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Strong convergence of the symmetrized Milstein scheme for some
CEV-like SDEs

Mireille Bossy∗1 and Héctor Olivero Quinteros†2

1TOSCA Laboratory, INRIA Sophia Antipolis – Méditerranée, France
2Departamento de Ingeniería Matemática, Universidad de Chile, Chile

August 3, 2015

Abstract
In this article we study the rate of convergence of a symmetrized version of the Milstein scheme applied to the

solution of the SDE

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ|Xs|αdWs, x0 > 0, σ > 0, α ∈ [ 1
2
, 1).

Under suitable hypotheses we prove a strong rate of convergence of order one, recovering the classical result of
Milstein for SDEs with smooth coefficients. Some numerical experiments complement our theoretical analysis.

1 Introduction and main result
The Milstein scheme was introduced by Milstein in [10] for one dimensional Stochastic Differential Equations (SDEs)
having smooth diffusion coefficient. Introducing an appropriated correction term, this scheme has better convergence
rate for the strong error than the classical Euler-Maruyama scheme. Typically, when the drift and diffusion coefficient
of one dimensional SDE are twice continuously differentiable with bounded derivatives, the Milstein scheme is of
order one for strong error (see eg. Talay [12]) instead of one-half for the Euler-Maruyama scheme. This well-know
fact produces remarks on blogs and internet forums that sometimes recommend to use the Milstein scheme for constant
elasticity of variance (CEV) models in finance, or it extension with stochastic volatility as SABR model, (see e.g
Delbaen and Shirakawa [7] and Lions and Musiela [9] for a discussion on the (weak) existence of such models); CEV
are popular stochastic volatility models of the form

dXt = µXtdt+ σXγ
t dWt

with 0 < γ < 1. But the interesting fact in this story is that the rate of convergence of the Milstein scheme, for such
family of processes with 0 < γ < 1 is not yet well studied, to the best of our knowledge.

In this article we establish a rate of convergence result for a symmetrized version of the Milstein scheme applied
to the solution of the SDE of the form

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ|Xs|αdWs, (1.1)

where x0 > 0, σ > 0 and 1
2 ≤ α < 1. Of course Equation (1.1) does not satisfies the hypothesis to apply the

classical result of Milstein [10]. In particular, the diffusion coefficient is only Hölder continuous whereas the classical
hypothesis is to have a C2 coefficient.
∗email: mireille.bossy@inria.fr
†email: holivero@dim.uchile.cl
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The main picture of our convergence rate result is that Milstein scheme stay of order one in the case of Equation
(1.1), but some attention must be paid to the values of b(0), α and σ.

Other strategies for the discretization of solution to (1.1) have been proposed and we refer to the recent review
on this topic proposed in Chassagneux et all [6] . In numerical experiments, we compare the symmetrized Milstein
scheme with the Implicit Scheme recently proposed by Alfonsi [1][2], with the Modified Euler Scheme proposed by
Chassagneux et al [6], and with the simple symmetrized Euler scheme.

In the whole paper, we work under the following basis-hypothesis:

Hypothesis 1.1. The power parameter α in the diffusion coefficient belongs to [ 1
2 , 1). The drift coefficient b is Lipschitz

with constant K > 0, and is such that b(0) > 0.

Hypothesis 1.1 is a classical assumption to ensure a unique strong solution valued in R+. We assume it in all the
forthcoming results of the paper, without recall it explicitly. To state the convergence result (see Theorem 1.6), another
Hypothesis 1.5 will be added and discussed, that in particular constrains the values α, b(0) and σ.

1.1 The symmetrized Milstein scheme
To complete our task we follow the ideas of Berkaoui, and Diop in [3] who analyze the rate of convergence of the
strong error for the symmetrized Euler scheme applied to Equation (1.1). Although, whereas they utilize an argument
of change of time, we consider first a weighted error for which we prove a convergence result, and then we utilize this
result to prove the convergence of the actual error.

We consider x0 > 0, T > 0, and N ∈ N. We define the constant step size ∆t = T/N and tk = k∆t. Over this
discretization of the interval [0, T ] we define the Symmetrized Milstein Scheme (SMS) (Xtk , k = 0, . . . , N) by

Xtk =


x0, for k = 0,∣∣∣Xtk−1

+ b(Xtk−1
)∆t+ σX

α

tk−1
(Wtk −Wtk−1

)

+
ασ2

2
X

2α−1

tk−1

[
(Wtk −Wtk−1

)2 −∆t
]∣∣∣∣ , for k = 1, . . . , N.

In the following, we use the time continuous version of the SMS, (Xt, 0 ≤ t ≤ T ) satisfying

Xt =
∣∣∣Xη(t) + b(Xη(t))(t− η(t)) + σX

α

η(t)(Wt −Wη(t))

+
ασ2

2
X

2α−1

η(t)

[
(Wt −Wη(t))

2 − (t− η(t))
] ∣∣∣, (1.2)

where η(t) = supk∈{1,...,N}{tk : tk ≤ t}. We also introduce the increment process (Zt, 0 ≤ t ≤ T ) defined by

Zt = Xη(t) + b(Xη(t))(t− η(t)) + σX
α

η(t)(Wt −Wη(t))

+
ασ2

2
X

2α−1

η(t)

[
(Wt −Wη(t))

2 − (t− η(t))
]
,

(1.3)

so that Xt = |Zt|. Thanks to Tanaka’s Formula, the semi-martingale decomposition of Xt is given by

Xt = x0 +

∫ t

0

sgn(Zs)b(Xη(s))ds+
1

2
L0
t (X)

+

∫ t

0

sgn(Zs)
[
σX

α

η(s) + ασ2X
2α−1

η(s) (Ws −Wη(s))
]
dWs.

(1.4)

Moment upper bound estimations for X and X

We summarize some facts about (Xt, 0 ≤ t ≤ T ), the proofs of which can be found in Bossy and Diop [5].
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Lemma 1.2. For any x0 ≥ 0, for any q ≥ 1, there exists a positive constant C depending on q, but also on the
parameters b(0), K, σ, α and T such that

E
[

sup
0≤t≤T

X2q
t

]
≤ C(1 + x2q

0 ). (1.5)

When 1
2 < α < 1, for any q > 0,

sup
0≤t≤T

E
[
X−qt

]
≤ C(1 + x−q0 ). (1.6)

When α = 1
2 , for any q such that 1 < q < 2b(0)/σ2 − 1,

sup
0≤t≤T

E
[
X−qt

]
≤ Cx−q0 . (1.7)

Lemma 1.3. Let (Xt, 0 ≤ t ≤ T ) be the solution of (1.1) with 1
2 < α < 1. For all µ ≥ 0, there exist a positive

constant C(T, µ), increasing in µ and T , depending also on b, σ, α and x0 such that

E exp

(
µ

∫ T

0

ds

X
2(1−α)
s

)
≤ C(T, µ). (1.8)

When α = 1
2 , the inequality (1.8) holds if b(0) > σ2/2 and µ ≤ σ2/8(2b(0)/σ2 − 1)2.

Notice that the condition b(0) > σ2/2 is also imposed by the Feller test in the case α = 1
2 for the strict positivity

of X , that allows to rewrite Equation (1.1) as

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ
√
XsdWs.

Using the semimartingale representation (1.4), we prove the following Lemma regarding the existence of moments
of any order for Xt.

Lemma 1.4. For any x0 ≥ 0, for any q ≥ 1, there exists a positive constant C depending on q, but also on the
parameters b(0), K, σ, α and T such that

E
[

sup
t∈[0,T ]

X
2q

t

]
≤ C(1 + x2q

0 ).

The proof of this lemma is based on the Lipschitz property of b and classical combination of Itô formula and Young
Inequality. For the sake of completeness, we give a short proof in the Appendix.

1.2 Strong rate of convergence
The main result of this works is the strong convergence at rate one of the SMS X to the exact process X . The
convergence holds in L2p for p = 1 or p ≥ 3/2. To state it, we add to Hypothesis 1.1 the following:

Hypothesis 1.5.

(i) For α > 1
2 we assume b(0) > 2α(1− α)2σ2. Whereas for α = 1

2 we assume b(0) > 3 (3p+ 1)σ2/2.

(ii) The drift coefficient b is of class C2(R), and b′′ has polynomial growth.

About Hypothesis 1.5-(i), notice that for α > 1
2 , Assumption (i) becomes easier to fulfill as α increase, and does

not depend on p. On the other hand, for α = 1
2 , Assumption (i) depends on p in a unpleasant manner. However, as we

will see later in Section 4 (see Table 1), this kind of dependence in p is expected, and similar conditions are asked in
the literature for other approximation schemes in order to obtain similar rate of convergence results.
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Also, notice that Hypothesis 1.5-(i) is a sufficient condition: in the numerical experiments we still observe a rate
of convergence of order one for parameters that do not satisfy it, but we also observe that for parameters such that
b(0)� σ2, although the convergence occurs, it does in a sublinear fashion.

On the other hand, Hypothesis 1.5-(ii) is the classical requirement for the strong convergence of the Milstein
scheme. As we will see later in the proof of the main theorem, with the help of the Itô formula, this hypothesis let us
conclude that

E
[
|Xs −Xs|2p−1

(
b(Xη(s))− b(Xs)

)]
≤ C

(
sup
u≤s

E
[
|Xu −Xu|2p

]
+ ∆t2p

)
instead of

E
[
|Xs −Xs|2p−1

(
b(Xη(s))− b(Xs)

)]
≤ C

(
sup
u≤s

E
[
|Xu −Xu|2p

]
+ ∆tp

)
,

which is the classical bound obtained for the Euler-Maruyama Scheme under a Lipschitz condition for a drift b.

To lighten the notation, we consider for α ∈ ( 1
2 , 1)

bσ(α) := b(0)− 2(1− α)2ασ2,

K(α) := K +
ασ2

2
(2α− 1)[2(1− α)]−

2(1−α)
2α−1 ,

(1.9)

we extend this definitions to α = 1
2 taking limits. So, bσ(1/2) = lim

α→ 1
2
bσ(α) = b(0) − σ2/4, and K(1/2) =

lim
α→ 1

2
K(α) = K. Notice that limα→1K(α) = K + σ2/2, and since K(α) is continuous on ( 1

2 , 1), we have that

K(α) is bounded. This is especially important in the definition of ∆max(α) bellow, because tell us that α 7→ ∆max(α)
is strictly positive and bounded on [ 1

2 , 1).
We now state our main theorem.

