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Abstract: A fully adaptive particle filtering algorithm is proposed in this paper which is capable
of updating both state process models and measurement models separately and simultaneously.
The approach is a significant step toward more realistic online monitoring or tracking damage.
The majority of the existing methods for Bayes filtering are based on predefined and fixed state
process and measurement models. Simultaneous estimation of both state and model parameters has
gained attention in recent literature. Some works have been done on updating the state process model.
However, not many studies exist regarding an update of the measurement model. In most of the
real-world applications, the correlation between measurements and the hidden state of damage is not
defined in advance and, therefore, presuming an offline fixed measurement model is not promising.
The proposed approach is based on optimizing relative entropy or Kullback–Leibler divergence
through a particle filtering algorithm. The proposed algorithm is successfully applied to a case study
of online fatigue damage estimation in composite materials.

Keywords: fully adaptive particle filtering; cross entropy method; relative entropy; Kullback–Leibler
divergence; adaptive measurement model; diagnosis and prognosis; composite degradation

1. Introduction

The particle filtering (PF) approach has received significant attention recently as a very powerful
and flexible tool for damage diagnosis and prognosis. Its popularity has increased rapidly in the
reliability field and various versions, such as auxiliary PF [1], regularized PF [2] and unscented PF [3],
are proposed to improve the performance of the standard particle filtering algorithm. The standard PF
algorithm and its variants have been implemented for diagnostics and prognostics in a wide range
of applications, including life prediction of batteries and fuel cells [4–7], degradation assessment
and prediction in gears and bearings [8–10], health monitoring and prognostics of gas turbines [11],
machine tools [12], and pumps [13,14], and also, in damage estimation and prediction of composite
materials [15–18]. More application examples can be found in a recent review paper on the PF
algorithm by Jouin et al. [19]. Wang et al. [20] also presents a comprehensive survey on the remarkable
achievements in PF methods for solving single-target and multiple-target tracking problems in the
presence of false or missing data.

Although the focus of this study is on a PF method for nonlinear state-parameter estimation, it is
noteworthy that due to challenges in this field, new algorithms and technologies are continuously
being developed. The review by Li et al. [21] represents the cutting-edge advances in parametric
recursive filtering, namely Gaussian Approximation (GA) and Gaussian Mixture (GM) filters, to tackle
general nonlinear stochastic processes.
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Particle filtering, like any other state-space model, is defined based on two elements: the state process
model, which shows the progression of the hidden state of interest, xk, through time, P(xk|xk−1); and
the measurement model, which presents the relationship between the observed variables, yk, and the
hidden states, xk, at each time step, P(yk|xk). The final goal is to estimate the posterior probability
distribution of the hidden variable given all the observations, P(xk|y1:k).

In recent studies, particular attention has been paid to developing and updating the state process
model. Although several methods have been proposed and applied for simultaneous state-parameter
estimations, online updating of both states and parameters concurrently is a long-lasting problem [22]
and still needs improvement.

A common online Bayesian practice for simultaneous state-parameter estimation is augmenting
the state vector to consider both states and parameters. The very first approach was to assign a
prior distribution for the model parameters and then update states and parameters simultaneously
as a unified filtering problem [23]. This approach, however, results in degeneracy of the parameter
particles [22].

To overcome this issue, the addition of artificial noise to the model parameters in the augmented
state vector was proposed [24,25]. It was realized very early that this approach resulted in more
dispersed posterior distributions; therefore, methods based on kernel smoothing [23,26–30] were
proposed to control the random walk of the parameters. There are also some limitations for this
approach which are summarized in [30,31]. Tulsyan et al. [30] presents a comprehensive review on the
current methods for simultaneous state-parameter estimation.

Despite all the advances in this field, in practice, most of the time, particular focus is only on
updating the parameters of the state process model, while the parameters of measurement models are
considered to be completely known.

