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DELAUNAY SOLUTIONS TO THE CAHN-HILLIARD EQUATION

En esta tesis doctoral se construyen soluciones rotacionalmente simétricas de la ecuación
de Cahn-Hilliard en Rd y se estudian sus propiedades de estabilidad.

En el Capítulo 1 se presenta la ecuación de Cahn-Hilliard y se explica su origen e inter-
pretación física. Además se repasan varios resultados conocidos, se presenta la notación y se
exponen los dos resultados más importantes de esta tesis: el primero establece la existencia
de soluciones rotacionalmente simétricas cuyos conjuntos de nivel se aproximan a los undu-
loides de Delaunay. El segundo resultado afirma que las propiedades de estabilidad de los
unduloides de Delanay heredan propiedades de estabilidad de las soluciones encontradas, en
el sentido que son no degeneradas y tienen 6 campos de Jacobi con crecimiento moderado.

En el Capítulo 2 se presentan en detalle los principales ingredientes que se necesitan para
probar los Teoremas 1.1 y 1.2, a saber las coordenadas de Fermi cerca de una superficie de
curvatura media constante, los unduloides de Delaunay y su operador de Jacobi. También se
muestra la primera aproximación de la solución anunciada en el Teorema 1.1.

En el Capítulo 3 se demuestra el Teorema 1.1. Usamos una versión refinada del método
de reducción del Lyapunov-Schmidt que simplifica varios aspectos técnicos de construcciones
de problemas similares. Los resultados de este capítulo fueron obtenidos en colaboración
con mi Profesor Guía, Dr. Michał Kowalczyk y fueron publicados en la revista Discrete and
Continous Dynamical Systems bajo el título Rotationally Symmetric Solutions to the Cahn-
Hillard Equation [31].

Una demostración del Teorema 1.2 se da el Capítulo 4. La clave es relacionar el núcleo del
operador linearizado alrededor de nuestra solución con los campos de Jacobi que provienen
de invariancias geométricas. Esta relación se puede realizar debido a que es posible separar
las variables una vez que se ha aplicado la transformada de Fourier-Laplace. Los resultados
de este capítulo también fueron obtenidos con mi profesor Guía y han sido aceptados para su
publicación en la revista Indiana University Mathematics Journal bajo el título Nondegene-
racy and the Jacobi Fields of Rotationally Symmetric Solutions to the Cahn-Hillard Equation
[32].

i



DELAUNAY SOLUTIONS TO THE CAHN-HILLIARD EQUATION

In this PhD thesis rotationally symmetric solutions to the Cahn-Hilliard equation are
constructed. Also we study its stability properties.

In Chapter 1 we present the Cahn-Hilliard equation in Rd and explain its origin and
physical interpretation. We also review several known results, introduce some basic notation
and present the two main results of this thesis. The first one states the existence of radially
symmetric solutions to the Cahn-Hilliard equation which nodal sets approaches to Delaunay
unduloids, and the second one claims that stability properties of the Delaunay unduloids
inherit stability properties of the solutions we found in the sense that our solutions are non
degenerated and have 6 Jacobi fields with temperate growth.

Chapter 2 is devoted to present in detail the main ingredients we need to prove Theorem
1.1 and Theorem 1.2, namely Fermi coordinates near a constant mean curvature (CMC), the
Delaunay unduloids and its Jacobi operator. We also present the construction of the first
approximation of the solutions announced in Theorem 1.1.

In Chapter 3 we prove Theorem 1.1. We use a refined version of the Lyapunov-Schmidt
reduction method which simplifies very technical aspects of previous constructions for similar
problems. The results of this chapter were obtained in collaboration with my thesis advisor
Dr. Michał Kowalczyk and published in Discrete and Continuous Dynamical Systems [31].

A proof of Theorem 1.2 is given in Chapter 4. The key is to relate the kernel of the linearized
operator about our solution with the Jacobi fields that comes from the geometric invariances.
This relation can be performed since we are able to separate the variables once the Laplace-
Fourier transform is applied. The results of this chapter were obtained in collaboration with
my thesis advisor Dr. Michał Kowalczyk and admitted for publication in Indiana University
Mathematics Journal [32].
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Chapter 1

Introduction

The evolutionary Cahn-Hilliard equation
ut = −∆(ε2∆u− F ′(u)) in Ω,

∂u

∂ν
= 0 on ∂Ω,

∂

∂ν
(ε2∆u− F ′(u)) = 0 on ∂Ω,

(1.1)

where F is a double-well potential, is a model introduced in 1958 (see [10]) that describes the
process of phase separation of two components of a binary alloy. Here Ω ⊂ Rd, d ≥ 1, is a
bounded domain that represents the region where the isolation of the components takes place,
and ν, as usual, denotes the outer normal on ∂Ω. The function u represents the concentration
of one of the components and ε is the range of intermolecular forces. The double-well potential
F (u) corresponds to the free energy density at low temperatures, and in what follows we will
take

F (u) =
1

4

(
1− u2

)2
, f(u) := −F ′(u) = u(1− u2).

Note that the constant functions u = ±1 are stable solutions of (1.1).

Equation (1.1) can be derived from the gradient flow of the Helmholtz free energy func-
tional

Eε(u) =

∫
Ω

(
F (u(x)) +

1

2
ε2|∇u(x)|2

)
dx, (1.2)

for u ∈ H−1(Ω), subject to the average concentration to be constant, i.e.

1

|Ω|

∫
Ω

u dx = m, (1.3)

where m ∈ [−1, 1] (see [27, 25, 26] for details). In this case the constant functions u ≡ ±1
are minimizers of this functional subject to the constraint m = ±1.
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Stationary solutions of (1.1) satisfy the Euler-Lagrange equation

ε2∆u+ f(u) = δε in Ω,

∂u

∂ν
= 0 on ∂Ω,

1

|Ω|

∫
Ω

u dx = m,

(1.4)

where δε ∈ R is the Lagrange multiplier associated to the constraint (1.3).

Standard methods of Calculus of Variation can be applied in order to find minimizers
(or more generally critical points) of (1.2), nevertheless understanding the behavior of the-
se minimizers has been the goal of studies for recent years. Using Γ-convergence approach
Modica [51] showed that global minimizers uε of (1.2) under the constraint (1.3) Γ-converge
to the function 1 − 2χA0 as ε → 0, where χA0 is the characteristic function of an open set
A0 ⊂ Ω. Moreover ∂A0 ∩Ω is locally a surface of constant mean curvature (CMC surface for
short). In [8, 9] Caffarelli and Córdoba shown that the nodal sets of the minimizers uε, that is
{x : uε(x) = λ}, with λ ∈ (−1, 1), converge uniformly over compacts to ∂A0∩Ω. As a matter
of fact, the set A0 minimizes of the following isoperimetric problem: minimize the perime-
ter functional PerΩ(A) (i.e. the Hausdorff measure Hn(∂A)) among the sets A ⊂ Ω whose
volume is fixed. A generalisation of these results was given by Sternberg [59]. Furthermore
Hutchinson and Tonegawa [34] studied limits of general critical points (1.2) and showed that
their limits are locally minimal or CMC surfaces. On the other hand Kohn and Sternberg
[39] proved that if a set A ⊂ Ω is an isolated minimizer of the perimeter functional subject to
the constant volume constraint then there exists a sequence of minimizers uε of (1.2) which
Γ-converges to A, this allowed to Chen and Kowalczyk [12] to obtain solutions of (1.4) at
least in dimension 2. Some of these results were generalized in the following sense: let (M, g)
be a compact Riemannian manifold with or without boundary. The corresponding problem
is to study the behavior of the critical points of the functional

Eε(u) =

∫
M

(
F (u(x)) +

1

2
ε2|∇u(x)|2g

)
dgv, (1.5)

subject to constraint
1

|M |

∫
M

u dgv = m. (1.6)

Under suitable non degeneracy assumptions (that we will explain in more detail in a while)
Pacard and Ritoré in [55] found critical points of (1.5)-(1.6) that converges uniformly over
compacts to the function 1− 2χN where N ⊂M is a CMC submanifold.

The counterpart of this theory for the time dependent problem (1.1), in particular the
the dynamics of its transition layers solutions, has been the interest of several authors, for
instance Alikakos, Bates and Chen [6] proved that as ε→ 0 the time evolution of interfaces
is governed by the Helle-Shaw problem, where of course CMC surfaces are stationary points
of the flow. More detailed description of the Cahn-Hilliard flow and key spectral tools can be
found for instance in [3], [5], [4], [2], [11] and the references therein.
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In the case d = 1 Grinfeld and Novick-Cohen [28, 29] completely determined the solutions
of (1.4). On the other hand several examples of stationary solutions for the singular pertur-
bation problem in a bounded domain in higher dimensions have been constructed. We refer
to [64, 66, 63, 65, 62, 7]. In [64] Wei and Winter constructed boundary spike solutions, that
is, if m ∈ (

√
3/3, 1) and p0 ∈ ∂Ω is a non degenerated critical point of the mean curvature,

then there exists a solution uε of (1.4) such that uε → m as ε → 0 for x ∈ Ω̄ \ {p0}. Mo-
reover, uε has only one local minimum pε ∈ ∂Ω, and pε → p0 as ε → 0, and uε(pε) → β
as ε → 0, where β is some number β ∈ (0,m). The same authors also proved existence of
multi-boundary spike solutions, see [66]. In [63] Wei and Winter were able to find interior
spike solutions under some geometric assumptions on the domain Ω, and in [65] the authors
constructed multi-interior-spike solutions.

Another result related to the equation (1.4) was also obtained by Wei and Winter in [62],
they constructed bubble solutions, namely, uε is a bubble solution if there exists a point
x0 ∈ Ω and r > 0 such that B(x0, r), the ball of radius r centered at x0, is contained in Ω
and uε → 1− 2χB(x0,r).

It is worth to pointing out that the so called Lyapunov-Schmidt reduction is the funda-
mental method used in most of these works, which is also the main tool we apply in our
study. We also mention that this method can also be applied to the Allen-Cahn equation
which is closely related to the Cahn-Hilliard equation as we proceed to explain briefly. The
Allen-Cahn equation 

ε2∆u+ f(u) = 0 in Ω,

∂u

∂ν
= 0 on ∂Ω,

(1.7)

in a bounded domain Ω ⊂ Rd is related to the Cahn-Hilliard equation (1.4) in the sense that
no mass conservation constraint (1.3) is assumed, this yields δ = 0.

Scaling x 7→ x/ε in (1.4) (respectively in (1.7)) and letting ε → 0 leads in a natural way
to the following way to the following problem

∆u+ f(u) = δ in Rd. (1.8)

Assuming δ = 0 and d = 1 there exists an obvious solution of (1.8), namely the unique odd
and monotonically increasing heteroclinic solution H of the ODE

H ′′ + f(H) = 0, in R,
H(±∞) = ±1.

(1.9)

We also notice that if a ∈ Rd is a unit vector and b ∈ R then the function

u(x) = H(a · x+ b), x ∈ Rd

is also a solution of (1.8) with δ = 0. On the other hand, when δ 6= 0 there exist radially
symmetric solutions to (1.8) (see [56]). Note that in both cases the level sets of the solutions
are CMC surfaces, in the former case they correspond to (d− 1)-dimensional hyperplanes in
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Rd which mean curvature is 0 and in the latter case they correspond to the (d−1)-dimensional
spheres in Rd of radius R0 which mean curvature is (d− 1)/R0.We also remark that radially
symmetric solutions in Rd−1 can be lifted trivially to Rd giving solutions whose nodal sets are
cylinders, which again are CMC surfaces in this case the mean curvature is (d− 2)/R0. This
kind of property can also be obtained for a larger class of surfaces, namely in [22] the authors
using the Lyapunov-Schmidt reduction method found an entire solution to the Allen-Cahn
equation in Rd, whose nodal sets resembles a large dilation of a given complete embedded, non
degenerate, total finite curvature and minimal surface M . The surface M is also assumed to
have m unbounded components or ends, each of them away of a large ball B(0, R) resembles
either a plane or a catenoid. The existence of this type of surfaces is guaranteed according
to the results of [58].

The aim of this work is to prove existence of entire solutions to

∆u+ u(1− u2) = δ in Rd, (1.10)

whose nodal sets are not cylinders or spheres, but rather more general surfaces. From now
on we will assume that d ≥ 3 and δ > 0 is a small parameter.

Note that dilating of the independent variable by a (large) factor ε−1 > 0

x 7−→ ε−1x,

we obtain the equivalent equation:

ε∆u+
1

ε
u(1− u2) = `ε in Rd, (1.11)

where we have denoted δ/ε = `ε. Clearly, if uε is a solution of (1.11) then v(x) = uε(εx) is
a solution of (1.10). On the other hand, if v is a solution of (1.10) then uε(x) = v (x/ε) is
a solution of (1.11). In particular this means that while phase transition of the solutions of
(1.10) are of order 1, for the solutions of (1.11) they are of order ε. Thus the latter are more
“concentrated”.

In the sequel we will focus on solving (1.11). From what we have said above about the
singular perturbation problem it is clear that level sets of these solutions should converge, as
ε tends to 0, to a CMC surfaces in Rd. In fact we expect (on the basis of formal calculations
in Section 2.2) that the Lagrange multiplier

`ε = −1

2
HΣ

∫
R
H ′(s)2 ds+O(ε),

where Σ is the surface of the phase transition and HΣ is its mean curvature. We introduce
a family of embedded CMC surfaces good candidates to be the limiting surfaces. Let us
consider the case d = 3 first. The Delaunay unduloids [23, 24, 45] are a one parameter family
Dτ , τ ∈ (0, 1) of embedded, periodic CMC surfaces of revolution. When the real parameter
τ tends to 1− the surfaces Dτ approach to the straight cylinder while when τ → 0+ they
become an array of identical spheres arranged along the x3 axis.

