so-called Eggen’s
effect opens the possibility of estimating the mass by identifying the set of feasible orbital configurations, even if
they involve a wide range of values for a and P . The basic idea is that, rather than calculating the mass based
on a single estimate, one can characterize mass (and its uncertainty) on the base of this set of feasible values.

Since our aim is not only to find a single feasible estimate for the object under study, but rather to charac-
terize the uncertainty of its orbital elements, we adopt a Bayesian approach for this problem. From a Bayesian
standpoint, the set of feasible values mentioned in the paragraph above takes the form of a posterior PDF. In
this work, we describe the posterior PDF a set of samples, which are drawn by means of the technique known
as Markov Chain Monte Carlo (MCMC hereinafter). The remainder of this section is structured as follows:
Section 4.2 describe the model used to describe the orbits and the dimensionality reduction carried out in both
visual and spectroscopic stars; Section 4.3 briefly discusses how the selection of the objects under study was
performed; sections 4.4 and 4.5 contain the methodology, results and discussion associated to the selected visual
and spectroscopic binaries, respectively.

4.2 Model description

Assuming that phenomena such as mass transfer, relativistic effects or even the presence of non visible additional
bodies do not affect the observed objects to a significant degree, the Keplerian model introduced in Section 2.1 is
used to describe the orbits of the analyzed binary stars. This model requires seven parameters to fully characterize
the trajectory of a visual binary star (Equation 4.1), that is, to compute the ephemeris for any given epoch τ .

θ = {P, T, e, a, ω,Ω, i}. (4.1)

Section 2.1 presents a brief explanation on the the physical and geometrical meaning of each parameter in Equation
4.1, and Subsection 2.1.1 details how to calculate the orbit (i.e., the trajectory over time) of a binary star given
certain values for those elements. As to systems for which both astrometric and radial velocity measurements are
available, one can perform a joint analysis by extending the parameter vector presented in Equation 4.1 in the
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manner shown in Equation 4.2:
θ = {P, T, e, a, ω,Ω, i, VCoM , $, q}, (4.2)

where {P, T, e, a, ω,Ω, i} are the well-known Campbell elements and VCoM , $ and q denote the velocity of the
center of mass, the parallax and the mass ratio m2/m1, respectively. The procedure to calculate the radial velocity
signal as a function of parameters P , T , e, a, ω, i, VCoM , $, q can be found in Subsection 2.1.2.

The representation presented in Equation 4.2, used previously in [Burgasser et al., 2015], has some distinct
characteristics. First, it includes parallax $ as one of the parameters to be estimated rather than a value
known in advance, thus putting into practice the somewhat unexplored possibility of utilizing combined data
(i.e., astrometry and radial velocity) to estimate hypothesis-free parallaxes [Pourbaix, 2000]. Secondly, it exploits
all the restrictions imposed by the formulae of orbit position (equations 2.6, 2.8) and radial velocity (equations
2.14, 2.15), possibly leading to more precise inferences about the parameters. In contrast, some methods, such as
the well-known ORBIT routine [Tokovinin, 1992], estimate amplitudes K1, K2 as free parameters. Those methods
have the advantage of not requiring a parallax value to perform the estimation, but omit the dependency of K1,
K2 on a, i and ω.

4.2.1 On the dimensionality of ~θ

Since the set of objects studied in this work makes up a relatively long list, it seems reasonable to devote some
effort to reduce the computational costs involved in the analysis. In exploration-based methods such as the MCMC
technique, the computer time required to obtain good results (in terms of convergence, precision and accuracy of
the estimates, etc.) grows as the dimension of the feature space increases. For that reason, and at the expense of
not exploring the whole seven-dimensional feature space of orbital parameters (10-dimensional space in the case
of spectroscopic binaries), we propose a dimensionality reduction based on the separation of the parameter vector
into two lower dimension vectors: one containing components whose least-squares solution cannot be determined
analytically, (~θ1); and the other containing the components whose linear dependency1 makes possible to calculate

their least-squares solution with simple matrix algebra, (~θ2).
In the case of binaries with astrometric measurements only, one exploits the linear dependency of the well-

known Thiele-Innes constants (A, B, G, F ) with respect to the normalized coordinates x, y (which in turn
depend on P , T , e and the collection of epochs of observation, {τi}i=1,...,N ). The procedure to obtain the least-
squares solution of Thiele-Innes is detailed in Appendix B.1. Thus, instead of exploring the whole 7D space, the
search is focused on ~θ 1 = [P, T, e], with ~θ 2 = [A,B, F,G] determined individually from each combination of free
parameters. Campbell elements a, ω, Ω, i are recovered by using equations 2.9 (detailed procedure in Appendix
B.2). This work follows the convention of choosing solutions with Ω ∈ (0◦, 180◦) in absence of information about
the real orientation of the orbit. This approach has been previously adopted in [Hartkopf et al., 1989], [Lucy,
2014], among others.

Some definitions must be delivered before describing of the approach taken for binaries with spectroscopic
data. In addition to parameters A, B, F, G, Thiele-Innes representation uses parameters C to H to compute
coordinates in the Z-axis:

Z = Cx+Hy. (4.3)

Those quantities are defined as follows:

C = a sinω sin i, (4.4)

H = a cosω sin i.

In [Wright and Howard, 2009], the authors take advantage of this representation to propose an efficient method
to fit multi-Keplerian models to purely spectroscopic, purely astrometric and combined data sets. The core of
their approach is the reformulation of the equations 2.14, 2.15 in a manner such that V1 and V2 are linear in
the parameters, allowing for analytic calculation of least-square solutions. Making use of some trigonometric
identities, radial velocity equations can be expressed as:

V (τ) = h cos ν(τ) + c sin ν(τ) + γ, (4.5)

where h = K cosω, c = −K sinω, γ = VCoM + K · e · cosω. Thus, h = H/$ · 2π/(P
√

1− e2), c = −C/$ ·

1With respect to quantities determined by ~θ1.
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2π/(P
√

1− e2).
Nonetheless, as that paper is targeted at exoplanet research, each body involved is modeled with an indepen-

dent Keplerian orbit, omitting the influence each system’s component exerts on the others. Since that influence
is not negligible when analyzing objects with masses of similar order of magnitude, that approach is not directly
applicable to binary stars. Concretely, when analyzing binary stars the conditions shown below must be met,
making the orbital parameters of the primary and those of the secondary interdependent.

a = a1 + a2, (4.6)
a1

a2
=

m2

m1
= q,

The equalities above impose constraints on the parameters being estimated: if we reformulate equations 2.14,
2.15 according to the parametrization presented in Equation 4.5, then h1 = H1/$ ·2π/(P

√
1− e2), c1 = −C1/$ ·

2π/(P
√

1− e2), being H1 = a1 cosω sin i = q
1+qH, C1 = a1 sinω sin i = q

1+qC (analogous equations for V2:

specifically, H2 = 1
1+qH, C2 = 1

1+qC). The strict relations that (H1, C1) and (H2, C2) must comply (namely,

H = H1 +H2, C = C1 +C2, H1/H2 = C1/C2 = q) do not stem naturally when calculating these quantities them
as free parameters. Therefore, those conditions must be enforced as an additional mathematical restriction.

Although one could address that problem using Lagrange multipliers, there is no guarantee that the resulting
set of non-linear equations will be analytically tractable (it may even have no unique solution). However, one can
manipulate the formulae in such a manner that both orbital and radial velocity values of the Keplerian model
are expressed as a linear combination of parameters, and meet the restrictions mentioned in paragraph above at
the same time:

• In an approach similar to that used in [Wright and Howard, 2009], the first step is to use a combination
of H, C –which are simpler expressions– to reconstruct parameters A, B, F, G (this requires the aim of
trigonometric functions of Ω, i):

X = [H sin Ω csc i+ C cos Ω cot i]︸ ︷︷ ︸
B

x+ [−C sin Ω csc i+H cos Ω cot i]︸ ︷︷ ︸
G

y

Y = [H cos Ω csc i− C sin Ω cot i]︸ ︷︷ ︸
A

x+ [−C cos Ω csc i−H sin Ω cot i]︸ ︷︷ ︸
F

y

• Grouping terms multiplied by C and H yields:

X = (sin Ω csc i x+ cos Ω cot i y)︸ ︷︷ ︸
SX

H + (cos Ω cot i x− sin Ω csc i y)︸ ︷︷ ︸
TX

C

Y = (cos Ω csc i x− sin Ω cot i y)︸ ︷︷ ︸
SY

H + (− sin Ω cot i x− cos Ω csc i y)︸ ︷︷ ︸
TY

C

Thus, coordinates X, Y can be written as the linear combination of terms SX , TX , SY , TY (which can be
easily computed from x, y, Ω and i), being H, C their accompanying constants.

• Finally, by using λ1 = q
1+q ·

2π
$P
√

1−e2 , λ2 = 1
1+q ·

2π
$P
√

1−e2 to transform H, C into h1, h2, c1, c2, one can

express both the astrometric coordinates (Equation 2.8) and radial velocity values (equations 2.14, 2.15) in

terms of a vector of parameters ~θ2 = [H,C, VCoM ]:

~θ2 · F = [ ~Xmodel, ~Y model, ~V1
model

, ~V2
model

], (4.7)

where F is:

F =

Sx(1) . . . Sx(Nx) Sy(1) . . . Sy(Ny) λ1(cos ν1(1) + e) . . . λ1(cos ν1(N1) + e) λ2(cos ν2(1) + e) . . . λ2(cos ν2(N2) + e)
Tx(1) . . . Tx(Nx) Ty(1) . . . Ty(Ny) −λ1 sin ν1(1) . . . −λ1 sin ν1(N1) −λ2 sin ν2(1) . . . −λ2 sin ν2(N2)

0 . . . 0 0 . . . 0 1 . . . 1 1 . . . 1

.

(4.8)

This allows for the calculation of the least-squares solution of ~θ2 as:

~θ2 = ~x WFT (FWFT )−1, (4.9)

being ~x = [ ~Xobs, ~Y obs, ~V1
obs
, ~V2

obs
] the data vector and W a diagonal matrix with the weight of each
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observation. From the resulting Ĥ, Ĉ values, parameters a and ω can be recovered as:

â =

√
Ĉ2 + Ĥ2

sin2 i
, (4.10)

ω̂ = tan−1

(
Ĉ

Ĥ

)
, (4.11)

The third component of ~θ2 (VCoM ) has direct physical meaning and does not need to be transformed. Under
this scheme, only seven parameters (P , T , e, Ω, i, q, $) must be explored, whereas a, ω and VCoM are
calculated analytically. Although MCMC is the technique used in this work, the presented representation
–and the dimensionality reduction that it involves– can be applied to other sorts of methods as well, even
if they are not strictly exploration-based, such as Levenberg–Marquardt algorithm.

4.3 Sample selection

The primary sample of this work consists of Hipparcos’ set of 1112 double visual star discoveries and 325 spec-
troscopic binaries from the Geneva-Copenhagen spectroscopic survey. During the years after the end of the
Hipparcos Mission, visual binaries stars discovered by Hipparcos Satellite have been systematically observed in
the Northern Hemisphere at the WIYN Telescope by Horch, van Altena and their collaborators [Horch et al.,
2011, Horch et al., 2017]. On the other hand, Tokovinin has shown the capabilities of the instrument HRCam at
the SOAR 4m telescope in northern Chile for binary-star research, producing significant results [Tokovinin et al.,
2015]. Since 2014, the two primary samples (Hipparcos and Geneva-Copenhagen survey) have been observed by
the SOAR telescope in order to confirm the binary nature of Hipparcos “suspected binaries” and to add obser-
vational data to the confirmed and spectroscopic binaries, with the aim of eventually computing their orbits and
masses.

The final sample is largely derived from the published speckle data by Tokovinin and collaborators [Tokovinin
et al., 2010, Tokovinin et al., 2014, Tokovinin et al., 2015, Tokovinin et al., 2016], which includes objects from
the samples indicated in the previous paragraph, plus objects from Tokovinin’s own sample of nearby F- and
G-type dwarf-stars within 67 pc of the Sun ([Tokovinin et al., 2014]). The selection considered those orbital pairs
for which their [O-C]2 in either angular separation ([O-C]ρ) or position angle ([O-C]θ) evaluated at the epoch of
SOAR Speckle data was too large in comparison with the internal precision of SOAR telescope, thus indicating
that their orbits should be revised or improved with the addition of these new data points. Certain binaries whose
first-time orbits could be computed using the SOAR observations were added. The final list is summarized in
Table 4.1 (visual binaries) and Table 4.4 (spectroscopic binaries), which include an orbit estimate of each object.

4.4 Visual Binaries

Our list comprehends 18 visual and two spectroscopic binary systems, with periods ranging from few months
in the case of spectroscopic stars to possibly thousands of years in the case of some visual binaries. Although
parametrization of T as T ′ = (T − τ0)/P (an approach used in this work and previously in [Lucy, 2014]) is useful
to restrict the search range of the time of periastron passage to [0, 1), both the initial distribution and the search
range of the period P remain a difficult guess. The dimensionality reduction presented in Section 4.2 alleviates
to some extent to need of choosing an initial guess –as it suppresses parameters a, ω, Ω, i from the analysis–,
however, the variability of the feasible ranges of P among the studied objects imposes a diversity of scales among
the posterior distributions. Moreover, the shape and orientation of each posterior PDF is unique. These factors
make difficult to choose a single set of algorithm-related parameters. At the same time, the list is long enough to
make individual case analysis undesirable.

4.4.1 Method description

In an effort to study the visual binaries in the list under a single unified framework, rather than choosing algorithm-
related parameters for each star separately –a task usually involving a lot of trial and error iterations–, we adopt

2Observation minus computed value.
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the Differential Evolution MCMC approach [Braak, 2006] introduced in Subsection 3.3.1. As a reminder, DE-MC
stems as the combination of a genetic algorithm called Differential Evolution [Storn and Price, 1997], “a simple
and efficient heuristic for global optimization over continuous spaces” as described by its authors, and MCMC.
The algorithm is based on the idea of running several Markov chains in parallel but, instead of letting them run
independently as in MCMC convergence tests, it lets the chains learn from each other. This aims at dealing with
the problem of choosing an appropriate scale and orientation for the proposal distribution.

In DE-MC, the multiple chains “collaborate” with each other by using a proposal distribution based on the
DE jumping step considered in [Storn and Price, 1995]. In that scheme, the proposal sample xproposal of each
chain3 is obtained by adding to the previous sample (xprevious) the difference between the current values of two
other randomly chosen samples of the current generation (say R1, R2):

xproposal = xprevious + γ(xR1 − xR2) + w, (4.12)

where γ is a term to modulate the difference vector and w is an additional perturbation drawn from a distribution
with unbounded support. As mentioned in Subsection 3.3.1, term w is aimed at guaranteeing the irreducibility
condition of MCMC and, from practical point of view, this additional noise is useful to explore the feature space
at a local level, whereas term γ(xR1 − xR2) contributes to make larger leaps without falling in zones of low
likelihood.