Theorem 1.6. Assume Hypotheses 1.1 and 1.5. Define a maximum step size ∆max(α) as

∆max(α) =
x0

(1−
√
α)bσ(α)

∧


1

4αK(α)
, for α ∈ ( 1

2 , 1)

1

4K
∧ x0, for α = 1

2 .
(1.10)

Let (Xt, 0 ≤ t ≤ T ) be the process defined on (1.1) and (Xt, 0 ≤ t ≤ T ) the symmetrized Milstein scheme given in
(1.2). Then for p = 1 or p ≥ 3/2, there exists a constant C depending on p, T , b(0), α, σ, K, and x0, but not on ∆t,
such that for all ∆t ≤ ∆max(α),

sup
0≤t≤T

E
[
|Xt −Xt|2p

]
≤ C∆t2p. (1.11)

The rest of the paper goes as follow. In Section 2 we state some preliminary results on the scheme which will
be building blocks in the proof of Theorem 1.6. Section 3 is devoted to the proof of the convergence rate. The main
idea is first to introduce a weight process in the Lp(Ω)-error, and get the rate of convergence for this weighted error
process, and after use this intermediate bound to control the Lp(Ω)-error. In section 4 we display some numerical
experiments to show the effectiveness of the theoretical rate of convergence of the scheme, but also to test Hypotheses
1.5-(i) on a set of parameters. In Section 5 we present the proof of the preliminary results on the scheme. Finally we
have included in a small appendix a couple of proofs to make this article self contained.

2 Some preliminary results for X

This short section is devoted to state some results about the behavior of X , their proofs are postponed to Section 5.
All these results hold under Hypothesis 1.5-(i) which is in fact stronger than what we need here. So, we present the
next lemmas with their minimal hypotheses (still assuming Hypothesis 1.1).

4



Lemma 2.1 (Local error). For any x0 ≥ 0, for any p ≥ 1, there exists a positive constant C, depending on p, T , but
also on the parameters of the model b(0), K, σ, α, such that

sup
0≤t≤T

E
[
|Xt −Xη(t)|2p

]
≤ C∆tp.

By construction the scheme X is nonnegative, but a key point of the convergence proof resides in the analysis
of the behavior of X or Z visiting the point 0. The next Lemma shows that although Zt is not always positive, the
probability of Zt being negative is actually very small under suitable hypotheses.

Lemma 2.2. For any α ∈ [ 1
2 , 1), if b(0) > 2α(1 − α)2σ2, and ∆t ≤ 1/(2K(α)), then there exist positive constants

C and γ, depending on the parameters of the model, but not on ∆t, such that

sup
0≤t≤T

P
(
Zt ≤ 0

)
≤ C exp

(
− γ

∆t

)
.

To prove Lemma 2.2, it is necessary to establish before the following one, which although technical, gives some
intuition about the difference between the SMS and the Symmetrized Euler scheme presented in [3].

Lemma 2.3. Fix ρ ∈ (0, 1], and set x̄(α) = bσ(α)/K(α). For any α ∈ [ 1
2 , 1) if b(0) > 2α(1 − α)2σ2, then for all

t ∈ [0, T ],
P
[
Zt ≤ (1− ρ)bσ(α)∆t, Xη(s) < ρx̄(α) ] = 0.

Roughly speaking, from this lemma we see that when Zη(t) > 0, Zt becomes negative only when

|Zt − Zη(t)| > ρx̄(α),

but observe that only the left-hand side of this inequality depends on ∆t, and its expectation decreases to zero propor-
tionally to

√
∆t, according to Lemma 2.1.

Now imposing ∆t small enough, we prove an explicit bound for the local time moment of X .

Lemma 2.4. For any α ∈ [ 1
2 , 1), if b(0) > 2α(1 − α)2σ2 and ∆t ≤ 1/(2K(α)) ∧ x0/[(1 −

√
α)bσ(α)] then there

exist a positive γ > 0 depending on α, b(0), K, and σ but not in ∆t such that

E
(
L0
T (X)2

)
≤ C 1√

∆t
exp

(
−γ
2∆t

)
.

We end this section with another key preliminary result, which is the convergence rate of order 1 for the corrected
local error. Although the classical local error is of order 1/2, as stated in Lemma 2.1, the local error seen by the
diffusion coefficient function, corrected with the Milstein term stays of order 1.

Lemma 2.5 (Corrected local error process). Let us fix p ≥ 1, and α ∈ [ 1
2 , 1). For α > 1

2 , assume b(0) > 2α(1−α)2σ2,
whereas for α = 1

2 , assume b(0) > 3(2p + 1)σ2/2. Then, there exists C > 0, depending on the parameters of the
model but not in ∆t, such that for all ∆t ≤ ∆max(α), the Corrected Local Error satisfies

sup
0≤t≤T

E
[∣∣∣σXα

t − σX
α

η(t) − ασ2X
2α−1

η(t) (Wt −Wη(t))
∣∣∣2p] ≤ C∆t2p.

3 Proof of the Main Theorem
In what follows we denote

Et := Xt −Xt

and
Σt := sgn(Zt)

[
σX

α

η(t) + ασ2X
2α−1

η(t) (Wt −Wη(t))
]
− σXα

t

so that
dEt =

(
sgn(Zt)b(Xη(t))− b(Xt)

)
dt+

1

2
dL0

t (X) + ΣtdWt.

Also, to make the notation lighter, we will denote the Corrected Local Error by

Dt(X) := σX
α

t − σX
α

η(t) − ασ2X
2α−1

η(t) (Wt −Wη(t)).

5



3.1 The Weighted Error
Before to prove the main theorem, we establish in the auxiliary Lemma 3.2 the convergence of a weighted error. For
p ≥ 1, and δ > 0, let us consider

βt = 2p‖b′‖∞ +

(
1 +

1

δ2

)
p(3p− 1) +

4α2(1 + δ2)p(3p− 1)σ2

X
2(1−α)
t

, (3.1)

and the Weight Process (Γt, 0 ≤ t ≤ T ) defined by

Γt = exp

(
−
∫ t

0

βsds

)
. (3.2)

The Weight Process is adapted, almost surely positive, and bounded by 1. Its paths are non increasing and hence
have bounded variation, and also satisfies

dΓt = −βtΓtdt.
Observe that the definition of βt and Γt depend on δ. We omit this dependency for two reasons. First, to keep the

notation as simple as possible. And second, because later in the paper we will fix δ to a particular value.

Remark 3.1.
(i) From Lemma 1.2, the process β has polynomial moments of any order for α > 1

2 , and when α = 1
2 , there exist

C such that E (βqt ) < C, for all 1 < q < 2b(0)/σ2 − 1. Since for α = 1
2 , Hypothesis 1.5-(i) is equivalent to

9p+ 2 < 2b(0)/σ2 − 1, it follows that the process β has moments at least up to order 9p+ 2.

(ii) Due to Lemma 1.3, there exist a constant C(T ) such that E
(
Γ−qT

)
< C(T ) for all q > 0 when α > 1

2 , whereas for
α = 1

2 , the q-th negative moment of the weight process is finite, as soon as

(1 + δ2)p(3p− 1)σ2 q ≤ σ2

8

(
2b(0)

σ2
− 1

)2

.

Notice that, thanks to Hypothesis 1.5-(i), a sufficient condition such that this last inequality holds is

(1 + δ2)8p(3p− 1) q ≤ (9p+ 2)
2
.

Lemma 3.2 (Weighted Error). Under the hypothesis of Theorem 1.6, for p ≥ 1 and α ∈ [ 1
2 , 1), there exists a constant

C not depending on ∆t such that for all ∆t ≤ ∆max(α)

sup
0≤t≤T

E
(

Γ
3/2
t E

3p
t

)
≤ C∆t3p. (3.3)

Proof. We decompose the proof in 3 main steps.

Step 1. Let us prove that

E
(

Γ
3/2
t E

3p
t

)
≤ 3p

∫ t

0

E
(

Γ3/2
s E3p−1

s

[
b(Xη(s))− b(Xs)

])
ds

+ 3p‖b′‖∞
∫ t

0

sup
0≤u≤s

E
(

Γ3/2
u E3p

u

)
ds+ C∆t3p.

(3.4)

By the integration by parts formula,

E
(

Γ
3/2
t E

3p
t

)
= 3pE

(∫ t

0

Γ3/2
s E3p−1

s

{
sgn(Zs)b(Xη(s))− b(Xs)

}
ds

)
+

3

2
p(3p− 1)E

(∫ t

0

Γ3/2
s E3p−2

s Σ2
sds

)
+

3p

2
E
(∫ t

0

Γ3/2
s E3p−1

s dL0
s(X)

)
− E

(∫ t

0

3

2
βsΓ

3/2
s E3p

s ds

)
.

6



Thanks to Lemma 2.4 and the control in the moments of the exact process in Lemma 1.2 we have

E
(∫ t

0

Γ3/2
s E3p−1

s dL0
s(X)

)
≤ E

(∫ t

0

|X3p−1
s |dL0

s(X)

)
≤

√
E
(

sup
0≤s≤T

X6p−2
s

)
E
(
L0
T (X)2

)
≤ C∆t3p.

On the other hand, with sgn(x) = 1− 21{x<0}, and since for any δ > 0, x, y ∈ R

(x+ y)2 ≤ (1 + δ2)x2 + (1 + 1/δ2)y2,

calling ∆Ws = Ws −Wη(s), we get for all 0 ≤ s ≤ t

Σ2
s ≤ (1 + δ2)

[
σXα

s − σX
α

s

]2
+

(
1 +

1

δ2

)[
σX

α

s − σX
α

η(s) − ασ2X
2α−1

η(s) ∆Ws

]2
+RΣ

s 1{Zs<0},

where we put aside all the terms multiplied by 1{Zs<0} in

RΣ
s :=4

[
σX

α

η(s) + ασ2X
2α−1

η(s) ∆Ws

]
×
{[
σX

α

η(s) + ασ2X
2α−1

η(s) ∆Ws

]
+
[
σXα

s − σX
α

s

]
+
[
σX

α

s − σX
α

η(s) − ασ2X
2α−1

η(s) ∆Ws

]}
.

So, from the previous computations, the Lipschitz property of b, and Young’s Inequality, we conclude

E
(

Γ
3/2
t E

3p
t

)
≤ 3p

∫ t

0

E
(

Γ3/2
s E3p−1

s

[
b(Xη(s))− b(Xs)

])
ds

+3p‖b′‖∞
∫ t

0

E
(

Γ
3/2
η(s)E

3p
η(s)

)
ds+ 3p‖b′‖∞

∫ t

0

E
(

Γ3/2
s E3p

s

)
ds

+
3

2
(1 + δ2)p(3p− 1)E

(∫ t

0

Γ3/2
s E3p−2

s

[
σXα

s − σX
α

s

]2
ds

)
+

3

2

(
1 +

1

δ2

)
p(3p− 1)E

(∫ t

0

Γ3/2
s E3p

s ds

)
+

3

2

(
1 +

1

δ2

)
p(3p− 1)

∫ t

0

E
(
Ds(X)3p

)
ds

− E
(∫ t

0

3

2
βsΓ

3/2
s E3p

s ds

)
+

∫ t

0

E
(
Rs1{Zs<0}

)
ds+ C∆t3p.

where Rs = 3p(3p− 1)E3p−2
s RΣ

s + 6pE4p−1
s b(Xη(s)), and from Lemma 2.2 we have

E
(
Rs1{Zs<0}

)
≤ C∆t3p.