The measurement model plays a very important role in updating both states and model parameters.
In the literature, usually two types of measurements (yk) and, consequently, two types of measurement
models, are considered:

(1) The most common technique is that “yk is the same quantity as xk”, which can be measured with
some error. In other words, it is assumed that we can observe the hidden variable with some
measurement error or uncertainty, expressed by vk, which has two components of systematic and
stochastic variability. Some examples can be found in [4,11,32–34]. This leads to a very basic and
simple linear measurement model, as follows:

yk = xk + vk (1)

(2) The second group can be considered as the cases when “yk is NOT necessarily the same quantity
as xk”; for example in [16,35–37]. Therefore, yk has a different nature and needs to be related to
the hidden variable through some physical or data-driven model:

yk = h(xk, vk) (2)

An example for this case is when the hidden variable is the crack size and we observe acoustic
emission or ultrasonic waves instead. This case is closer to real-world situations; however, the
relationship between the hidden variable and observed variables is not always straightforward
to develop.

Although one of the powerful features of PF is dealing with nonlinear measurement models,
the majority of the published papers are based on case (1) in which the measurement model is a pure
linear function that is simply constructed by adding noise to the hidden variable.

Also, in cases when the observed variable is different than the hidden state, i.e., case (2), usually
a fixed, predefined measurement model has been used. However, in real-world applications, most
of the time, no predefined function exists to exactly explain the relationship between the state of the
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system and the observed variable for that particular study. This is especially noteworthy for online
monitoring, diagnostics and prognostics. On the other hand, any prior measurement model that might
exist usually comes from previous similar experiments or related literature and does not necessarily fit
the upcoming monitoring data for the particular case under study. The reason is that even identical
components do not show the exact same behavior under equal operating/testing conditions.

Thus, there is a need to consider cases where not only the state process model, but also the
exact measurement model, is not completely known. Therefore, the approach would be a significant
step forward to real-time degradation monitoring and life prediction. In particular, it is useful
for Structural Health Monitoring (SHM) in real-world applications because, when performing the
damage monitoring and prognostics in real-time, both of the underlying state processes (degradation
behavior) and measurement models (correlation between underlying degradation and condition-based
monitoring data) are not fully defined in advance for the particular component/system under specific
operating conditions.

The attempt for online estimation of the measurement model parameters, in addition to process
model parameters, in the literature is to consider all the unknown model parameters in one augmented
state vector and treat all of them in the same way [30,31,38,39]. However, this approach is questionable
as parameters of state process models and measurement models are different in nature. This paper
presents a new online approach for updating parameters of both process and measurement models
separately but simultaneously.

The method is constructed on top of augmented PF, only for parameters of the state process model
and adds the capability of adjusting the measurement model on the fly separately, based the concept
of cross entropy as the foundation of the proposed fully adaptive particle filtering, in order to learn the
parameters of the measurement model over time.

The rest of this paper is organized as follows: First, a brief introduction on augmented PF is
presented in Section 2. Then, the idea of fully adaptive PF is proposed, and its mathematical details
are discussed, in Section 3. Later on, Section 4 presents an application of the proposed method in a
case study of damage estimation in a composite component under fatigue. The results are compared
with augmented PF to demonstrate the capability of the proposed fully adaptive PF in dealing with
close to real-time damage estimation. Finally, some possible application challenges are presented and
discussed in Section 5.

2. Augmented Particle Filtering

The interest in extending the original PF to augmented PF was aroused recently, in order to estimate
both the process model parameters and states simultaneously [23,26,27,40,41]. This is particularly
useful when dealing with uncertain dynamic systems in which all or some of the process model
parameters might be unknown. Therefore, in addition to estimating the evolution of damage state
over time, it is necessary to learn the state process model by online tuning its parameters as well.

The extension of standard PF to augmented PF is not trivial. One of the conventionally proposed
strategies [26] is to treat the model parameters the same way as states, which results in estimating
the augmented state space problem as P(xk, θk|y1:k). Therefore, the state process model considers
parameter evolution as well:

θk = g(θk−1, γk−1)→ p(θk|θk−1)

xk = f (xk−1, θk, ωk)→ p(xk|xk−1, θk)
(3)

where g and γ are the transition function and random noise for model parameters (θ), respectively.
Similarly, f and ω are the evolution function/model and random noise for states (x). Subscript k, refers
to time step k. When measurements are available, both states and parameters should be updated using
the predefined fixed measurement model.
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The kernel smoothing method was proposed by [26] to control the additional noise introduced
to a system via variance in model parameters. The idea of kernel smoothing is to first reduce the
variability in parameters’ particles by shrinking them (with shrinkage parameter a) towards the current
estimated mean (θ), and then to add controlled reduced noise (a2γ) for the next step in the estimation
process, as expressed in Equation (4). In this equation, m is the kernel location calculated for each
particle (i):

mi
k−1 = (

√
1− a2)θi

k−1 + (1−
√

1− a2)θk−1 (4)