It turns out that Delaunay surfaces can be constructed in any dimension d > 3 that will
be denoted by Dτ , τ ∈ (0, τ∗), we note that the parameter τ∗ is given by:

τ∗ =
(d− 2)(d−2)/(d−1)

d− 1
.
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Again, in the limit τ → τ−∗ the surfaces Dτ approach the straight cylinder with xd as
symmetry axis, and when τ → 0+, the surfaces Dτ resemble a array of spheres arranged
along the xd axis. It is convenient to “normalize” the Delaunay surface and suppose that the
mean curvature of Dτ is 1 for all τ ∈ (0, τ∗). We will also denote by Nτ the vector field normal
to Dτ . Let us notice that the surface Dτ divides the space into two disjoint components Ω±τ ,
such that Rd \Dτ = Ω+

τ ∪ Ω−τ , where Nτ points towards Ω+
τ By changing the orientation of

Dτ if necessary we can chose Nτ in such a way that Ω+
τ contains the xd axis.

Our first result is

Theorem 1.1 For all τ ∈ (0, τ∗) when d = 3 and with a possible exception of a finite set of
τ when d > 3, there exists a sufficiently small ετ > 0 such that for all ε ∈ (0, ετ ) the problem

ε∆u+
1

ε
(u− u3) = `ε in Rd (1.12)

has a solution uτ,ε which is one-periodic along the xd-axis and rotationally symmetric with
respect to rotations about the same axis. Also it holds that `ε = 1 +O(1) as ε→ 0 and uτ,ε
satisfies

uτ,ε → 1 as ε→ 0 in Ω+
τ

uτ,ε → −1 as ε→ 0 in Ω−τ

uniformly over compacts.

Remark 1.1. We took f(u) = u − u3, which is the standard nonlinearity for the Cahn-
Hilliard equation. Theorem 1.1 holds for more general nonlinearities of bistable, balanced
type, namely f ∈ C3 such that f(u) = −F ′(u) where F is a double well, even potential with
non degenerate wells at ±1. Rather straightforward modifications required in the proof of
the more general setting are easy to get.

Remark 1.2. In the statement of the Theorem 1.1 we assume that τ 6= 0, τ∗. In fact solutions
for these extreme values of the Delaunay parameter are known: when τ = 0 they are simply
the radially symmetric solutions in Rd and when τ = τ∗ they are radial symmetric solutions
in Rd−1 lifted to Rd. However our construction does not cover the boundary values of τ . On
the one hand it has to do with the difficulty of finding an approximate solution which will
give uniformly small error when τ → 0 and on the other hand with the extra degeneracy of
the linearized operator when τ → τ∗. The latter case could be possibly dealt with within our
construction but we have not purse this since this would not give any new result.

Remark 1.3. Solutions we construct here are rotationally symmetric, periodic with period
Tτ , the same period of Dτ , and also symmetric with respect to the hyperplane xd = Tτ/2.
This could be used to show existence of solutions to the Cahn-Hilliard equation obeying
these symmetries using for instance variational methods in the spirit similar to [14] or [18].
However, without further analysis it is not immediately clear how to make sure that the
zero level set of such a solution would be a Delaunay surface for ε sufficiently small. This is
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important if one wants to use them as a basis of a connected sum construction of solutions of
the Cahn-Hilliard equation whose zero level sets is a non degenerate, non compact constant
mean surface with k Delaunay ends.

Before we present our second result, we recall that the Jacobi operator on an embed-
ded surface Σ is defined as the linearization of the mean curvature with respect to normal
perturbations and its formula is

JΣφ = ∆Σφ+ |AΣ|2φ,

here ∆Σ is the Laplace-Beltrami operator on Σ and AΣ its second fundamental form. The
elements of the kernel of JΣ, also called Jacobi fields, correspond to variations of the surface
which preserve the mean curvature to the second order. In [45] the authors give a complete
structure of the kernel of JΣ whenΣ = Dτ (this structure is reviewed in more detail in Section
2.4). In particular they realize that all elements of the kernel of JDτ with temperate grow
in the direction of the axis of rotation is a finite dimensional family that come from global
deformations which arise from explicit geometric motions, such as translations, rotations and
variance of the Delaunay parameter τ , that are called geometric Jacobi Fields. It is also
remarkable that non of these elements are in L2(Dτ ), but they are periodic (hence bounded)
or at most linearly growing in the along direction of Dτ . The main tool used to completely
describe the structure of the kernel of JDτ is the possibility of separate the variables, which
leads to the study of the normal modes of an ODE.

The existence result by Pacard and Ritoré in [55] described earlier relies on the assumption
that the Jacobi operator associated to the minimal (n − 1)-dimensional submanifold N of
a compact closed n-dimensional manifold M which in this case reads JN = ∆N + |AN |2 +
Ricg (νN , νN) (here ∆N is the Laplace-Beltrami operator on N , |AN |2 is the norm of the
second fundamental form, Ricg is the Ricci tensor on M and νN is the normal vector to N)
is nondegenerate in L2(N), that is there are no nontrivial solution φ ∈ L2(N) of JNφ = 0,
or equivalently it is injective in L2(N). In particular it follows that N divides M into two
disjoint components M±(N), similarly as Dτ divides R3.

The assumption of non degeneracy is key in other works, for instance in [19] del Pino et.
al. study the structure space of entire solutions to the Allen-Cahn equation

∆u+ u− u3 = 0 in R2.

which, at infinity are asymptotic, modulo the action of some rigid motion, to 2k copies of
±H (here H is the heteroclinic solution H (see (1.9)) whose nodal sets are, away from a
compact set, asymptotic at infinity to 2k-oriented half affine lines. They show, under some
non degeneracy assumption, that this space is a smooth manifold whose dimension is equal
to 2k. The non degeneracy they need is that the linearized operator of the Allen-Cahn
equation about one of the solutions described above, that is ∆ + f ′(u), defined on the space
of functions that decays or grow exponentially along its nodal set and decays exponentially
in the transversal direction of its nodal set, is said to be non degenerated if it is injective, or
equivalently there are no nontrivial solutions of ∆φ+ f ′(u)φ = 0 in L2(R2).

Our existence result in Theorem 1.1 is also based on the non degeneracy of the Delaunay
surfaces, which in this case means that their Jacobi operator does not have kernel in L2(R2),
and moreover it uses the fact the the Jacobi fields of these surfaces can be classified.
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The second result of this Thesis is related to this type of nondegeneracy, but now of the
linerized operator that comes from the equation (1.12) and the solution we have found in
Theorem 1.1. Assuming d = 3 and according to Theorem 1.1, the solution uτ,ε (what we now
name simply by wτ = wτ (x), x = (x1, x2, z)) is rotationally symmetric about the z axis and
z-periodic. This means that if we consider a vector h =

∑3
i=1 hiei, where ei are the canonical

vectors and a rotation Rϑ(x) = Rθ1,θ2(x), where θi is the angle of rotation about the xi axis,
and a number η such that |η| is small, then the function

Φh,ϑ,η(wτ ) := (wτ+η ◦ Rϑ)(x + h)

is also a solution. It follows that it is natural to study the linearized operator about wτ :

Lwτφ := ε∆φ+
1

ε
f ′(wτ )φ.

Keeping this in mind we say that φ is a Jacobi field of Lwτ if it is a smooth null element.

The 5 symmetries described above by Φh,ϑ,η(wτ ) and ∂τwτ determine 6 null elements of
Lwτ . As we will see in Lemma 4.2.1 the behavior of these null elements is governed by Jacobi
fields of JDτ and the first approximation of wτ in a sort of “separated variable” version.
In particular we obtain that the former are actually Jacobi fields of Lwτ , that we refer as
geometric Jacobi Fields. Thus, in analogy with the description of the kernel of JDτ , and the
nondegeneracy property required in similar operators, it is natural to ask whether all Jacobi
fields of Lwτ are the geometric Jacobi fields. The answer is provided by our second main
result:

Theorem 1.2 For all τ ∈ (0, 1) and all small ε the operator Lwτ is nondegenerate in the
sense that H2(R3) ∩ kerLwτ = ∅. Moreover, there exists a > 0 such that the linear subspace
of H2

loc(R3) solutions of
Lwτφ = 0,

with temperate growth in the direction of the axis of rotation of wτ i.e. such that

‖φ cosh−a z‖L2(R3) <∞, (1.13)

has dimension 6 and coincides with the linear subspace of the geometric Jacobi fields.

Note however that Theorem 1.2 does not exclude the possibility of existence of a solution
of Lwτφ = 0 such that φ satisfies (1.13) with some large value of a.

Theorem 1.2 provides a classification of the Jacobi fields of the family wτ of rotationally
symmetric solutions of (1.11) which is key for problems that can be considered for future
work: the construction of more complicated solutions build upon more complicated CMC
surfaces in R3. It is clear that this study depends on the invertibility theory of Lwτ and
on the precise knowledge of the Jacobi fields we have described, (see [36], [37] ,[46] , [45],
[43], [35], [34] for examples of such constructions in the geometry of CMC surfaces) and the
already mentioned work [19] (see also [41] in the context of the Allen-Cahn equation on the
plane).

To explain this let us recall that a non compact, Alexandrov embedded, complete CMC
surface with finite topology outside of a compact set consists of finitely many half Delaunay
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surfaces ([50], [49], [52]) called Delaunay ends. In addition if the number of ends of such
surface is k and this surface is non degenerate then set of nearby CMC surfaces is an analytic
manifold of dimension 3k. This was proven by Kusner, Mazzeo and Pollack in [42] and the
argument of their paper is in many ways inspired by the similar result for the singular Yamabe
problem [48]. One of the problems is to decide whether a given CMC surface is non degenerate
and this is rather difficult problem except for the Delaunay surface for which separation of
variables and ODE methods can be used to prove non degeneracy (see also [40]). Pushing
these arguments further one can also classify Jacobi fields with temperate growth [47] and
show that all of them came from the natural invariances of the family of Delaunay surfaces.
Starting from non degenerate Delaunay surface with k ends one can built more complicated
examples by gluing to it either an extra end or another non degenerate surface and thus
obtain CMC surfaces with arbitrary many ends. In some cases these new surfaces are also
nondegenerate, see for instance [47], [46], [36], [35].

Theorem 1.2 is the precise analog of the result proven in [47] but in the case of the Cahn-
Hilliard equation. Given what we said about the linear properties of the Delaunay surface
its assertion is expected, which does not mean that the proof is equally obvious. Certainly
what needs to be done is to connect the stability properties of the Delaunay surface Dτ and
the corresponding solution wτ of (1.12) and this can be achieved by expressing wτ in the
Fermi coordinates of Dτ (Section 2.1). While wτ is localized near Dτ this kind of expression
is only valid in a neighbourhood of the surface and this is what complicates the situation
(see Section 4.1). In order to deal with this in this paper we replace the operator Lwτ with
another operator Lwτ (Section 4.2), which locally agrees with the original one but which is
easier to analyze.

In the rest of this Introduction we explain explain briefly the tools, the schemes and
differences with related works of the proof of Theorem 1.1 and Theorem 1.2. Let us begin
with Theorem 1.1. One of the main tools we use is a variant of the Lyapunov-Schmidt
reduction method. Let us first discuss the differences between our approach and the older
implementations which can be found in [55] and [15], [16]. To set ideas we recall the standard
Lyapunov-Schmidt reduction method in its abstract version (see [13]). Given Banach spaces
X, Y and a linear operator A : X → Z and a continuous, nonlinear operator N : X → Z, we
are to solve the problem:

Ax−N(x) = 0. (1.14)

Let
N (A) = Y ⊂ X, R(A) = W ⊂ Z,

and let πY , πW be the projections on the corresponding subspaces. There exists a bounded
linear operator K : W → R(I − πY ) (the right inverse of A) such that AK = I on W and
KA = I − πY , and moreover the equation (1.14) is equivalent to the equation

x = y + z, y ∈ Y, z ∈ R(I − πY )

z −KπWN(y + z) = 0,

(I − πW )N(y + z) = 0.

(1.15)

In applications the Lyapunov-Schmidt method consists of reducing (1.14) to (1.15), solving
the first equation for z with y given (which usually can be done by a fixed point argument)
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and replacing this solution in the second equation to obtain the reduced problem

(I − πW )N(y + z(y)) = 0.

In practice several complications may arise and we will illustrate this considering a related
to our problem, which was treated by Pacard and Ritoré [55], and in many aspects it is
similar to the problem we consider here. Let M be a compact, closed manifold of dimension
n and N ⊂M a minimal n− 1 dimensional sub manifold which divides M into two disjoint
components. Consider the problem

ε2∆Mu+ u(1− u2) = 0 on M. (1.16)

We say that N is non degenerate if the Jacobi operator of N

JN = ∆N + |AN |2 + Ricg (νN , νN)

has empty kernel. As we already said earlier the result they proved is: given a non degenerate,
minimal sub manifold N of M for each sufficiently small ε there exists a solution uε of (1.16)
such that the zero level set of uε approaches N as ε → 0. Moreover, uε converges to ±1
uniformly over compacts of the two disjoint components of M \N . Let us explain now their
implementation of the Lyapunov-Schmidt reduction. It is expected that for x ∈M near N we
should have uε(x) = H(ε−1dist (x,N)) + ϕ, where dist (·, N) is the signed distance function
on M , H is the unique odd, monotonically increasing solution of −H ′′ = H(1 − H2) in R
and ϕ is a small perturbation. The problem to solve for ϕ amounts to inverting the linearized
operator around H(ε−1dist (x,N)) which has form

L = ∆M + f ′(H(ε−1dist (·, N))).