Then, the only algorithm-related4 parameters of DE-MC are: the number of chains Nchains; the coefficient γ;
the parameters of the distribution of w. The actual implementation of this technique is summarized as follows:

• The parameters of interest are the orbital elements contained in Equation 4.1. Thiele-Innes representation is
used: x = [P, T ′, e, B,A, F,G], with vector x separated into non-linear and linear elements: xNL = [P, T ′, e]
(those on which MCMC perform its “exploration”) and xL = [B,A, F,G] (calculated by least-squares in
the manner described in Appendix B.1).

• According to [Ford, 2005], it is a common practice to choose a non-informative prior that is uniform in the
logarithm space for positive definite magnitudes (for example, period P and semi-major axis a), following
certain scaling arguments presented in [Gelman et al., 2003]. In the context of orbital estimation, this
approach has also been used in, for example, [Gregory, 2005], [Sahlmann et al., 2013], [Lucy, 2014]. From a
practical point of view, such representation increases the rate of convergence in systems for which period is
not well constrained. In exploration-based methods such as MCMC, the use of a Gaussian in the logarithmic
of P as proposal distribution has proven to be useful [Gregory, 2005], and that is the approach adopted in
this work.

• Following the guidelines presented in [Braak, 2006], algorithm-related parameters were fixed to the following
values: Nchains = 10 (the recommendation is to choose Nchains > 2 · d), γ = 2.38/

√
2 · d. Values for w are

drawn from N (0,Σ), where Σ is a diagonal matrix with: σ2
T ′ = 0.01, σ2

logP = 0.01 · (logPupper − logPlower)

(using logP instead of P in accordance to the arguments presented in the previous point) and σ2
e = 0.01.

• Since the aim of this work is the characterization of the posterior distribution, fitness function f is defined
as the posterior PDF, which has the canonical form of prior × likelihood. Terms from the prior PDF can
be dropped, as uniform priors were used for T ′ (range (0, 1)), logP (range (log 10, log 5000) and e (range
(0, 0.99)). Thus, likelihood function can be directly utilized to evaluate the Metropolis-Hastings ratio.
Assuming individual Gaussian errors for each observation, the likelihood function for the i′-th sample of the
MCMC routine5 is computed as:

f(xi
′
) ∝ exp

(
−1

2

(Nx∑
k=1

1

σ2
x(k)

[X(k)−Xmodel(k, i′)]2 +

Ny∑
k=1

1

σ2
y(k)

[Y (k)− Y model(k, i′)]2
))

, (4.13)

where positions Xmodel(k, i) and Y model(k, i) are calculated according to the instant of observation τk and
the orbital parameters contained in xi

′
, following the formulae introduced in Section 2.1.

3Term “chain” is used in order to keep a degree of familiarity between Differential Evolution and MCMC, but the samples of the
current generation are actually called “agents” or simply “individuals” in the Differential Evolution literature.

4This term is used to avoid confusion with the target parameters being estimated: the orbital elements.
5Index i′ encodes (i, j), that is, the iteration, i, and the chain j of DE-MC algorithm.
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• By arguments of symmetry, the proposal distribution induced by DE-MC, which depends on the random
selection of two chains and may be difficult to express in an analytic form, is canceled out in the calculation
of the acceptance probability A.

• The essential steps of this procedure are described in Algorithm 9:

Algorithm 9 Differential Evolution Markov Chain

• Initialize x(1,j) for j = 1, . . . , Nchains drawing values from prior distribution.
for i = 2, . . . , Nsteps do
for j = 1, . . . , Nchains do
• Randomly select two chains:
→ Draw j1 from {1, . . . , Nchains}\{j} with uniform probability.
→ Draw j2 from {1, . . . , Nchains}\{j, j1} with uniform probability.
• Propose a new sample:
→ w(i,j) = w, with w ∼ N (0,Σ).

→ x′NL = x
(i−1,j)
NL + γ(x

(i−1,j1)
NL − x(i−1,j2)

NL ) + w(i,j)

• Calculate the least-squares estimate of Thiele-Innes elements:
→ x′L = [ ~Xobs

~Yobs] WFT (FWFT )−1

• Calculate acceptance probability through Metropolis-Hastings ratio:

→ A = min
{

1,
f(x′)

f(x(i−1,j))

}
• Accept or reject the proposed sample:
→ u′ = u, with u ∼ U(0, 1)
if u′ < A then
→ x(i,j) = x′

else
→ x(i,j) = x(i−1,j)

end if
end for

end for

4.4.2 Results

The methodology described in Subsection 4.4.1 is applied to a set of 18 visual binaries, in order to obtain an
approximation of the posterior distribution of their orbital parameters. By virtue of the arguments presented in
Appendix C, observation weights6 were set to σx = σy = σρ. The DE-MC algorithm was run with Nsteps = 106.
To evaluate whether the algorithm has reached a stationary regime, the classic convergence criterion introduced in
[Gelman and Rubin, 1992] was used. The so-called “Gelman–Rubin R statistic” is a tool to evaluate convergence
by comparing multiple independent Markov chains. To apply the Gelman–Rubin R statistic, several chains must
be run in parallel, each of them seeded by a point drawn from an over-dispersed distribution (i.e., not exactly
the target distribution but not too far from it either). Then, after calculating quantities B (inter-chain variance,
Equation 4.14) and W (intra-chain variance, Equation 4.15), R statistic is computed as in 4.16.

B =
Nsteps

Nchains − 1

Nchains∑
j=1

(θ̂j − θ̂)2. (4.14)

W =
1

Nchains

Nchains∑
j=1

σ̂2
j . (4.15)

R = 1 +
1

Nsteps
·
(
B

W
− 1

)
. (4.16)

6Typically, it is the value of σρ that can be retrieved from previous works and from the own interferometric measurements, as
(ρ, θ) is the prevailing representation of astrometric data.
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In equations 4.14, 4.15, 4.15, θ denotes one of the parameters being estimated (i.e., a scalar component of the

parameter vector), with θ̂ the average value calculated over all the chains and θ̂j the average of a single chain.
The basic assumption of the R statistic is that, as in theory the stationary distribution is the same for all the
chains (they are just a different instance of the same algorithm), if all of them behave similarly, then they all have
reached the stationary regime. A convention among statisticians states that R values less than 1.05 are “good
numbers” (that is, one can consider the chains have converged).

A burn-in period of 105 was considered for all objects. It was found that, according to the Gelman–Rubin
R statistic, the stationary distribution was reached in no more than 105 iterations (actually significantly fewer
iterations were needed in the general case). During the burn-in period, chains exhibit irregular behaviour, for
they are in a stage of “accomodation”, merely moving towards a stationary regime but not having reached it yet.
Thus, considering burn-in periods with less than 105 samples induces higher values of the R statistic in certain
cases (the algorithm does not have the same convergence rate for all the binaries analyzed). On the other hand,
discarding more than 105 samples at the beginning of the chain does not affect the R statistic to a great extent,
but does affect the quality of estimation, since fewer samples are used to approximate the target distribution (the
ideal is to use as many samples as possible).

As proven in [Braak, 2006], each chain distributes as the stationary desired distribution π(·), so that: (i)
the set of all chains can be treated as a single collection of samples once the samples in the burn-in period are
dropped; (ii) the convergence diagnostics tools can be applied to the chains of a single run of DE-MC. This yields,
after discarding the samples corresponding to he burn-in period, a total of 9 · 106 samples per object.

For each binary star of the list, R statistic happened to be less than 1.05 for all the parameters. The only
exception was the first run of DE-MC for STT 358AB, because one of the chains got stuck in a vicinity of
the initial point (just one chain showing a significantly different behaviour “ruins” the results of the convergence
diagnostics). However, after a re-run of the algorithm for the aforementioned object (from which the values
shown at Table 4.1 were taken), R values in the acceptable range were obtained. The reported anomaly can be
explained, thus, simply as a consequence of the probabilistic nature of the method –priors may place the initial
point of the chain in an inconvenient zone–, rather than a peculiarity of the object in itself.

The estimated orbital parameters obtained with the procedure previously described are presented in Table 4.1,
whose structure is explained as follows: for each object there are two rows, the first one displays the Washington
Double Star Catalog denomination of the object (first column) and the maximum a posteriori estimate7 (columns
3 to 9); the second one shows the Hipparcos denomination (first column) and a quartile representation of the
marginal PDF of each parameter: the main term corresponds to the median, whereas the lower (first) quartile
(Q25) and the upper (third) quartile (Q75) are shown in the form of a subscript and a superscript, respectively.
The reason why maximum likelihood/maximum a posteriori is preferred over expected value is that, for most of
the cases studied in this work, PDFs are rather disperse and asymmetrical, thus yielding average values that are
not in good agreement with the observations. The only exceptions are those orbits with good orbital coverage:
STF 2729AB, HU177, I 669AB (to mention a few examples), for which the expected value approximately
coincides with MAP/ML estimate.

Figure 4.2 displays some examples of orbital solutions and PDFs for objects in the sample. In order to
visualize the scope and possibilities of the proposed method, examples of both “good” and “poor” orbits were
selected: double stars I 669AB STF 2729AB being the “‘good” cases (i.e., almost final orbital parameters,
tight and possibly Gaussian-like PDFs); and STF2434BC, STT358AB being examples of orbits with poor
orbital coverage and large uncertainty about their parameters. Right column shows some marginal PDFs of
orbital parameters, as well as the total stellar mass. Orbital solutions displayed in Figure 4.2 (left column) must
be interpreted in the following manner: the orbit induced by the maximum likelihood estimate appears in blue;
observations appear in grey (linked to the proposed orbit by a red line); the black line indicates the apastron
(point of maximum separation between the two stars); yellow line indicates the periastron (point of minimum
separation); straight blue line indicates the line of nodes (intersection between the real orbit and the plane of the
sky).

By looking at Table 4.1 and Figure 4.2 one can say that, in general, well determined orbits show a MAP value
that approximately coincides with the median of the PDF, the inter-quartile range is relatively well constrained,
and the PDFs show a Gaussian-like shape. On the other hand, orbits with insufficient orbital coverage or very
uncertain measurements have PDFs with very long tails (and therefore larger interquartile ranges) on which the

7Due to the use of uniform priors, and the definition of likelihood function as in Equation 4.13, this estimate coincides in value,
although not in meaning, with both the least-squares and maximum likelihood solution. In MCMC, the maximum a posteriori is
simply approximated as the sample that maximizes the posterior PDF; however, the real MAP may not have been sampled.
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MAP value usually exceeds by much the median value (it may be located somewhere along the “tail” of the PDF
rather than in zones with a high density of samples, see OL 18 in Table 4.1 for example).

The orbital parameters presented in Table 4.1 allow for the estimation of the stellar mass of each object. Table
4.2 indicates, for each of the visual binaries in the list, their spectral type from the literature (third column),
trigonometric parallax (fourth column, on the second line the uncertainty of the published parallax is indicated)
and the astrometric mass sum (in solar masses, last column of the table) obtained from the published parallax
and the period and semi-major axis from Table 4.1. For each object, the upper line indicates the mass sum from
the maximum a posteriori (MAP) solution, whereas the second line reports the median, with the first quartile
as a subscript and the third quartile as a superscript (in the same manner found in Table 4.1). The quartiles
reported for the mass sum comes from the MCMC orbital results alone, i.e., they are based on the published
trigonometric parallax (fourth column, upper line) and do not take into account the uncertainty associated (fourth
column, second line). Dynamic parallax (fifth column) and the mass values derived from it (sixth, seventh and
eighth column) are computed as a reliability test for the solutions found with DE-MC. Dynamic parallax may
be interpreted as the solution for the parallax value given the period P , the semi-major axis a and the apparent
magnitude of both primary and secondary star, assuming that the analyzed object is a Main Sequence star. As
dynamic parallax is an approximation based on a quite restrictive assumptions (namely, that the object belongs
to the Main Sequence, and that luminosity and mass are related by a polynomial), the resulting sets of mass
values (which are induced PDFs, indeed), tend to be more concentrated than those calculated based on a single
parallax value and the whole set of solutions for P and a (which, except for the assumed value for the parallax,
are hypothesis-free calculations).

To compute all these quantities, the photometry values for the primary (VP ) and secondary (VS) from Table
D.2 have been adopted8, with the values of P and a taken from Table 4.1. The Mass-Luminosity Relation
from [Henry and McCarthy Jr, 1993] provides an easy-to-evaluate mass vs. visual magnitude (Mv) polynomial
relationship9 for objects below 1M◦. The uncertainty values for the dynamical parallax reported in Table 4.2
come exclusively from the range of solutions of our MCMC simulations, and not from uncertainties on either the
photometry or the width of the Mass-Luminosity Relation.

Figure 4.1 shows a comparison between the orbits recently reported in Miles & Mason in the IAU Double Stars
circular #19110 and the solutions obtained in this work by means of MCMC, for objects B1352 and HU177.
The values reported by Miles & Mason are: P = 123.84 [yr], T = 2039.29 [yr], e = 0.45, Ω = 240.0◦, a = 0.257′′,
i = 51.4◦, ω = 81.9◦ for B1352; P = 220.41 [yr], T = 1987.21 [yr], e = 0.541, a = 0.293′′, ω = 252.6◦,
Ω = 179.5◦, i = 156.3◦ for HU177. The mean square error values obtained are: for B1352, 0.81 (Miles &
Mason) and 0.098 (this work); for HU177, 8.3 (Miles & Mason) and 2.5 (this work). However, the weights
assigned to each observation in this work may be different to those used by Miles & Mason, leading to very
different results regardless of the estimation tool utilized. Moreover, the disagreement between both orbits may
find an explanation in the fact that WDS have not included the SOAR observations yet.

4.4.3 Analysis and conclusions

A collection of 18 visual binary stars has been analyzed in this section. As can be seen in both Table 4.1 and
Figure 4.2, the orbital coverage, as well as the reliability of the fitted orbital parameters, ranges from what one
could consider as almost definitive orbits (e.g., HU 177, A 2192, STF 2729AB, I 669AB, CHR 187) to those
with very poor coverage and uncertain orbital parameters (e.g., COU 499, A 1374AB, OL 18). The proposed
method is not exempt from the degeneracy problems that most orbit-fitting techniques undergo (see FIN 354, for
example, where low values of eccentricity provoke large uncertainty in parameters T and ω); however, it achieves
the objective of characterizing the posterior probability of the target parameters as a set of samples. As to the
estimators, this sections does not provide any numeric evidence of the suitability of MCMC for approximating
integrals of the orbital parameters, since expected value is discarded in favour of maximum likelihood estimator11

(reasons discussed briefly in Subsection 4.4.2). However, it proves useful to identify zones of high probability
density and find, approximately, maximum points (see Figure 4.2). To support the last point, MCMC results
were compared with the output of other orbital estimation tools, such as Tokovinin’s ORBIT routine, as well as
published orbits, obtaining good agreement.