The value of a ∈ [0, 1] is suggested in [10,26] to be less than 0.2 for slowly varying particles
and more than 0.8 for highly stochastic processes. Interested readers can find more details about the
application of augmented PF in [15,36].

3. Proposed Fully Adaptive Particle Filtering Approach

In this section, the concept of fully adaptive PF is explained in more detail, and its features are
compared with standard PF and augmented PF. Then, the underlying mathematics of the approach is
presented and discussed.

The idea of fully adaptive particle filtering deals with the situation of the parameters of the
measurement model being unknown, in addition to the state process model. Therefore, nothing is
fixed or predefined in advance. This is a more complex problem because in order to update the states
and process model parameters, a measurement model is required and, in the proposed fully adaptive
PF approach, the measurement model itself is partially known and is adaptively changing, based on
new observations.

Similar to the strategy for updating the state process model [26], it is supposed here that the
measurement model is also “partially known”. That is, the “functional form” of the model is known,
but not the value of its parameters. This requirement can be met in practice by generating an offline
data-driven or a physics-based model, based on previous test data or relevant data from the literature.
For example, suppose that the results of a set of fatigue experiments are available in which the
fatigue crack length is the hidden variable of interest (x) and the acoustic emission signals are the
observations (y). Thus, an a priori observation model can be built offline that correlates the acoustic
emission signal to crack size, based on the historic experimental data. Now, if this model is to be applied
in the PF algorithm for damage estimation in a new experiment with different loading conditions, the
a priori fitted model needs to be updated online, to adjust to the conditions of the new experiment as
measurement data comes in. More specifically, both the state process model and measurement model
are condition-based and need to be adjusted to the particular case under study.

3.1. Proposed Measurement Adaptation Approach

The proposed approach for adaptive measurement is based on minimizing the relative entropy,
also known as Kullback–Leibler divergence, or KL-divergence, or KLD for short [42,43]. Relative
entropy between two probability distributions on a random variable is a measure of the distance
between them. More formally, relative entropy or KLD is an effective evaluation method to compare
two distributions, P and Q, as:

DKL(P||Q) =
∫

P(x) log
P(x)
Q(x)

dx (5)

Usually, P is the true distribution of the data (the objective distribution) and Q comes from the
model used to approximate that true distribution.

To apply the idea of KLD to the adaptive measurement model, P is the distribution of the real
measurement that is captured online at each time step (k) with some degree of uncertainty. On the
other hand, Q is the distribution built based on predicted measurements at that time, coming from the
previously-updated measurement model. In standard and augmented PF, predicted measurements are
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calculated by applying the fixed and predefined measurement models on the particles after they are
propagated using the state process model. Here, predicted measurements need to be calculated using
a partially known (approximate) measurement model (h̃). Since the exact values of the parameters
in h̃ are unknown, the measurement model might be inaccurate, which will lead to false predicted
measurements. In this situation, the distribution (Q), fitted to the predicted observations, might be
significantly different than the distribution of the real observation (P). The main idea is to optimize the
parameters in the measurement model (h̃) with the objective of minimizing the KLD between Q and P.

This optimization problem is applied through the cross entropy method (CE method), which is
rooted in the adaptive variance minimization algorithm for the rare event probability estimation in
stochastic networks [44,45]. In general, the CE method is performed in two iterative phases [46]:

(1) (Generation of a set of random samples (e.g., vectors, trajectories) according to a specified
parameterized model.

(2) Updating of the model parameters, based on data generated in the previous step, to produce
“better” samples in the next iteration. This is done by KLD minimization.