It is known that the norm of L−1 is large due to local translational invariance of the problem.
Thus we need to perturb N as well. To describe this perturbation we consider a manifold
Nh to be a normal graph over N described by a smooth and small function h : N → R.
Furthermore we let th(x) = dist (x,Nh) to be the signed distance from Nh. Then we look for
a solution of the form

u = H

(
th
ε

)
+ ϕ.

Now both h and ϕ are unknowns. The problem to solve for ϕ is

Lhϕ = F(h, ϕ),

where Lh is the linearized operator around H
(
th
ε

)
. The Lyapunov-Schmidt reduction strategy

amounts to projection of the above equation onto the function H ′
(
th
ε

)
and its complement,

denote this last projection by πh. This leads to a problem for ϕ

πhLhϕ = πhF(h, ϕ),

which we solve first for a given h, and the problem for h

JNhh = G(h), (1.17)

which we solve next (JNh is the Jacobi operator of Nh). Let us discuss (1.17). We notice that
the expression of JNh in local coordinates will depend in general on h and its derivatives
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up to order 3, while the Jacobi operator is itself only a second order operator. This loss of
regularity was dealt with in [55] using a regularisation procedure. In a series of papers [15],
[16], [17] del Pino, Kowalczyk and Wei introduced a slightly different approach to circumvent
this problem. It amounts to considering perturbation in the normal direction of the fixed
manifold N so that u = H

(
t+h
ε

)
+ · · · , where now t is the signed distance from N and h is

a smooth, unknown function defined on N . Equation (1.17) takes form

JNh = G(h),

and the problem of the loss of regularity is thus avoided. The problem is now reduced to
finding a fixed point of JN ◦ G(h), using for example Banach fixed point theorem. To do
this we need to know that G is at least Lipschitz in h. In both implementations of the
Lyapunov-Schmidt reduction described above this is rather complicated technical point since
G depends in a non explicit, non local and non linear way on h. This is mainly due to the fact
that the linearized operator Lh still depends on h through the potential f ′(H( t+h

ε
)). Thus

difficulty is to some extend circumvented in [53] where the presentation of the Lyapunov-
Schmidt reduction is state of the art. In this approach modifying the nonlinear problem by
composing it (twice) with a carefully chosen diffeomorphism (and its inverse) both the loss of
regularity and the nonlocal dependence on the perturbation h are avoided, in fact h appears
only algebraically in the problem.

We propose still another modification to the method. The idea is simple: instead of working
with an approximation of the form u = H

(
t+h
ε

)
+ · · · with h unknown we will improve the

initial approximation to w(t, y) = H
(
t
ε

)
+ · · · , t being the signed distance to N and y ∈ N in

such a way that we do not need to “move” N anymore. In other words h will be determined
with some sufficient precision before setting up the Lyapunov-Schmidt reduction, which with
this modification will look like the abstract setting described at the beginning. This way we
avoid both the loss of regularity and technical difficulties due to complicated character of the
nonlinear function G(h). This is described in detail in Chapter 2.

Regarding Theorem 1.2, we start setting the asymptotic behavior of the geometric Jacobi
fields of Lwτ , in particular, we realize that near the surface Dτ and asymptotically as ε→ 0
they are proportional to H ′(ε−1dist(·, Dτ )) a Jacobi field of JDτ . Setting the variable

t =
1

ε
dist(·, Dτ )

we notice that, again near Dτ , the operator Lwτ resembles

L = ε−1(∂2
t + f ′(H)) + εJDτ ,

whose kernel is fairly easy to determine using separation of variables, indeed taking u =
H ′(t)ψ, we have that

L(H ′ψ) = εH ′JDτψ,

thus Jacobi fields of JDτ determine the Jacobi fields of L and as we can see they have, at
least near Dτ , the same structure of the geometric Jacobi Fields. One of the main difficulties
we have to face is that above formulas are valid near Dτ and written in local coordinates,
but our problem is established in global coordinates. Our research is inspired in the work
of del Pino et. al. [19] where the authors look for null elements of the linearization of the
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Allen-Cahn equation about a non degenerated solution in the plane. They were able to apply
Fourier transform and the problem is reduced to the study of the Allen-Cahn equation in
R whose structure it is well known. In our context we have that the operator is z periodic,
thus in order to separate the variables it is more appropriated to apply the Fourier-Laplace
transform, which lead us to the study of a complex parameter operator.
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Chapter 2

Preliminaries

In this chapter we introduce definitions and recall in detail some results needed for our
work. In specific we first exhibit the Fermi coordinates near a CMC surface, then we intro-
duce the first approximation for the solution to equation (1.12). Thereafter we review the
construction of Delaunay unduloids and finally recall the properties of the Jacobi operator
on a Delaunay surface.

2.1. Fermi coordinates near any CMC surface

Let Σ in Rd be a CMC surface with mean curvature HΣ and denote by N its unit outer
normal. We will assume that there exists a tubular neighborhood Nδ of Σ of width 2δ in
which we can introduce the Fermi system of coordinates (y, t) ∈ Σ × (−δ, δ) by setting

Y : Nδ −→ Σ × (−δ, δ),
y + tN(y) = x 7−→ (y, t).

This map is in fact a diffeomorphism from Nδ to Σ × (−δ, δ) whenever δ is taken sufficiently
small. In the sequel we will use the inverse of this map

Y −1 : Σ × (−δ, δ) −→ Nδ,
(y, t) 7−→ x.

which allows to define the pullback Y ∗w to Σ × (−δ, δ) of any real function w : Nδ → R,
namely

Y ∗w(y, t) = w ◦ Y −1(y, t).

For technical reasons we will chose later the size of the tubular neighborhood δ depending
on ε but for now on we just take δ small.

We will now derive formulas expressing the Laplace operator ∆ in Rd in terms of the
Fermi coordinates (y, t) ∈ Σ × (−δ, δ). We define for each t ∈ (−δ, δ) the normal surface

Σt = {x ∈ Nδ | dist (Σ, x) = t}.
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In other words Σt is the surface obtained from Σ by translation in the direction of the normal
by t. Then the well known formula gives

∆ = ∆Σt + ∂2
t −HΣt∂t, (2.1)

where ∆Σt denotes the Laplace-Beltrami operator on Σt and HΣt is the mean curvature of
Σt. We need to expand these operators in terms of the variable t. By g and gt, respectively,
we will denote the metric on Σ, Σt (induced from Rd). Let us fix a point on Σ and some local
parametrisation X(u), u ∈ U ⊂ Rd−1 of Σ in a neighbourhood of this point (X could be the
isothermal coordinates but any parametrisation will do). In terms of these local coordinates
we get the following relation

gt,ij = gij + taij + t2bij,

where

gij = (∂ujX · ∂uiX), aij = (∂ujX · ∂uiN) + (∂uiX · ∂ujN),

bij = (∂uiN · ∂ujN).

Then, for the matrix g−1
t = (gijt )i,j=1,...,d−1 we get, provided that |t| is sufficiently small

g−1
t = g−1 + tM1 + t2M2,

where

M1 = M1(u) and M2 = M2(u, t)

are smooth matrix functions. The expression for the Laplace-Beltrami operator on Σ in local
coordinates is

∆Σ =
1√

det (g)
∂uj

(√
det (g)gij∂ui

)
= gij∂uiuj +

1√
det (g)

∂uj

(√
det (g)gij

)
∂ui

= gij∂uiuj − gk`Γik`∂ui ,

where Γik` are the Christoffel symbols. A similar formula holds for Σt. Using this we can write

∆Σt = ∆Σ + cij∂uiuj + di∂ui ,

where

cij = gijt − gij,
di = gk`t

(
Γit,k` − Γik`

)
+ Γik`

(
gk`t − gk`

)
.

(2.2)

Expressions in local coordinates for cij, di can be further derived using the above expansions,
however their exact form is not crucial here. The point is that, formally, these functions are
small in terms of |t|

|cij(u, t)|+ |di(u, t)| ≤ C|t|. (2.3)

With a choice of local coordinates on Σ the constant in the above estimate does not depend
on the point on Σ.
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Next, we will expand the mean curvature HΣt . To this end by kj, j = 1, . . . , d− 1 we will
denote the principal curvatures of Σ. Then we have

HΣt =
d−1∑
j=1

kj
1− tkj

=
d−1∑
j=1

kj + t

d−1∑
j=1

k2
j + QΣt

= HΣ + t|AΣ|2 + QΣt ,

where

QΣt(y, t) = t2
d−1∑
j=1

k3
j + t3

d−1∑
j=1

k4
j + . . .

and |AΣ| is the norm of the second fundamental form on Σ. Summarizing all this using (2.1)
we can express the Laplace operator in Fermi coordinates as follows

∆ = ∂tt + ∆Σ −
(
HΣ + t|AΣ|2 + QΣt

)
∂t + AΣt , (2.4)

where AΣt is a differential operator whose expression in local coordinates are given in (2.2)
and satisfy (2.3).

Next we introduce stretched Fermi coordinates

t =
t

ε
, y = y.

As before we have a diffeomorphism Yε and its inverse Y −1
ε : Σ ×

(
− δ
ε
, δ
ε

)
→ Nδ, and for any

function w : Nδ → R we define its pullback by Yε by

Y ∗ε w(y, t) = w ◦ Y −1
ε (y, t).

Taking into account formula (2.4) we get

∆ = ε−2∂tt − ε−1(HΣ + εt|AΣ|2 + Qε)∂t + ∆Σ + Aε, (2.5)

where
Qε(y, t) = QΣz(y, εt), Aε(y, t) = AΣz(y, εt).

We now define shifted Fermi coordinates. To do this we let h : Σ → R be a given smooth
function such that the map

x 7−→ (y, t), where x = y + (t+ h(y))N(y),

is a diffeomorphism from Nδ into Σ × (−δ, δ). We denote this map by Yh and by Y −1
h we

denote its inverse, finally by Y ∗hw we will denote the pullback of w : Nδ → R by Yh

Y ∗hw(y, t) = w ◦ Y −1
h (y, t).
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Now we compute the expressions for the Laplacian in shifted Fermi coordinates. To derive
it, we denote tBΣ,t = ∆Σt − ∆Σ. The operator BΣ,t is a second order differential operator.
From this it is easy to obtain a formula for the Laplacian in the shifted Fermi coordinates

∆ = ∆Σ + ∂2
t − (HΣ + ∆Σh+ (t+ h)|AΣ|2)∂t + (t+ h)BΣ,t+h + (t+ h)2QΣ,t+h. (2.6)

Finally we combine both stretched and shifted Fermi coordinates: by Yε,h we denote a
diffeomorphism and its inverse

Y −1
ε,h : Σ ×

(
−δ
ε
,
δ

ε

)
−→ Nδ,

and for any function w : Nδ → R we define its pullback by Yε,h by

Y ∗ε,hw(y, t) = w ◦ Y −1
ε,h (y, t).

Taking onto account formula (2.6) we get

∆ = ∆Σ + ε−2∂2
t − ε−1(HΣ + ∆Σh+ (εt + h)|AΣ|2)∂t

+ (εt + h)BΣ,εt+h + (εt + h)2QΣ,εt+h. (2.7)

2.2. Formal approximation of the solution concentrating
on any CMC surface Σ

Before continuing with our work, let us remark that all the formulas described in the
previous Section are valid in the tubular neighbourhood Nδ. In Chapter 3 we study equation
1.12 in the whole space, so we have to split the space into two components. We proceed as
follows: given any CMC surface Σ we introduce, by formal means, an approximate solution
w that depends on the stretched and shifted Fermi coordinates (y, t), that is, is defined only
near Σ. The properties we need in order to solve our problem comes from when we choose
a specific CMC surfaces: in Chapter 3 we impose Σ = Dτ the d − 1 dimensional Delaunay
unduloid The problem we have to deal with is that w is not enough, since w is defined
only near the corresponding CMC surface, nevertheless w can be modified to improve the
approximation.

We introduce the first approximate solution in the following way

Y ∗ε,hw(y, t) = U(t) + ε2ψ0(y, t), (2.8)

for some functions U and ψ0 which we will determine. Moreover, we will assume that the
function h in (2.7) has the form h = ε2h0, where h0 is a constant to be chosen.

The expression for the Laplacian in local coordinates indicates the form that U and ψ0

should take, in that sense we have that the error Nε(w)− `ε := ε∆w + 1
ε
w(1− w2)− `ε, can
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be written as

Nε(w)− `ε = ε
{
ε−2∂2

tU − ε−1HΣ∂tU + ε−2f(U)− ε−1`ε

+ ∂2
tψ0 − εHΣ∂tψ0 + f ′(U)ψ0 − (t + εh0)|AΣ|2∂tU

+ ε2∆Σψ0 − ε2(t + εh0)|AΣ|2∂tψ0

+
[
(εt + h)BΣ,εt+h + (εt + h)2QΣ,εt+h

]
(U + ε2ψ0)

}
+

1

ε
f(w)− 1

ε
f(U)− εf ′(U)ψ0.

(2.9)

In order to get as small as possible this approximation we have to get rid of the first
two lines of the expression above, since they show the lower powers in ε. To write things
compactly let S0 and L0 be the operators that these lines define, that is

S0(w) := ∂2
tw − εHΣ∂tw + f(w),

L0w := ∂2
tw − εHΣ∂tw + f ′(U)w.

With this notation and the ansatz (2.8) we can write the problem in the form

S0(U) + ε2L0ψ0 +Q0(U + ε2ψ0) = ε`ε.

where Q(U + ε2ψ0) represents the rest of the terms in (2.9), namely

Q(U + ε2ψ0) = −ε2(t + εh0)|AΣ|2∂tU
+ ε4∆Σψ0 − ε4(t + εh0)|AΣ|2∂tψ0

+ ε2
[
(εt + h)BΣ,εt+h + (εt + h)2QΣ,εt+h

]
(U + ε2ψ0)

+ f(w)− f(U)− f ′(U)ε2ψ0,

and we also have to determine the Lagrange multiplier `ε. Thus we set U as the the function
that yields the following lemma.