8Included in Appendix D, since photometric analysis is out of the scope of this work.
9Several of the objects in Table 4.2 have masses above 1M◦, but it is assumed that the polynomial fits of MLR are gentle enough

to allow some degree of extrapolation.
10Available at http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/wds/dsl.
11Examples of the use of expected value, however, are presented in Section 4.5.
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Figure 4.1 Comparison with published orbits: HU177 (left), B1352 (right). Blue line is used to draw the published
orbit, whereas green is used to draw solutions from Table 4.1.

Table 4.1 Estimated parameters (visual binaries)
WDS Discoverer P T0 e a ω Ω i
HIP designation (yr) (yr) (′′) (◦) (◦) (◦)

16115+0943 FIN 354 60.597 1999.655 0.049 0.128 92.266 83.361 91.126
79337 59.31460.226

58.635 1993.8351999.707
1966.473 0.0160.040

0.007 0.12850.1287
0.1282 120.622235.403

90.084 83.35283.361
83.344 91.11391.124

91.100

17305−1446 HU 177 202.320 1986.527 0.506 0.286 238.587 166.765 151.719
85679 200.928214.525

189.235 1986.4611986.897
1986.007 0.5030.530

0.475 0.2860.294
0.278 237.488243.101

231.014 165.817170.233
160.666 150.896153.929

148.097

17313+1901 COU 499 2302.935 1988.173 0.868 1.317 6.828 59.211 109.264
85740 136.088183.459

105.064 2025.0412048.626
1983.290 0.2630.428

0.128 0.1910.241
0.173 246.873288.625

129.610 69.88075.733
66.0518 116.749120.605

112.615

17533−3444 BU 1123 894.881 1961.744 0.750 0.641 300.303 36.712 36.265
87567 753.0431003.634

599.282 1961.5171962.248
1960.744 0.7180.769

0.669 0.5710.694
0.491 296.034302.902

288.208 40.35246.977
34.368 36.11637.911

34.313

18003+2154 A 1374AB 3431.339 1976.577 0.844 3.308 218.824 153.313 125.795
1566-1708-1a 496.492790.310

346.522 1978.0481981.482
1975.345 0.4090.574

0.234 0.9761.285
0.808 232.998243.150

225.578 166.037171.236
160.982 124.106126.038

122.061

18108−3529 B 1352 427.302 1977.431 0.433 0.432 6.873 134.114 41.939
89076 229.101292.841

192.696 1990.4322053.526
1959.921 0.2070.361

0.097 0.3110.369
0.279 250.477309.862

104.260 99.666115.055
88.126 43.36151.724

35.058

18191−3509 OL 18 1118.536 2000.075 0.609 3.051 113.984 119.375 84.809
89766 309.014422.653

231.059 2048.9502057.546
2034.143 0.3830.559

0.292 1.9602.232
1.827 209.372242.455

159.636 119.437119.599
119.286 86.73187.520

86.102

18359+1659 STT 358AB 532.063 2364.301 0.709 2.802 95.629 34.322 110.068
91159 594.527783.753

495.219 2379.5882508.472
2289.974 0.6860.739

0.642 2.9373.226
2.770 99.603111.129

93.195 32.18435.925
28.142 110.542111.670

109.313

18537−0533 A 93 763.800 1914.744 0.746 1.202 342.186 29.623 35.341
92726 549.097797.700

414.001 1911.6071915.047
1907.944 0.7020.753

0.660 1.0321.238
0.927 338.430349.231

330.184 16.89628.119
9.438 42.87249.355

35.941

18558+0327 A 2192 154.719 2008.234 0.221 0.295 62.839 80.138 129.307
92909 154.221164.899

145.574 2008.3392011.338
2005.542 0.2220.248

0.201 0.2950.310
0.281 62.59373.114

52.990 80.18981.284
79.081 129.328131.142

127.580

19027−0043 STF 2434BC 1122.607 1992.129 0.647 1.972 95.071 47.870 151.316
93519 975.0121238.389

807.202 1993.4801995.979
1991.172 0.6120.668

0.562 1.8212.095
1.642 97.225106.975

83.156 49.29855.496
39.191 148.979151.510

146.350

19350+2328 A 162 2650.764 1992.726 0.829 1.384 194.787 76.882 70.669
96317 278.516404.744

222.688 2014.7002028.929
2000.837 0.3300.448

0.229 0.2940.383
0.250 234.338271.239

209.589 77.92482.490
73.635 62.82165.866

59.633

20073−5127 RST 1059 52.318 2017.245 0.265 0.166 159.239 65.697 22.426
99114 154.489182.392

135.950 2016.7622022.565
2009.591 0.2940.347

0.251 0.1750.188
0.167 154.001194.197

75.893 77.169112.011
58.562 32.56538.979

25.982

20514−0538 STF 2729AB 200.676 1896.815 0.535 0.816 45.832 174.316 64.058
102945 200.742201.870

199.623 1896.8031897.198
1896.401 0.5350.541

0.530 0.8160.822
0.810 45.86147.014

44.698 174.306174.687
173.919 64.06164.326

63.795

20597−5211 I 669AB 113.710 2010.542 0.611 0.682 207.169 63.068 93.692
103620 113.546114.863

112.303 2010.6232011.104
2010.161 0.6130.625

0.602 0.6840.691
0.678 207.618210.430

205.032 63.01563.321
62.701 93.66393.819

93.478

21504−5818 HDS 3109 32.772 2014.133 0.158 0.224 98.178 127.217 87.836
107806 32.91535.849

30.704 2013.8582015.062
2012.248 0.1640.185

0.143 0.2260.241
0.215 96.765116.391

74.771 127.234127.333
127.143 87.88188.019

87.764

22156−4121 CHR 187 19.089 1996.390 0.562 0.169 92.483 105.038 65.699
109908 19.04219.199

18.860 1996.3501996.516
1996.165 0.5610.586

0.541 0.1680.171
0.166 92.60893.283

92.065 104.191105.772
102.352 65.69366.135

65.161

23171−1349 BU 182AB 380.704 1927.822 0.470 0.942 92.049 44.252 86.890
114962 388.368422.365

363.982 1928.5921930.696
1927.099 0.4640.504

0.423 0.9571.010
0.916 93.70099.923

89.361 44.33544.541
44.139 86.93086.999

86.870

a. Tycho number.

The dimensionality reduction of the parameter vector, the particular implementation of MCMC chosen for
analyzing visual binary stars (DE-MC) and the logP representation of orbital period in the feature space have
been of great help for analyzing objects as dissimilar as CHR 111, with an orbital period as short as 20 [yr]
and STF 2434BC, with a period around 1000 [yr], under the same framework. DE-MC bypasses the need of
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Table 4.2 Masses and parallaxes (visual binaries)
WDS HIP Sp. Type Trig. Parallax Dyn. parallax Massdyn

P Massdyn
S Massdyn

T MassT
a

(mas) (mas) (M�) (M�) (M�) (M�)
16115+0943 79337 F0IV 5.13b 5.02 2.35 2.19 4.53 4.24

±0.70 5.135.17
5.06 2.322.34

2.31 2.162.18
2.16 4.494.52

4.47 4.484.58
4.32

17305−1446 85679 F0V 5.06 5.72 1.69 1.37 3.05 4.41
±0.97 5.745.85

5.64 1.681.70
1.67 1.361.37

1.35 3.053.07
3.03 4.454.68

4.25

17313+1901 85740 A5 2.24 5.00 1.72 1.72 3.44 38.29
±1.32 4.915.47

4.53 1.731.79
1.65 1.731.79

1.65 3.463.59
3.31 36.5448.24

29.74

17533−3444 87567 B3/5IIIc 3.68 3.87 2.86 2.82 5.68 6.61
±0.54 3.893.93

3.84 2.852.87
2.84 2.812.83

2.80 5.675.70
5.63 6.676.87

6.48

18003+2154 1566−1708−1 G0 − 11.49 1.18 0.85 2.03 −
− 12.4613.20

11.93 1.141.16
1.12 0.830.84

0.81 1.972.00
1.93 −

18108−3529 89076 G3V 9.88 5.51 1.32 1.32 2.64 0.46
±1.43 5.906.54

5.54 1.281.32
1.23 1.281.31

1.23 2.572.63
2.47 0.550.72

0.46

18191−3509 89766 K3+Vkd 31.35 23.89 0.87 0.80 1.66 0.74
±1.25 35.0045.38

30.07 0.770.80
0.71 0.710.74

0.65 1.471.54
1.36 2.054.13

1.36

18359+1659 91159 G2Ve 29.63f 32.78 1.12 1.09 2.21 2.99
±0.83 30.4934.30

27.42 1.151.19
1.10 1.121.17

1.07 2.272.36
2.17 2.473.36

1.87

18537−0533 92726 G5V 12.99 11.23 1.14 0.96 2.10 1.36
±1.65 12.1513.38

11.16 1.101.14
1.07 0.940.97

0.91 2.042.11
1.97 1.672.16

1.33

18558+0327 92909 A3IVg 6.99 6.70 1.84 1.74 3.58 3.15
±0.83 6.696.79

6.60 1.841.85
1.83 1.741.75

1.73 3.583.60
3.56 3.143.26

3.03

19027−0043 93519 G3/5V 9.48h 13.86 1.19 1.09 2.28 7.14
±0.25 14.1114.47

13.79 1.181.19
1.17 1.091.10

1.08 2.272.29
2.25 7.477.99

7.05

19350+2328 96317 A0 6.42 4.77 1.74 1.73 3.47 1.43
±1.33 4.514.67

4.37 1.791.81
1.76 1.771.80

1.75 3.563.61
3.51 1.231.35

1.14

20073−5127 99114 F2IV 3.90i 3.77 1.87 1.82 3.69 3.34
±0.65 3.904.15

3.76 1.841.87
1.79 1.791.82

1.74 3.643.70
3.54 3.634.26

3.30

20514−0538 102945 F6Vj 16.47 16.59 1.62 1.33 2.95 3.02
±0.59 16.5916.68

16.50 1.621.62
1.61 1.331.33

1.33 2.952.96
2.94 3.023.06

2.97

20597−5211 103620 K0Vq 23.56k 24.34 0.88 0.82 1.70 1.88
±0.31 24.3924.61

24.26 0.880.88
0.88 0.820.82

0.82 1.701.70
1.70 1.891.93

1.86

21504−5818 107806 G6V 24.09 17.18 1.08 0.99 2.06 0.75
±1.03 17.3517.60

17.13 1.071.08
1.07 0.980.99

0.98 2.062.07
2.04 0.770.80

0.74

22156−4121 109908 G8III+G 11.87 15.22 2.14 1.59 3.73 7.88
±0.43 15.2015.42

14.94 2.152.16
2.13 1.591.60

1.58 3.743.77
3.71 7.848.14

7.50

23171−1349 114962 F(8)wl 15.08 13.80 1.13 1.07 2.19 1.68
±1.80 13.8013.95

13.66 1.131.13
1.12 1.071.07

1.06 2.192.20
2.18 1.681.73

1.64

a. Using the solution from Table 4.1, and the published trigonometric parallax from this table.
b. This is the revised parallax from Gaia DR1. The Hipparcos value was 6.16 ± 0.57 [mas].
c. B8V according to WDS
d. K3V according to WDS.
e. F8V according to WDS.
f. This is the revised parallax from Gaia DR1. The Hipparcos value was 30.41 ± 0.90 [mas].
g. A5V according to WDS.
h. This is the revised parallax from Gaia DR1. The Hipparcos value was 14.95 ± 3.80 [mas] - note the large difference!.
i. This is the revised parallax from Gaia DR1. The Hipparcos value was 3.64 ± 1.02 [mas].
j. F5IV-V according to WDS.
k. This is the revised parallax from Gaia DR1. The Hipparcos value was 24.59 ± 1.14 [mas].
l. F8IV according to WDS.

tuning the proposal distribution for each object individually (except for the additional noise term w, which was,
in fact, fixed to the same value for all the objects in the list); moreover, since it accelerates the convergence
of the algorithm [Nelson et al., 2014], as few as 106 iterations were sufficient to get good estimates and PDFs.
Convergence, however, is a matter of concern, as with the majority of iterative methods. The mutual learning
between chains, although useful for exploring the feature space in an adaptive way, does not guarantee that all
the chains will reach the stationary distribution; hence the importance of performing convergence diagnostics.

36



Although some of the assumptions adopted in this work might be a topic of further discussion, such as the
Gaussianity of the observational error or even the Keplerian model of the orbits, the proposed MCMC-based
methodology is expected to be flexible enough to adapt to different scenarios, since none of the physics-based
premises are directly linked with the main structure of the sampling routine. In fact, refining the results by
utilizing a finer modelization of the phenomena associated with this problem might be a matter of future research.
Another aspect that is not directly related to the sampling routine in itself, but has substantial impact on the
estimation, is the assignation of weights. The case presented in Figure 4.1 suggests that mathematical correctness
of estimation techniques may be misleading, since the results (either PDFs obtained with MCMC or point-
estimates obtained with optimization techniques) are largely determined by the weights of each observation.
In that sense, weight assignation may be more important than the technique used, and may require a specific
discussion in an astronomical context (in this work, weights are merely part of the input).

Most of the mass estimates and mass uncertainties reported in Table 4.2 show good agreement with the
conjecture referred to as Eggen’s effect : even if orbital parameters are poorly determined, the PDFs of the mass
sum is (relatively) tightly constrained; the object identified as STF 2434BC/19027−0043 is a good example of
this. The most noticeable exception is the star identified as COU 499 or 17313+1901 (WDS denomination),
where both orbital parameters and mass sum show disperse values, with the mass sum being, additionally, too
large. The only explanation for this is the poor orbital coverage –although Eggen’s effect suggests that reasonable
mass estimates can be obtained even with few measurements, there exists a minimum threshold of orbital coverage
that must be fulfilled. As to the large value of the mass sum, the explanation is equally simple: the reported
trigonometric parallax is small and has a large uncertainty associated, so that small changes in its value induce
dramatic changes in the mass sum estimate. For example, if the trigonometric parallax reported in Table 4.2
is increased by just 2σ, the mass sum obtained with the best-fit orbit indicated in Table 4.1 would be equal to
3.5 [M◦] –a significantly more feasible mass according to the spectral type of this object, and largely different
from the 38.29 [M◦] value reported in Table 4.2. In-depth analysis of the stars listed in Table 4.1 is provided in
[Mendez et al., 2017], a forthcoming publication largely based on this work, where the individual results of orbital
parameters and mass are addressed from an astrophysical standpoint.