To better understand the CE method, let X = (X1, . . . , Xn) be a random vector with a probability
density function f (X; v) with respect to parameter v. Consider S to be some real-valued function on X.
Suppose the goal is to find the minimum of S over X and the corresponding minimizer, x∗:

S(x∗) = γ∗ = min(S(x)) (6)

Accordingly, the rare-event probability (`) can be defined as the probability that S(X) is equal
or less than some real value (γ) as ` = P(S(X) ≤ γ). This probability would be very small (i.e., rare
event), if the level (γ) is chosen to be very close to γ∗. One of the most effective ways of estimating
rare-event probabilities is to use importance sampling. Therefore, the importance sampling estimator
of ` can be defined as:

ˆ̀ =
1
N

N

∑
i=1

f (Xi, v)
g(Xi)

I{S(Xi)≤γ} (7)

In which, I{S(Xi)≤γ} is the indicator function that gets a value of 1 when the condition {S(Xi) ≤ γ}
is met and 0 otherwise. g(X) is the importance sampling density function and (X1, . . . , XN) are iid
samples drawn from g(X). The optimal importance sampling density that provides zero variance can
be defined by the change of measure:

g∗(Xi) ≡
f (Xi, v)I{S(Xi)≤γ}

`
(8)

However, g∗(Xi) depends on the unknown value (`). Therefore, the idea of the CE method is
to choose the parameter vector in f (Xi, v), such that the distance between the densities, g∗(X) and
f (X; v), is minimal. This can be done by minimizing the KLD:

DKL(g∗(x)|| f (x; v)) =
∫

g∗(x) log g∗(x)dx−
∫

g∗(x) log f (x; v)dx (9)

Minimizing DKL(g∗|| f (x; v)) is equivalent to maximizing the last term in Equation (9):

max
∫

g∗(x) log f (x; v)dx = max
∫ f (x, v)I{S(x)≤γ}

`
log f (x; v)dx (10)

which can be estimated with another round of importance sampling. More details can be found
in [45–47].

In practice, in order to apply the CE method, the sampling distribution is not required to be
related to the objective function (S) and can be chosen quite arbitrarily. Usually, Gaussian distributions
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with independent means, µt = (µ1, µ2, . . . , µn)t, and standard deviations, σt = (σ1, σ2, . . . , σn)t, are
used to generate random samples for each of the unknown variables, X = (X1, . . . , Xn). At each
iteration of the CE method, vectors of µt and σt will be updated. And at the end of the algorithm with
a predefined stopping threshold, sequences of µt and σt are generated in a way that the vector of the
mean of the parameters (µt) tends to the optimizer (X∗), and the vector of standard deviations (σt)
tends to the zero vector.

Recently, KLD was introduced to the PF algorithm as a statistical approach in the context of mobile
robot localization [48,49], to increase the efficiency of particle filters by “adapting the sample size”
during the estimation process. In another study [30], KLD was implemented in the augmented PF, but,
it was only used to tune/optimize the kernel width. The proposed approach in our research, however,
implements the concept of using KLD to update the whole measurement model and adjusting its
parameters online, with a fixed number of particles. In the following text, we will determine how KLD
is used to dynamically adapt the measurement model in PF over time.

3.2. Introducing the KLD into the Augmented Particle Filtering Algorithm

Consider the procedure of the augmented PF algorithm in which the state process model with
unknown model parameters can be demonstrated by Equation (3). In the proposed fully adaptive PF
algorithm, it is also assumed that the measurement model is partially defined. Suppose the analyst’s
belief about the approximate prior measurement model is presented by:

ỹk = h̃(xk, ϕk, τk)→ P(ỹk|xk−1, ϕk) (11)

where, ϕ is the measurement model parameters that need to be updated through time as new real-time
monitoring data becomes available. τ is the uncertainty in the model (h̃), based on parameters and
measurement uncertainty.

The proposed procedure of the fully adaptive PF is as follows:
At each time step (k), the state process model in Equation (3) is used to propagate the particles

one step ahead in time. In standard or augmented PF, the predefined measurement model would be
applied at this stage, to estimate the weights of the particles regarding the true observation at that
time. However, since here, the measurement model is not fully defined in advance, before assigning
the weights to the particles, the measurement model needs to be adjusted. Therefore, the tentative
prior measurement model in Equation (11) will be used to generate a set of predicted observations ỹk
based on the current particle state. Distribution Q

(
ỹi

k|x
i
k
)
, i = 1, . . . , n is the probability distribution

function fitted to the set of predicted observations, ỹi
k.