Lemma 2.2.1 There exists a monotonically increasing solution of the equation

S0(U) = U ′′ − εHΣU
′ + f(U) = ε`ε, in R,

f(U(±∞)) = ε`ε.
(2.10)

This function is easy to find by perturbing the heteroclinic solution H introduced in (1.9).
Note that since f is odd symmetric we have U(±∞) = ±1 + σ±ε , where σ±ε is the small
constant such that

f(±1 + σ±ε ) = ε`ε.

Also, we have

`ε = `0 +O(ε), `0 = −1

2
HΣ

∫
R
H ′(s)2 ds,

and at main order
U(t) = H(t) +O(ε),
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We first have to set function space where it is possible to find a solution of this equation
and the later ones, thus we introduce following weighted uniform norm space

C∞µ (R) =

{
v ∈ C∞(R)

∣∣∣∣‖v‖C∞µ (R) := sup
t∈R
|v(t)|(cosh t)µ <∞, for µ ∈ R

}
Proof of Lemma 2.2.1. We consider the ansatz U = H + εφ, where H is the heteroclinic
solution of (1.9), and φ the corresponding perturbation, we find that φ must satisfy

H ′′ + εφ′′ − εHΣH
′ − ε2HΣφ

′ + f(H + εφ) = ε`ε in R. (2.11)

Taking into account that we can write f(H + εφ) = f(H) + εf ′(H)φ+ [f(H + εφ)− f(H)−
εf ′(H)φ], we have that (2.11) is equivalent to

Lφ := φ′′ + f ′(H)φ = `ε +HΣ(H ′ + εφ′) +O(εφ2) in R. (2.12)

We already know that H ′ is an element of the kernel of the second order linear operator L,
the other one can be found with the ansatz vH ′, plugging this ansatz into the corresponding
equation we find that v =

∫
1

(H′)2
, and it easy to see that vH ′ is exponentially increasing in

fact vH ′ = O(e±t/
√

2) as t→ ±∞. In order to find a bounded particular solution of Lφ = g
we first notice that the Wronskian W (H ′, vH ′) = 1, therefore using variation of parameters,
a particular solution has the form

yp(t) = −H ′(t)

∫ t

0

v(s)H ′(s)g(s) ds+ v(t)H ′(t)

∫ t

−∞
H ′(s)g(s) ds.

This solution is bounded if the following orthogonality condition is satisfied:∫
R
H ′(t)g(t) dt = 0.

Thus (2.12) can be written as the integral equation

φ(t) = −H ′(t)

∫ t

0

v(s)H ′(s)[`ε +HΣ(H ′(s) + εφ′(s)) +O(εφ2(s))] ds

+ v(t)H ′(t)

∫ t

−∞
H ′(s)[`ε +HΣ(H ′(s) + εφ′(s)) +O(εφ2(s))] ds. (2.13)

Taking derivative one has:

φ′(t) = −H ′′(t)

∫ t

0

v(s)H ′(s)[`ε +HΣ(H ′(s) + εφ′(s)) +O(εφ2(s))] ds

+ [H ′′(t)v(t) +H ′(t)v′(t)]

∫ t

−∞
H ′(s)[`ε + εHΣ(H ′(s) + εφ′(s)) +O(εφ2(s))] ds. (2.14)

Since the linear operator L has as H ′ as the only bounded element of its kernel it follows
that the the right hand side of this equation has to be orthogonal to H ′ and this condition
reads ∫

R
`εH

′(s) ds+

∫
R
HΣ(H ′(s) + εφ′(s))H ′(s) ds+

∫
R
O(εφ2(s))H ′(s) ds = 0
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or equivalently

`ε = − 1∫
RH

′(s) ds
HΣ

∫
R
H ′(s)2 ds+O(ε)

∫
R
φ2(s)H ′(s) ds+O(ε)HΣ

∫
R
φ′(s)H ′(s) ds

= −1

2
HΣ

∫
R
H ′(s)2 ds+O(ε),

as we anticipated. Therefore we can write the problem as(
φ
φ′

)
=M

(
φ
φ′

)
=

(
F(εφ2, εφ′)
G(εφ2, εφ′)

)
where F and G are the right-hand-side operators from (2.13) and (2.14) respectively.

The presence of the ε factor on the non linearity of the above operator allows an im-
plementation of the Banach fixed point theorem which can be done if we consider B ⊂
C∞µ (R)×C∞µ (R) (equipped with the norm ‖(u, v)‖C∞µ (R)×C∞µ (R) = máx{‖u‖C∞µ (R), ‖v‖C∞µ (R)})
of functions that satisfy ‖(φ, φ′)‖C∞µ (R)×C∞µ (R) ≤ K, where K is a large constant to be chosen,
in fact we have that

‖(F ,G)‖C∞µ (R)×C∞µ (R) = O(ε)‖(φ, φ′)‖C∞µ (R)×C∞µ (R)

thus we get thatM : B → B has a fixed point.

We continue with the description of the approximate solution: ψ0 should be chosen as the
bounded solution of

L0ψ0 = ∂2
tψ0 − εHΣ∂tψ0 + (1− 3U2)ψ0 = (t + εh0)|AΣ|2∂tU, (2.15)

thus we have the following

Lemma 2.2.2 There exists a negative constant η such that for all µ ∈ (η + εHΣ,−η] the
following holds. Given g0 = g0(t) ∈ C∞µ (R) satisfying the following orthogonal condition∫

R
g0(t)∂tU(t)e−εHΣt dt = 0, (2.16)

the problem
L0v(t) = g0(t) (2.17)

has a unique bounded solution. In addition v satisfies the estimate

‖v‖C∞µ (R) ≤ C‖g0‖C∞µ (R).

Thus, the solution of this equation defines a linear and bounded operator G in C∞µ (R), namely
v = G(g0).
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Proof. The fundamental set of the homogeneous equation L0v = 0 can be found by the
variation of parameters formula, indeed they correspond to the functions

V (t) = ∂tU(t) = O((cosh t)η
±

), W (t) = O((cosh t)ν
±

), as t→ ±∞.

where

η± =
1

2
εHΣ −

1

2

√
−4ι(±∞) + ε2H2

Σ, µ± =
1

2
εHΣ +

1

2

√
−4ι(±∞) + ε2H2

Σ,

here ι(±∞) = 1− 3(±1 + σ±ε )2.

Let us notice that for σ±ε small, one has η±,−ν± < 0 for all ε > 0, thus V is exponentially
decaying in t. We can assume that the Wronskian at the origin is equal to 1, therefore, if g0

satisfies (2.16) then we can write ϕ = G(g0) where

G(v)(t) = −V (t)

∫ t

0

W (s)e−εHΣsv(s) ds+W (t)

∫ t

−∞
V (s)e−εHΣsv(s) ds.

For the estimate of the lemma, let us notice that the orthogonality condition (2.16) gua-
rantees that the function G(g0) is exponentially decaying whenever g0 is exponentially de-
caying. To be more precise let us assume for instance that if µ ∈ (η + εHΣ,−η], where
η = máx{η−, η+} < 0, and

‖g0‖C∞µ (R) ≤ C,

then we have
‖v‖C∞µ (R) ≤ C,

as well.

Now we apply this lemma to the problem (2.15) with g(y, t) = (t + εh0)|AΣ|2∂tU(t) as
the right hand side, that is ψ0 = G((t+h0)∂tU), note that this function depends also of y. In
order to get decaying at ±∞ (in t) we must satisfy the orthogonal condition in (2.17), thus∫

R
(t + εh0)|AΣ|2(∂tU(t))2e−εHΣt dt = 0,

this expression tells us how we must pick h0, namely

h0 =

−
∫
R
t (V (t))2 e−εHΣt dt

ε

∫
R

(V (t))2 e−εHΣt dt

= O (1) ,

which is a bounded quantity.

With this choice we define:

ψ0(y, t) = G ((t + εh0)V (t)) |AΣ|2.

Note that we have:
‖(|t|+ ε|h0|)V (t)‖C∞µ (R) ≤ C, 0 < µ < −η,
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and as a consequence
‖ψ0(y, t)‖C∞µ ≤ C, 0 < µ < −η.

Sometimes it is convenient to derive a more refined estimate taking into account the
fact that the leading order term on the right hand side is tV (t) = O

(
|t|(cosh t)η

±
)
)

as
|t| → ±∞. Thus, we consider (2.17) with right hand side g(y, t) satisfying

‖g(y, t)(1 + |t|)β‖C∞µ (R) ≤ C,

with µ ∈ (η + εHΣ,−η], and β ∈ R. By a simple argument we have as well:

‖G(g)(y, t)(1 + |t|)β‖C∞µ (R) ≤ C.

2.3. The Delaunay unduloids

The Delunay unduloids Dτ , τ ∈ (0, 1) are CMC embedded surfaces of revolution in R3

[23, 24]. In this section we review how to obtain the equations that describe them. Consider
the parametrization obtained by rotate a curve (φ(z), 0, z), z ∈ R, around the z-axis, namely

X(z, θ) = (φ(z) cos θ, φ(z) sin θ, z),

easy computations gives the following formulas

ADτ =
φzz√
1 + φ2

z

dz2 − φ√
1 + φ2

z

dθ2,

HDτ = φzz(1 + φ2
z)
−3/2 − 1

φ
(1 + φ2

z)
−1/2

for the second fundamental form and the mean curvature, respectively. In order to have
constant mean curvature surfaces, say −1 (or 1 depending on the chosen orientation) we
impose

φzz −
1

φ
(1 + φ2

z) + (1 + φ2
z)

3/2 = 0. (2.18)

One can easily find two special solutions to (2.18), namely

φ1 = 1 and φ0 =
√

4− (z − 2)2, for |z − 2| ≤ 2.

and they arise the cylinder of radius 1 and the sphere of radius 2 centered at (0, 0, 2) respec-
tively.

Let us notice, by differentiating, that φ solves (2.18) if

H(φ, φz) = φ2 − 2φ√
1 + φ2

z

is constant. In particular this quantity should be negative in order to get embedded surfaces
(see [24]). The existence of Delaunay unduloids are guaranteed according to the following
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Proposición 2.1 ([45], Proposition 1) For all ε ∈ (0, 1) the problem
φzz − 1

φ
(1 + φ2

z) + (1 + φ2
z)

3/2 = 0,

φ(0) = ε,
φ′(0) = 0,

(2.19)

has a solution φε which is periodic and

ε ≤ φε(z) ≤ 2− ε,

and ĺımε→0+ φε(z) = φ0(z) =
√

4− (z − 2)2, ĺımε→1− φε(z) = φ1(z) = 1 the solutions descri-
bed above.

Note also that in particular we have H(φε, (φε)x) = ε2 − 2ε < 0, that allows to introduce
the parameter τ =

√
2ε− ε2 ∈ (0, 1) and renaming by φτ the corresponding function and the

limit surfaces are the described in the introduction: as τ → 0+ we obtain the array of spheres
of radius 2 and as τ → 1− we get the cylinder of radius 1.

We would like to have an isothermal parametrization, for that reason we change the
independent and dependent variable: z = kτ (s), τστ (s) = φτ (kτ (s)) The new parametrization
reads

Xτ (s, θ) = (τeστ (s) cos θ, τeστ (s) sin θ, kτ (s)). (2.20)

And στ and kτ must satisfy the following equations (see Proposition 2 in [45])


(
∂στ
∂s

)2

+ τ 2 cosh2 στ = 1,

τ 2 coshστ (0) = 1,


∂kτ
∂s

=
τ 2

2
(1 + e2στ ),

kτ (0) = 0.

Under this notation the main curvatures are

κ1 = e−στ sinhστ , κ2 = e−στ coshστ

and from here we obtain
|Aτ |2 = κ2

1 + κ2
2 = e−2στ cosh 2στ .

If we denote by 2sτ the period of στ we get that Dτ is 2Tτ = κτ (2sτ )/2 periodic, thus

Dτ = Dτ + 2Tτe3.

The exposed above is the standard way to introduce the Delaunay surfaces, nevertheless
there are other two. The first one corresponds to a variational approach where the aim is to
find extrema for the area functional of a surface of revolution subject to the constraint of the
corresponding volume is constant. In [24] the author shows that the Euler-Lagrange equation
associated to this problems is (2.19). The second (see [24]) one is the problem of the roulette
of a conic that rolls along a straight line where its focus is the generator. Depending on the
conic we get different curves and their corresponding surfaces: for the parabola we obtain
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the catenary and the catenoid, for the ellipse we obtain the undulary and Delaunay unduloid
and for the hyperbola we obtain the nodary and its surface is the Delaunay nodoid.

It is also known that the Delaunay surfaces can be constructed in any dimension d ≥ 3,
see [33]. By Dτ , τ ∈ (0, τ∗) we will denote the family of embedded Delaunay surfaces in Rd

with axis of symmetry edR. We note that the parameter τ∗ satisfies

τ∗ =
(d− 2)(d−2)/(d−1)

d− 1
,

and by Tτ we keep denoting its period, thus Dτ = Dτ + 2Tτed.

2.4. Jacobi operator on Delaunay surface

Let us recall that normal graph surface of Σ is

Σφ = {y + φ(y)N(y)},

where φ(y) ∈ C2(Σ) is small. The mean curvature of Σφ, denoted by Hφ expressed in terms
of φ can be written by

N (φ) := 2(Hφ − 1) = ∆Σ + |AΣ|2φ+Q(φ,Dφ,D2φ),

where ∆Σ denotes the Laplace-Beltrami operator on Σ, AΣ corresponds to the second funda-
mental form and Q is a quadratic nonlinearity that can be found explicitly (see for instance
in [38]). In order to obtain a CMC from Σφ necessarily Hφ = 1, or equivalently N (φ) = 0,
moreover the linearized operator of N about φ = 0 yields the Jacobi operator on Σ

JΣφ =
∂

∂s
(N (1 + sφ))

∣∣∣∣
s=0

= ∆Σφ+ |AΣ|2φ,

and in particular its null elements rise the so called Jacobi fields that corresponds to variations
of Σ which preserve the mean curvature to the second order.