In certain cases, the mass sum reported falls out of the feasible range12 (see 17533−3444, for example), but
has a small value of interquartile range. As with COU 499, the explanation for this stems from the published
trigonometric parallax: since it has not already been precisely determined, small corrections in $ would render
the mass sum estimate within a feasible range.

As seen in Chapter 3, over the last years MCMC has established as a standard tool for analyzing a quite
related, similar problem to that addressed in this work –exoplanet detection and characterization. The trend, of
course, is not accidental: it stems from a general tendency, in recent years, to favor Bayesian over parametric
approach in estimation problems; and from the suitability of MCMC for processing data in Bayesian settings.
In this sense, the results presented in this section are coherent with what astronomical literature has already
suggested: MCMC is a useful tool for estimating orbits.

12Because of the spectral types reported in Table D.2, most of the stars are expected to have mass sums lower than 3 [M◦].
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Figure 4.2 Best orbit and PDFs of (descending order): I699AB, STF2729AB, STF2434BC, STT358AB.

38



4.5 Spectroscopic binaries

The spectroscopic binaries are analyzed by means of the more traditional Gibbs sampler, introduced in [Geman
and Geman, 1984] and used in [Ford, 2005] for the analysis of radial velocity data for exoplanet characterization.
A number of practical reasons support this decision: first, as the dimensionality of the feature space is larger
than that of the visual binary problem –10D, or 7D with the dimensionality reduction–, a larger number of chains
must be run within the DE-MC algorithm (at least two times the size of the feature space, and preferably more),
increasing the computational costs; secondly, unlike visual binaries in the list, a reasonable search range for the
period can be proposed from visual inspection of the observations. Finally, although a raw Metropolis-Hastings
MCMC would be a simpler approach, the dimension of the problem is large enough, and the location of the
solutions concentrated enough, to make highly probable to fall in zones of low likelihood after a multidimensional
random jump is applied on a sample, possibly reaching pathologically low levels of acceptance probability.

As explained in Subsubsection 2.2.3.5, Gibbs sampler relies on sequentially sampling each component of the
feature space according to the conditional distributions. On the long run, that scheme is equivalent to drawing
samples from the joint posterior distribution, π(·). Components can be grouped in blocks if it offers some
advantage (for example, when a sub-set of the parameter vector has a closed-form and easy to sample distribution,
or if two or more parameters have a known correlation). As the conditional posteriors do not have a standard
form in this particular problem, the approach adopted is the scheme known as Metropolis-within-Gibbs, that is,
generating a new sample according to a proposal distribution (modifying one component or block of components
at once) and rejecting or accepting it according to the Metropolis-Hastings ratio. Denoting the parameter vector
as x = [x1, . . . , xd] = [P, T ′, e,Ω, i, q,$], the implementation can be summarized as shown in Algorithm 10. As
in Algorithm 9, subscript L indicates linearity of the parameters, thus xL denotes [a, ω, VCoM ], and its least-
squares estimate (given the parameters P, T ′, e,Ω, i, q,$ and the available measurements, both astrometric and
spectroscopic) can be calculated in the manner described in Equation 4.9. The actual implementation uses the
logP representation of orbital period, for the same reasons presented in Section 4.4.

Algorithm 10 Gibbs sampler for double star orbits

• Initialize x(1).
for i = 2, . . . , Nsteps do
• Retrieve value from the last iteration:
→ x(i) = x(i−1)

for j = 1, . . . , d do
• Propose a new sample:
→ x′ = x(i) (Copying the current value of x(i))
→ x′j = xj , with xj ∼ N (x′j , σ

2
j ) (Applying an additive Gaussian perturbation on component xj)

• Calculate the least-squares estimate of elements a, ω, VCoM :

→ x′L = [ ~Xobs, ~Y obs, ~V1
obs
, ~V2

obs
] WFT (FWFT )−1

• Acceptance/Rejection step:
→ u′ = u, with u ∼ U(0, 1).

→ A = min
{

1, f(x′)
f(x(i))

}
if u′ < A then
• Accept sample (if not, x(i) remains at the current value):
→ x(i) = x′

end if
end for

end for

Under the assumption that individual errors of both astrometric and radial velocity observations are Gaussian,
likelihood function has the form of:

L(x(i)) ∝ exp

(
−1

2

(Nx∑
k=1

1

σ2
x(k)

[X(k)−Xmodel(k, i)]2 +

Ny∑
k=1

1

σ2
y(k)

[Y (k)− Y model(k, i)]2+

NV 1∑
k=1

1

σ2
p(k)

[V1(k)− V model1 (k, i)]2 +

NV 2∑
k=1

1

σ2
s(k)

[V2(k)− V model2 (k, i)]2
))

.

(4.17)
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Unlike the case of visual binaries, the priors chosen for the spectroscopic binaries studied in this work are not
necessarily uniform. In the case of YSC132Aa,Ab, a Gaussian prior for the parallax was included in the fitness
function f , since unfeasible values (parallaxes less than zero, for example) were explored if $ was set free (this
simply means that the available data is not yet informative enough to give an estimate for $); thus, the fitness
function used for this object is the product of the likelihood L(·) (defined in Equation 4.17) and the Gaussian
PDF with the parameters indicated in Table 4.3. For CHR111, in absence non-uniform priors, $ consistently
converges to a value close to the dynamic parallax and not far from the published trigonometric parallax; thus,
the fitness function used for the final results is exactly the likelihood defined Equation L. In the latter case, priors
only determine the value of the initial sample of the MCMC routine, but do not play any role in the posterior
probability function. Since the posterior PDFs obtained in this section are quite tight and Gaussian-like, the
estimates of orbital parameters are calculated by averaging the sampled values –an approximation of the expected
value.

On each Metropolis-Hastings step, an additive Gaussian perturbation applied to the previous value is used
to propose new samples. Since that kind of proposal function meets the condition q(x|x′) = q(x′|x), those terms
cancel out in the Metropolis-Hastings ratio. Parameters of the proposal distributions, as well as the boundaries
of the initial uniform distributions used for the two objects are detailed in Table 4.3. The Gibbs sampler was
run with Nsteps = 2 106 and burn-in periods of 2 105 for both YSC132Aa,Ab and CHR111, yielding a final
sequence of 1.9 106 samples for each. The burn-in period was determined by visual inspection of the evolution of
the parameter values over the successive iterations of MCMC: initially placed at any point in the ranges defined
by the priors, parameters move towards a zone of greater density of points, with values in the “transient zone”
(the first 105 initial samples at most) not being visited again.

Table 4.3 Algorithm-related parameters for spectroscopic binaries

Object
P T ′ e Ω i $ q

(yr) (◦) (◦) (mas)

CHR111
σ 0.5a 0.01 0.01 π/45 π/45 5 0.01

Range (0.2, 3.0) (0, 1) (0, 0.99) (0, 2π) (0, π) (32.35, 46.35) (0, 1)
YSC132Aa,Ab σ 0.1a 0.01 0.01 π/45 π/45 5 0.01

Range (0.1, 1.0) (0, 1) (0, 0.99) (0, 2π) (0, π) −b (0, 1)

a. In the logP domain.
b. Gaussian prior with mean and standard deviation values indicated in Table 4.5.

4.5.1 Results and discussion

For the spectroscopic binaries analyzed in this section, a series of factors contribute to a more precise estimation
of orbital parameters (Table 4.4) and masses (Table 4.5), in comparison with the visual binaries studied in
Section 4.4. With orbital periods significantly shorter than those of the the visual binaries, these objects require
smaller periods of observation to generate an accurate and precise estimation of this parameter. Specifically,
the large amount spectroscopic data collected over the years allows for an almost definitive characterization of
the radial velocity profiles (Figure 4.3), which translates into a very precise estimation of some of the target
parameters (where period P is one of them). The astrometric observations, on the contrary, are poorer in
comparison with both spectroscopic measurements and astrometric data of certain binaries of Section 4.4, mainly
for two reasons: (i) the apparent orbit occupies a rather small “patch” of the plane of the sky (in the order of
0.01′′ approximately), therefore more precise imaging devices are required to obtain better measurements of the
movement of these objects on the plane of the sky (for “larger” objects, the current degree of precision would be
enough); (ii) especially in the case of YSC132AaAb, astrometric observations are scarce, leaving certain zones
of the orbit uncovered or covered with very imprecise measurements.

As a consequence of the poor astrometric data, parameters that rely on astrometric measurements13, such as
$ or i, are not as well estimated as one would wish; in fact, for YSC132AaAb a prior for the parallax had to be
included in the target probability in order to avoid sampling unfeasible values. This can be interpreted, however,
in a more positive light: although the routine is not estimating hypothesis-free parallaxes, it reveals the potential
of MCMC to incorporate knowledge from external sources (in this case, the trigonometric measurements of

13It is more accurate to say that parallax depends on the combination of sources (spectroscopic and astrometric) to be estimated,
but the spectroscopic contribution is already good enough.
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parallax). The results of CHR111, in turn, shed some light on the combination of astrometric and spectroscopic
sources as a powerful tool for estimating parallaxes –the posterior PDF of $ for CHR111, displayed in Figure
4.4, is completely hypothesis-free–, although better astrometric measurements would be required to get tighter
estimates.

From a methodological point of view, the results presented in this section reinforce the conclusions of Section
4.4, in the sense that the MCMC-based technique developed in this work proves to be a reliable tool for estimating
orbital parameters and their uncertainty. Moreover, certain aspects not evaluated when analyzing visual binaries,
such as the use of expected value as an estimator, are presented here with good results (tables 4.4, 4.5). The
dimensionality reduction scheme developed in Subsection 4.2.1 for the case of objects with both spectroscopic and
astrometric data makes easier, to some extent, the task of estimating the ten target parameters of this problem.
However, more could be done in this regard, since the particular MCMC implementation used (Gibbs sampler) is
not particularly efficient: although it successfully avoids exploring low-likelihood points (which would be rejected
in the Metropolis-Hastings step) by modifying just one component at a time, on each iteration the Kepler’s
equation has to be solved as many times as the number of non-linear components.

It is worth noting the good agreement for the triad (VCoM , K1, K2)14 reported by the Catalogue of Spectro-
scopic Binary Orbits and the calculation performed here, namely: (−14.12± 0.04, 14.20± 0.07, 14.80± 0.07) vs.
(−14.13 ± 0.08, 14.158 ± 0.026, 14.806 ± 0.015) km s−1 for YSC131AaAb and (−9.716 ± 0.097, 11.44 ± 0.16,
20.96 ± 0.61) vs. (−9.57 ± 0.01, 11.114 ± 0.080, 20.68 ± 0.55) km s−1 for CHR111 respectively. This is partic-
ularly interesting, since it validates both the use of MCMC as a tool for orbital estimation of binary stars, and
the mathematical formalism developed in this Subsection 4.2.1 for dimensionality reduction.

Table 4.4 Estimated parameters (spectroscopic binaries). On each row, upper lines: expected value; lower lines:
quartiles of marginal PDFs.

WDS Discoverer P T0 e a ω Ω i Vcm mS/mP $ MassT
HIP designation (yr) (yr) (′′) (◦) (◦) (◦) (km s−1) (′′) (Modot)

18099+0307 YSC 132Aa,Ab 0.54643 1990.675 0.302 0.019 86.650 51.189 146.167 −14.131 0.956 21.308 2.522
89000 0.546430.54649

0.54637 1990.6751990.676
1990.674 0.3020.304

0.300 0.0190.020
0.019 86.65086.922

86.377 51.17653.587
48.777 146.255147.433

144.996 −14.131−14.124
−14.139 0.9560.959

0.954 21.30821.517
21.099 2.5392.791

2.306

22313−0633 CHR 111 1.731 1965.475 0.367 0.066 172.100 261.393 67.141 −9.573 0.538 35.542 2.167
111170 1.7311.731

1.730 1965.4751965.484
1965.467 0.3670.374

0.360 0.0660.067
0.066 172.092173.253

170.932 261.341262.282
260.445 67.22969.920

64.493 −9.574−9.564
−9.584 0.5370.553

0.522 35.56936.629
34.497 2.1702.353

2.011

Table 4.5 Trigonometric and dynamic parallaxes (spectroscopic binaries). On each row, upper lines: expected
value; lower lines: quartiles of marginal PDFs.

WDS HIP Sp. Type Trig. Parallax Dyn. parallax Mass dyn
P Massdyn

S Massdyn
T MassT

a Masscomb
P Masscomb

S Masscomb
T

(mas) (mas) (M�) (M�) (M�) (M�) (M�) (M�) (M�)
18099+0307 89000 F6Vb 21.31 20.40 1.57 1.30 2.88 2.52 1.29 1.23 2.52

±0.31 20.4521.18
19.73 1.571.59

1.55 1.301.32
1.28 2.872.91

2.83 2.542.78
2.31 1.301.43

1.18 1.241.36
1.13 2.542.79

2.31

22313−0633 111170 F8Vc 39.35 36.37 1.20 0.82 2.02 1.60 1.41 0.76 2.17
±0.70 36.4236.79

36.06 1.201.20
1.20 0.820.83

0.82 2.022.03
2.01 1.601.65

1.56 1.411.54
1.30 0.760.81

0.71 2.172.35
2.01

a. Using the solution from Table 4.4, and the published trigonometric parallax on the 4th column of this table.
b. F7V+F7.5V according to WDS.
c. F7V according to WDS.

14As a remainder, K1 and K2 are the amplitudes of the radial velocity signals.
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Figure 4.3 Orbit estimates and radial velocity profiles of: CHR111 (top) and YSC132AaAb (bottom). In left
column, yellow and black lines indicate periastron and apastron, respectively; straight blue line indicates line of
nodes.
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Figure 4.4 Posterior distributions of spectroscopic binaries: CHR111 (top), YSC132AaAb (bottom).
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Chapter 5

Orbit calculation with incomplete data

Partial data is a relatively common phenomenon in astrometric observations of binary stars. Usually, it does not
derive from random data loss (as occurs in communication systems, for example), but rather from the impossibility
of resolving the relative position between components on an image or sequence of images. Images of visual pairs,
obtained by means of optical telescopes or interferometric techniques, are expected to display each component as
a sharp point over a fainter background, thus enabling the viewer to identify their position in the plane of the
sky. However, a number of factors may hinder the process of resolving a binary star: excessive or insufficient
exposure time of the imaging devices, presence of additional noise due to atmospheric conditions, varying degrees
of brightness of the objects being observed, angular separations beyond the angular resolution of the telescope.
The latter case is arguably the most common source of partial information: in the vicinity of the periastron, the
angular separation ρ between primary and secondary star reaches its minimum values; if those values fall below the
resolution threshold of the imaging device, then the angular separation is confined to a range (i.e., ρ ∈ (0, ρmax))
instead of being reduced to a single value (as occurs with regular, successfully resolved measurements), and
usually no information about position angle ϑ can be inferred either. In certain cases, databases of visual binary
observations report partial data of the form ρ = (0,∞), ϑ = ϑ∗, that is, angular separation is missing but position
angle ϑ is well-defined.