Since ∆t ≤ ∆max(α) and Hypothesis 1.5-(i) holds, we can apply Lemma 2.5 so E
(
Ds(X)3p

)
≤ C∆t3p.
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Introducing these estimations in the previous computations, we have

E
(

Γ
3/2
t E

3p
t

)
≤3p

∫ t

0

E
(

Γ3/2
s E3p−1

s

[
b(Xη(s))− b(Xs)

])
ds

+ 3p‖b′‖∞
∫ t

0

E
(

Γ
3/2
η(s)E

3p
η(s)

)
ds

+
3

2

[
2p‖b′‖∞ +

(
1 +

1

δ2

)
p(3p− 1)

]
E
(∫ t

0

Γ3/2
s E3p

s ds

)
+

3

2
(1 + δ2)p(3p− 1)E

(∫ t

0

Γ3/2
s E3p−2

s

[
σXα

s − σX
α

s

]2
ds

)
− E

(∫ t

0

3

2
βsΓ

3/2
s E3p

s ds

)
+ C∆t3p.

Now we use the particular form of the weight process. Since for all 1
2 ≤ α ≤ 1,

∀x ≥ 0, y ≥ 0, |xα − yα|(x1−α + y1−α) ≤ 2α|x− y|, (3.5)

we have

E
(∫ t

0

Γ3/2
s E3p−2

s

[
σXα

s − σX
α

s

]2
ds

)
≤ E

(∫ t

0

Γ3/2
s E3p

s

4α2σ2

X
2(1−α)
s

ds

)
,

and then, from the definition of β in (3.1), we conclude

E
(

Γ
3/2
t E

3p
t

)
≤ 3p

∫ t

0

E
(

Γ3/2
s E3p−1

s

[
b(Xη(s))− b(Xs)

])
ds

+ 3p‖b′‖∞
∫ t

0

E
(

Γ
3/2
η(s)E

3p
η(s)

)
ds+ C∆t3p.

from where (3.4) follows.

Step 2. Let us prove that for any s ≤ t

E
(

Γ3/2
s E3p−1

s [b(Xη(s))− b(Xs)]
)
≤ C

[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]
+ C∆t3p. (3.6)

As we will see soon, we prove (3.6) with the help of the Itô’s formula applied to b, and here is where we need b of
class C2 required in Hypotheses 1.5-(ii).

Again, by integration by parts

E
(

Γ3/2
s E3p−1

s [b(Xη(s))− b(Xs)]
)

= −E
∫ s

η(s)

3

2
Γ

1
2
u E3p−1

u [b(Xη(s))− b(Xu)]βuΓudu

+ E
∫ s

η(s)

Γ3/2
u d

(
E3p−1
u [b(Xη(s))− b(Xu)]

)
.

(3.7)

Applying Hölder’s Inequality to the first term in the right-hand side we have

E
∫ s

η(s)

Γ3/2
u E3p−1

u [b(Xη(s))− b(Xu)]βudu ≤
∫ s

η(s)

E
(

Γ3/2
u E3p

u

)1−1/3p

E
(
[b(Xη(s))− b(Xu)]3pβ3p

u

)1/3p
du.

Recalling the remark 3.1, we have that E
(
β6p
u

)
is finite, so applying Lemma 2.1,

E
(
[b(Xη(s))− b(Xu)]3pβ3p

u

)
≤
√
E
(
[b(Xη(s))− b(Xu)]6p

)
E
(
β6p
u

)
≤ C∆t3p/2.
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Then,

E
∫ s

η(s)

Γ3/2
u E3p−1

u [b(Xη(s))− b(Xu)]βudu ≤ C
[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−1/3p

∆t3/2.

Applying the Itô’s Formula to the second term in the right-hand side of (3.7), and taking expectation we get

E
∫ s

η(s)

Γ3/2
u d

(
E3p−1
u [b(Xη(s))− b(Xu)]

)
= −σE

∫ s

η(s)

Γ3/2
u E3p−1

u

[
b′(Xu)b(Xu) +

σ2

2
b′′(Xu)X2α

u

]
du

+(3p− 1)E
∫ s

η(s)

Γ3/2
u E3p−2

u [b(Xη(s))− b(Xu)]
{

sgn(Zu)b(Xη(s))− b(Xu)
}
du

+
σ2

2
(3p− 1)(3p− 2)E

∫ s

η(s)

Γ3/2
u E3p−3

u [b(Xη(s))− b(Xu)]Σ2
sdu

−(3p− 1)σ2E
∫ s

η(s)

Γ3/2
u E3p−2

u b′(Xu)Xα
uΣsdu

+
(3p− 1)

2
E
∫ s

η(s)

Γ3/2
u E3p−2

u [b(Xη(s))− b(Xu)]dL0
u(X)

=: I1 + I2 + I3 + I4 + I5.

By the finiteness of the moment of X , the linear growth of b, and the polynomial growth of b′′, applying Holder’s
inequality, we have

I1 ≤ C
∫ s

η(s)

E
(

Γ3/2
u E3p

u

)1−1/3p

E

([
b′(Xu)b(Xu) +

σ2

2
b′′(Xu)X2α

u

]3p
)1/3p

du

≤ C
[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−1/3p

∆t.

For the bound of I2, since b is Lipschitz, and sgn(x) = 1− 21{x<0}, we have

I2 ≤C
∫ s

η(s)

E
(

Γ3/2
u E3p−2

u |Xη(s) −Xu||Xη(s) −Xu|
)
du

+ C

∫ s

η(s)

E
(

Γ3/2
u E3p−1

u |Xη(s) −Xu|
)
du+

∫ s

η(s)

E
(
R(2)
u 1{Zu<0}

)
du

≤C
[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−2/3p

∆t2 + C

[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−1/3p

∆t3/2 + C∆t3p

Where again, all the terms multiplied by 1{Zu<0} are putted in the rest R(2)
u , and the expectation of the product is

bounded with Lemma 2.2.
In a similar way for the bound of I3,

I3 ≤C
∫ s

η(s)

E
(

Γ3/2
u E3p−3

u |Xη(s) −Xu|Ds(X)2
)
du

+ C

∫ s

η(s)

E
(

Γ3/2
u E3p−3

u |Xη(s) −Xu|
[
σXu − σXα

u

]2)
du

+

∫ s

η(s)

E
(
R(3)
u 1{Zu<0}

)
du.
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For the first term in the right-hand side we have

E
(

Γ3/2
u E3p−3

u |Xη(s) −Xu|Ds(X)2
)
≤
[
E
(

Γ3/2
u E3p

u

)]1−1/p [
E
(
|Xη(s) −Xu|3p

)]1/3p [E (Ds(X)3p
)]2/3p

≤
[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−1/p

∆t5/2,

due to the bound for the increments of the exact process and Lemma 2.5. For the second term, applying (3.5), and
noting that under Hypothesis 1.5, the exact process has negative moments up to of order 9p+ 2

E
(

Γ3/2
u E3p−3

u |Xη(s) −Xu|
[
σXu − σXα

u

]2 )
≤ CE

(
Γ3/2
u E3p−1

u |Xη(s) −Xu|
1

X
2(1−α)
u

)
≤ CE

(
Γ3/2
u E3p

u

)1−1/3p

E
(
|Xη(s) −Xu|6p

)1/6p E( 1

X
12(1−α)p
u

)1/6p

≤
[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−1/3p

∆t
1
2 .

We control the third term in the right-hand side in the bound for I3 using again Lemma 2.2, so

I3 ≤ C
[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−1/p

∆t7/2 +

[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−1/3p

∆t3/2 + C∆t3p.

Now we bound I4.

I4 ≤ C
∫ s

η(s)

E
(

Γ3/2
u E3p−2

u Du(X)b′(Xu)Xα
u

)
du

+ C

∫ s

η(s)

E
(

Γ3/2
u E3p−2

u

[
σXu − σXα

u

]
b′(Xu)Xα

u

)
du

+

∫ s

η(s)

E
(
R(4)
u 1{Zu<0}

)
du.

We control the first term in the right-hand side using Hölder’s inequality, Lemma 2.5 and the control in the moments
of the exact process for all 0 ≤ u ≤ s

E
(

Γ3/2
u E3p−2

u Du(X)b′(Xu)Xα
u

)
≤ E

(
Γ3/2
u E3p

u

)1−2/3p

E
(
Ds(X)3p

)1/3p
× E

(
b′(Xu)3pX4pα

u

)1/3p
≤C

[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−2/3p

∆t.

For the second term in the right-hand side of the bound for I4, we use one more time (3.5), and the existence of
negative moments of the exact process X , and then

E
(

Γ3/2
u E3p−2

u

[
σXu − σXα

u

]
b′(Xu)Xα

u

)
≤ CE

(
Γ3/2
u E3p−1

u

1

X
(1−α)
u

b′(Xu)Xα
u

)
≤ C

[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−1/3p

.
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To control the third term in the right-hand side of the bound for I4 we use Lemma 2.2 just as before. So

I4 ≤ C
[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−2/3p

∆t2 + C

[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−1/3p

∆t+ C∆t3p.

Finally,

I5 =
(3p− 1)

2
E
∫ s

η(s)

Γ3/2
u X4p−2

u [b(Xη(s))− b(Xu)]dL0
u(X)

≤ CE
(

sup
u≤s

[
1 +X4p−1

u

] [
L0
T (X)

])

≤ CE
(

sup
u≤s

[
1 +X4p−1

u

]2) 1
2
E
([
L0
T (X)

]2) 1
2

≤ C∆t3p

last inequality comes from Lemmas 1.2 and 2.4.
Putting all the last calculations in (3.7) we find

E
(

Γ3/2
s E3p−1

s [b(Xη(s))− b(Xs)]
)
≤ C

[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−1/3p

∆t3/2 + C

[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−1/3p

∆t

+ C

[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−2/3p

∆t2 + C

[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]1−1/p

∆t7/2

+ C∆t3p.

Applying Young’s Inequality in all terms in the right, we get the desired inequality (3.6).
Notice that in this Step 2, all the arguments and computation do not use the definition of Γ, only the fact that the

process is bounded. In particular (3.6) is also true when Γ is a constant equals to one.

Step 3. Let us conclude. Introducing the previous computations in (3.4) we get

E
(

Γ
3/2
t E

3p
t

)
≤ C

∫ t

0

[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]
ds+ C∆t3p.

and then, since the right-hand side is increasing, it follows

sup
s≤t

E
(

Γ3/2
s E3p

s

)
≤ C

∫ t

0

[
sup
u≤s

E
(

Γ3/2
u E3p

u

)]
ds+ C∆t3p,

from where we conclude the result thanks to Gronwall’s Inequality.