A surface Σ is called nondegenerate if the Jacobi operator of this surface is injective. We
will describe briefly the invertibility theory of this operator in the case where Σ is a Delaunay
surface Dτ . The corresponding Jacobi operator will be denoted by JDτ = ∆Dτ + |ADτ |2.

For our study it is important to understand the kernel of JDτ or the so called Jacobi fields.
These elements are of the three types:

(1) Jacobi fields arising from infinitesimal translations. Given e ∈ R3, |e| = 1 the constant
Killing field associated to translations

x 7−→ e

induces the following Jacobi fields

ΦT,e
τ = e ·Nτ ,
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where Nτ is the unit normal vector toDτ . The coordinate vectors ej, j = 1, 2, 3 generate
three linearly independent Jacobi fields Φ

T,ej
τ corresponding to translations of Dτ in the

respective directions of the coordinate axis.
It is important to notice that the Jacobi fields Φ

T,ej
τ are bounded and periodic in s.

(2) Jacobi fields arising from infinitesimal rotations. Let e ∈ R3, |e| = 1 be such that
e · e3 = 0. The Killing vector field corresponding to the rotation about the vector e is:

x 7−→ (x · e)e3 − (x · e3)e.

We define the Jacobi field associated to this vector field by:

ΦR,e
τ = [(x · e)e3 − (x · e3)e] ·Nτ .

There are clearly two linearly independent Jacobi fields associated to the rotations.
They are:

ΦR,e1
τ and ΦR,e2

τ ,

and they correspond to rotations about the coordinate axis. Note that in isothermal
coordinates functions Φ

R,ej
τ , j = 1, 2 grow linearly as functions of s.

(3) Jacobi field associated with the variation of the Delaunay parameter. We define:

ΦD
τ = −∂τXτ ·Nτ .

This Jacobi field is somewhat harder to write explicitly, however it can be shown that
the function ΦD

τ (s) is linearly growing (see [44] for the explicit formula)

In summary, the Jacobi operator JDτ has at least 6 explicit Jacobi fields, three of them
are bounded, and the other 3 are linearly growing. By a result of Mazzeo and Pacard in [45]
we know that these corresponds to all Jacobi fields with at most linear growth. In fact the
key property to show this is that in isothermal coordinates JDτ separates variables into a
sequence of second order ODEs

Jτ,jϕ = 0, Jτ,j = ∂2
s + τ 2 cosh(2στ )− j2, |j| = 0, 1, . . . .

Proposition 2.4.1 ([45]) The homogeneous problem Jτ,jϕ = 0 has the following solutions:

1. one periodic and one linearly growing solution when j = 0 or |j| = 1;
2. two solutions ϕ±τ,j(s) which satisfy:

ϕ±τ,j(s+ sτ ) = e±ζτ,jsτϕ±τ,j(s),

with
γτ,j = Re ζτ,j > 0,

when |j| > 2. The numbers ζτ,j are the indicial roots of the operators Lτ,j and corres-
pond to the behavior of the solutions of the homogeneous problem at ±∞.
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The numbers ζτ,j correspond to the indicial roots of the operators Jτ,j and determine
the behavior of the solutions of the homogeneous problem at ±∞. In fact e±ζτ,jsϕ±τ,j(s) are
periodic, in consequence

|ϕ+
τ,j(s)| ≤ Ce−ζτ,js, |ϕ−τ,j(s)| ≤ Ce ζτ,js, ∀s ∈ R

in fact ϕ+
τj

(−s) = ϕ−τj(s). In light of points 1. and 2. of the proposition it is natural to define
ζτ,0 = ζτ,±1 = 0.

These basic facts can be generalized for the Jacobi operator of Delaunay surfaces in Rd,
d > 3, namely, there exist 2d Jacobi fields with at most linear growth: Φ

T,ej
τ (s,Θ), j =

1, . . . , d− 1, Φ
T,ej
τ (s), Φ

R,ej
τ (s,Θ), j = 1, . . . , d− 1, ΦD

τ (s,Θ), where (s,Θ) ∈ R×Sd−2 are the
corresponding parameters of the isothermal parametrisation.
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Chapter 3

Proof of the Theorem 1.1

3.1. The Lyapunov-Schmidt reduction

While our formal considerations in Chapter 2 are valid for any embedded CMC surface Σ
in Rd, in what follows we will focus on the special case when Σ = Dτ , i.e. it is a Delaunay
unduloid. Since we are interested in functions which are periodic in the direction of the xd
axis with the minimal period equal to that of Dτ we will introduce the manifold D̊τ which is
obtained by identifying the set Dτ ∩ {xd = 0} with the set Dτ ∩ {xd = 2Tτ}. Let us observe
that set D̊τ is homeomorphic to the d − 1 dimensional torus Td−1. We first notice that the
function w defined in (2.8) is a good approximation of our problem, nevertheless it is only
defined in the tubular neighborhood Nδ. Since ĺımt→±∞ U(t) = ±1 + σ±ε , it is natural to
define

H(x) =

{
1 + σ+

ε if x ∈ D̊+
τ ,

−1 + σ−ε if x ∈ D̊−τ ,

where D̊+
τ , D̊−τ denote, respectively, the exterior and the interior of D̊τ . Let us notice that

the function w approaches H exponentially. Indeed, we have

|Y ∗ε,hw(y, t)− Y ∗ε,hH(y, t)| ≤ Cµe
−µ|t| y ∈ D̊τ , t ∈

(
−δ
ε
,
δ

ε

)
,

for any µ ∈ (0, |η|). Now we “glue” w and H: take χ a cut-off function such that χ(s) = 1, if
|s| ≤ 1/2, and χ(s) = 0 if |s| ≥ 1. Next, we define the cut-off function χ∗ supported in Nδ
by:

Y ∗ε,hχ
∗(t) = χ

(εt
δ

)
.

We define the global approximate solution w∗ by

w∗(x) = w(x)χ∗(x) + H(x) [1− χ∗(x)] .

Now we look for a solution of the equation (1.12) in the form

u = w∗ + ϕ.
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where ϕ is a small (in a way to be specified) function. Thus our problem can be stated: find
ϕ : Rd → R, which is one-periodic with period 2Tτ in the xd direction, such that

Nε(w
∗ + ϕ) = `ε, in Rd−1 × S1

2Tτ , (3.1)

where S1
2Tτ

is the circle of radius 2Tτ and we recall

Nε(u) = ε∆u+
1

ε
u(1− u2).

Remark 3.1. Let us recall that we want our solution to be rotationally symmetric. That is,
if by RΘ we denote the rotation of Rd about the xd axis by angle Θ then we should have

(w∗ + ϕ)(x) = (w∗ + ϕ)(RΘx).

Since we already have (by definition)

w∗(x) = w∗(RΘx),

then as a result we will have ϕ(x) = ϕ(RΘx) as well, as it can be seen easily from the
proceeding construction.

Since the function ϕ appearing in (3.1) is expected to be small it is natural to expand the
nonlinear operator Nε and study the following equation

Lεϕ = −Nε(w
∗)−Qε(ϕ) + `ε,

where

Lε(ϕ) := DNε(w
∗)ϕ = ε∆ϕ+

1

ε
f ′(w∗)ϕ,

Qε(ϕ) := Nε(w
∗ + ϕ)−Nε(w

∗)− Lεϕ.

The strategy, based on the Lyapunov-Schmidt reduction is clear. Indeed, using the fact
that, in a certain way, Lε separates variables and due to the d dimensional bounded and
periodic kernel of the Jacobi operator JD̊τ given by {ΦT,ej

τ } j = 1, . . . , d which is associated
to translations of Dτ in the directions of the coordinate axis ej, the linear operator Lε should
have a d dimensional kernel spanned, roughly speaking, by the functions ZT,ej

τ,ε where

Y ∗ε,hZ
T,ej
τ,ε (y, t) = V(y, t)ΦT,ej

τ (y), j = 1, . . . , d,

V(y, t) = ∂tw = ∂tU(t) + ε2∂tψ0(y, t).

Notice also that in general any function Z such that

Y ∗ε,hZ(y, t) = V(y, t)Φ(y), (3.2)

is also “almost” in the kernel of Lε, in the sense that Y ∗ε,h(LεZ) = o(1).

At this point we introduce the following general set

X =

{
ϕ(y, t) ∈ L2(D̊τ × R)

∣∣∣∣∫
R
V(y, t)ϕ(y, t) dt = 0

}
,
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Notice that any function Z ∈ X⊥, the orthogonal complement of X , has the form

X⊥ =
{
Z(y, t)

∣∣Y ∗ε,hZ(y, t) = V(y, t)Φ(y)
}

for some function Φ that we can even compute explicitly

Φ(y) =

∫
R
V(y, t)Z(y, t) dt∫
R
V2(y, t)(t) dt

.

By Π we denote the orthogonal projection on X . We set ϕ = ϕ‖ + ϕ⊥, where

Y ∗ε,hϕ
‖ ∈ X , Y ∗ε,hϕ

⊥ = VΦ ∈ X⊥.

Finally we split our problem into two equations:

Π ◦ Y ∗ε,h[Nε(w
∗ + ϕ‖ + ϕ⊥)− `ε] = 0, (3.3)

(Id − Π) ◦ Y ∗ε,h[Nε(w
∗ + ϕ‖ + ϕ⊥)− `ε] = 0. (3.4)

When solving (3.3) we use the fact that the associated linear operator is coercive on
X ∩ H1(D̊τ × R). To solve (3.4) we will make use of the theory of solvability of the Jacobi
operator JD̊τ . It is important to note that that this is not direct, basically due two facts:
first, and somewhat technical step which we have omitted in this informal discussion, is to
“transfer” the original problem from the space of functions defined on Rd−1×S1

2Tτ
to a space

of functions defined on D̊τ × R. We will explain these details in Section 3.3. And second,
and more delicate, the operator JD̊τ has non trivial bounded elements in its kernel, roughly
speaking and suggested by (3.2), the span of the finitely dimensional set

Z =
{
ZT,ej
τ,ε (y, t) ∈ X⊥

∣∣ZT,ej
τ,ε (y, t) = V(y, t)ΦT,ej

τ (y)
}
. (3.5)

In order to remedy this issue we use the Lyapunov-Schmidt reduction. Indeed, instead of
solving (3.3)–(3.4) we study the problem

Π

[
Nε(w

∗ + ϕ‖ + ϕ⊥)− `ε + χ∗
d∑
j=1

cjZ
T,ej
τ,ε

]
= 0, (3.6)

(Id − Π)

[
Nε(w

∗ + ϕ‖ + ϕ⊥)− `ε + χ∗
d∑
j=1

cjZ
T,ej
τ,ε

]
= 0. (3.7)

The remaining step amounts to showing that the constants cj = 0 are actually all zero.
To prove this we will use balancing formulae.

In Section 3.2 and 3.3 we develop the linear theory associated to the problem (3.6)–(3.7),
and in Section 3.4 we provide the existence results of those equations and we also conclude
the proof showing that actually cj = 0 ∀j = 1, . . . , d.
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3.2. Linear theory for the model problem

In this section we will develop the necessary theory to deal with the operator Lε. To this
end we will consider the operator

Lε = ε∆D̊τ
− (HD̊τ

+ ε(t + εh0)χ(εt/δ)|AD̊τ |
2)∂t + ε−1∂2

t + ε−1f ′(w), (3.8)

where χ(s) is a cutoff function supported in (−1, 1) and equal to 1 in (−1/2, 1/2). Note that
this operator is defined for functions φ : D̊τ × R → R (and not just functions defined on
D̊τ × (− δ

ε
, δ
ε
)). It is clear that Y ∗ε,hLε ≈ Lε. Although the function w = U + ε2ψ0 depends

on both variables (y, t) in some sense the operator Lε separates variables. To see this, with
∂tw = ∂t(U + ε2ψ0) = V, we consider functions of the form

Z(y, t) = V(y, t)Φ(y) ∈ X⊥.

Observe that, by construction of w = U + ε2ψ0, combining equations (2.10) and (2.15)
multiplied by ε2 we get

ε−1∂2
tw − (HD̊τ

+ ε(t + εh0)|AD̊τ |
2)∂tw + ε−1f(w)

= `ε − ε3(t + εh0)|AD̊τ |
2)∂tψ0 + ε−1Q(εψ0),

where Q(v) = f(U+v)−f(U)−f ′(U)v. Differentiating this equation in t we get for V = ∂tw:

ε−1∂2
tV− (HD̊τ

+ ε(t + εh0)|AD̊τ |
2)∂tV− ε|AD̊τ |

2V + ε−1f ′(w)V

= −ε3|AD̊τ |
2∂tψ0 − ε3(t + εh0)|AD̊τ |

2∂2
tψ0 − ε−1∂tQ(ε2ψ0). (3.9)

From this, using the definition of Lε in (3.8) we get:

Lε(ϕ) = Lε(VΦ) = εVJD̊τΦ +Bε(Φ) (3.10)

where JD̊τ is the Jacobi operator on D̊τ and

Bε(Φ) = −ε(t + εh0)(1− χ∗)|AD̊τ |
2Φ∂tV + 2ε∇D̊τ

V · ∇D̊τ
Φ

+ εΦ∆D̊τ
V− ε3

[
(t + εh0)|AD̊τ |

2∂2
tψ0 + |AD̊τ |

2∂tψ0

]
Φ

+ ε−1
[
f ′(w)∂tw − f ′(U)∂tw − ε2f ′′(U)∂tUψ0

]
Φ.