In general, incomplete entries are discarded when estimating the orbits of binary stars, with the information
contained in them remaining unused. The incorporation of incomplete data, however, may have the potential
to reduce the uncertainty about orbital parameters. A hint of that can be appreciated in the fact that some
astronomers use partial data in a qualitative way: incomplete entries are not included as an input of the estimation
routine (whatever it may be: least-squares methods, MCMC, etc.); however, within a set of orbit proposals
(obtained by means of complete data), the solutions that violate the ranges imposed by partial information can
be rejected (for example, if ρ is known to be in (0, ρmax) for certain epoch, but the model predicts an angular
separation significantly larger than ρmax). This Chapter extends the routine presented in Chapter 4 with the
incorporation of partial data. The cases addressed are those mentioned in the preceding paragraph, namely,
ρ ∈ (0, ρmax), ϑ ∈ (0, 2π) and ρ ∈ (0,∞), ϑ = ϑ∗. Entries where a Cartesian coordinate is missing, as well as
cases where the feasible zone of the missing observation has an arbitrary geometry, are theoretical possibilities;
however, they are not addressed in this work, since they do not occur in real situations (as far as the author’s
knowledge goes).

5.1 Methodology

The concept of multiple imputation is introduced in Section 2.3. At its core, it involves filling missing measure-
ments with a set of plausible values, in order to generate data sets that are suitable for being analyzed with
complete-data techniques. Subsection 2.3.1 details how MCMC can be applied to generate those plausible values
and perform inference based on data sets with some degree of “missingness”. That mechanism was introduced in
the statistics literature by [Tanner and Wong, 1987], where authors detail how their data-augmentation algorithm
works. Although a larger number of imputations per iteration (m) may lead to a better approximation of the
integral in Equation 2.49, authors indicate that running the algorithm with an m value as small m = 1 leads
to a correct approximation, in the sense that the average of the posterior distribution across the iterations will
converge to p(θ|Yobs) on the long run (that is, with a sufficient number of iterations). Subsequent works on
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MCMC with partial data take advantage of that property, proposing MCMC routines that use one imputation
at a time, but generate correct approximations of p(θ|Yobs), p(Ymis|Yobs) across the successive MCMC iterations
[Zhang, 2003], [Yuan, 2010]. That approach, summarized in Algorithm 5, is the scheme adopted in this work.
Algorithm 11 describes the actual implementation used in this work, where the generic algorithm presented in
Subsection 2.3.1 is adapted to the problem of orbital parameter estimation.

A fundamental aspect of imputation-based techniques is determining, based on reasonable assumptions, how
missing values (Ymis), observed values (Yobs) and the target parameters (θ) depend on each other. This involves
defining probability distributions relating each set of values (i.e., how Ymis depends on Yobs, how observations
Y = Yobs ∪Ymis depend on θ, etc.). The following list details the form that the probability distributions involved
in the estimation routine (Algorithm 11) adopt in this particular problem:

• Imputations must be drawn from p(Ymis|Yobs), but this distribution is rarely sampled directly. As explained
in Subsection 2.3.1, samples from p(Ymis|Yobs) can be obtained by a two-step procedure that involves draw-
ing values from easier-to-sample distributions: first, getting θ from p(θ|Yobs); then, conditional to the
obtained value, generating a sample of Ymis from p(Ymis|θ,Yobs). Repeating that procedure a large number
of times is equivalent to integrating p(Ymis|θ,Yobs) · p(θ|Yobs) over θ, which yields p(Ymis|Yobs). In the con-
text of orbital fitting, measurements Y correspond to observations of relative position: {τi, ρi, ϑi}i=1,...,Nobs

,
where τ indicates an epoch of observation, ρ the angular separation and ϑ the position angle. Measurement
matrix Y can be separated into Yobs (observed values) and Ymis (missing values). Thus, entries in Yobs have
a well-defined value assigned to each field (τ , ρ, ϑ, plus information of the observational error, σθ), whereas
entries in Ymis have one of the forms described before: at a given epoch τ , either ρ ∈ (0, ρmax), ϑ ∈ (0, 2π)
or ρ ∈ (0,∞), ϑ = ϑ∗.

• Term p(θ|Ymis,Yobs), referred to as posterior predictive distribution in the context of multiple imputation,
is simply the posterior PDF given the complete set of observations, p(θ|Y). Thus, its analytic form is given
by Equation 4.13, that is, the posterior PDF of orbital parameters in a setting with complete astrometric
measurements (Subsection 4.4). Its use in presence of partial information is slightly different, since, in order
to generate an input with no partial data (Y), the unobserved values Ymis are filled with samples Y ′mis
extracted from a predictive model p(Ymis|Yobs, θ). The set of orbital parameters , referred to as θ in this
Chapter, has the same meaning that vector x′ has in Equation 4.13.

• Expression p(Ymis|Yobs, θ), identified as conditional predictive distribution of Ymis given Yobs and θ, is a
key term in the scheme, since it is the distribution from which the values to fill the missing observations are
finally drawn. The localization of a missing observation in the plane of the sky depends on three factors:

– Geometric restrictions, which are indicated as an input of the procedure. As a reminder, this kind of
information may take the form of either ρ ∈ (0, ρmax), ϑ ∈ (0, 2π) or ρ ∈ (0,∞), ϑ = ϑ∗. The former
involves a circular shape with radius ρmax and the primary as its center; the latter corresponds to a
line that forms an angle of ϑ∗ with the north celestial pole. A clear example of this can be observed
in Figure 5.1.

– A given value of orbital parameters θ (which appears explicitly in the expression for conditional predic-
tive distribution). These orbital parameters determine the “real” orbit, but observations are affected
by observational noise.

– A characterization of the of observational error. In this work, it is assumed that that the difference
between the real position and the observed position is Gaussian, therefore it can be described by its
standard deviation σρ. A value for σρ must be provided for each epoch of observation: not only it
is fundamental to assign a weight to each datum, but also to characterize where missing observations
may fall, given that the “real position” is determined by θ.

– Complete measurements of relative position, Ymis, are indirectly involved, since they limit the possi-
bilities of the values that θ can adopt, for θ is previously drawn from p(θ|Ymis,Yobs) (where Ymis was,
in turn, drawn from p(Ymis|Yobs, θ) in the last iteration).

This chapter addresses the problem of orbital estimation in a purely astrometric setting, i.e., when the only
observations available are those of relative position –the same situation addressed in Section 4.4, but in presence
of partial information. However, the same approach, which is summarized in Algorithm 11, can be adapted to the
case of spectroscopic binaries. As in Section 4.4, the dimensionality reduction based on Thiele-Innes representation
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(briefly documented in Subsection 4.2.1) is applied. Since the geometric constraints of the partial observations
are not restrictive enough, it is necessary to have a reasonable knowledge of θ before running the algorithm –if the
prior guess of θ is too broad, the imputations generated will cover a wide zone of the plane of the sky, thus being
non-informative. Because of this, it is recommended to run a estimation routine based on complete-data (for
example, that presented in Subsection 4.4.1) before executing Algorithm 11. The PDF thus obtained is then used
as a prior distribution for the MCMC routine with multiple imputation (see the initialization step in Algorithm
11).

In order to maintain the notation used in Chapter 4, in Algorithm 11 the target parameter vector θ, which
contains the orbital parameters, is named x. Thus, x = [P, T ′, e, a, ω,Ω, i] and is separated into its non-linear
(xNL) and its linear (xL) components. Additionally, plausible values of the missing observations, Ymis, are

calculated over the successive iterations. The number of partial observations is denoted by Nmis. Let τ
(j)
mis denote

an epoch where a partial observation occurs, with j = 1, . . . , Nmis. Then, the imputation corresponding to epoch

τ
(j)
mis in the i-th iteration of the MCMC algorithm is denoted Y(i,j)

mis , and has the format Y(i,j)
mis = (ρ(i,j), ϑ(i,j))

(polar coordinates) or Y(i,j)
mis = (X(i,j), Y (i,j)) (Cartesian coordinates). Term Y(i)

gen denotes the set with complete
data generated in iteration i, that is, the union of successfully resolved measurements of relative position (whose

value is fixed) and the particular values that have been imputed on the i-th iteration: Y(i)
gen = Yobs ∪ Y(i)

mis =

{ ~Xobs, ~Yobs} ∪ { ~X(i)
mis,

~Y
(i)
mis}.

By similar reasons to those adduced in Section 4.5 for the case of spectroscopic binaries, a Metropolis-within-
Gibbs approach is adopted. However, other MCMC formulations (as DE-MC) may be suitable as well –the aim
is to draw samples from distributions p(θ|Ymis,Yobs) and p(Ymis|Yobs, θ), regardless of the manner in which it is
performed.

Algorithm 11 MCMC with multiple imputation for orbital fitting

• Initialize x(0):
→ x(0) = x, where x is drawn from a prior distribution
for i = 1, . . . , Nsteps do
• Retrieve value from the last iteration:
→ x(i) = x(i−1)

• Imputation step (drawing Y ′mis from p(Ymis|x(i−1),Yobs)):
for j = 1, . . . , Nmis do

→ Y(i,j)
mis = generateImputation(τ

(j)
mis, x

(i−1), σ
(j)
ρ )

end for
• Posterior step (drawing x′ from p(x|Y(i)

mis,Yobs))
for j = 1, . . . , d do
• Propose a new sample:
→ x′ = x(i) (Copying the current value of x(i))
→ x′j = xj , with xj ∼ N (x′j , σ

2
j ) (Applying an additive Gaussian perturbation on component xj)

• Calculate the least-squares estimate of elements a, ω, Ω, i:

→ x′L = [ ~X
(i)
gen, ~Y

(i)
gen] WF(FWFT )−1

• Acceptance/Rejection step:
→ u′ = u, with u ∼ U(0, 1).

→ A = min
{

1,
f(x′,Y(i)

gen)

f(x(i),Y(i)
gen)

}
if u′ < A then
• Accept sample (if not, x(i) remains at the current value):
→ x(i) = x′

end if
end for

end for

For the sake of briefness and clarity, the Imputation step in Algorithm 11 is not explicitly explained, but
shortened to an instruction called generateImputation(·). The reason for this is that the manner in which impu-
tations are generated, intended to replicate the action of drawing samples from distribution p(Ymis|x(i−1),Yobs),
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requires a separate explanation. The procedure is summarized in the points presented next:

• Partial observation is of the type ρ ∈ (0, ρmax), ϑ ∈ (0, 2π): first, the predicted relative position of the

system at epoch τ
(j)
mis is calculated according to the orbital parameters contained in x(i−1); then, an additive

Gaussian perturbation with standard deviation σ
(j)
ρ (an approximation of the observational error for that

particular measurement) is applied. If the result meets the geometric constraint of being in (0, ρmax),
then it is accepted; if not, another realization of a Gaussian distribution is performed and added to the
originally predicted position. The process is repeated until the geometric restriction is complied. In the
tests performed in this work, the number of repetitions required to obtain a value within the radius ρmax is
not larger than 2.

• Partial observation is of the type ρ ∈ (0,∞), ϑ = ϑ∗: as in the case presented previously, the predicted

relative position of the system at epoch τ
(j)
mis is calculated according to the orbital parameters contained

in x(i−1) and a Gaussian perturbation with standard deviation σ
(j)
ρ is applied on the model-based value.

Then, instead of evaluating if the obtained value meets the geometric restriction –which means, in this case,
falling on the line defined by ϑ = ϑ∗–, that value is projected on that line. This is equivalent to sample

the bivariate Gaussian centered at the model-based position and σX = σY = σ
(j)
ρ , σXY = 0, given that the

observed value lies on ϑ = ϑ∗

Fitness function f(·), used to calculate the Metropolis-Hastings ratio, receives two arguments: an orbit encoded
in the parameter vector x, and a collection of observations. The reason behind this is that the set of complete
measurements Y changes on each iteration because of the imputations, unlike the data set in Equation 4.13, which
has fixed values.

5.2 Simulation-based tests

The methodology proposed in Section 5 is evaluated on both synthetic and real data. This section presents the
experimental design and the results obtained with the application of Algorithm 11 to a synthetic data set of
astrometric observations of a binary star. The aim of this experiment is giving a glance on what kind of visual
results this method can provide (see Figure 5.1), and how the uncertainty about orbital parameters changes once
partial information is incorporated.

Evaluating the effect of incorporating new measurements (whether complete or partial) to the problem of
orbital fitting has an intrinsic complexity: not all observations are equally informative, and as long as there are
no theoretically-backed tools to quantify the information contained in each measurement, it is difficult to obtain
results that hold for all cases1. For that reason, this study does not intend to be exhaustive.

The generation of artificial observations of relative position are loosely based on the orbit of the binary star
Sirius, which is the brightest star observed from the Earth. The list presented next details how the synthetic
observations are generated:

• Orbital parameters have fixed values: P = 50.090 [yr], T = 1944.220 [yr], e = 0.5923, a = 0.750/3′′ (Sirius
has a semi-major axis of a = 7.50′′), ω = 147.27◦, Ω = 44.57◦, i = 147.27◦. The first epoch of observation,
τ1, is set to occur on 1914.00, then T ′ = (1944.220− 1914.00)/50.090 = 30.22/50.090.

• Complete measurements (i.e., those with known scalar values for ρ and ϑ) are positioned in such a way
that they cover the orbit section near the apoastron. There are two partial observations: one of the type
ρ ∈ (0, ρmax), ϑ ∈ (0, 2π) and the other of the type ρ ∈ (0,∞), ϑ = ϑ∗; both partial measurements are
located near the periastron. The idea is to mimic the fact that, in real settings, the occurrence of partial
measurements is more probable in zones close to the periastron due to the resolution threshold of the imaging
devices. Information of each measurement is reported Table 5.1 (epoch, angular separation, position angle
and observational precision). Synthetic observations were generated as a particular realization of a Gaussian
noise applied on the model-predicted positions (with the parameter values indicated previously). Partial
measurements were obtained by dropping one of the components (ρ or ϑ).

1An example of “general result” is that stated in [Lucy, 2014]: “an orbital coverage of 40% leads to non-biased estimates of the
mass sum”. However, the cited paper fails to mention that it may not apply when one of the conditions present in that work is not
met (for example, the fact that the periastron is within or out of the range of the observations makes a huge difference in terms
of the quality of estimation, regardless of the fulfillment of the “40% rule”). Then, the value of this kind of synthetic data-based
experiments, even if they lead to more general results than the analyses of real objects, is rather qualitative.
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• Observational error follows a Gaussian distribution with σx = σy = 0.008′′ and σx = σy = 0.004′′ depending
on the observation, as indicated in Table 5.1.