3.2 Proof of the Theorem

Proof of Theorem 1.6. By the Itô’s formula we have

E
(
E2p
t

)
= 2pE

∫ t

0

E2p−1
s

{
sgn(Zs)b(Xη(s))− b(Xs)

}
ds

+ 2pE
∫ t

0

E2p−1
s dL0

s(X) + p(2p− 1)E
∫ t

0

E2p−2
s Σ2

sds.
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As we have seen before, E
∫ t

0
E2p−1
s dL0

s(X) ≤ C∆t2p, and sgn(x) = 1− 21{x<0}, so

E
(
E2p
t

)
≤ 2pE

∫ t

0

E2p−1
s

[
b(Xη(s))− b(Xη(s))

]
ds

+ 2pE
∫ t

0

E2p−1
s

[
b(Xη(s))− b(Xs)

]
ds

+ 8p(2p− 1)E
∫ t

0

E2p−2
s

[
σX

α

s − σXα
s

]2
ds

+ 8p(2p− 1)E
∫ t

0

E2p−2
s Ds(X)2ds+ E

∫ t

0

Rs1{Zs<0}ds+ C∆t2p,

(3.8)

where Rs = 4p(2p − 1)E2p−2
s

[
σX

α

η(s) + ασ2X
2α−1

η(s)

(
Ws −Wη(s)

)]
+ 8pE2p−1

s b(Xη(s)). If we use the Lipschitz
property of b, and Young’s inequality in the first term in the right of (3.8), Lemma 2.5 in the fourth one, and Lemma
2.2 in the fifth one, we have

E
(
E2p
t

)
≤ C

∫ t

0

sup
u≤s

E
(
E2p
u

)
ds+ 2p

∫ t

0

E
(
E2p−1
s

[
b(Xη(s))− b(Xs)

])
ds

+ 8p(2p− 1)

∫ t

0

E
(
E2p−2
s

{
σX

α

s − σXα
s

}2
)
ds+ C∆t2p.

(3.9)

Using the inequality (3.6) for p ≥ 3/2 and the weight Γ constant equal to one, we immediately get that

E
(
E2p−1
s [b(Xη(s))− b(Xs)]

)
≤ C

[
sup
u≤s

E
(
E2p
u

)]
+ C∆t2p.

This last inequality is also true for p = 1, the proof of this fact reproduces in a simpler case the arguments in the step
2 of the proof of Lemma 3.2.

On the other hand, using again (3.5), we have

E
(
E2p−2
s

{
σX

α

s − σXα
s

}2
)
≤ CE

(
E2p
s X−2(1−α)

s

)
= CE

(
ΓsE2p

s X−2(1−α)
s Γ−1

s

)
,

and applying Holder’s inequality,

E
(

ΓsE2p
s

1

X
2(1−α)
s

Γ−1
s

)
≤
[
E
(

Γ3/2
s E3p

s

)] 2
3 ×

[
E
(

1

X
6(1−α)
s

Γ−3
s

)] 1
3

.

The first term in the right-hand side is the weight error controlled by Lemma 3.2. To control the second one, let us
recall Remark 3.1. For α > 1

2 , the exact process and the weight process Γ have negative moments of any order,
therefore the second term in the last inequality is bounded by a constant. On the other hand, when α = 1

2 , thanks to
Hypothesis 1.5-(i) the (9p + 2)-th negative moment of the exact process is finite, and since for δ2 small enough, for
example for δ2 = 1/8, we have

(1 + δ2)8p(3p− 1) 3
9p+ 2

9p− 1
< (9p+ 2)2,

according with the second point of Remark 3.1, the 3(9p + 2)/(9p − 1)-th negative moment of the weight process Γ
is also finite. Therefore, when α = 1

2 ,

E
(

1

X
6(1−α)
s

Γ−3
s

)
= E

(
1

X3
s

Γ−3
s

)

≤
[
E
(

1

X9p+2
s

)] 3
9p+2

[
E
(

Γ
−3 9p+2

9p−1
s

)] 9p−1
9p+2

≤ C,

12



and then in any case

E
(

ΓsE2p
s

1

X
2(1−α)
s

Γ−1
s

)
≤ C∆t2p.

Introducing all the last computations in (3.9) we get

E
(
E2p
t

)
≤ C

∫ t

0

sup
u≤s

E
(
E2p
u

)
ds+ C∆t2p.

Since the right-hand side is increasing, it follows we conclude the proof thanks to Gronwall’s Inequality.

Remark 3.3. The choice of δ is arbitrary, but has a impact in the size of the constant C appearing in the right-hand
side of convergence inequality in (1.11), and in the constrain for the parameters b(0) and σ2 appearing in Hypothesis
1.5-(i). If δ is small, we get a better constrain (less restrictive) but a bigger constant, whereas if δ is big we get a
better constant, but a worse constrain. Since our objective was to prove the result for a set of parameters as big as
possible, we have chosen δ small.

Remark 3.4. Let us mention an example of extension of our convergence result, based on simple transformation
method.

Let us consider the 3/2-model. That is, the solution of

rt = r0 +

∫ t

0

c1rs(c2 − rs)ds+

∫ t

0

c3r
3/2
s dWs.

If we apply the Itô’s Formula to the function f(x) = x−1, and we define vt = f(rt), we have

vt = v0 +

∫ t

0

c1 + c23 − c1c2vsds+

∫ t

0

c3v
1
2
s dBs,

where Bs = −Ws is a Brownian motion. We can approximate v with the SMS, and then define r̄t := 1/v̄t. Then we
can prove the order one strong convergence of r̄t to rt from our previous results.

Transformation methods can be used in a more exhaustive manner, in the context of CEV-like SDEs and we refer
to [6] for approximation results and examples, using this approach.

4 Numerical Experiments and conclusion
In this section we show the result of numerical simulations performed to study the behavior of the SMS. We compute
the error of the scheme as a function of the step size ∆t for different values of the parameters α and σ, and we
compare the performance of the SMS with other schemes proposed in the literature. For α > 1

2 we compare the SMS
with the Symmetrized Euler Scheme (SES) introduced in [3]. Whereas for α = 1

2 , in addition to compare with the
aforementioned scheme, we will also compare with the Modified Euler Scheme (MES) proposed in [6], and with the
Alfonsi Implicit Scheme (AIS) proposed in [1]. In order to include this last scheme we consider for all simulations a
linear drift

b(x) = 10− 10x.

A priori, the AIS can be apply also for α ∈ ( 1
2 , 1), but is relevant to observe that only when α = 1

2 , the AIS is an
explicit scheme, whereas in any other case is not. This implies that in order to compute the AIS for α > 1

2 at each time
step it is necessary to solve numerically a non linear equation. This extra step in the implementation of the scheme
brings questions about the impact of the error of this subroutine in the error of the scheme, and about the computing
performance of the scheme. Since this questions are beyond the scope of the present work, we include the AIS in
the comparison only in the CIR case. In this context, the AIS can be use only if σ2 > 4b(0), for other values of the
parameters the AIS is not defined.
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About the theoretical convergence estimations of the different schemes

When α = 1
2 , according to Theorem 2 in Alfonsi [2], the AIS converges in the Lp(Ω)-norm, for p ≥ 1, at rate ∆t

when (1 ∨ 3p/4)σ2 < b(0). On the other hand, according to Theorem 2.2 in [3], the rate of convergence of the SES
is
√

∆t under suitable conditions for b(0), σ2 and K. Finally, the rate of convergence in the L1(Ω)-norm of the MES
depend on the parameters, being ∆t if σ2 is big enough compared with b(0), and ∆tρ with ρ < 1 in other case. We
present a summary of this conditions in Table 1.

When α > 1
2 , the AIS (see Section 3 of [2]), the SES (see Theorem 2.2 in [3]), and the MES (see Proposition 4.1

in [6]) converge as soon as b(0) > 0, at rate ∆t to the exact solution, meanwhile our result need a little more stronger
restriction over the parameters in this case. See Table 2.

Scheme Norm
Theoretical

Convergence’s Conditionrate

SMS L2p, p ≥ 1 1 b(0) > 3(3p+ 1)σ2/2

SES[3] L2p, p ≥ 1 1/2
b(0) >

[√
8K(p)/σ2 + 1

]
σ2/2,

K(p) = K(16p− 1) ∨ 4σ2(8p− 1)2

AIS [2] Lp, p ∈ [1, 4b(0)
3σ2 ) 1 b(0) > (1 ∨ 3

4p)σ
2

MES [6] L1 1 b(0) > 5σ2

2

MES [6] L1 1/2 b(0) > 3σ2

2

MES [6] L1
(

1
6 ,

1
2 −

σ2

2b(0)+σ2

)
b(0) > σ2

Table 1: Summary of the condition over the parameters for the different schemes for the CIR process.

Scheme Norm
Theoretical

Convergence’s Conditionrate

SMS L2p, p ≥ 1 1 b(0) > 2α(1− α)2σ2

SES[3] L2p, p ≥ 1 1/2 b(0) > 0

AIS [2] Lp, p ≥ 1 1 b(0) > 0

AIS [2] L1 1 b(0) > 0

MES [6] L1 1 b(0) > 0

Table 2: Summary of the condition over the parameters for the different schemes when α > 1
2 .

In our simulations we consider a time horizon T = 1, and to measure the error of every scheme we estimate its
L1(Ω)-norm. A priori our result bounds the L2(Ω)-norm of the error, but we prefer to work in the simulations with
L1(Ω)-norm to compare our condition in the parameters in the "worst case scenario".
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Let E|E SMS
T |, E|E SES

T |, E|EMES
T |, and E|EAIS

T | be the L1(Ω)-norm of the error for the SMS, SES, MES and AIS respec-
tively, to estimate these quantities, we consider as a reference solution the SMS for ∆t = ∆max(α)/210. Then for
each

∆t ∈
{

∆max(α)

2n
, n = 1, . . . 9

}
,

we estimate E|E ·T | by computing 5 × 104 trajectories of the corresponding scheme, and comparing them with the
reference solution. The results of these simulations appears in Figures 1 and 2.

In Figure 1, we shows the result for the CIR case. From Table 1 we observe that we can distinguish five cases
for the parameters. The first case is b(0) > 6σ2, in which the SMS, the MES, and the AIS have a theoretical rate
of convergence equal to ∆t, whereas the SES has a theoretical rate of convergence equal to

√
∆t. In Figure 1a we

observe these expected rates of convergence. Notice how the SMS and the MES have a very similar performance.
The second case is b(0) ∈ (5σ2/2, 6σ2), now only the AIS and the MES have a theoretical rate of convergence

equal to ∆t. However, how we can see in Figure 1b the SMS still shows a linear behavior in this case. Recall that
the condition over the parameters is a sufficient condition and we believe that could be improved. In Figure 1c, we
illustrate the third case, that is b(0) ∈ (3σ2/2, 5σ2/2). In this case the theoretical rate of the MES is

√
∆t, but we

observe a linear behavior for the MES and the SMS. The fourth case is b(0) ∈ (σ2, 3σ2/2), which we display in Figure
1d. For this values of the parameters only the AIS has a theoretical rate of convergence equal to ∆t, but we observe
that all the schemes seems to reach their optimal convergence rates. Finally, the fifth case is b(0) < σ2. In this case
all the schemes have a sublinear behavior. We display the result of the simulation for this case in Figure 1e. Since the
MES performs considerable worst than the other schemes we show in Figure 1f the same results without the MES, so
we can appreciate better the differences between the other schemes.