We note that
Bε(Φ) = O(ε3)‖Φ‖C1(D̊τ ). (3.11)

Identity (3.9) and its consequence (3.10) is the key calculation which allows to use the usual
Lyapunov-Schmidt reduction scheme, as we explained in the introduction. Indeed, if we had
taken as the approximate solution only the function U then differentiating the equation (2.10)
for U ′ = ∂tU we would have gotten

ε−1∂2
tU
′ −HD̊τ

∂tU
′ + ε−1f ′(U)U ′ = 0.

This equation, unlike (3.9), does not carry any information about the geometry of D̊τ besides
its mean curvature which is constant. Following the method of [55] or [15], [16], [17], [53] we

28



would have to perturb the surface D̊τ additionally introducing new unknown functions in our
problem. With the approach presented here this is no longer necessary and the Lyapunov-
Schmidt procedure in this version is in this sense simpler. Recalling that the linearization of
the mean curvature operator is the Jacobi operator which depends on the second fundamental
form, we see that the operator Lε is naturally compatible with the geometric context of
our problem. To put it differently: the operator Lε is, up to negligible terms, the correct
linearization of the Cahn-Hilliard operator near a solution whose zero level set is the constant
curvature surface D̊τ .

To develop invertibility theory for Lε we will we employ two basic facts. First, we observe
that on the subspace of X⊥

Y :=

{
Z(y, t) = V(y, t)Φ(y) ∈ X⊥

∣∣∣∣∫
D̊τ

Φ(y)ΦT,ej
τ (y) dy = 0, j = 1, . . . , d

}
we have that the bilinear form defined by

a(ϕ1, ϕ2) = 〈Lεϕ1, ϕ2〉L2(D̊τ×R) =

∫
D̊τ×R

(Lεϕ1)ϕ2 dydt

satisfies the coercive condition

a(Z,Z) ≥ Cε‖Z‖2
L2(D̊τ×R)

∀Z ∈ Y ∩H1(D̊τ × R).

This follows basically from the invertibility of the Jacobi operator JD̊τ on orthogonal functions
to its kernel.

Second, when we consider ϕ ∈ X and g ∈ L2(D̊τ × R) such that ϕ is a bounded solution
of the problem

Lεϕ = g,

where Lε = ε∆D̊τ
+ ε−1∂2

t + ε−1f ′(H), then we have

‖ϕ‖L2(D̊τ×R) ≤ Cε‖g‖L2(D̊τ×R). (3.12)

To prove this estimate we use Cauchy-Schwarz inequality and the well known fact that from∫
R
|v′|2 − f ′(H)v2 ≥ C‖v‖2

L2(R) if
∫
R
v(t)H ′(t) dt = 0.

It follows that the bilinear form

Bε(ϕ) := 〈Lεϕ, ϕ〉L2(D̊τ×R),

is coercive on X ∩H1(D̊τ × R). In fact

Bε(ϕ) ≥ Cε−1‖ϕ‖2
L2(D̊τ×R)

∀ϕ ∈ X ∩H1(D̊τ × R).

In the same way as (3.12) is shown one can prove

ε2‖∇D̊τ
ϕ‖L2(D̊τ×R) + ‖∂tϕ‖L2(D̊τ×R) + ‖ϕ‖L2(D̊τ×R) ≤ C‖g‖L2(D̊τ×R). (3.13)
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We refer the reader to [15] or [17] where results similar to estimates (3.12) and (3.13) were
proven.

At the same time we can use (3.13) and the coercivity of the bilinear form Bε(ϕ) to solve
the equation

ΠXLεϕ = g. (3.14)

To do this we write Lε = Lε + (Lε − Lε) and use a perturbation argument. The solution will
still satisfy estimate (3.13). The perturbation argument is as follows: for g ∈ X we solve

Lεϕ = g + cH ′,

where c =
∫
gH′ dt∫

(H′)2 dt
. Then we define a map

GX (g) = ϕ− V

∫
Vϕdt∫
V2 dt

.

Note that GX : X → X and it is well defined since bounded elements of the kernel of Lε are
precisely given by the span of H ′ (see also Lemma 3.2.2). Next we check

‖ΠXLεGX (g)− g‖L2(D̊τ×R) ≤ o(1)‖g‖L2(D̊τ×R).

Indeed, since V = H ′ +O(ε) by the construction of w = H +O(ε) in Section 2.2, we have

|c| ≤ Cε‖φ‖L2(D̊τ×R) ≤ Cε‖g‖L2(D̊τ×R).

Moreover, from

Lε − Lε = −(HD̊τ
+ ε(t + εh0)χ(εt/δ)|AD̊τ |

2)∂t + ε−1[f ′(w)− f ′(H)]

we find

‖(Lε − Lε)φ‖L2(D̊τ×R) ≤ C(‖∂tφ‖L2(D̊τ×R) + ‖φ‖L2(D̊τ×R)) ≤ Cε‖g‖L2(D̊τ×R)

by estimate (3.13). Therefore ΠXLεGX is invertible as a map from X to itself and we can
define

(ΠXLε)−1 = GX (ΠXLεGX )−1. (3.15)

Moreover it is rather straightforward to show that a solution to (3.14) will satisfy estimates
(3.12) and (3.13).

We will use these observations to solve the following model equation

Lεϕ = g(y, t),

where we will assume initially that g ∈ L2(D̊τ × R). We look for a solution in the form
ϕ = ϕ‖ + ϕ⊥, where

ϕ‖ ∈ X , ϕ⊥ = VΦ ∈ X⊥. (3.16)

We write
Lεϕ = ΠXLε(ϕ‖ + ϕ⊥) + ΠX⊥Lε(ϕ‖ + ϕ⊥),
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and then we need to solve

ΠXLεϕ‖ = ΠXg − ΠXLεϕ⊥

ΠX⊥Lεϕ⊥ = ΠX⊥g − ΠX⊥Lεϕ‖.

The idea is that terms ΠXLεϕ⊥ and ΠX⊥Lεϕ‖ are of smaller order because LεV = o(1) so
that the coupling between the two equations is rather weak. Another important point is that

Lεϕ⊥ = εVJD̊τΦ +Bε(Φ),

where Bε(Φ) is small (see (3.11)). We decompose accordingly

g = g‖ + g⊥, g⊥ = VΞ (3.17)

and Bε(Φ) = B
‖
ε (Φ) +B⊥ε (Φ), B⊥ε (Φ) = Υε(Φ)V and look for a solution of the system

ΠXLεϕ‖ = g‖ −B‖ε (Φ),

εJD̊τΦ + Υε(Φ) = Ξ− 1∫
R V

2 dt

∫
R
(Lεϕ‖)V dt +

d∑
j=1

cjΦ
T,ej
τ .

(3.18)

Note that in the second equation we have introduced Lagrange multipliers cj to be determi-
ned, and we anticipated in the previous section. Let us notice that the main terms to study
in the above system are

ΠXLεϕ‖ = g‖,

εJDτΦ = Ξ +
d∑
j=1

cjΦ
T,ej
τ ,

(3.19)

which is a decoupled system that we write as Lε(ϕ‖,Φ, cj) = (g‖,Ξ). As we saw above, the
first equation in this system can be solved according to (3.15), meanwhile, for the second
equation we have that the bilinear form associated

aD̊τ (Φ) = 〈εJD̊τΦ,Φ〉L2(D̊τ ) =

∫
D̊τ

ε(JD̊τΦ(y))Φ(y) dy

is coercive in Y ∩H1(D̊τ ), where

Y =

{
Φ(y) ∈ L2(D̊τ )

∣∣∣∣∫
D̊τ

Φ(y)ΦT,ej
τ (y) dy = 0

}
.

In fact, we have the estimate

aD̊τ (Φ) = 〈εJD̊τΦ,Φ〉L2(D̊τ ) ≥ ε‖Φ‖2
L2(D̊τ )

∀Φ ∈ Y ∩H1(D̊τ ).

therefore, taking into account that the bounded elements of the kernel of JD̊τ are the span of
the orthogonal Jacobi fields Φ

T,ej
τ , we obtain that for all Ξ ∈ L2(D̊τ ) there exists Φ ∈ L2(D̊τ )

such that the second equation in (3.19) is solved whenever its right hand side is in Y , which
leads us to the following condition on the coefficients cj

cj = −
∫
D̊τ

Ξ(y)Φ
T,ej
τ (y) dy∫

D̊τ
(Φ

T,ej
τ )2(y) dy

. (3.20)
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Also, it holds the estimate
‖Φ‖L2(D̊τ ) ≤ ε−1‖Ξ‖L2(D̊τ ). (3.21)

In summary we have:

Lemma 3.2.1 Let ϕ, g ∈ L2(D̊τ × R) and consider their respective decomposition onto X
and X⊥ as in (3.16) and (3.17) respectively, and assume that Ξ ∈ Y . The system (3.19), or
equivalently Lε(ϕ

‖,Φ, cj) = (g‖,Ξ) has a solution that defines an operator

G : X × L2(D̊τ ) → X × L2(D̊τ )× Rd,

(g‖,Ξ) 7→ (ϕ‖,Φ, cj),

that satisfy estimates (3.12) and (3.13) and (3.21). In addition, coefficients cj are given by
(3.20)

Finally we can write system (3.18) in a fixed point scheme of the operator G.

An alternative approach is to use a perturbation as the given recently. We introduce the
notation L̃ε(ϕ

‖,Φ, cj) = (g‖,Ξ) for the system (3.18). Let us notice that

‖L̃εG(g‖,Ξ)− (g‖,Ξ)‖X×L2(D̊τ ) = o(1)‖(g‖,Ξ)‖X×L2(D̊τ ),

which follows basically from the fact that L̃ε − Lε only contains negligible terms, and in
consequence the operator

L̃εG : X × L2(D̊τ )→ X × L2(D̊τ )

is invertible, therefore we can define

A : X × L2(D̊τ )→ X × L2(D̊τ )× Rd

as A(g‖,Ξ) = G((L̃εG)−1)(g‖,Ξ). From this it easy to see that L̃εA(g‖,Ξ) = (g‖,Ξ), that is A
is a right inverse of L̃ε. Finally if we write L̃ε = Lε+(L̃ε−Lε) we see that A(g‖,Ξ) = (ϕ‖,Φ, cj)
still satisfy estimates (3.12), (3.13) and (3.21).

Given that we can solve (3.18) our purpose is to find suitable estimates for the solution
of the problem

Lεϕ = g(y, t)

on X assuming that
g(y, t) = O(e−µ|t|), |t| → ∞.

In particular we would like to know that ϕ(t, y) = O(e−µ|t|) as well. This is straightforward
by comparison principle once we know for example that ϕ is bounded. Thus the main issue
is to obtain L∞ control for ϕ‖. We will go a little further now and show how to control a
priori certain weighted Hölder norms of ϕ‖ and ϕ⊥.

To this end we consider D̊τ × R equipped with the product metric and the associated
Levi-Civita connection and define the following weighted Hölder norms

‖u‖C0,αµ (D̊τ×R) = sup
t∈R

(cosh t)µ‖u‖C0,α(D̊τ×(t−1,t+1)),

‖u‖C1,αµ (D̊τ×R) = ‖u‖C0,αµ (D̊τ×R) + ‖∇D̊τ×Ru‖C0,αµ (D̊τ×R),

‖u‖C2,αµ (D̊τ×R) = ‖u‖C0,αµ (D̊τ×R) + ‖∇D̊τ×Ru‖C0,αµ (D̊τ×R) + ‖∇2
D̊τ×R

u‖C0,αµ (D̊τ×R),

(3.22)
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where ∇D̊τ×R and ∇2
D̊τ×R

correspond to the gradient and Hessian operators on D̊τ × R.
By DD̊τ

and D2
D̊τ

we denote the gradient and the Hessian operator on D̊τ respectively. In
isothermal coordinates they read

DD̊τ
=

1

τ 2e2στ (s)
(∂s, ∂Θ),

D2
D̊τ

=
1

τ 4e4στ (s)

(
∂s 0
0 ∂Θ

)
.

These formulas can be obtained easily, since the metric on D̊τ is gτ = τ 2e2στ (s)(ds2 + dΘ2).In
consequence we obtain the following formulas

‖∇D̊τ×Ru‖C0,αµ (D̊τ×R) = ‖∂tu‖C0,αµ (D̊τ×R) + ‖DD̊τ
u‖C0,αµ (D̊τ×R),

‖∇2
D̊τ×R

u‖C0,αµ (D̊τ×R) = ‖∂2
tu‖C0,αµ (D̊τ×R) + ‖∂tDD̊τ

u‖C0,αµ (D̊τ×R) + ‖D2
D̊τ
u‖C0,αµ (D̊τ×R).

In order to simplify several arguments below and avoid keeping track of negative powers
of ε appearing on the right hand side of various estimates we will rescale the y variable. Thus
we introduce

ỹ =
y

ε
, t̃ = t.

We also denote D̊τ,ε = 1
ε
D̊τ , and we consider the manifold D̊τ,ε ×R again equipped with the

product metric and the associated Levi-Civita connection. Finally let us define the following
weighted Hölder norms on D̊τ,ε × R, where as usual 0 < α < 1

‖u‖C0,αµ (D̊τ,ε×R) = sup
t̃∈R

(cosh t̃)µ‖u‖C0,α(D̊τ,ε×(t̃−1,t̃+1)),

‖u‖C1,αµ (D̊τ,ε×R) = ‖u‖C0,αµ (D̊τ,ε×R) + ‖∇D̊τ,ε×Ru‖C0,αµ (D̊τ,ε×R),

‖u‖C2,αµ (D̊τ,ε×R) = ‖u‖C0,αµ (D̊τ,ε×R) + ‖∇D̊τ,ε×Ru‖C0,αµ (D̊τ,ε×R) + ‖∇2
D̊τ,ε×R

u‖C0,αµ (D̊τ,ε×R).