• Parallax is set to $ = 37.9210/3 [mas] (Sirius has a parallax of $ = 379.210 [mas]). Both a and $ were
modified in order to keep the same mass that Sirius has, but at the same time admitting more realistic values
of observational noise. Since Sirius is a bright and close star, observations obtained with instruments with
σ ∼ 0.004′′ would be excessively small in comparison with the apparent size of the orbit. To compensate,
significantly larger values of σ would have had to be imposed.

Table 5.1 Ephemerides of a visual binary (synthetic data)
Epoch ρ ϑ σρ
(yr) (′′) (◦) (′′)

1914.00 0.3519 10.17 0.008
1916.50 0.3624 15.07 0.008
1919.01 0.3748 20.69 0.008
1921.51 0.3716 24.45 0.008
1924.02 0.3657 29.69 0.008
1926.52 0.3651 33.57 0.008
1929.03 0.3617 39.13 0.008
1931.53 0.3270 44.68 0.008
1944.00a 0.0976b or (0, 0.0976)c 195.42b or (0, 360)c 0.004
1945.00a 0.1047b or (0,∞)c 217.14 0.004
1956.58 0.2460 346.73 0.004
1959.08 0.2805 356.38 0.004

a. Partial observation.
b. Used in complete information scenario.
c. Used in partial information scenario.

The experiment comprehends three scenarios where the algorithms developed in this work are applied. In the first
scenario, partial observations are discarded and orbital parameters are estimated by applying the Gibbs sampler2

to the sub-set of complete observations. In the second scenario, partial observations are incorporated by means
of Algorithm 11, thus sampling orbital parameters θ and “missing” observations Ymis simultaneously. Note that,
over the successive iterations of that method, sampled values of θ and Ymis influence each other (that is how the
additional information is incorporated). In the third scenario, partial measurements of the second scenario are
completely known (see Table 5.1). This setting has the role of a ground-truth, in the sense that it yields the
“best estimation possible” given the available data (it answers the question of how the estimation would improve
if certain values of the observations associated to epochs 1944.00 and 1945.00 had not been dropped). As in
the first case, estimation is carried out by using the Gibbs sampler. The MCMC algorithms were run with the
following parameters: Nsteps = 4 · 106; Gaussian proposal distributions with parameters σlogP = 0.4, σT ′ = 0.01,
σe = 0.01. A burn-out period of 105 samples was determined based on visual inspection of the parameter values
over the successive iterations of the algorithm. In the case of MCMC with multiple imputation, a Gaussian
proposal distribution with σρ = 0.004′′ (the same value “reported” as observational error in Table 5.1) was used
to generate samples of Ymis the in Imputation step.

Figure 5.1 shows the synthetic measurements and the estimated orbit (a maximum likelihood estimated is
used). PDFs of partial measurements Ymis (obtained in the second scenario) are superimposed on the graph that
displays the observations and the estimated orbit. Those PDFs indicate where the partial observations may fall on
the plane of the sky, given the available information. Depending on the type of partial measurement, the domain
of these PDFs can take the form of an area (case ρ ∈ (0, ρmax); lighter shades of blue indicate higher values of
probability density) or a line (case ϑ = ϑ∗). The original values of the partial measurements are displayed as
black dots for referential purposes, but are not actually used in the estimation procedure of the second scenario.

Figure 5.2 presents the marginal PDFs of the main orbital parameters (P , T , e, a and total mass) obtained on
each setting, and adds a comparison of three scenarios on the same graph. In order to facilitate visual comparison,
histograms are replaced by kernel-based densities in the lower right panel, although both convey essentially the
same information.

2This Gibbs sampler operates like Algorithm 10 adapted to the purely astrometric setting, or like Algorithm 11 without the
Imputation step.
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5.2.1 Results and analysis

In order to assess the effects of incorporating partial measurements into the estimation routine, the methodology
developed in Section 5.1 has been applied to three different settings. In a certain sense, the general technique
described in Algorithm 5 (being Algorithm 11 an implementation for the problem of visual binaries) is based
on augmenting the parameter vector with “slots” for the missing measurements, thus estimating both of them
simultaneously. The simplest, most evident conclusion of the experiment is that the scheme developed in this
section achieves the objective of sampling both quantities of interest in parallel, regardless of the quality of the
results from an estimation point of view –how the incorporation of additional information affects the estimation
is a rather different question. Figure 5.1 gives a demonstration of the capability of this method to characterize
the uncertainty about the missing observations; Figure 5.2, on the other hand, reveals how the resulting posterior
PDFs of orbital parameters differ from each other on each scenario.

As can be seen in Figure 5.1, this “MCMC plus multiple imputation” scheme manages to characterize the
feasible values of the partial measurements on the plane of the sky, integrating the geometric restrictions of the
partial measurements, the complete observations and the previous knowledge about the orbital parameters. It
is worth noting that, as values of Ymis and θ (denoted x within Algorithm 11) influence each other along the
succession of Imputation and Posterior steps, the final result is different from what would arise from each source
of knowledge on its own: according to geometric restrictions, feasible values would be evenly distributed within
either a circular zone (ρ ∈ (0, ρmax)) or an infinite line (ϑ = ϑ∗); according to complete observations and prior
knowledge of the parameters3, the location of partial observations is defined by an a priori set of feasible orbits
(which induce “real” positions in the epochs of interest) plus some kind of observational noise, however, that
scheme ignores the influence that imputed observations would exert on the orbital parameters being estimated
(in the case of the ρ ∈ (0, ρmax) observation, for example, the support of the resulting PDF covers a much larger
area within the circle if compared with that displayed in Figure 5.1 and obtained by means of Algorithm 11).

In Figure 5.2, the posterior PDFs of the target parameters obtained for each of the scenarios previously
described are displayed for comparison. In general, parameter uncertainty decreases as more information is
incorporated: the tightest PDFs are obtained in the third scenario (ideal setting with complete information),
whereas the widest, least concentrated PDFs are obtained when partial information is discarded (first scenario).
Results of the second setting (partial information incorporated via Algorithm 11) lie somewhere in the middle. The
lower right panel of Figure 5.2 is the most explicit graph in this regard, clearly showing the peaks of the PDFs and
how concentrated they are. However, not all quantities are equally affected by the incorporation of information
(or lack of): while the uncertainties of T and the mass sum decrease dramatically with the incorporation of partial
data, the marginal PDF of e obtained in the second scenario resembles more that obtained in the first setting
than that obtained with complete information; the PDFs obtained for P , on the other hand, are quite similar
in the three cases. Joint marginal PDFs undergo a similar change: distribution e vs. T , for example, shows a
bow-shaped profile in the first scenario, turning into a convex shape4 when partial observations are included, and
reaching a Gaussian-like form in the complete information scenario.

In summary, the test performed in this section, aside from presenting a demonstration of the developed method-
ology, suggests that the incorporation of partial information into the analysis tools has potential of decreasing
the estimation uncertainty.

3The distribution of orbital parameters obtained by using only complete observations, as described in the first scenario.
4In the sense of defining a non-concave contour.
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Figure 5.1 Orbit estimate in presence of incomplete information (synthetic data). Left panel shows the original
measurements, the ML orbit estimate and the zones were missing observations may fall (calculated with the
proposed method); right panel is a view in detail of the PDF along the line ϑ = 217.14◦.
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Figure 5.2 Panels with the posterior PDFs (synthetic data). Upper left panel shows the results obtained using
only complete observations; upper right panel shows the results obtained when partial information has been
incorporated; lower right panel shows the results obtained using complete information; lower left panel compares
marginal PDFs of the three cases on the same figure (referential parameter value is indicated with a black vertical
bar).
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5.3 A case study: binary star HU177

In this Section, the methodology proposed in Section 5.1 and tested in Section 5.2 with synthetic data is applied
to a real object: binary star HU177. Within the selection presented in Table 4.1, HU177 is one of the few
objects with partial data available. The reason for choosing that object for a case study is that, among objects
with partial data, this is one for which the incorporation of partial information may make a difference in terms
of estimation. For objects with an almost definite orbit, like STF 2729AB (for which a large amount of partial
observations are available), the incorporation of partial measurements into the analysis would hardly affect the
value of the estimated parameters and the uncertainty associated. Objects with a highly indeterminate orbit, on
the other hand, are equally inadequate for testing the incorporation of partial measurements, since such a level
of uncertainty would induce spatially disperse imputations (compare left and right panels of Figure 5.3: with less
information, the area covered by the support of the PDF of the partial measurement is larger).

HU177 has relatively few complete observations (16) with varying degrees of quality, distributed unevenly
from 1900 to 2015. The results presented in Table 4.1 indicate that, with the available data, the orbital parameters
of this star are neither tightly constrained nor extremely indeterminate –that is the scenario in which partial
measurements may be a contribution. In Figure 4.1, the solution proposed in Section 4.4 is compared with a
referential orbit recently published in the astronomic literature. In both solutions, the periastron is located in
(roughly) the same zone, so that it can be assumed that at least this particular aspect of the orbit is well estimated.
There is a partial observation with ρ ∈ (0, 1)′′ and no ϑ, occurring in 1991.25 (an epoch very close to the predicted
periastron passage). For this reason, the available partial measurement is expected to be, qualitatively speaking,
informative.

The test performed in this section comprehends two different data sets: the first is identified by HU177
and contains all the complete measurements available, plus the partial observation; the second one, identified
as HU177∗, contains all the complete measurements except for the one near the periastron (epoch 1989.312),
plus the partial observation (the discarded observation can be noticed in Figure 5.3). The “assembly” of two
separate data sets is carried out in order to better assess the impact of the partial observation: in presence of a
complete observation occurring closely in time and space (as in data set HU177), the partial observation may be
redundant or even a source of additional uncertainty (recall that Section 2.3 identifies three sources of uncertainty
associated to the imputation process). For each data set, two cases are addressed: with and without multiple
imputation. In the first case the partial measurement is omitted, then the data set is analyzed with the Gibbs
sampler used in the previous section; the second case is analyzed by means of Algorithm 11. Nsteps, σlogP , σT ′ ,
σe are set to the same values used in Section 5.2. When applying the multiple imputation approach, the proposal
distribution used to generate samples of Ymis is set to σρ = 0.015′′, based on the observational error associated
to the imaging device that produced the partial measurement. The criteria to fix that value, as well as the weight
assigned to the imputed observations in the likelihood function, are topic of further research.

Figure 5.3 displays the orbits associated to the maximum likelihood estimates obtained for data sets HU177∗

and HU177 with the incorporation of the partial data. The complete measurements of relative position, as well
as the PDF of the partial observation, are shown in the same plane. The parameter values corresponding to each
of these solutions are reported in 5.2. Figure 5.4 shows the posterior PDFs of the parameters obtained in each
scenario. Table 5.3 reports numerically the results obtained for the four cases analyzed: each row has two lines,
the first showing the quartiles of the orbital parameters (as in the second lines of Table 4.1), and the second line
reporting the interquartile range (i.e., the difference between 75% and 25% percentiles). Interquartile range is
used as a means to assess how uncertainty changes when partial information is incorporated.

5.3.1 Results and analysis

From Figure 5.3 and Table 5.2 it is observed that, although similar at first sight, orbit estimates obtained of
HU177∗ and HU177 (with multiple imputation) have considerable, although not large, differences. The most
significant one, from a physical rather than numerical standpoint, is P . Estimates of angular elements ω and Ω
exhibit a large numerical difference between both scenarios, but are geometrically close due to the circular nature
of angular quantities –in fact, both the line of nodes (in blue) and the line that connects periastron and apoastron
(yellow and black in the respective ends) share similar orientation and location in the two orbits. More noticeable
is the difference between the PDF of the partial measurement obtained in each case: for HU177∗, it comprehends
almost half the circle defined by ρ ∈ (0, ρmax) (although zones with higher probability are concentrated towards
the “western” border); for HU177, the PDF of the partial measurement is confined to a much smaller area.
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Despite the larger uncertainty about the partial observation in the case of HU177∗, the incorporation of
partial information has a larger impact on the estimation in HU177∗ than in the HU177 data set: in the first
setting, the interquartile range of most parameters undergo a dramatic reduction once the multiple imputation
scheme is adopted (Table 5.3, from first to second row), whereas in the second setting the is no statistically
significant evidence that the partial observation translates into additional knowledge of the system5 (Table 5.3,
from third to second fourth). Since in HU177∗ the partial measurement is the only information about that
particular zone of the orbit (the vicinity of the periastron), it contributes to reduce the uncertainty about orbital
parameters. In HU177, on the contrary, that information is redundant –it is the observation dropped in HU177∗

that contributes to characterize that sector of the orbit. Furthermore, as imputation process in itself has some
uncertainty associated (the three sources enumerated in Section 2.3), the multiple imputation may add uncertainty
to the estimation instead of reducing it. In HU177∗, for example, mass sum is more constrained when no
imputations are used (Figure 5.4, fourth row of the lower left panel). A question stems from the latter observation:
if the interquartile range of both P and a decrease when the multiple imputation scheme is adopted, why (and
how) the uncertainty of a derived quantity such as the mass sum increases? The explanation might be found in
the fact that interquartile range is a rather näıve tool to measure uncertainty, since it basically ignores the shape
of the PDFs (aspects such as heaviness of tails, symmetry, etc.). Thus, assessing uncertainty by means of more
sophisticated criteria, such as information-theoretic indicators, appears as the next step in this research line.

Finally, it is worth mentioning that defining more restrictive feasible areas for missing observations (instead
of mere circles and lines) would be of great help to the estimation –the more constricted they are, the more
they resemble a well-resolved, point-like observation. In other words, it might be beneficial, from the point of
view of parameter estimation and uncertainty characterization, to save as much information as possible when
resolving relative position values from interferometric measurements; that means that, if complete resolution is
not feasible, an effort could be made to confine the plausible values to, for example, an angular section instead of
a circle centered at the primary star.

Figure 5.3 Comparison: visualization of orbit estimates of HU177∗ (left) and HU177 (right).