In Figure 2, we present the results of the simulations for α = 0.6, and α = 0.7.
In this cases, it can be observed in numerical experiments that the MES scheme needs smaller ∆t to achieve its

theoretical order one convergence rate, unless one tunes the projection operator in the manner of Remark 5.1 in [6].
For this reason, we present only some comparisons between the symmetrized Euler scheme and its Milstein correction
version.

We have observed in the numerical experiments three cases for the parameters. The first one is when b(0) >
2α(1−α)2σ2. In this case Theorem 1.6 holds and we observe the order one convergence (see Figures 1a and 1b). The
second case is when the parameters do not satisfy b(0) > 2α(1− α)2σ2, and then we can not apply Theorem 1.6, but
in the numerical simulations we still observe the order one convergence (see Figures 1c and 1d). Finally the third case,
is when σ � b(0), and then we do not observe a linear convergence anymore (see Figures 1e and 1f). The second and
third case show us that some restriction has to be impose on the parameters to observe the one order convergence of
the error, but our restriction, although sufficient, it seems to be too strong, specially for α close to one.

Conclusion
In this paper we have recovered the classical rate of convergence of the Milstein scheme in a context of non smooth
diffusion coefficient, although we had to impose some restrictions over the parameters of the equation (1.1) to ensure
the right order of convergence. To be precise, if the quotient b(0)/σ2 is big enough we will observe the optimal
convergence rate. This phenomena was already noted through numerical simulations by Alfonsi in [1].

In the numerical simulations we have observed that, despite the fact it is necessary to impose some restriction over
the parameters of the equation (1.1) to obtain the order one convergence, Hypothesis 1.5 seems to be not optimal,
specially for α = 1

2 .
We end this paper doing a small comment on two recent articles addressing similar problematics. In [2], the author

propose a general implicit scheme for equations with constant diffusion coefficient, and then, applying Lamperti’s
transformation, apply this implicit scheme to the CIR model obtaining in fact an explicit scheme. In this case we can
compare the AIS with our scheme, and observe that the AIS can be apply to a wider set of parameters, whereas our
scheme is explicit and can be applied to a wider class of drifts coefficients. On the other hand, in [6], the authors
also make use of Lamperti’s transformation to remove the lack of regularity in the diffusion coefficient and obtain a
very nice result with several applications. Although, again our result has the more restrictive hypothesis in terms of
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(c) Parameters in case 3: b(0) ∈ (3σ2/2, 5σ2/2).
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(f) Same plot of Figure 1e without the MES to observer the
behavior of the other schemes.

Figure 1: Step size ∆t versus the estimated L1(Ω)-strong error for the CIR Process.

parameters, it can be applied to a more general class of drifts functions. In conclusion, we think that our result, and
the recent ones in the literature, are complementary and useful in different contexts.
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Figure 2: Step size ∆t versus the estimated L1(Ω)-error for α > 1
2 and different values for σ2.
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5 Proofs for preliminary lemmas

5.1 On the Local Error of the SMS
Proof of Lemma 2.1. From the definition of X , and the algebraic inequality for positive real numbers (a1 + . . . +
an)p ≤ np(ap1 + . . .+ apn) we have∣∣Xt −Xη(t)

∣∣2p ≤ 32p
(
b(Xη(t))

2p(t− η(t))2p + σ2pX
2αp

η(t)(Wt −Wη(t))
2p

+
α2pσ4p

22p
X

(2α−1)2p

η(t)

[
(Wt −Wη(t))

2 − (t− η(t))
]2p)

.

Thanks to the linear growth of b, Lemma 1.4 and the properties of the Brownian Motion it is quite easy to conclude
the existence of a constant C such that

E
[
|Xt −Xη(t)|2p

]
≤ C∆tp,

from where the result follows.

5.2 On the Probability of SMS being close to zero
From bσ(α) and K(α) defined in (1.9), let us recall the notation

x̄(α) :=
bσ(α)

K(α)

introduced in Lemma 2.3. As bσ(α) > 0 under Hypothesis 1.5-(i), x̄(α) is bounded away from 0. In particular,

lim
α→ 1

2

x̄(α) =
(b(0)− σ2/4)

K
, whereas lim

α→1
x̄(α) =

b(0)

K + σ2/2
.

Proof of Lemma 2.3. Denoting ∆Ws = (Ws −Wη(s)), and ∆s = s− η(s), we have for all s ∈ [0, T ],

Zs =
ασ2

2
X

2α−1

η(s) ∆W 2
s + σX

α

η(s)∆Ws +Xη(s) +

(
b(Xη(s))−

ασ2

2
X

2α−1

η(s)

)
∆s.

From the Lipschitz property of b and the following bound for any x > 0

x2α−1 ≤ 4(1− α)2 + (2α− 1)[2(1− α)]−
2(1−α)
2α−1 x, (5.1)

we have

Zs ≥
ασ2

2
X

2α−1

η(s) ∆W 2
s + σX

α

η(s)∆Ws +Xη(s) +
(
bσ(α)−K(α)Xη(s)

)
∆s. (5.2)

So,

P
[
Zs ≤ (1− ρ)bσ(α)∆s, Xη(s) < ρx̄(α)

]
≤ P

[ασ2

2
X

2α−1

η(s) ∆W 2
s + σX

α

η(s)∆Ws +Xη(s) +
(
ρbσ(α)−K(α)Xη(s)

)
∆s ≤ 0, Xη(t) < ρx̄(α)

]
.

From the independence of ∆Ws with respect to Fη(s), if we denote by N a standard Gaussian variable, we have

P
[
Zs ≤ (1− ρ)bσ(α)∆s, Xη(s) < ρx̄(α)

]
≤ E

[
P
(ασ2

2
x2α−1∆sN2 + σ

√
∆sxαN + x+ [ρbσ(α)−K(α)x] ∆s ≤ 0

)∣∣∣
x=Xη(s)

1{Xη(s)<ρx̄(α)}

]
.
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Notice that in the right-hand side we have a quadratic polynomial of a standard Gaussian random variable. Let us
compute its discriminant:

∆(x, α) = σ2x2α∆s− 2ασ2x2α−1∆s (x+ (ρbσ(α)−K(α)x) ∆s)

= −(2α− 1)σ2x2α∆s− 2ασ2x2α−1∆s2 (ρbσ(α)−K(α)x) .

Since bσ(α) > 0, we have ∆(x, α) < 0 for all α ∈ [ 1
2 , 1), and x ≤ ρx̄(α). So, for all ∆s ≤ ∆t we have

P
[
Zs ≤ (1− ρ)bσ(α)∆s, Xη(s) < ρx̄(α)

]
= 0,

taking ∆s = ∆t we conclude on the Lemma.

Proof of Lemma 2.2. We keep the notation from the last proof. From Lemma 2.3,

P
[
Zs ≤ (1− ρ)bσ(α)∆s, Xη(s) < ρx̄(α)

]
= 0.

Then

P
[
Zs ≤ (1− ρ)bσ(α)∆s

]
= P

[
Zs ≤ (1− ρ)bσ(α)∆s, Xη(s) ≥ ρx̄(α)

]
.

On the other hand, from 5.2 we have

Zs ≥ σX
α

η(s)∆Ws + (1−K(α)∆s)Xη(s) + bσ(α)∆s.

Then

P
[
Zs ≤ (1− ρ)bσ(α)∆s, Xη(s) ≥ ρx̄(α)

]
≤ P

(
σX

α

η(s)∆Ws ≤ −(1−K(α)∆s)Xη(s), Xη(s) ≥ ρx̄(α)
)
.

Since ∆Ws is independent to Fη(s), and Normally distributed, and ∆t ≤ 1/(2K(α)) we can apply the exponential
bound for Gaussian tails and get

P[Zs ≤ (1− ρ)bσ(α)∆s, Xη(s) ≥ ρx̄(α)]

≤ E

[
exp

(
−1

2σ2∆sX
2α

η(s)

(1−K(α)∆s)2X
2

η(s)

)
1{Xη(s)≥ρx̄(α)}

]
.

≤ exp

(
−(1−K(α)∆s)2ρx̄(α)2(1−α)

2σ2∆s

)
.

Finally

P
[
Zs ≤ (1− ρ)bσ(α)∆s

]
≤ exp

(
−(1−K(α)∆s)2ρx̄(α)2(1−α)

2σ2∆s

)
,

and since ∆s ≤ ∆t it follows

P
[
Zs ≤ (1− ρ)bσ(α)∆t

]
≤ exp

(
−(1−K(α)∆t)2ρx̄(α)2(1−α)

2σ2∆t

)
.

We conclude on Lemma 2.2 by taking ρ = 1 and γ = x̄(α)2(1−α)/(8σ2).
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5.3 On the Local Time of the SMS at Zero
The Stopping Times (Θα,

1
2 ≤ α < 1)

In what follows, we consider
Θα = inf

{
s > 0 : Xs < (1−

√
α)bσ(α)∆t

}
. (5.3)

Lemma 5.1. Assume b(0) > 2α(1−α)2σ2, and ∆t ≤ 1/(2K(α))∧x0/[(1−
√
α)bσ(α)]. Then there exists a positive

constant γ depending on α, b(0), K and σ but not on ∆t such that

P(Θα ≤ T ) ≤ T

∆t
exp

(
−γ
∆t

)
. (5.4)

Proof. To start notice that the condition ∆t < x0/[(1 −
√
α)bσ(α)] ensures that the stopping time Θα is almost

surelluy strictly positive.
To enlighten the notation along the proof, let us call lσ(α) = (1 −

√
α)bσ(α), and ik = inftk<s≤tk+1

Zs. We
split the proof in three steps.

Step 1. Let us prove that for a suitable function ψ : R→ R and a set Ak ∈ Ftk :

P (Θα ≤ T ) ≤
N−1∑
k=0

E
(
ψ(Xtk)1Ak

)
(5.5)

Indeed,

P (Θα ≤ T ) ≤
N−1∑
k=0

P
(
ik ≤ lσ(α)∆t, Xtk > lσ(α)∆t

)
.

But, for each k = 0, . . . , N − 1

P
(
ik ≤ lσ(α)∆t, Xtk > lσ(α)∆t

)
= P

(
ik ≤ lσ(α)∆t, Xtk > lσ(α)∆t, Xtk < x̄(α)

√
α
)

+ P
(
ik ≤ lσ(α)∆t, Xtk > lσ(α)∆t, Xtk ≥ x̄(α)

√
α
)
.