(3.23)

We note that if for a given a real function u defined on D̊τ ×R we set ũ(ỹ, t̃) = u(εỹ, t̃) then
we have

‖ũ‖C`,αµ (D̊τ,ε×R) =
∑

0≤k+m≤`

εm‖∂ktDm
D̊τ
u‖C0µ(D̊τ×R) +

∑
0≤k+m≤`

εm+α[∂ktD
m
D̊τ
u]α,µ,D̊τ×R, (3.24)

where ‖ · ‖C0µ(D̊τ×R) and [·]α,µ,D̊τ×R correspond to the weighted Hölder norm and weighted
Hölder seminorm respectively, that is

‖u‖C0µ(D̊τ×R) = sup
t∈R

(cosh t)µ‖u‖C0(D̊τ×(t−1,t+1)),

[u]α,µ,D̊τ×R = sup
t∈R

(cosh t)µ[u]α,D̊τ×(t−1,t+1).

Consequently by E `,αµ (D̊τ × R) we denote the space of functions on D̊τ × R whose norm

‖u‖E`,αµ (D̊τ×R)
:=

∑
0≤k+m≤`

εm‖∂ktDm
D̊τ
u‖C0,αµ (D̊τ×R)

is bounded. In consequence we have the following result which is based on similar results
from [15],[22], [17].
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Proposition 3.2.1 For all ε > 0 sufficiently small the following holds. Given µ ∈ [0,−η)
and g satisfying

‖g‖E0,αµ (D̊τ×R) <∞,∫
R
g(y, t)V(y, t) dt = 0

there exists a positive constant C such that any solution of

ΠXLεu = g (3.25)

satisfies
‖u‖E`,αµ (D̊τ×R) ≤ Cε1−α‖g‖E0,αµ (D̊τ×R),

for ` = 0, 1, 2.

Proof. We split the proof in several steps.

Step 1. Rescaling the variables. Given functions u and g on D̊τ × R we introduce

ũ(ỹ, t̃) = u(εỹ, t̃), w̃(ỹ, t̃) = w(εt̃, t̃), g̃(ỹ, t̃) = εg(εỹ, t̃),

and set
L̃εũ = ∆D̊τ,ε

ũ+ ∂2
t̃ ũ+ f ′(w̃)ũ+ εq̃∂t̃ũ,

where
q̃ = 1 + ε(t̃ + εh0)χ(εt̃/δ)|AD̊τ (εỹ)|2

is a bounded function. The linear problem (3.25) is equivalent to

ΠX L̃εũ = g̃ in D̊τ,ε × R, (3.26)

where we assume ∫
R
g̃(ỹ, t̃)V(εỹ, t̃) dt̃ = 0.

Step 2. Description of the kernel of the associated operator. We consider a problem of the
form

∆yφ+ ∂2
t φ+ f ′(H(t))φ = 0 in Rd−1 × R. (3.27)

The following result is known (c.f. [22], Lemma 5.1)

Lemma 3.2.2 Let φ be a bounded solution of (3.27). Then φ = cH ′(t), with some constant
c.

Step 3. A priori estimate of the associated operator.

Consider now equation (3.26) and assume that g̃ ∈ C0,α
µ (D̊τ,ε × R), with µ ∈ (0, |η|)
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Lemma 3.2.3 There exists a constant C > 0 such that for all sufficiently small ε any
bounded solution of (3.26) with ∫

R
ũ(ỹ, t̃)V(εỹ, t̃) dt̃ = 0.

satisfies
‖ũ‖C2,αµ (D̊τ,ε×R) ≤ C‖g̃‖C0,αµ (D̊τ,ε×R).

A proof of this lemma, is given bellow.

Step 4. Returning to the original variables. Note that with the definitions of the norms
(3.22)–(3.23) we have

‖u‖E0,αµ (D̊τ×R) = ‖u‖C0,αµ (D̊τ×R),

while with the notation of (3.24) we have

C−1‖ũ‖C`,αµ (D̊τ,ε×R) ≤ ‖u‖E`,αµ (D̊τ×R) ≤ Cε−α‖ũ‖C`,αµ (D̊τ,ε×R).

And from this the desired result.

Proof of Lemma 3.2.3. The proof of this lemma relies on Lemma 3.2.2, a contradiction ar-
gument and the comparison principle. It follows the same lines as those of similar results in
[22] (see also [20]). By local elliptic estimates we first prove by contradiction the following
estimate

‖ũ‖C0,αµ (D̊τ,ε×R) ≤ C‖g̃‖C0,αµ (D̊τ,ε×R) (3.28)

In fact, if (3.28) were not valid, we would be able to find 0 < εn → 0 and ũn such that

‖ũn‖C0,αµ (D̊τ,ε×R) = 1 ∀n, (3.29)∫
R
ũn(ỹ, t̃)V(εỹ, t̃) dt̃ = 0.

and g̃n ∈ C0,α
µ (D̊τ,ε × R) such that εn → 0 as n → ∞, ‖g̃n‖C0,αµ (D̊τ,ε×R) → 0 as n → ∞. That

satisfy
ΠX L̃εũn = g̃n in D̊τ,ε × R

Since ‖ϕ̃n‖ = 1 it is possible to find (ỹn, t̃n) ∈ D̊τ,ε × R such that

|ϕ̃n(ỹn, t̃n)| > 1

2
.

Since D̊τ,ε is periodic we may assume that εnỹn → ỹ0 ∈ D̊τ,ε. In terms of isothermal parame-
trizations we have

Xτ,ε(s̃, Θ̃) =
1

ε
Xτ,ε(εs̃, εΘ̃), (s̃, Θ̃) =

1

ε
(s,Θ), (s,Θ) ∈ R× Sd−2,

thus ỹ0 = Xτ,ε(s0,Θ0), and εnỹ0 = Xτ,ε(sn,Θn). For some (s0,Θ0) and (sn,Θn) we next
center at (s0,Θ0), that is we define

(s,Θ) =
1

ε
(sn,Θn) + (s, Θ),
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Now we analyze two cases, namely t̃n bounded or unbounded.

Case t̃n bounded. Let us define the bounded function

ūn(s, Θ, t̃) = ũn((1/ε)(sn,Θn) + (s, Θ), t̃).

Here and in what follows we write the functions in terms of the parameters of Xτ,ε, instead of
the variable y. Let’s assume for a while that d = 3. In this case we have a explicit expression
for the Laplace-Beltrami operator. It is straightforward to check that ϕ̄n solves

τ 2e2στ (sn+εns)(∂2
s + ∂2

θ )ūn(s, Θ, t̃) + ∂2
t̃ ūn(s, Θ, t̃) + f ′(w̃)ūn(s, θ, t̃)

+ εnq̃(s, Θ, t̃) = ḡn(s, Θ, t̃),

where ḡn(s, Θ, t̃) = g̃n((sn, θn) + ε(s, Θ), t̃). Using elliptic estimates we can obtain bounds for
the gradient, thus by Arzela-Ascoli’s Theorem a subsequence of ūn converges uniformly over
compacts to a function ū that satisfies

∆D̊τ,ε
ū+ ∂2

t̃ ū+ f ′(w̃)ū = 0. (3.30)

On the other hand

0 =

∫
R
ūn(s, Θ, t̃)V(εỹ, εt̃) dt̃→

∫
R
ū(s, Θ, t̃)V(εỹ, t̃) dt̃ as n→∞

this implies necessarily ū ≡ 0 but this is impossible, because of the first condition in (3.29).
For the general case for d, we use the fact that the Laplace-Beltrami operator can be written
in terms of bounded functions, namely

∆D̊τ
= ai,j(y)∂i,j + bi(y)∂i, y = Xτ (s,Θ), (s,Θ) ∈ R× Sd−2,

then (3.30) becomes

aij∂ijūn(s, Θ, t̃) + bi∂iūn(s, Θ, t̃) + ∂2
t̃ ūn(s, Θ, t̃) + f ′(w̃)ϕ̄n(s, Θ, t̃) = 0.

And the same arguments can be applied.

Case tn unbounded. The situation is quite similar and in this case we define

ūn(s, Θ, t̃) = eµ(t̃n+t̃)ϕ̃n((1/ε)(sn,Θn) + (s, Θ), t̃n + t̃),

ḡn(s, Θ, t̃) = eµ(t̃n+t̃)g̃n((sn,Θn) + ε(s, Θ), t̃n + t̃)

And ϕ̄n again is uniformly bounded and gn → 0 in L∞loc(D̊τ,ε×R), and in in this case we have

aij(sn + εns)∂ijūn(s, Θ, t̃) + εnbi(sn + εns)∂iūn(s, Θ, t̃) + ∂2
t̃ ūn(s, Θ, t̃)

− 2µε∂t̃ūn(s, Θ, t̃) + f ′(w̃(ỹ, t̃ + t̃n)) + µ2ūn(s, Θ, t̃) = ḡn

And at the limit we obtain

a∗i,j∂i,jū+ ∂2
t̃ϕ− 2µε∂t̃ū− (µ2

+ − µ2)ū = 0 in D̊τ,ε × R.
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where a∗i,j is a positive definite constant matrix and ϕ 6= 0. Since µ+
ε

2 − µ2
ε > 0 and by the

maximum principle this implies that ϕ ≡ 0, achieving a contradiction. Using (3.28) we can
compare with functions in the following form

Wν(y, t) = (e−µt + νeµt)k(y)

here ν > 0 chosen such that µ2 + 4ν2 ≤ 2 and where k(y) is a proper function of the operator
∆D̊τ

, this can of functions can be obtained by spectral theory and Fourier decomposition, for
the case d = 2 this theory is developed in [45, 44]. Thus we obtain

(∆D̊τ,ε
+ ∂2

t̃ − 2)Wν = −(2− µ2 − ν2)Wν

and for |t| � 1 we obtain

∆D̊τ,ε
ũ+ ∂2

t̃ + f ′(w̃)ũ ≤ −
(

2− µ2

4

)
e−µ|t| for |t| � 1

We next define the function
ū =

ũ

‖(cosh t)µg̃‖L∞(D̊τ×R)

hence ‖(cosh t)µL̃εϕ̄‖L∞(D̊τ×R) ≤ 1, and

ΠX L̃εWν ≤ Ce−µt ≤ ΠX L̃εū t� 1

Using the maximum principle we can compare ū with Wν in the range above, obtaining
ū ≤ Wν , thus

ũ ≤ Wν‖(cosh t)µg̃‖L∞(D̊τ×R)

letting ν → 0 we obtain

ϕ̃(t, y) ≤ e−µt‖(cosh t)µg̃‖L∞(D̊τ×R) for t� 1

Proposition 3.2.1 shows that we can control the size of E `,αµ (D̊τ ×R)-norm of the solution
of the first equation in (3.18) using the fact that U → H as ε→ 0 uniformly over compacts
in D̊τ × R. Meanwhile for the second equation one can use elliptic theory to get Hölder
estimates. Thus at the end we get

Proposition 3.2.2 For all ε > 0 small enough and µ ∈ [0,−η) and ` = 0, 1, 2, there exits a
positive constant C such that if ‖g‖E0,αµ (D̊τ×R) <∞ then we have that every solution of both
equations in (3.18) satisfies

‖ϕ‖‖E`,αµ (D̊τ×R) ≤ Cε1−α(‖g‖‖E0,αµ (D̊τ×R) + ε2‖g⊥‖C0,αµ (D̊τ×R)), (3.31)

‖ϕ⊥‖C`,αµ (D̊τ×R) ≤ Cε−1‖g⊥‖C0,αµ (D̊τ×R), (3.32)
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3.3. The linear problem in the whole space.

Now we will use the theory outlined in the previous section to solve the following problem:

ε∆ϕ+
1

ε
f ′(w∗)ϕ = g(x) in Rd−1 × S2Tτ .

From what we have said above it is in general not possible to find a solution with a reasonably
bounded norm unless the right hand side satisfies some extra conditions, or equivalently, we
need to introduce some Lagrange multipliers. Thus, we will solve

ε∆ϕ+
1

ε
f ′(w∗)ϕ = g(x) + χ∗

d∑
j=1

cjZ
T,ej
τ,ε in Rd−1 × S2Tτ , (3.33)

where

Y ∗ε,hχ
∗(t) = χ(εt/δ),

Y ∗ε,hZ
T,ej
τ,ε = V(y, t)ΦT,ej

τ (y) j = 1, . . . , d,

that is, ZT,ej
τ,ε are the elements of the base of Z (c.f. (3.5)). The idea is to solve (3.33) by

gluing a solution defined near D̊τ and another one defined away from D̊τ . To describe this
construction rigorously we need some preparation.

We introduce the function q(x) as follows:

q(x) =

{
f ′(1 + σ+

ε ), dist (x, D̊τ ) > δ/2,

f ′(−1 + σ−ε ), dist (x, D̊τ ) < −δ/2,

and otherwise q(x) is a smooth function such that

mı́n{f ′(1 + σ+
ε ), f ′(−1 + σ−ε )} < q(x) ≤ máx{f ′(1 + σ+

ε ), f ′(−1 + σ−ε )}.

Above, dist (x, D̊τ ) is the signed distance function chosen in such a way that the Fermi
coordinate z(x) = dist (x, D̊τ ) for x ∈ Nδ. Note that q(x) = −2 +O(ε).

Finally, we need another cutoff function χ̃ such that χ̃χ∗ = χ∗ (take for instance Y ∗ε,hχ∗(t) =
χ(εt/2δ) and chose δ smaller so that the Fermi coordinates are defined in N2δ).