On the other hand, when the real measurement (yk) is captured with some known measurement
noise (due to measuring instruments and procedure), P(yk|xk) can be defined as the probability
distribution fitted to the real measurement (yk) at time step k. Therefore, there would be two
distributions at each time step: P(yk|xk) and Q

(
ỹi

k|x
i
k
)
, which ideally should be very similar. However,

since the model parameters (ϕ) in h̃ are unknown, predicted measurements might be far from the real
observation at time k. This will result in assigning negligible weights to the particles and, consequently,
the algorithm will collapse because of the very low likelihood. However, the root of this problem is the
fact that the measurement model is not completely defined in the first place. Therefore, to address this
issue, the proposed approach is to update the measurement model by adjusting its parameters (ϕ) in a
way that the distance between Q

(
ỹi

k|x
i
k
)

and P(yk|xk) is minimized. Using the KLD in Equation (5),
the optimum ϕ can be found based on real measurement data at time k. Then, the updated measurement
model is used to calculate the weights of the particles as before. This procedure will be repeated every
step as a new measurement is captured. Algorithm 1 presents the algorithm for the fully adaptive PF,
which is based on augmented PF with kernel smoothing.
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Algorithm 1. Proposed fully adaptive PF algorithm

Initiation step:
Sample N particles from initial distributions of states and parameters:

xi
0 ∼ p(x0) i = 1, 2, . . . , N

θi
0 ∼ p(θ0) i = 1, 2, . . . , N

Assign initial equal weights to all the particles

wi
0 ∼

1
N

i = 1, 2, . . . , N

Recursive steps:
Prediction:
Estimate mi

k−1 for each parameter using the shrinkage rule in Equation (4)
Draw new samples for parameter vector from:

θi
k ∼ N

(
·|mi

k−1, a2γk−1

)

Propagate each particle one step forward using state process model with new sampled parameter:

xi
k ∼ p(·|xi

k−1, θi
k)

Update:
Compute the predicted observations using the tentative measurement model:

ỹk = h̃(xk, ϕk, τk)

Update the parameters of h̃ to minimize the KLD:

ϕk = argmin{DKL(P||Q)} = argmin

{∫
P
(

yk|xi
k, θi

k

)
log

[
P(yk|xi

k, θi
k)

Q
(
ỹi

k|x
i
k, θi

k, ϕk
) ]}

Calculate the weights for each particle as new measurement (yk) becomes available:

wi
k = wi

k−1·p
(

yk|xi
k, θi

k, ϕk

)

Normalize the weights:

wi
k =

wi
k

∑N
i=1 wi

k

Estimate:
Estimate the expected state:

xk =
N

∑
i=1

wi
k·x

i
k

Resample:
Resample (with replacement) new set of particles for states and process model parameters{

xi
k, θi

k

}N

i=1
based on calculated weights (wi

k).
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4. Case Study: Real-Time Damage Estimation in Composite Material

The use of composite materials in industry is increasing rapidly because of their low weights,
high strengths and long fatigue lives. However, the inhomogeneity of composite materials
makes the degradation process very complicated, especially when subjected to cyclic loading.
Consequently, predicting damage growth and estimating the remaining useful life in real-time is
a challenging endeavor.

In this section of the paper, the capability of the proposed fully adaptive PF to handle the
real-world situations is presented when both state process and measurement models are not fully
known and need to be adjusted for the particular case under study.

Accordingly, the published results of Naderi, et al.’s experiment [50] on Glass/Epoxy (G10/FR4)
composite laminate during bending fatigue damage are used to demonstrate fully adaptive PF. Indeed,
Reference [50] presented the dissipated thermal energy evolution versus the number of cycles for
two fatigue experiments, both subjected to a frequency of 10 Hz, but with different displacement
amplitudes of (a) 46.54 mm and (b) 38.1 mm, respectively. The total number of cycles at failure for
experiments (a) and (b) were 4000 and 6800, respectively. The variation in the component’s surface
temperature during the degradation was also monitored and reported for both test conditions.