Since lσ(α)∆t = (1−
√
α)bσ(α)∆t ≤ x̄(α)

√
α, we have

P
(
ik ≤ lσ(α)∆t, Xtk > lσ(α)∆t, Xtk < x̄(α)

√
α
)

≤ P
(
ik ≤ lσ(α)∆t, Xtk < x̄(α)

√
α
)

≤
∑

s∈Q∩(tk,tk+1]

P
(
Zs ≤ lσ(α)∆t, Xtk < x̄(α)

√
α
)

= 0,

thanks to Lemma 2.3. On the other hand, we have

P
(
ik ≤ lσ(α)∆t, Xtk > lσ(α)∆t, Xtk ≥ x̄(α)

√
α
)

= P
(
ik ≤ lσ(α)∆t, Xtk ≥ x̄(α)

√
α
)

≤ P
(

inf
tk<s≤tk+1

X
1−α
η(s)

σ
+

(
bσ(α)−K(α)Xη(s)

)
∆s

σX
α

η(s)

+ ∆Ws ≤
lσ(α)∆t

σX
α

η(s)

, Xtk ≥ x̄(α)
√
α
)

= E
(
ψ(Xtk)1{Xtk>x̄(α)

√
α}
)
,

where the inequality comes from (5.2), and the last equality holds thanks to the Markov Property of the Brownian
motion, for

ψ(x) = P
(

inf
0<u≤∆t

x1−α

σ
+
bσ(α)−K(α)x

σxα
u+Bu ≤

lσ(α)∆t

σxα

)
,
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where (Bt) denotes a Brownian Motion independent of (Wt). Summarizing

P
(
ik ≤ lσ(α)∆t, Xtk > lσ(α)∆t

)
≤ E

(
ψ(Xtk)1{Xtk>x̄(α)

√
α}
)
,

and we have (5.5) for Ak =
{
Xtk > x̄(α)

√
α
}

.

Step 2. Let us prove for all x ≥ x̄(α)
√
α:

ψ(x) ≤ exp

(
− (1−K(α)∆t)2(x̄(α)

√
α)2(1−α)

2σ2∆t

)
. (5.6)

If (Bµt , 0 ≤ t ≤ T ) is a Brownian motion with drift µ, starting at y0, then for all y ≤ y0, we have (see [4]):

P
(

inf
0<s≤t

Bµs ≤ y
)

=
1

2
erfc

(
y0 − y√

2t
+
µ
√
t√

2

)
+

1

2
exp (−2µ(y0 − y)) erfc

(
y0 − y√

2t
− µ
√
t√

2

)
,

where for z ∈ R, erfc z =
√

2/π
∫∞√

2z
exp

(
−u2/2

)
du. So,

ψ(x) =
1

2
erfc

(
[(1−K(α)∆t)x+

√
αbσ(α)∆t]√

2∆tσxα

)
+

1

2
exp

(
−2[bσ(α)−K(α)x][x− (1−

√
α)bσ(α)∆t]

σ2x2α

)
× erfc

(
1√

2∆tσxα

[
(1 +K(α)∆t)x− (2−

√
α)bσ(α)∆t

])
=: A(x) +B(x).

Since ∆t ≤ 1/(2K(α)), and erfc(z) ≤ exp(−z2) for all z > 0 we have

A(x) ≤ 1

2
exp

(
− [(1−K(α)∆t)x+

√
αbσ(α)∆t]

2

2σ2∆tx2α

)

≤ 1

2
exp

(
− (1−K(α)∆t)2x2(1−α)

2σ2∆t

)
.

On the other hand, for x ≥ x̄(α)
√
α, and ∆t ≤ 1/(2K(α)), it follows

x > (2−
√
α)bσ(α)∆t/(1 +K∆t),

so the argument of the function erfc in B is positive, and then

B(x) ≤ 1

2
exp

(
−2[bσ(α)−K(α)x][x− (1−

√
α)bσ(α)∆t]

σ2x2α

)
× exp

(
− [(1 +K(α)∆t)x− (2−

√
α)bσ(α)∆t]

2

2∆tσ2x2α

)

=
1

2
exp

(
− [(1−K(α)∆t)x+

√
αbσ(α)∆t]

2

2∆tσ2x2α

)

≤ 1

2
exp

(
− (1−K(α)∆t)2x2(1−α)

2σ2∆t

)
.

So

ψ(x) = A(x) +B(x) ≤ exp

(
− (1−K(α)∆t)2x2(1−α)

2σ2∆t

)
,

and since the right-hand side is decreasing on x, we have (5.6).
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Step 3. Let us conclude. Putting together (5.5) and (5.6) we have

P (Θα ≤ T ) ≤
N−1∑
k=0

E
(
ψ(Xtk)1{Xtk>x̄(α)

√
α}
)

≤
N−1∑
k=0

exp

(
− (1−K(α)∆t)2(x̄(α)

√
α)2(1−α)

2σ2∆t

)
P
(
Xtk > x̄(α)

√
α
)

≤ C

∆t
exp

(
− γ

∆t

)
with γ = (x̄(α)

√
α)2(1−α)/(8σ2).

Proof of Lemma 2.4. From (1.4), standard arguments show that E
(
L0
T (X)4

)
≤ C(T ). On the other hand, thanks to

Corollary VI.1.9 on Revuz and Yor [11, p. 212], we have almost surely

L0
T∧Θα(X) = lim

ε↓0

1

ε

∫ T∧Θα

0

1[0,ε)(Xs)d〈X〉s = 0,

because for ε < (1−
√
α)bσ(α)∆t, and s ≤ T ∧Θα, 1[0,ε)(Xs) = 0. a.s. Now, since

L0
T (X) = L0

T (X)1{Θα<T} + L0
T∧Θα(X)1{T≤Θα} = L0

T (X)1{Θα<T},

we can conclude

E
(
L0
T (X)2

)
=E

(
L0
T (X)21{Θα<T}

)
≤
√

E
(
L0
T (X)4

)
P (Θα < T ) ≤ C

√
1

∆t
exp

(
− γ

∆t

)
.

5.4 On the negative moments of the stopped increment process (Zt∧Θα)

To prove Lemma 2.5 we need to control the negative moments of the increment process (Zt, 0 ≤ t ≤ T ). We can not
do it directly because there is positive probability of Zt hitting 0 for some t ∈ [0, T ]. So we will instead, study the
negative moments of the stopped process {Zt∧Θα}0≤t≤T .

Existence of Negative Moments. Case α = 1
2

The proof of the existence of Negative Moments of Zt∧Θα has two parts. First we study the quotient Xη(s)/Zs, and
then we proof the main result of the section.

Lemma 5.2. For α = 1
2 , and ∆t ≤ 1/(4K) ∧ x0 we have

sup
0≤s≤T

P

(
Zs ≤

Xη(s)

2

)
≤ C∆t

15bσ(1/2)

8σ2 . (5.7)

To prove this lemma, we need the following auxiliary result, the proof of which is postponed in Appendix A as a
straightforward adaptation of the Lemma 3.6 in [5].

Lemma 5.3. Assume Hypothesis 1.1 holds, and b(0) > σ2/4. Assume also that ∆t ≤ 1/(4K) ∧ x0. Then, for any
γ ≥ 1 there exists a constant C depending on the parameters b(0), K, σ, x0, T , and also on γ, such that

sup
k=0,...,N

E exp

(
− Xtk

γσ2∆t

)
≤ C

(
∆t

x0

) 2bσ(1/2)

σ2
(1− 1

2γ )
.
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Proof of Lemma 5.2. We star by proving

sup
0≤s≤T

P

(
Zs ≤

Xη(s)

2

)
≤ sup
k=0,...,N

E exp

(
− Xtk

γσ2∆t

)
. (5.8)

Indeed, if we call ∆s = s− η(s), and ∆Ws = (Ws −Wη(s)), then

P

(
Zs ≤

Xη(s)

2

)
≤ P

(
σ
√
Xη(s)∆Ws + bσ(1/2)∆s+ (1−K∆s)Xη(s) ≤

Xη(s)

2

)

≤ E

P

∆Ws√
∆s
≤
bσ(1/2)∆s+ ( 1

2 −K∆s)Xη(s)

σ
√
τXη(s)

∣∣∣∣∣∣Fη(s)


≤ E

(
exp

(
−

(bσ(1/2)∆s+ ( 1
2 −K∆s)Xη(s))

2

2σ2∆sXη(s)

))

≤ E

(
exp

(
−

(1− 2K∆t)2Xη(s)

8σ2∆t

))
.

From here, the bound (5.8) follows easily, and then we conclude using Lemma 5.3.

Lemma 5.4. Let Θ 1
2

be the stopping time defined in (5.3), and q ≥ 1. If ∆t ≤ ∆max(1/2), and

b(0) >
3σ2(q + 1)

2
. (5.9)

Then there exists a constant C depending on b(0), σ, α, T and q but not on ∆t, such that

∀t ∈ [0, T ], E

 1

Z
q

t∧Θ 1
2

 ≤ C (1 +
1

xq0

)
.

Proof. Let us call ∆Ws := (Ws −Wη(s)), and ∆s := (s− η(s)). By Ito’s formula

E

 1

Z
q

t∧Θ 1
2

 =
1

xq0
− qE

(∫ t∧Θ 1
2

0

b(Xη(s))

Z
q+1

s

ds

)

+
q(q + 1)

2
E

(∫ t∧Θ 1
2

0

1

Z
q+2

s

{
σ
√
Xη(s) +

σ2

2
∆Ws

}2

ds

)
.

(5.10)

But, {
σ
√
Xη(s) +

σ2

2
∆Ws

}2

≤ σ2Xη(s) + σ2Zs P− a.s. (5.11)

Indeed, {
σ
√
Xη(s) +

σ2

2
∆Ws

}2

=σ2Xη(s) + σ2

(
σ
√
Xη(s)∆Ws +

σ2

4
∆Ws

)
=σ2Xη(s) + σ2Zs − σ2

(
Xη(s) + b(Xη(s))∆s−

σ2

4
∆s

)
.
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But, thanks to the Lipschitz property of b,

Xη(s) + b(Xη(s))∆s−
σ2

4
∆s ≥ Xη(s) +

(
b(0)−KXη(s)

)
∆s− σ2

4
∆s

= bσ(1/2)∆s+ (1−K∆s)Xη(s) ≥ 0,

since ∆s ≤ ∆t ≤ 1/(2K), and bσ(1/2) > 0. So we have (5.11).
Introducing (5.11) in (5.10), and using b(x) ≥ b(0)−Kx, we have

E

 1

Z
q

t∧Θ 1
2

 ≤ 1

xq0
− qE

(∫ t∧Θ 1
2

0

b(0)

Z
q+1

s

ds

)
+ qKE

(∫ t∧Θ 1
2

0

Xη(s)

Z
q+1

s

ds

)

+
q(q + 1)

2
σ2E

(∫ t∧Θ 1
2

0

1

Z
q+2

s

{
Xη(s) + Zs

}
ds

)
.

(5.12)

Since, (
Xη(s)

Zs

)
≤

(
Xη(s)

Zs

)
1{Zs≤Xη(s)/2} + 2,

and applying Hölder’s Inequality for some ε > 0, we have

E

 1

Z
q

t∧Θ 1
2

 ≤ 1

xq0
− qE

(∫ t∧Θ 1
2

0

b(0)

Z
q+1

s

ds

)
+ 2qKE

(∫ t∧Θ 1
2

0

1

Z
q

s

ds

)

+
3q(q + 1)

2
σ2E

(∫ t∧Θ 1
2

0

1

Z
q+1

s

ds

)

+
C

∆tq+2

∫ T

0

E
(
X

1/ε

η(s)

)ε
P
(
Zs ≤ Xη(s)/2

)1−ε
ds.