Table 5.2 Maximum likelihood orbit estimates in presence of incomplete information (HU177)
Data set P T e a ω Ω i MassT

(yr) (yr) ′′ (◦) (◦) (◦) (M◦)
HU177∗ 222.906 1987.135 0.575 0.296 81.572 10.540 147.771 4.022
HU177 204.607 1986.604 0.512 0.287 240.178 168.311 151.376 4.367

5Although for some parameters the interquartile range has actually lower values in “HU177 - MI”, those difference are within
the variation range that is inherent to MCMC (due to the random nature of the algorithm).
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Figure 5.4 PDFs of orbital parameters of the four cases reported in Table 5.3: No MI, HU177∗ (first column, first
row); HU177∗, MI (first column, second row); HU177, no MI (second column, first row); HU177, MI (second
column, second row). Lower panels show a comparison between the marginal PDFs obtained for the HU177∗

data set (first column, third row), and those obtained for HU177 data set (second column, third row).
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Table 5.3 Estimation of orbital parameters in presence of incomplete information (HU177)

Data set
P T e a ω Ω i MassT

(yr) (yr) ′′ (◦) (◦) (◦) (M◦)

HU177∗ No MIa 239.85270.13
215.61 1984.911986.56

1983.30 0.58260.6141
0.5513 0.29870.3167

0.2863 131.47179.43
82.47 64.76113.81

10.70 154.65160.65
148.03 3.5463.976

3.300

54.5176 3.2568 0.0628 0.0303 96.9656 103.1041 12.6236 0.6758

HU177∗ MIb 220.00242.75
202.22 1987.471988.72

1986.18 0.57690.6050
0.5490 0.29860.3099

0.2890 84.9389.05
80.68 12.1117.13

8.32 145.66152.01
140.52 4.1714.752

3.658

40.5331 2.5481 0.0561 0.0209 8.3685 8.8175 11.4864 1.0939

HU177 No MIa 202.79216.81
190.83 1986.471986.90

1986.01 0.50670.5340
0.4792 0.28690.2958

0.2793 237.18242.94
230.50 165.52170.09

160.14 151.24154.30
148.41 4.4244.645

4.220

25.9799 0.8856 0.0548 0.0164 12.4439 9.9519 5.8927 0.4246

HU177 MIb 202.28216.27
190.69 1986.601987.04

1986.14 0.50770.5352
0.4807 0.28650.2953

0.2792 239.53245.02
233.05 167.77172.06

162.67 150.43153.42
147.67 4.4264.649

4.216

25.5799 0.8947 0.0545 0.0161 11.9774 9.3903 5.7510 0.4331

a. Multiple imputation strategy not applied, incomplete data unused.
b. Incomplete data incorporated through multiple imputation strategy.
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Chapter 6

Final remarks

This dissertation presents a Bayesian framework for the estimation and uncertainty characterization of orbital
elements of binary stars. Relying on Markov Chain Monte Carlo as a sampling tool, the algorithms proposed in
this work achieve the aim of characterizing the posterior PDFs of orbital parameters given a set of measurements.
In Chapter 4, both visual (Sect.ion 4.4) and spectroscopic (Section 4.5) observations of stars are analyzed by
means of the MCMC routines developed, obtaining a characterization of the posterior distribution of the target
parameters in the form of a collection of samples; from these collections, estimators such as maximum a posteriori
(MAP) and expected value can be calculated and proposed as candidate orbits. By means of a dimensionality
reduction developed in Subsection 4.2.1, the techniques presented take a step ahead in terms of efficiency, since
the number of parameters required to be explored decrease from 7 to 3 for visual binaries (similar approaches
have been applied before, however, in [Hartkopf et al., 1989], [Lucy, 2014], among others), and from 10 to 7
for spectroscopic binaries (using a formalism entirely developed in this work). Beyond the agreement with the
objectives stated in Chapter 1, and the support given to hypotheses 1 and 2 declared in the same chapter, it is
worth noting that the contribution of this work is not merely methodological: the framework was successfully
applied for analyzing real data of a selection of objects observed by the SOAR telescope, obtaining orbital solutions
that range from about 1 yr of orbital period in the case of spectroscopic stars, to more than 500 yr in the case
of some visual binaries, providing inputs for actual astrophysical discussion. These orbits and their respective
stellar masses–arguably the final product of this work–are presented and analyzed in a forthcoming publication
[Mendez et al., 2017].

The potential of combining sources, i.e., astrometric and spectroscopic simultaneously, to estimate hypothesis-
free parallaxes is explored in Section 4.5, and is certainly proven useful when both the radial velocity profile and
the apparent orbit of the object are well sampled. However, if data is insufficient, a better option is to restrict
the value of $ by introducing a prior distribution of it based on the measured trigonometric parallax.

Chapter 5 introduces a scheme for coping with partial measurements in the Bayesian framework proposed
in Chapter 4. The scheme, based on filling missing or partial measurements with a set of plausible values–
the so-called multiple imputation approach–, is tested with both synthetic and real measurements of visual
binaries. Although results suggest that incorporation of partial information can lead to a decrease of uncertainty
in the estimation of target parameters, there are also cases where partial measurements provide no additional
information (posterior PDFs may not change after the incorporation of partial information into the analysis), or
can, potentially, worsen the quality of estimation, since the process of imputing values also introduces some degree
of uncertainty. Although partial astrometric measurements intrinsically have a degree of spatial dispersion, the
tests performed suggest that an interesting improvement in estimation might arise from restricting their geometric
boundaries during the image resolution process, thus feeding estimation routines as the one presented in this work
with more specific information than that typically provided.

Future work points in the direction of addressing problems that have been already hinted in this work, but
have not been given a categorical solution yet:

• As suggested in Chapter 5 in the context of incomplete observations, the use of information-theoretic
measures might be a useful tool to evaluate how much the estimation improves (or worsen) after the
incorporation of partial measurements. However, the suitability of that approach might extend to a wider
set of information-related challenges, for example, cracking the problem of observation planning: how to
place future measurements in order to achieve a target level of accuracy of precision about the orbital
parameters.
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• Constraining the sets of feasible solutions by incorporating additional sources of knowledge of the systems
under study, such as spectral type, in the form of prior probabilities. This approach might be crucial in
cases of objects with very limited observational coverage (such as COU499), where astronomers are pre-
vented from estimating orbits with adequate precision, but one might desire to have more reliable tentative
ephemeris for observational planning.

• Adapting the Bayesian approach presented in this work to related but slightly different orbital estimation
problems, such as single-line spectroscopic binaries or hierarchical multiple systems. This comprehends
extending the basic, complete information-oriented routine presented in Chapter 4, as well as the partial
information-oriented algorithm developed in Chapter 5.
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Udry, S. (2013). Astrometric orbit of a low-mass companion to an ultracool dwarf. Astronomy & Astrophysics,
556:A133.

[Smith et al., 1997] Smith, P. J., Shafi, M., and Gao, H. (1997). Quick simulation: A review of importance sam-
pling techniques in communications systems. IEEE Journal on Selected Areas in Communications, 15(4):597–
613.

[Storn and Price, 1995] Storn, R. and Price, K. (1995). Differential evolution—a simple and efficient adaptive
scheme for global optimization over continuous spaces, berkeley. CA: International Computer Science Institute.

[Storn and Price, 1997] Storn, R. and Price, K. (1997). Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces. Journal of global optimization, 11(4):341–359.

[Swendsen and Wang, 1986] Swendsen, R. H. and Wang, J.-S. (1986). Replica monte carlo simulation of spin-
glasses. Physical Review Letters, 57(21):2607.

[Tanner and Wong, 1987] Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by
data augmentation. Journal of the American statistical Association, 82(398):528–540.

[Tarantola, 2005] Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation.
Society for Industrial and Applied Mathematics.

[Thiele, 1883] Thiele, T. N. (1883). Neue methode zur berechung von doppelsternbahnen. Astronomische
Nachrichten, 104:245.

[Tierney, 1994] Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals of Statistics,
pages 1701–1728.

[Tinney et al., 2003] Tinney, C. G., Butler, R. P., Marcy, G. W., Jones, H. R., Penny, A. J., McCarthy, C.,
Carter, B. D., and Bond, J. (2003). Four new planets orbiting metal-enriched stars. The Astrophysical Journal,
587(1):423.

[Tokovinin, 1992] Tokovinin, A. (1992). Complementary approaches to double and multiple star research. IAU
Colloquium 135, ASP Conference Series, ed, HA McAlister & WI Hartkopf,(ASP, San Francisco), 32:573.

[Tokovinin et al., 2010] Tokovinin, A., Mason, B. D., and Hartkopf, W. I. (2010). Speckle interferometry at the
Blanco and SOAR telescopes in 2008 and 2009. The Astronomical Journal, 139(2):743.

[Tokovinin et al., 2014] Tokovinin, A., Mason, B. D., and Hartkopf, W. I. (2014). Speckle interferometry at
SOAR in 2012 and 2013. The Astronomical Journal, 147(5):123.

[Tokovinin et al., 2015] Tokovinin, A., Mason, B. D., Hartkopf, W. I., Mendez, R. A., and Horch, E. P. (2015).
Speckle interferometry at SOAR in 2014. The Astronomical Journal, 150(2):50.

[Tokovinin et al., 2016] Tokovinin, A., Mason, B. D., Hartkopf, W. I., Mendez, R. A., and Horch, E. P. (2016).
Speckle interferometry at SOAR in 2015 based on observations obtained at the southern astrophysical research
(SOAR) telescope. The Astronomical Journal, 151(6):153.

60



[Von Neumann, 1951] Von Neumann, J. (1951). Various techniques used in connection with random digits.
National Bureau of Standards Applied Math Series, 12:36–38.

[Vrugt et al., 2009] Vrugt, J. A., Ter Braak, C., Diks, C., Robinson, B. A., Hyman, J. M., and Higdon, D. (2009).
Accelerating markov chain monte carlo simulation by differential evolution with self-adaptive randomized sub-
space sampling. International Journal of Nonlinear Sciences and Numerical Simulation, 10(3):273–290.

[Wright and Howard, 2009] Wright, J. and Howard, A. (2009). Efficient fitting of multiplanet keplerian models
to radial velocity and astrometry data. The Astrophysical Journal Supplement Series, 182(1):205.

[Wunsch, 1996] Wunsch, C. (1996). The ocean circulation inverse problem. Cambridge University Press.

[Yuan, 2010] Yuan, Y. C. (2010). Multiple imputation for missing data: Concepts and new development (version
9.0). SAS Institute Inc, Rockville, MD, 49:1–11.

[Zhang, 2003] Zhang, P. (2003). Multiple imputation: theory and method. International Statistical Review,
71(3):581–592.

61



Appendix A

Derivation of radial velocity equation

Consider the expression for position’s radial component z as a starting point:

z = r sin(ω + ν) sin i. (A.1)

Since inclination i does not vary over time, it can be left out from the derivative:

ż =
dz(t)

dt
= sin i · d

dt
(r sin(ω + ν)) . (A.2)

Using the product rule for derivatives, we obtain:

ż = sin i · (ṙ sin(ω + ν) + r cos(ω + ν)ν̇) (A.3)

It is left to find closed-form expressions for ṙ and ν̇. Since term a(1−e2) does not time-dependent, the expression
for ṙ can be obtained as:

ṙ =
d r(t)

dt
= =

d

dt

(
a(1− e2)

1 + e cos ν

)
= a(1− e2) · d

dt
(1 + e cos ν)

−1

= a(1− e2) · (1 + e cos ν)
−2 · −1 · (−e sin ν) ν̇.

(A.4)

Rearranging the equation above and identifying term r, the expression for ṙ can be reduced to:

ṙ =
a(1− e2)

1 + e cos ν
· e sin ν ν̇

1 + e cos ν

= r
e sin ν ν̇

1 + e cos ν
.

(A.5)

To find ν̇, we make use of Kepler’s Second Law (“the line that connect both bodies sweeps equal areas in
equal times”). An interpretation of that law is that the derivative of the swept area is constant. If A denotes the
swept area, integration over one period P yields:

dA

dt
=

1

2
r2ν̇ → A

P
=

1

2
r2ν̇. (A.6)

Since the area of an ellipse is calculated as A = πab (b being the semi-minor axis) and b = a
√

1− e2, the equation
above can be expressed as:

A

P
=
πa2
√

1− e2

P
=

1

2
r2ν̇, (A.7)

from where we isolate quantity rν̇. The aforementioned quantity is preferred over ν̇ for convenience, since it can
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be directly substituted in equations A.5 and A.3 and lead to the final result.

rν̇ = r−1 · 2πa2
√

1− e2

P

=
1 + e cos ν

a(1− e2)
· 2πa2

√
1− e2

P

=
2πa(1 + e cos ν)

P
√

1− e2
.

(A.8)

Substituting r ν̇ in Equation A.5 yields:

ṙ = r
e sin ν ν̇

1 + e cos ν

= rν̇ · e sin ν

1 + e cos ν

=
2πa e sin ν

P
√

1− e2

(A.9)

Using equations A.8, A.9 in A.3 gives:

ż = sin i · (ṙ · sin(ω + ν) + (rν̇) · cos(ω + ν))

= sin i ·
(

2πa e sin ν

P
√

1− e2
· sin(ω + ν) +

2πa(1 + e cos ν)

P
√

1− e2
· cos(ω + ν)

)
=

2πa sin i

P
√

1− e2
· (e sin ν sin(ω + ν) + (1 + e cos ν) cos(ω + ν)) ,

(A.10)

which, with the aid of the trigonometric identities shown in Equation A.12, leads to the final expression for radial
velocity:

Vr = ż =
2πa sin i

P
√

1− e2
[cos(ω + ν) + e cosω] . (A.11)

cos(ν + ω) = cos ν cosω − sin ν sinω

sin(ν + ω) = sin ν cosω + cos ν sinω
(A.12)
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Appendix B

On Thiele-Innes and Campbell elements

B.1 Least-squares estimate

The starting point is the sum of individual errors:

Nx∑
k=1

1

σ2
x(k)

[X(k)−Xmodel(k)]2 +

Ny∑
k=1

1

σ2
y(k)

[Y (k)− Y model(k)]2 (B.1)

Equation 2.8 enables us to replace Xmodel, Ymodel with their analytic expression for any epoch (indexed by k):

Xobs(k)−Xmodel(k) = Xobs(k)− [B · x(k) +G · y(k)]

Yobs(k)− Ymodel(k) = Yobs(k)− [A · x(k) + F · y(k)].
(B.2)

Given the linear dependency of Xmodel, Ymodel with respect to normalized coordinates x, y, it is possible to
calculate the least-squares estimate for unknown variables B, G, A, F in a non-iterative way. Moreover, first
term of Equation B.1 depends only on (B,G), whereas second term depends on (A,F ). Therefore, the estimate
for (B,G) is obtained by minimizing the first term and the estimate for (A,F ) by minimizing the second one. The
problem is thus reduced to a pair of uncoupled linear equations. By calculating the derivatives of the expression
of the error with respect to each of the Thiele-Innes constants and making the results equal to zero, one can
obtain the following formulae (for the sake of briefness, a set of auxiliary terms is introduced first):

α =
∑
i

wi x(i)2 β =
∑
i

wi y(i)2 γ =
∑
i

wi x(i) y(i)

r11 =
∑
i

wi Xobs(i) x(i) r12 =
∑
i

wi Xobs(i) y(i) (B.3)

r21 =
∑
i

wi Yobs(i) x(i) r22 =
∑
i

wi Yobs(i) y(i)

Then, the least-squares estimate for the Thiele-Innes constant is calculated as follows:

B̂ =
β · r11 − γ · r12

∆
, Ĝ =

α · r12 − γ · r11

∆
,

Â =
β · r21 − γ · r22

∆
, F̂ =

α · r22 − γ · r21

∆
,

(B.4)

where ∆ = α · β − γ2. An alternative matrix representation is given as follows:
B̂

Ĝ

Â

F̂


T

= [ ~Xobs
~Yobs] WFT (FWFT )−1, where F =


x(1) . . . x(N) 0 . . . 0
y(1) . . . y(N) 0 . . . 0

0 . . . 0 x(1) . . . x(N)
0 . . . 0 y(1) . . . y(N)

 , (B.5)
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where {x(k), y(k)}k=1,...,N are the normalized coordinates given P , T , e and epochs {τk}k=1,...,N . Matrix W
is a diagonal matrix containing the weight of each observation (usually the reciprocal of the observational error
variance).