Damage is defined as the normalized dissipated thermal energy, D = H
H f

, where H f is the final
value of the dissipated energy at the time when failure occurs. H f is estimated to be approximately
1.43 times the value of dissipated energy measured at about 85% of the total fatigue life in a
tension–tension test [50].

Damage evolution through time (n) is estimated using D = 1−
(

1− ( n
N f

)B
)A

, in which N f is the
total life and A and B are model parameters. In order to convert it to the form of the state process
model, one can discretize this damage evolution model with sufficiently small ∆N as:

Dk = Dk−1 +
∆D
∆n
|k−1·∆n·eωk (12)

where, ∆D/∆n is the derivative of D with respect to n. eωk is used to show the random behavior of the
state process model; ω is white Gaussian noise with mean zero and standard deviation σ, and k is the
count of fatigue load cycle.

The temperature measurements induced by thermal dissipation around the fatigue damage area
and detected by an infrared device, are considered to be the monitoring data for updating the damage
estimation via the measurement model:

Tk = ϕ0 + ϕ1·Dk + ϕ2·Dk
2 + ϕ3·Dk

3 + υk (13)

Interested readers can refer to [15] for more detail on this case study and how to set up the problem in
the frame of augmented PF.

Now, consider the scenario in which test (a) has already been performed, and the results are available.
Suppose the developed state process and measurement models based on test (a) are, respectively, the
only available information about the evolution of damage and its possible relationship to the online
monitoring data. Then, this information is going to be applied online, to estimate and predict real-time
damage in the second experiment that is subjected to different test conditions. The augmented PF
provides the capability of updating the parameters of the state process model to adjust it to the
new condition in test (b). However, it cannot update the measurement model. Figure 1 shows the
results of the fatigue damage estimation when the predefined measurement model with fixed model
parameters obtained from the first experiment is used in the augmented PF for damage estimation in
experiment (b).
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Figure 1. Damage estimation in a composite specimen under fatigue loading (experiment (b)), using
augmented particle filtering (PF) with the fixed, but uncertain predefined measurement model coming
from experiment (a).

As expected and demonstrated in Figure 1, the augmented PF substantially deviates from the
true track of the damage evolution in the component, because the existing measurement model was
derived from a different (albeit related) experiment and was not adjusted for the particular damage
progression at hand. This underlines the importance of learning/updating the measurement model in
addition to the state process model.

Therefore, in real-time SHM, it is necessary to adaptively update the parameters of the measurement
model encapsulated in ϕk. For this case study, ϕk is as follows:

ϕk = [ϕ0, ϕ1, ϕ2, ϕ3]k (14)

The state process model is the same as before, and is given by Equation (3). Thus, the process
model parameter vector is θk =

[
A, B, N f

]
k
. Note that the total life of component N f is unknown and

therefore, is treated as another model parameter that needs to be learned.
Figure 2 shows that the proposed fully adaptive PF approach can drastically improve the estimation

of true damage in the composite when both state process and measurement models are partially
known. A comparison of Figures 1 and 2 reveals the strength and improvements in the proposed
fully adaptive PF, in situations where the pre-existing measurement model involves a high level of
uncertainty. For better demonstration, Figure 3 presents damage estimations of the two methods, side
by side. In fact, in the early stages of damage evolution, the predictions of fully adaptive PF are not
as good as augmented PF, with the predefined measurement model. This is mainly because fully
adaptive PF starts the estimations without any accurate knowledge about both state and measurement
model parameters. Therefore, it is expected to provide less accurate, but still reasonable, results at the
beginning. Indeed, the closer the initial values of the parameters to their expected true values, the
faster and more robust convergence will be achieved. Here, it is intended to show that even when the
analyst does not have enough information about the true values of the model parameters, the fully
adaptive PF is still capable of estimating both states and parameters with reasonable accuracy. It can
be seen that as time goes by and more measurement data arrives, the fully adaptive PF estimates the
true damage evolution with less error, while the augmented PF significantly deviates from the true
track of the damage, especially toward the end of life, which is usually a primary objective in SHM.