Since b(0) > 3σ2(q + 1)/2, we have 15bσ(1/2)/8σ2 > 2q + 2, so choosing ε = q/(2q + 2), and applying Lemma
5.2 we have

P
(
Zs ≤ Xη(s)/2

)1−ε ≤ C∆tq+2,

and then

E

 1

Z
q

t∧Θ 1
2

 ≤ 1

xq0
+ 2qKE

(∫ t∧Θ 1
2

0

1

Z
q

s

ds

)

+ q

(
3(q + 1)

2
σ2 − b(0)

)
E

(∫ t∧Θ 1
2

0

1

Z
q+1

s

ds

)
+ C.

Since from the Hypotheses the third term in the right-hand side is negative, we can conclude thanks to Gronwall’s
Lemma.

Existence of Negative Moments. Case α > 1
2

Lemma 5.5. For α ∈ ( 1
2 , 1), if b(0) > 2α(1− α)2σ2 and ∆t ≤ 1/(4αK(α)), there exists γ > 0 such that

sup
0≤s≤T

P
(
Zs ≤

(
1− 1

2α

)
Xη(s)

)
≤ exp

(
− γ

∆t

)
. (5.13)
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Proof. Let us call ∆Ws := (Ws −Wη(s)), ∆s := (s− η(s)), and

q(Xη(s),∆Ws) =
ασ2

2
X

2α−1

η(s) ∆W 2
s + σX

α

η(s)∆Ws +
Xη(s)

2α
+
(
bσ(α)−K(α)Xη(s)

)
∆s.

Notice that for fix x ∈ R, q(x, ·) is a quadratic polynomial. Using (5.2), we have

P
(
Zs ≤

(
1− 1

2α

)
Xη(s)

)
≤ P

(
q(Xη(s),∆Ws) ≤ 0, Xη(s) ≤ x̄(α)

)
+ P

(
q(Xη(s),∆Ws) ≤ 0, Xη(s) ≥ x̄(α)

)
,

where recall, x̄(α) = bσ(α)/K(α). But

P
[
q(Xη(s),∆Ws) ≤ 0, Xη(s) ≤ x̄(α)

]
= E

[
P
(
q(x,
√

∆sN) ≤ 0
) ∣∣∣

x=Xη(s)
1{Xη(s)≤x̄(α)}

]
,

where N stands for a normal for a standard Gaussian random variable. As in the Lemma 2.3, we have a quadratic
polynomial in N , its discriminant is

∆ = σ2x2α∆s− 2ασ2x2α−1∆s
[ x

2α
+ (bσ(α)−K(α)x) ∆s

]
= −2ασ2x2α−1∆s2 (bσ(α)−K(α)x) ,

so if x ≤ x̄(α), ∆ < 0 and the quadratic form in N has not real roots, and in particular is non negative almost surely.
Then

P
(
q(Xη(s),∆Ws) ≤ 0, Xη(s) ≤ x̄(α)

)
= 0.

On the other hand,

P
(
q(Xη(s),∆Ws) ≤ 0, Xη(s) ≥ x̄(α)

)
≤ E

P(N ≤ −bσ(α)∆s+
(

1
2α−K(α)∆s

)
x

σxα
√

∆s

)∣∣∣∣∣
x=Xη(s)

1{Xη(s)≥x̄(α)}

 ,
and since ∆t ≤ 1/(4αK(α)) we can conclude with the same argument of Lemma 2.2.

Lemma 5.6. Let Θα be the stopping time defined in (5.3). Let us assume for α ∈ ( 1
2 , 1), b(0) > 2α(1 − α)2, and

∆t ≤ ∆max(α), then for all q ≥ 1, there exists a constant C depending on b(0), σ, α, T and p but not on ∆t, such
that

∀t ∈ [0, T ], E

(
1

Z
q

t∧Θα

)
≤ C

(
1 +

1

xq0

)
.

Proof. Let us call ∆Ws := Ws −Wη(s). By Ito’s formula and the Lipschitz property of b,

E

(
1

Z
q

t∧Θα

)
≤ 1

xq0
− qE

(∫ t∧Θα

0

b(0)

Z
q+1

s

ds

)
+ qKE

(∫ t∧Θα

0

Xη(s)

Z
q+1

s

ds

)

+
q(q + 1)

2
E

(∫ t∧Θα

0

1

Z
q+2

s

{
σX

α

η(s) + ασ2X
2α−1

η(s) ∆Ws

}2

ds

)
. (5.14)

Following the same ideas to prove (5.11) we can prove for all s ∈ [0, t], that almost surely{
σX

α

η(s) + ασ2X
2α−1

η(s) ∆Ws

}2

≤ σ2X
2α

η(s) + 2ασ2X
2α−1

η(s) Zs.
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Introducing this bound in the previous inequality, we have

E

(
1

Z
q

t∧Θα

)
≤ 1

xq0
− qE

(∫ t∧Θα

0

b(0)

Z
q+1

s

ds

)
+ qKE

(∫ t∧Θα

0

Xη(s)

Z
q+1

s

ds

)

+
q(q + 1)

2
σ2E

(∫ t∧Θα

0

1

Z
q+2

s

{
X

2α

η(s) + 2αX
2α−1

η(s) Zs

}
ds

)
.

(5.15)

For r ∈ {1, 2α− 1, 2α}, we have(
Xη(s)

Zs

)r
≤

(
Xη(s)

Zs

)r
1
{Zs≤Xη(s)(1−

1
2α)}

+

(
2α

2α− 1

)r
.

So,

E

(
1

Z
q

t∧Θα

)
≤ 1

xq0
− qE

(∫ t∧Θα

0

b(0)

Z
q+1

s

ds

)
+

2α

2α− 1
qKE

(∫ t∧Θα

0

1

Z
q

s

ds

)

+
q(q + 1)

2
σ2 (2α)2α+1

(2α− 1)2α
E

(∫ t∧Θα

0

1

Z
q+2(1−α)

s

ds

)

+ CE

(∫ t∧Θα

0

{
Xη(s)

Z
q+1

s

+
X

2α

η(s)

Z
q+2

s

+
X

2α−1

η(s)

Z
q+1

s

}
1
{Zs≤Xη(s)(1−

1
2α)}

ds

)
.

The last term in the previous inequality is bounded because of the definition of Θα and the Lemma 5.5. Indeed,

E
(∫ t∧Θα

0

{
Xη(s)

Z
q+1

s

+
X

2α

η(s)

Z
q+2

s

+
X

2α−1

η(s)

Z
q+1

s

}
1
{Zs≤Xη(s)(1−

1
2α)}

ds
)

≤ C

∆tq+2

∫ T

0

√
E
[(
Xη(s) +X

2α

η(s) +X
2α−1

η(s)

)2
]
P
(
Zs ≤ Xη(s)

(
1− 1

2α

))
ds

≤ C

∆tq+2
exp

( γ

∆t

)
≤ C.

So, (5.15) becomes

E

(
1

Z
q

t∧Θα

)
≤ 1

xq0
− qE

(∫ t∧Θα

0

b(0)

Z
q+1

s

ds

)
+

2α

2α− 1
qKE

(∫ t∧Θα

0

1

Z
q

s

ds

)

+
q(q + 1)

2
σ2 (2α)2α+1

(2α− 1)2α
E

(∫ t∧Θα

0

1

Z
q+2(1−α)

s

ds

)
+ C.

(5.16)

But, for any A1, A2 > 0, the function
A1

zq+2(1−α)
− A2

zq+1
,

is bounded, and (5.16) becomes

E

(
1

Z
q

t∧Θα

)
≤ 1

xq0
+ 2qKE

(∫ t∧Θα

0

1

Z
q

s

ds

)
+ C,

from where we can conclude applying Gronwall’s Lemma.
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5.5 On the corrected local error process
Proof of Lemma 2.5. Let us recall the notation in the proof of the main Theorem

Ds(X) := σX
α

s − σX
α

η(s) − ασ2X
2α−1

η(s) (Ws −Wη(s)), (5.17)

and also introduce the notations

Su∧Θα(X) =
{
σX

α

η(s∧Θα) + ασ2X
2α−1

η(s∧Θα)(Wu∧Θα −Wη(s∧Θα))
}
,

and ∆Ws = (Ws −Wη(s)).
Using Lemma 5.1, and the finiteness of the moments of D, is easy to prove

E
(
Ds(X)2p

)
≤ CE

(
Ds∧Θα(X)2p1{Θα≥η(s)}

)
+ C∆t2p.

Then, to prove the Lemma we only have to prove

E
(
Ds∧Θα(X)2p1{Θα≥η(s)}

)
≤ C∆t2p. (5.18)

Notice that Xs∧Θα = Zs∧Θα , so

Ds∧Θα(X)1{Θα≥η(s)} =
[
σZ

α

s∧Θα − σX
α

η(s∧Θα) − ασ2X
2α−1

η(s∧Θα)∆Ws∧Θα

]
1{Θα≥η(s)},

then applying Itô’s Formula to the function σ|x|α which is C2 for x ≥ C∆t, we have

Ds∧Θα(X)1{Θα≥η(s)} =
{∫ s∧Θα

η(s∧Θα)

(
ασ

Z
1−α
u∧Θα

− ασ

X
1−α
η(s∧Θα)

)
σX

α

η(s∧Θα)dWu

+

∫ s∧Θα

η(s∧Θα)

α2σ3X
2α−1

η(s∧Θα)

Z
1−α
u∧Θα

∆Wu∧ΘαdWu

+

∫ s∧Θα

η(s∧Θα)

ασ

Z
1−α
u∧Θα

b(Xη(s∧Θα))du

−
∫ s∧Θα

η(s∧Θα)

1

2

α(1− α)σ

Z
2−α
u∧Θα

Su∧Θα(X)2du
}
1{Θα≥η(s)}

=: I1 + I2 + I3 − I4.

(5.19)

Notice that on the event {η(s) ≤ Θα} we have η(s) = η(s ∧Θα), and then

E
[
I2p
1

]
= E

[∫ s∧Θα

η(s)

1{Θα≥η(s)}

(
ασ

Z
1−α
u∧Θα

− ασ

X
1−α
η(s∧Θα)

)
σX

α

η(s∧Θα)dWu

]2p

.