B.2 Conversion from Thiele-Innes to Campbell

Once that the estimates for Thiele-Innes constants are obtained (B̂, Ĝ, Â, F̂ ), it is necessary to recover the
equivalent Campbell elements representation (a, ω,Ω, i). For ω and Ω, one must solve the following equations:

ω + Ω = arctan

(
B − F
A+G

)
,

ω − Ω = arctan

(
−B − F
A−G

)
,

(B.6)

choosing the solution that satisfies that sinω + Ω has the same sign as B − F and that sinω − Ω has the same
sign as −B − F . If that procedure outputs a value of Ω that does not satisfy the convention that Ω ∈ (0, π), it
must be corrected in the way explained next: if Ω < 0, values of ω and Ω are modified as ω = π + ω, Ω = π + Ω;
whereas if Ω > π, values of ω and Ω are modified as ω = ω − π, Ω = Ω− π.

For semi-major axis a and inclination i, the following auxiliary variables must be calculated first:

k =
A2 +B2 + F 2 +G2

2
,

m = A ·G−B · F,

j =
√
k2 −m2.

(B.7)

Then, a and i are determined with the following formulae:

a =
√
j + k

i = arccos
(m
a2

) (B.8)
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Appendix C

Dependency between (σρ, σθ) and (σx, σy)

In this work, the basic assumption about observational error is that the difference between the real position (in
the apparent orbit) and the observed value is Gaussian-distributed for both axis X and axis Y . This is the
reason why the algorithms proposed use Cartesian coordinates to represent the relative position of binary stars.
Furthermore, the (X,Y ) representation avoids the drawbacks derived from the “cyclic” nature1 of the angular
values –for example, angles near 0 have a similar geometrical meaning to those close to 2π, but the numerical
difference between them does not give an account of that.

In data sets of real binary stars, observations may be provided as (X,Y ) as well as (ρ, θ) pairs. Data from
modern, interferometric telescopes is usually presented in polar coordinates. Although transformation from one
representation to the other is straightforward when it comes to particular points (Equation C.1), translating the
error characterization of one representation (say, σρ, σθ) into an error characterization of the other (σx, σy) is
somewhat more complicated.

x = ρ cos θ ρ =
√
x2 + y2 (C.1)

y = ρ sin θ θ = arctan
y

x

Let X0, Y0 be a real value of the apparent orbit (i.e., unaffected by noise). If Xobs, Yobs are the coordinates
of an observation of X0, Y0, then:

Xobs = X0 + vx,

Yobs = Y0 + vy,
(C.2)

where vx, vy are random variables that follow a normal distribution with mean value µ = 0 and standard deviations
σx, σy (it is assumed that σxy = 0). By applying the transformations of Equation C.1 to Xobs, Yobs, we obtain:

ρobs =
√
X2

0 + v2
x + Y 2

0 + v2
y + 2X0vx + 2Y0vy, (C.3)

θobs = arctan
Y0 + vy
X0 + vx

.

One may want to express the terms above as ρobs = ρ0 + vρ and θobs = θ0 + vθ; however, the non-linearity of
the formulae obtained does not allow to isolate the “real” and the noise component analytically. Similarly, if the
starting point is an error characterization of ρ and θ:

ρobs = ρ0 + vρ, with vρ ∼ N (0, σρ), (C.4)

θobs = θ0 + vθ, with vθ ∼ N (0, σθ),

1Angle θ is often confined to [0, 2π), with addition and subtraction operations being performed according to modular arithmetic.
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then the transformations of Equation C.1 lead to:

Xobs = (ρ0 + vρ) · cos(θ0 + vθ), (C.5)

Yobs = (ρ0 + vρ) · sin(θ0 + vθ).

As in Equation C.3, terms Xobs and Yobs obtained from ρ and θ cannot be easily expressed as the addition of a
“real” and a noise component. As a way to address that problem, a numerical approach is proposed. The results
contained in the following paragraphs are presented as an insight.

In order to explore the dependency of σρ, σθ relative to σx, σy, magnitude of separation ρ and position angle
θ, a set of representative points was selected in the Cartesian plane, with varying values of ρ (three fixed levels
of separation) and θ (chosen to cover most part of the circumference). The aim of this selection is to cover a
representative array of observational cases. Under the assumption that the error is Gaussian-distributed along
axes X and Y , σx and σy were fixed to 0.01 [arcsec]. For each combination of (ρ, θ) (i.e., each point in Figure
C.1), a synthetic data set of 4000 points is generated in order to simulate feasible observations around the “real”
value. After transforming each of the resulting points to the (ρ, θ) representation, the covariance matrix Σρθ is
calculated. Matrix Σρθ shows the following general traits:

1. Cross-covariance term σρθ is in most cases negligible or, at least, one order of magnitude below min(σ2
ρ, σ

2
θ).

2. As separation ρ increases, θ has less variability (σθ decreases as shown in Figure C.2). Thus, being ρ-
dependent, error characterization for θ could not be reduced to a single value of σθ in a certain data set.

3. Term σρ has values close to σx (σy) in all cases. The highest percentage error values obtained are around
4% (err = 100× (σx − σρ)/σx [%]).

4. Unlike separation ρ, changes in position angle θ do not have any major consequence on the components of
matrix Σρθ.
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Figure C.1 Points selected for testing.
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Figure C.2 Dependency between ρ and σθ.

The analogous experiment can be performed if the error characterization is provided in terms of σρ and σθ.
Since position angle is not a major factor in the results, it is fixed to an arbitrary value (θ = π/12). Instead, a
set of different values of σθ is explored: σθ ∈ {0.02, 0.010, 0.0050, 0.0035, 0.0020, 0.0010} (note that this set was
selected, approximately, according to the values observed in Figure C.2). In this case, a set of 4000 points is
generated for each combination of ρ and σθ (σρ fixed at 0.01 [arcsec]), and then the covariance matrix Σxy is
calculated. Table C.1 shows the numerical estimates of Σxy for each combination of (ρ, σθ). Matrices approximate
equal to Σxy = [σρ, 0; 0, σρ] = [0.012, 0; 0, 0.012] are highlighted in gray.
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Table C.1 Covariance matrices for different values of ρ, σθ
aaaaaaaa
ρ [arcsec]

σθ [rad]
0.02 0.010 0.0050 0.0035 0.0020 0.0010

0.5
1.001e-04 5.420e-07 9.420e-05 1.818e-05 9.259e-05 2.326e-05 9.384e-05 2.451e-05 9.521e-05 2.532e-05 9.468e-05 2.526e-05

5.420e-07 9.835e-05 1.818e-05 2.999e-05 2.326e-05 1.257e-05 2.451e-05 9.747e-06 2.532e-05 7.802e-06 2.526e-05 7.015e-06

1
1.219e-04 -7.941e-05 9.822e-05 -3.212e-08 9.523e-05 1.804e-05 9.424e-05 2.143e-05 9.328e-05 2.374e-05 9.237e-05 2.451e-05
-7.941e-05 3.824e-04 -3.212e-08 9.949e-05 1.804e-05 3.045e-05 2.143e-05 1.777e-05 2.374e-05 1.038e-05 2.451e-05 7.559e-06

2
1.994e-04 -3.702e-04 1.168e-04 -7.428e-05 9.702e-05 1.755e-07 9.683e-05 1.320e-05 9.604e-05 2.123e-05 9.524e-05 2.446e-05
-3.702e-04 1.481e-03 -7.428e-05 3.835e-04 1.755e-07 1.004e-04 1.320e-05 5.225e-05 2.123e-05 2.133e-05 2.446e-05 1.065e-05

3
3.336e-04 -8.728e-04 1.553e-04 -2.061e-04 1.074e-04 -3.183e-05 1.010e-04 -4.544e-06 9.353e-05 1.548e-05 9.552e-05 2.338e-05
-8.728e-04 3.386e-03 -2.061e-04 8.334e-04 -3.183e-05 2.196e-04 -4.544e-06 1.123e-04 1.548e-05 3.901e-05 2.338e-05 1.520e-05

5
7.547e-04 -2.460e-03 2.576e-04 -5.876e-04 1.380e-04 -1.376e-04 1.140e-04 -5.008e-05 9.896e-05 -8.168e-07 9.638e-05 1.859e-05
-2.460e-03 9.365e-03 -5.876e-04 2.296e-03 -1.376e-04 5.908e-04 -5.008e-05 2.900e-04 -8.168e-07 1.003e-04 1.859e-05 3.033e-05

10
2.776e-03 -1.001e-02 7.699e-04 -2.501e-03 2.608e-04 -6.088e-04 1.743e-04 -2.769e-04 1.185e-04 -7.374e-05 9.737e-05 -5.853e-07
-1.001e-02 3.767e-02 -2.501e-03 9.454e-03 -6.088e-04 2.355e-03 -2.769e-04 1.111e-03 -7.374e-05 3.864e-04 -5.853e-07 1.004e-04

Table C.1 indicates that not all combinations of ρ and σθ generate distributions that can be considered
symmetrical or with uncorrelated components. In fact, the only matrices that exhibit such properties are those
whose values of σθ and ρ are close to the curve shown in Figure C.2. Intuitively, the reason of this is that if ρ is
too large, small variations in the position angle would produce significant changes in position, so the variability
of θ must be confined to a narrow range in order to keep the empirical distribution of X, Y similar to that used
in the first experiment.

Results suggest that if, for a given data set, there exist a characterization of the observational error of ρ, then
σρ may be a good estimate of σx, σy. A more complex option is to calculate Σxy from a set of the synthetic data
(points drawn from the statistical information available, i.e., σρ, σθ; as done throughout this section).
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Appendix D

Auxiliary tables

Table D.1 Additional information (visual binaries)
WDS Discoverer HIP Gra Orbit
label designation label referenceb

16115+0943 FIN 354 79337 3→ 3 Doc2013d
17305−1446 HU 177 85679 5→3 USN2002
17313+1901 COU 499 85740 5→4 Cou1999b
17533−3444 BU 1123 87567 5→4 Doc1991b
18003+2154 A 1374AB 1566-1708-1 5→5 USN2002
18108−3529 B 1352 89076 5→4 USN2002
18191−3509 OL 18 89766 X→5 NEW
18359+1659 STT 358AB 91159 4→4 Hei1995
18537−0533 A 93 92726 5→4 Hei1998
18558+0327 A 2192 92909 3→3 Doc1988c
19027−0043 STF 2434BC 93519 5→5 Alz1998a
19350+2328 A 162 96317 3→3 Ole1994
20073−5127 RST 1059 99114 X→4 NEW
20514−0538 STF 2729AB 102945 2→2 RAO2015
20597−5211 I 669AB 103620 X→3 NEW
21504−5818 HDS 3109 107806 X→4 NEW
22156−4121 CHR 187 109908 3→3 Tok2015c
23171−1349 BU 182AB 114962 4→3 Hei1991

a. Grades are defined in http://ad.usno.navy.mil/wds/orb6/wdsref.html,
with 1 being binaries with final orbits and 5 binaries with great
uncertainty of orbital parameters.
b. References taken from the Sixth Cata-
log of Orbits of Visual Binary Stars, available at
http://ad.usno.navy.mil/wds/orb6/wdsref.html
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Table D.2 Compiled photometry
WDS HIP VSim

a VHip
b SourceVHip

c (V − I)Hip
b Source(V−I)Hip

d VP
e VS

e VSys ∆I f

16115+0943 79337 6.519 6.52 H 0.30± 0.01 L 7.19 7.52 6.59 0.7
17305−1446 85679 8.76± 0.01 8.72 H 0.51± 0.02 L 8.5 9.6 8.16 1.0
17313+1901 85740 8.96± 0.01 8.98 G 0.42± 0.01 H 8.7 8.7 7.95 0.5
17533−3444 87567 6.17 6.14 G 0.00± 0.01 L 6.86 6.92 6.14 0.3
18003+2154 1566-1708-1g 8.53± 0.01 8.611± 0.012h — — — 8.9 10.9 8.74 1.2
18099+0307 89000 5.69 5.67 H 0.56± 0.01 L 6.1 7.1 5.74 0.7
18108−3529 89076 9.02± 0.02 8.98 H 0.74± 0.03 L 9.87 9.88 9.12 0.3
18191−3509 89766 8.55± 0.02 8.51 H 0.99± 0.02 L 9.17 9.73 8.66 0.6
18359+1659 91159 6.21 6.21 H 0.63± 0.07 F 6.94 7.08 6.26 0.1
18537−0533 92726 8.78 8.78 G 0.77± 0.01 H 9.16 10.15 8.79 1.2
18558+0327 92909 7.610± 0.009 7.07 G 0.17± 0.01 H 7.73 8.00 7.10 0.4
19027−0043 93519 8.81 8.80 G 0.77± 0.00 R 8.44 8.93 7.91 1.2
19350+2328 96317 7.94± 0.01 7.93 H 0.23± 0.02 L 8.73 8.77 8.00 0.1
20073−5127 99114 8.11± 0.01 8.13 H 0.34± 0.02 L 8.89 9.03 8.21 0.5
20514−0538 102945 6.07 5.99 G 0.53± 0.00 H 6.40 7.43 6.04 1.1
20597−5211 103620 8.32± 0.01 8.33 G 0.87± 0.00 H 9.01 9.51 8.48 0.4
21504−5818 107806 7.89± 0.01 7.89 H 0.78± 0.01 L 8.56 9.07 8.03 0.3
22156−4121 109908 4.810 4.79 G 0.83± 0.02 A 5.20 6.68 4.95 2.2
22313−0633 111170 6.615 6.15 G 0.64± 0.02 A 6.3 8.6 6.18 1.9
23171−1349 114962 8.14 8.16 G 0.62± 0.01 A 8.77 9.08 8.16 0.6

a. From SIMBAD.
b. From Hipparcos catalogue.
c. G = ground-based, H=HIP, T=Tycho.
d. ’A’ for an observation of V −I in Cousins’ system; ’F’, ’H’ and ’K’ when V −I derived from measurements in other bands/photoelectric
systems; ’L’ when V − I derived from Hipparcos and Star Mapper photometry; ’R’ when colors are unknown or uncertain.
e. From WDS.
f. From our own measurements in the I-band. When one more than one, it is the average, excluding uncertain (:) values.
g. Tycho number
h. This is the VT mag from the Tycho catalogue. No colors provided.
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