Entropy 2018, 20, 100 10 of 15

Entropy 2018, 20, x  9 of 15 

 

progression at hand. This underlines the importance of learning/updating the measurement model 
in addition to the state process model. 

Therefore, in real-time SHM, it is necessary to adaptively update the parameters of the 
measurement model encapsulated in . For this case study,  is as follows: = [ , , , ]  (14) 

The state process model is the same as before, and is given by Equation (3). Thus, the process 
model parameter vector is = [ , , ] . Note that the total life of component  is unknown and 
therefore, is treated as another model parameter that needs to be learned.  

Figure 2 shows that the proposed fully adaptive PF approach can drastically improve the 
estimation of true damage in the composite when both state process and measurement models are 
partially known. A comparison of Figures 1 and 2 reveals the strength and improvements in the 
proposed fully adaptive PF, in situations where the pre-existing measurement model involves a high 
level of uncertainty. For better demonstration, Figure 3 presents damage estimations of the two 
methods, side by side. In fact, in the early stages of damage evolution, the predictions of fully 
adaptive PF are not as good as augmented PF, with the predefined measurement model. This is 
mainly because fully adaptive PF starts the estimations without any accurate knowledge about both 
state and measurement model parameters. Therefore, it is expected to provide less accurate, but still 
reasonable, results at the beginning. Indeed, the closer the initial values of the parameters to their 
expected true values, the faster and more robust convergence will be achieved. Here, it is intended to 
show that even when the analyst does not have enough information about the true values of the 
model parameters, the fully adaptive PF is still capable of estimating both states and parameters 
with reasonable accuracy. It can be seen that as time goes by and more measurement data arrives, 
the fully adaptive PF estimates the true damage evolution with less error, while the augmented PF 
significantly deviates from the true track of the damage, especially toward the end of life, which is 
usually a primary objective in SHM. 

In order to mathematically show the increase in accuracy with the fully adaptive PF approach, the 
Root Mean Square Error (RMSE) is also calculated for both methods. The RMSE for the augmented PF 
is 0.057 and for fully adaptive PF is 0.022. Note that the last 200 cycles are not considered in the 
numerical calculation of RMSE, because in that period, the augmented PF completely diverges and 
produces infinite numbers, so the RMSE for augmented PF would be infinite. 

 

Figure 2. Damage estimation in a composite specimen under fatigue loading (experiment (b)) using 
fully adaptive PF which updates the parameters of the inaccurate pre-existing measurement model 
coming from experiment (a). 

Figure 2. Damage estimation in a composite specimen under fatigue loading (experiment (b)) using
fully adaptive PF which updates the parameters of the inaccurate pre-existing measurement model
coming from experiment (a).Entropy 2018, 20, x  10 of 15 

 

 
Figure 3. Comparison between augmented PF with the fixed measurement model and fully  
adaptive PF. 

Figure 4 shows how the state process model parameters change over time until their variations 
decrease in fully adaptive PF. A high level of uncertainty is observed (in both Figures 2 and 4) at the 
beginning of the process because all the unknown model parameters are selected randomly. This 
uncertainty decreases through time when more measurements are obtained. 

 
(a)

 
(b)

Figure 3. Comparison between augmented PF with the fixed measurement model and fully adaptive PF.

In order to mathematically show the increase in accuracy with the fully adaptive PF approach,
the Root Mean Square Error (RMSE) is also calculated for both methods. The RMSE for the augmented
PF is 0.057 and for fully adaptive PF is 0.022. Note that the last 200 cycles are not considered in the
numerical calculation of RMSE, because in that period, the augmented PF completely diverges and
produces infinite numbers, so the RMSE for augmented PF would be infinite.

Figure 4 shows how the state process model parameters change over time until their variations
decrease in fully adaptive PF. A high level of uncertainty is observed (in both Figures 2 and 4) at
the beginning of the process because all the unknown model parameters are selected randomly.
This uncertainty decreases through time when more measurements are obtained.
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Parameter A; (b) Model Parameter B; (c) Model Parameter Nf.