By the Burkholder-Davis-Gundy inequality (see [8, p. 166]) there exists a constant Cp depending only on p such
that

E

[∫ s∧Θα

η(s)

1{Θα≥η(s)}

(
ασ

Z
1−α
u∧Θα

− ασ

X
1−α
η(s∧Θα)

)
σX

α

η(s∧Θα)dWu

]2p

≤ (ασ2)2pCpE

∫ s∧Θα

η(s)

(
X

1−α
η(s∧Θα) − Z

1−α
u∧Θα

Z
1−α
u∧ΘαX

1−α
η(s∧Θα)

)2

X
2α

η(s∧Θα)1{Θα≥η(s)}du

p ,
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Noting that the integrand in the right-hand side is positive, and we have

E
[
I2p
1

]
= (ασ2)2pCpE

∫ s

η(s)

(
X

1−α
η(s∧Θα) − Z

1−α
u∧Θα

Z
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X
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p
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X
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Z
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2

X
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η(s∧Θα)1{Θα≥η(s)}du


p

.

but for x, y ≥ 0, and β ∈ [0, 1
2 ) it holds |xβ − yβ |(x1−β + y1−β) ≤ 2|x− y|, so

E
[
I2p
1

]
≤ CE

[∫ s
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≤ C∆tp−1
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E
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Z
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 du.
Let a > 1. Thanks to Hölder’s inequality we have

E

(Xη(s∧Θα) − Zu∧Θα

)2p
1{Θα≥η(s)}

X
2p(2α−1)

η(s∧Θα)
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E
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])1−1/a
E

X2ap(2α−1)

η(s∧Θα)

Z
2ap

u∧Θα

1/a

.

We can use Lemma 2.1 to bound the Local Error of the scheme, and the Lemma 5.1 to bound the probability of Θα

being smaller than s or η(s), and prove

E
[(
Xη(s∧Θα) − Zu∧Θα

) 2ap
(a−1) 1{Θα≥η(s)}

]
≤ C∆t

ap
(a−1) ,

On the other hand, when α > 1
2 , we have control of any negative moment of Zu∧Θα , so

E

X4ap(2α−1)

η(s∧Θα)

Z
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u∧Θα

 ≤
√√√√E

[
X

2ap(2α−1)

η(s∧Θα)

]
E

[
1

Z
4ap

u∧Θα

]
≤ C,

whereas when α = 1
2 , we choose a > 1, such that 2b(0)/σ2 > 3(2ap+ 1), so we have control of the 2ap-th negative

moment of Zu∧Θα . And then

E

X4ap(2α−1)

η(s∧Θα)

Z
2ap

u∧Θα

 = E

[
1

Z
2ap

u∧Θα

]
≤ C.

So, in any case we have

E

(Xη(s∧Θα) − Zu∧Θα

)2p
1{Θα≥η(s)}

X
2p(2α−1)

η(s∧Θα)

Z
2p

u∧Θα

 ≤ C∆tp.

And then we can conclude E
[
I2p
1

]
≤ C∆t2p.
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Using the same arguments for E
(
I2p
2

)
, we have

E
(
I2p
2

)
≤ CpE

∫ s∧Θα

η(s)

1{Θα≥η(s)}
α2σ6X

2(2α−1)

η(s)

Z
2(1−α)

u

∆W 2
udu

p

≤ C∆tp−1

∫ s

η(s)

E

1{Θα≥η(s)}
X

2(2α−1)p

η(s)

Z
2(1−α)p

u∧Θα

∆W 2p
u∧Θ 1

2

 du

≤ C∆tp−1

∫ s

η(s)

√√√√√E

X4(2α−1)p

η(s)

Z
4(1−α)p

u∧Θα

√E
(
1{Θα≥η(s)}∆W

4p
u∧Θ 1

2

)
du

≤ C∆t2p.

To bound E
(
I2p
3

)
we proceed as follows

E
(
I2p
3

)
= E

(∫ s∧Θα

η(s)

1{Θα≥η(s)}
ασ

Z
1−α
u∧Θα

b(Xη(s∧Θα))du

)2p

≤ (ασ)2p∆t2p−1

∫ s

η(s)

E

(
1

Z
2(1−α)p

u∧Θα

b
(
Xη(s∧Θα)

)2p)
du

≤ (ασ)2p∆t2p−1

∫ s

η(s)

E

(
1

Z
2p

u∧Θα

)1−α

E
(
b
(
Xη(s∧Θα)

) 2p
α

)α
du

≤ C∆t2p.

Finally for E
(
I2p
4

)
we consider first α > 1

2 , in this case we have control of any negative moment of Zu∧Θα so
proceeding as before

E
(
I2p
4

)
= E

(∫ s∧Θα

η(s)

1{Θα≥η(s)}
1

2

α(1− α)σ

Z
2−α
u∧Θα

Su∧Θα(X)2du

)2p

≤ C∆t2p−1

∫ s

η(s)

E

(
1

Z
2p(2−α)

u∧Θα

Su∧Θα(X)4p

)
du

≤ C∆t2p.

The case α = 1
2 is a little more delicate. Let us recall that in the proof of (5.11) we find the following equality{

σX
α

η(s∧Θ 1
2

) +
σ2

2
∆Wu∧Θ 1

2

}2

= σ2Zu∧Θ 1
2

− σ2

(
b(Xη(s∧Θ 1

2
))−

σ2

4

)
(u ∧Θ 1

2
− η(s ∧Θ 1

2
)),

so, we have from the definition of Θ 1
2{

σX
α

η(s∧Θ 1
2

) +
σ2

2
∆Wu∧Θ 1

2

}4p

≤ C

(
Z

2p

u∧Θ 1
2

+

(
b(Xη(s∧Θ 1

2
))−

σ2

4

)2p

∆t2p

)

≤ C

(
1 +

(
b(Xη(s∧Θ 1

2
))−

σ2

4

)2p
)
Z

2p

u∧Θ 1
2

,
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and then

E
(
I2p
4

)
≤ C∆t2p−1

∫ s

η(s)

E

(
1

Z
3p

u∧Θα

{
σX

α

η(s∧Θ 1
2

) +
σ2

2
∆Wu∧Θ 1

2

}4p
)
du

≤ C∆t2p−1

∫ s

η(s)

E

(
1

Z
p

u∧Θα

{
1 +

(
b(Xη(s∧Θ 1

2
))−

σ2

4

)2p
})

du

≤ C∆t2p−1

∫ s

η(s)

√√√√E

(
1

Z
2p

u∧Θα

)√√√√E

(
1 +

(
b(Xη(s∧Θ 1

2
))−

σ2

4

)4p
)
du

≤ C∆t2p.

So, for every α ∈ [ 1
2 , 1)

E
(
I2p
4

)
≤ C∆t2p,

from where we conclude on the Lemma.
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A Appendix
Proof of Lemma 1.4. Let us recall the notations ∆s = s−η(s), and ∆Ws = Ws−Wη(s). Let us define τm = inf{t ≥
0 : Xt ≥ m}. Then by Itô’s Formula, Young’s inequality and the Lipschitz property of b, we have

E
(
X

2p

t∧τm

)
≤ x2p

0 + CE
∫ t∧τm

0

X
2p

s + C +X
2p

η(s)ds

+ CE
∫ t∧τm

0

[
σX

α

η(s) + ασ2X
2α−1

η(s) ∆Ws

]2p
ds.

(A.1)

From the definition of X , a straightforward computation shows that for all s ∈ [0, t] almost surely

X
2p

s ≤ C
(

1 +X
2p

η(s) + ∆W
2p

1−α
s +

[
∆W 2

s −∆s
] 2p

2(1−α)

)
.

Putting this in (A.1), we have

E
(
X

2p

t∧τm

)
≤x2p

0 + CE
∫ t∧τm

0

1 +X
2p

η(s) +
[
σX

α

η(s) + ασ2X
2α−1

η(s) ∆Ws

]2p
ds

+ CE
∫ t∧τm

0

∆W
2p

1−α
s +

[
∆W 2

s − (s− η(s))
] 2p

2(1−α) ds

≤ x2p
0 + CE

∫ t∧τm

0

1 +X
2p

η(s) +X
2pα

η(s) +X
2p(2α−1)

η(s) ∆W 2p
s ds

+ C

∫ T

0

E
(

∆W
2p

1−α
s

)
+ E

([
∆W 2

s −∆s
] 2p

2(1−α)

)
ds.

Since α ∈ [ 1
2 , 1) we have X

2pα

η(s) ≤ 1 + X
2p

η(s), and then, using Young’s Inequality and the finiteness of the moments
of Gaussian random variables, we conclude

E
(
X

2p

t∧τm

)
≤ Cx2p

0 + CE
∫ t∧τm

0

X
2p

η(s)ds ≤ Cx
2p
0 + C

∫ t

0

sup
u≤s

E
(
X

2p

u∧τm

)
ds.
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Since the right-hand side is increasing, we can take supremum in the left-hand side and from here, applying Gronwall’s
inequality, and taking m→∞ we get

sup
t≤T

E
(
X

2p

t

)
≤ Cx2p

0

since
sup
s≤t

lim
m→∞

E
(
X

2p

s∧τm

)
≤ lim
m→∞

sup
s≤t

E
(
X

2p

s∧τm

)
.

From here, following a standard argument using Burkholder-Davis-Gundy inequality we can conclude on Lemma
1.4.

Proof of lemma 5.3. First, from the definition of Xtk we have

Xtk ≥ Xtk−1
+ (bσ(1/2)−KXtk−1

)∆t+ σ
√
Xtk−1

(
Wtk −Wtk−1

)
,

then

E exp
(
−µ0Xtk

)
≤ E exp

(
− µ0

[
Xtk−1

+ (bσ(1/2)−KXtk−1
)∆t+ σ

√
Xtk−1

(
Wtk −Wtk−1

) ])
,

where µ0 = 1/γσ2∆t. From here, just as in Lemma 3.6 in [5], we conclude

E exp
(
−µ0Xtk

)
≤ exp (−µ0bσ(1/2)∆t)E exp

(
−µ0Xtk−1

[
1−K∆t− σ2∆t

2
µ0

])
. (A.2)

Then if we introduce the same sequence (µj)j ≥ 0 of Lemma 3.6 in [5], given by

µj =

{ 1
γσ2∆t , j = 0,

µj−1

[
1−K∆t− σ2∆t

2 µj−1

]
, j ≥ 1.

We can repeat the proof in [5] and find out that if ∆t ≤ 1/(2K) then, the sequence (µj)j ≥ 0 is nonnegative,
decreasing and satisfies the following bound

µj ≥ µ1

(
1

1 + σ2

2 ∆t(j − 1)µ0

)
−K

(
∆t(j − 1)µ0

1 + σ2

2 ∆t(j − 1)µ0

)
, ∀j ≥ 1.

On the other hand making the same calculations to obtain (A.2) we can get for any j ∈ {0, . . . , k − 1},

E exp
(
−µjXtk−j

)
≤ exp

(
−µjbσ(1/2)( 1

2 )∆t
)
E exp

(
−µjXtk−j−1

[
1−K∆t− σ2∆t

2
µj+1

])
,

from where, by an induction argument we have

E
(
−µ0Xtk

)
≤ exp

−bσ(1/2)

k−1∑
j=0

µj∆t

 exp (x0µk).

From here, and the bound for the sequence (µj)j ≥ 0, we have

E
(
−µ0Xtk

)
≤ C

(
∆t

x0

) 2bσ(1/2)

σ2
(1− 1

2γ )
.

From where we see immediately

sup
k=0,...,N

E exp

(
− Xtk

γσ2∆t

)
≤ C

(
∆t

x0

) 2bσ(1/2)

σ2
(1− 1

2γ )
.
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