Figure 5 tracks the convergence of measurement model parameters [ϕ0, ϕ1, ϕ2, ϕ3]. The red line in
each graph is the expected value for that parameter, coming from curve fitting. The expected values are
derived offline, after completion of the experiment, by fitting the measurement model (Equation (13))
to all the recorded measurement data. Note that even though the parameters in the measurement
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model are noisy and do not necessarily converge to their expected values (especially, parameter ϕ3),
the combination of them is able to successfully estimate the damage, as presented earlier in Figure 2.
Moreover, it is worth noting that the expected values of the parameters were estimated offline, from
the available data. Thus, if the data is limited or scarce, the estimated expectations will be off the
true population expectations for these parameters. Indeed, updating both the state process model
and measurement model through fully adaptive PF delivers improved flexibility in tracking the true
damage evolution.
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All the computations in this research were performed in R programming language (The R Project
for Statistical Computing) [51]. R codes were developed for augmented PF and fully adaptive PF and
results were compared. Package CEoptim [47] was applied to carry out the cross entropy calculations
in the proposed algorithm for fully adaptive PF.

5. Challenges of the Proposed Approach

The main concern in proposed fully adaptive PF is setting the initial values for model parameters,
ϕ and θ. If the state process model has m1 parameters and the measurement model consists of m2

parameters, θ and ϕ will be vectors of sizes m1 and m2, respectively. Also, each of the model parameters
is a random variable and needs the mean and standard deviation to be defined. Therefore, this will
result in 2× (m1 + m2) unknown variables. In addition, there is the process noise (ω) to represent the
stochasticity of the process, and the measurement noise (ν), which is related to the uncertainty in the
measured data. Therefore, there are 2× (m1 + m2) + 2 random variables (hyper-parameters) in total
that should be addressed accordingly.

The existence of multiple uncertain random variables results in additional uncertainty in the
SHM. However, the proposed approach is mainly recommended for application in online monitoring
contexts, where a high sampling rate (resulting in large-scale data sets) and continuous streaming of
monitoring data are expected. More frequent observation data will increase the convergence rate in
the model parameters and, therefore, the concern of uncertain estimations can be managed.
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On the other hand, it might be argued that the method introduces some bias toward the measurement.
In other words, minimizing the KLD can be considered to shift the probability distribution (Q) towards
P, before weighing the particles. Therefore, the approach is sensitive to the true measurements. Indeed,
this is a favorable property that makes sure the tentative inaccurate measurement model gets updated,
based on real-time true measurements, before being used to weigh the particles.

However, if the arrival of real-time measurements is sparse, or too noisy, or not informative
enough, there is a possibility that the method will fail or become skewed towards unreliable measurements.
To overcome this problem, it can be beneficial to use a regularization parameter, to control how
much the distribution (Q) is allowed to shift towards P, which is regularizing the KLD. Consequently,
this method will prevent the distribution (Q) from getting too close to the distribution (P), if the
measurement is not reliable enough. This idea needs to be validated in future studies.

Finally, the trade-off of dynamically updating the parameters of both the process model and
measurement model, along with estimating the states, would clearly be more expensive computations.
The approach requires solving an optimization problem at each time step, which comes at a high
computational cost. For example, in the case study presented in Section 4, each time step for performing
the augmented PF (with 1000 particles for each variable) was about 0.01 s on the personal computer
(Dell, MD, USA) with 3.6 GHz Intel(R) Xeon(R) CPU, whereas, it took 0.02 to 0.21 s for every time step
for fully adaptive PF to update both state process and measurement models.

6. Conclusions

In this paper, an algorithm for fully adaptive PF was proposed. The aim of the proposed approach
was to develop a PF technique that requires neither the fully-known state process model, nor a
predefined measurement model. Thus, both state process and measurement models are learned
and updated online over time. It is particularly useful for performing fully-online, structural health
monitoring. However, the approach is general and can be used for any tracking/monitoring/predicting
purposes in real time, when a substantial amount of online monitoring data is available. The proposed
algorithm incorporates the concept of KLD to update the parameters of the measurement model,
based on real-time upcoming measurements, while the parameters of the process model are learnt via
augmented PF as before. Also, potential concerns in applying the approach, including the existence of
multiple uncertain hyper-parameters, bias toward upcoming measurements and computational costs,
were discussed and possible solutions were proposed, which should be examined in future studies.
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