We want to find a solution of (3.33) in the form

ϕ = χ∗ϕ̌ ◦ Yε,h + ψ,

where the function ϕ̌ solves:

Lεϕ̌ = Y ∗ε,h

(
χ̃{g + χ∗

d∑
j=1

cjZ
T,ej
τ,ε + (Lε − Lε)ϕ̌ ◦ Yε,h

− [χ∗, Lε]ϕ̌ ◦ Yε,h + ε−1[q − f ′(w∗)]ψ}
)

in D̊τ × R, (3.34)
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and the function ψ solves

ε∆ψ + ε−1[(1− χ∗)f ′(w∗) + χ∗q]ψ = (1− χ∗){g + χ∗
d∑
j=1

cjZ
T,ej
τ,ε

− [χ∗, Lε]ϕ̌ ◦ Yε,h} in Rd−1 × S2Tτ , (3.35)

where [χ∗, Lε]ϕ̌ = 2ε∇Rd−1×S2Tτ
ϕ̌∇Rd−1×S2Tτ

χ∗ + εϕ̌∆Rd−1×S2Tτ
χ∗. In fact, multiplying (3.34)

by χ∗, adding both equations and using the fact that χ̃χ∗ = χ∗ we get the equivalent relation.
In the above and in what follows we abuse slightly notation writing for instance ϕ̌ as a function
defined on D̊τ×R and as a function defined on Rd−1×S2Tτ . It is understood that in the latter
case we take ϕ̌ ◦Yε,h. To avoid complicated notions we will omit the composition with Yε,h or
Y −1
ε,h whenever it does not cause confusion. Thus the commutator [χ∗, Lε]ϕ̌ in Rd−1 × S2Tτ is

[χ∗, Lε]ϕ̌ = 2ε∇ϕ̌ ◦ Yε,h∇χ∗ + εϕ̌ ◦ Yε,h∆χ∗,

while in D̊τ ×R we have to first express Lε in local coordinate (y, t) (written as Y ∗ε,hLε) and
calculate [χ∗, Y ∗ε,hLε]ϕ̌. In what follows we will assume that the function g on the right hand
side of this equation satisfies the following general assumptions on its asymptotic behaviour

‖ (gχ∗)‖ ‖E0,αµ (D̊τ×R) ≤ C,

‖ (gχ∗)⊥ ‖C0,αµ (D̊τ×R) ≤ C,

‖(1− χ∗)g‖C0,α(C2Tτ ) ≤ Ce−c0/ε,

(3.36)

for some positive constants c0, C, where C2T is the cylinder Rd−1×S1
2T . In addition we assume

that g is rotationally symmetric about the xd axis, namely if by Rθ we denote the rotation
of Rd about the xd axis by angle θ then

g(Rθx) = g(x). (3.37)

In order to solve this coupled system we need to make sure that all terms on the right
hand side that involve ϕ̌ and ψ are small in suitable weighted Hölder and Hölder norms
respectively. It is at this point that we need to chose the parameter δ in the definition of
the tubular neighbourhood Nδ small and dependent on ε. Thus we take δ(ε) = ε2/3. This
means in particular that for x ∈ Nδ we have εt(x) = O(ε2/3). For reasons that will become
clear soon we will also chose the Hölder exponent α in the definition of C0,α

µ (D̊τ × R) and
C0,α(D̊τ × R) to be in the interval (0, 1

10
). Finally, the parameter µ will be always taken in

the interval (0,−η). The main result of this section is

Lemma 3.3.1 For each sufficiently small ε there exists a unique solution of (3.33) in the
form ϕ = χ∗ϕ̌ ◦ Yε,h + ψ. In addition, assuming that (3.36)–(3.37) hold, then the solution ϕ
satisfy the following estimates

‖ϕ̌‖‖E2,αµ (D̊τ×R) ≤ Cε1−α
{
‖(χ̃g)‖‖E0,αµ (D̊τ×R) + ε−1δ(ε)‖(χ̃ g)⊥‖C0,αµ (D̊τ×R)

+ε−3−αδ(ε)‖(1− χ∗)g‖C0,α(Rd−1×S2Tτ )

}
,

‖ϕ̌⊥‖C2,αµ (D̊τ×R) ≤ Cε−1
{
‖(χ̃g)⊥‖C0,αµ (D̊τ×R) + ε1−α‖(χ̃ g)‖‖E0,αµ (D̊τ×R)

+ ε−2−α‖(1− χ∗)g‖C0,α(Rd−1×S2Tτ )

}
,

(3.38)
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and

‖ψ‖C2,α(Rd−1×S2Tτ ) ≤ Cε−1−α‖(1− χ∗)g‖C0,α(Rd−1×S2Tτ ) +O(e−cε
−1/8

)‖χ̃g‖C0,αµ (D̊τ×R). (3.39)

Proof. We first analyze (3.35). Taking into account that [(1− χ∗)f ′(w∗) + χ∗q] < 0 and the
exponential decay of the functions g we get that if u is a solution of

ε∆u− 1

ε
[(1− χ∗)f ′(w∗) + χ∗q]u = g, in Rd−1 × S2Tτ ,

then we have an a priori estimate:

‖u‖C`,α(Rd−1×S2Tτ ) ≤ Cε1−`−α‖g‖C0,α(Rd−1×S2Tτ ).

The proof of this fact is straightforward and it is omitted, for similar results see for instance
Lemma 4.1 in [21]. From this we get readily an a priori estimate for (3.35)

‖ψ‖C`,α(Rd−1×S2Tτ ) ≤ Cε1−`−α‖(1− χ∗)g‖C0,α(Rd−1×S2Tτ )

+ e−cε
−1/4

(
d∑
j=1

|cj|+ ‖ϕ̌‖C1,αµ (D̊τ×R)

)
. (3.40)

From the theory developed in the previous section we can also obtain an a priori estimate
for (3.34). If we write

g = χ̃

{
g + χ∗

d∑
j=1

cjZ
T,ej
τ,ε + (Lε − Lε)ϕ̌− [χ∗, Lε]ϕ̌+ ε−1[q − f ′(w∗)]ψ

}
,

then we have using (3.31)

‖ϕ̌‖‖E`,αµ (D̊τ×R) ≤ Cε1−α(‖g‖‖E0,αµ (D̊τ×R) + ε2‖g⊥‖C0,αµ (D̊τ×R)), (3.41)

and using (3.32)
‖ϕ̌⊥‖C`,αµ (D̊τ×R) ≤ Cε−1‖g⊥‖C0,αµ (D̊τ×R). (3.42)

We note that the weighted norms we use for φ̌‖ and φ̌⊥ are scaled differently with ε. This
slight nuisance is a result of our choice of the original scaling of the Cahn-Hilliard equation.
We observe as well that with our definitions ‖ · ‖E0,αµ (D̊τ×R) = ‖ · ‖C0,αµ (D̊τ×R).

We will now estimate ‖g‖‖E0,αµ (D̊τ×R). To do this we observe that, with φ̌ = φ̌‖ + φ̌⊥, we
have ∥∥(χ̃(Lε − Lε)ϕ̌

)‖∥∥
C0,αµ (D̊τ×R)

≤ Cδ(ε)(ε−1‖ϕ̌‖‖E2,αµ (D̊τ×R) + ε‖ϕ̌⊥‖C2,αµ (D̊τ×R)),

‖
(
χ̃[χ∗, Lε]ϕ̌

)‖‖E0,αµ (D̊τ×R) ≤ Cδ(ε)−1(‖ϕ̌‖‖E1,αµ (D̊τ×R) +O(e−cε
−1/3

)‖ϕ̌⊥‖C1,αµ (D̊τ×R)),∥∥(χ̃ε−1[q − f ′(w∗)]ψ
)‖∥∥
E0,αµ (D̊τ×R)

≤ Cε−1‖ψ‖C0,α(Rd−1×S2Tτ ).
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Next we estimate the orthogonal complement of these functions∥∥(χ̃(Lε − Lε)ϕ̌
)⊥∥∥

E0,αµ (D̊τ×R)
≤ C(‖ϕ̌‖‖E2,αµ (D̊τ×R) + ε2‖ϕ̌⊥‖C2,αµ (D̊τ×R)),

‖
(
χ̃[χ∗, Lε]ϕ̌

)⊥‖E0,αµ (D̊τ×R) ≤ O(e−cε
−1/3

)
(
‖ϕ̌‖‖E1,αµ (D̊τ×R) + ‖ϕ̌⊥‖C1,αµ (D̊τ×R)

)
,∥∥(χ̃ε−1[q − f ′(w∗)]ψ

)⊥∥∥
C0,αµ (D̊τ×R)

≤ Cε−1‖ψ‖C0,α(Rd−1×S2Tτ ).

We can estimate the parameters cj by projection of g onto ZT,ej
τ,ε . Using the above estimate

we get

|cj| ≤ C
{
‖(χ̃ g)⊥‖C0,αµ (D̊τ×R) +

∥∥(χ̃(Lε − Lε)ϕ̌
)⊥∥∥

E0,αµ (D̊τ×R)

+ ‖
(
χ̃[χ∗, Lε]ϕ̌

)⊥‖E0,αµ (D̊τ×R) +
∥∥(χ̃ε−1[q − f ′(w∗)]ψ

)⊥∥∥
C0,αµ (D̊τ×R)

}
≤ C

{
‖(χ̃ g)⊥‖C0,αµ (D̊τ×R) + ‖ϕ̌‖‖E2,αµ (D̊τ×R) + ε2‖ϕ̌⊥‖C2,αµ (D̊τ×R)

+O(e−cε
−1/3

)
(
‖ϕ̌‖‖E1,αµ (D̊τ×R) + ‖ϕ̌⊥‖C1,αµ (D̊τ×R)

)
+ ε−1‖ψ‖C0,α(Rd−1×S2Tτ )

}
≤ C

{
‖(χ̃ g)⊥‖C0,αµ (D̊τ×R) + ‖ϕ̌‖‖E2,αµ (D̊τ×R) + ε2‖ϕ̌⊥‖C2,αµ (D̊τ×R)

+ ε−1‖ψ‖C0,α(Rd−1×S2Tτ )

}
.

Now we use estimates (3.41)–(3.42). After rearranging terms suitably and using

ε1−αδ−1(ε) = o(1)

to absorb ϕ̌‖ in the first inequality below we get

‖ϕ̌‖‖E2,αµ (D̊τ×R) ≤ Cε1−α{‖(χ̃ g)‖‖E0,αµ (D̊τ×R) + ε2‖(χ̃ g)⊥‖C0,αµ (D̊τ×R)

+ ε−1‖ψ‖C0,α(Rd−1×S2Tτ ) + δ(ε)‖ϕ̌⊥‖C2,αµ (D̊τ×R)

}
,

‖ϕ̌⊥‖C2,αµ (D̊τ×R) ≤ Cε−1
{
‖(χ̃ g)⊥‖C0,αµ (D̊τ×R) + ‖ϕ̌‖‖E2,αµ (D̊τ×R)

+ ε−1‖ψ‖C0,α(Rd−1×S2Tτ )

}
.

(3.43)

From (3.40) we get as well for ` = 0, 1, 2

‖ψ‖C`,α(Rd−1×S2Tτ ) ≤ Cε1−`−α{‖(1− χ∗)g‖C0,α(R3)

+ e−cε
−1/8

(‖χ̃g‖C0,αµ (D̊τ×R) + ‖ϕ̌‖‖E2,αµ (D̊τ×R)

+ ‖ϕ̌⊥‖C2,αµ (D̊τ×R) + ‖ψ‖C0,α(Rd−1×S2Tτ ))}.

Using the fact that δ(ε)ε−α = o(1) to absorb term δ(ε)‖ϕ̌⊥‖C2,αµ (D̊τ×R) appearing on the right
hand side of the first inequality in (3.43) and combining these estimates we get (3.38) and
(3.39).

Using these a priori estimates we can solve the system (3.34)–(3.35) by a standard fixed
point argument. To do this we replace the functions ϕ̌‖, ϕ̌⊥, ψ on the right hand side of the
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system by known functions Φ̌‖, Φ̌⊥, Ψ which satisfy estimates of the same type as (3.38)–(3.39)
but with constants bigger that those appearing in (3.38)–(3.39). Then we have a map

(Φ̌‖, Φ̌⊥, Ψ) 7−→ (ϕ̌‖, ϕ̌⊥, ψ),

from a certain ball in the space E2,α
µ (D̊τ ×R)× C2,α

µ (D̊τ ×R)× C2,α(Rd−1 × S2Tτ ) into itself.
This and the Lipschitz character of this map being evident from the way we have derived a
priori estimates allows for an application of the Banach fixed point theorem.

3.4. Proof of Theorem 1.1

Now we can finish solving the nonlinear problem

Lεϕ = `ε −Nε(w
∗)−Qε(ϕ).

As we saw above we need to modify this equation by introducing Lagrange multipliers. Thus
we will consider

Lεϕ = `ε −Nε(w
∗)−Qε(ϕ) + χ∗

d∑
j=1

cjZ
T,ej
τ,ε . (3.44)

To solve this problem we use a fixed point argument and the linear theory in Lemma 3.3.1
above. The first task is to calculate the size of the error of the approximation `ε − Nε(w

∗).
This is straightforward using the definition of w∗ and formula (2.7). We recall here that
h = ε2h0, where h0 is a constant and consequently this last formula simplifies significantly.
We can write:

`ε −Nε(w
∗) = χ∗[`ε −Nε(w)] + [N(w∗)− χ∗N(w)− (1− χ∗)N(H)] ≡ A1 + A2,

since `ε = Nε(H) in supp (1−χ∗). Using exponential decay of w− (±1 + σ±ε ) when t→ ±∞
we get easily:

‖Y ∗ε,hχ̃A2‖C0,αµ (D̊τ×R) ≤ C0e
−cµε−1/3

,

‖(1− χ∗)A2‖C0,α(Rd−1×S2Tτ ) ≤ C0e
−θε−1

.

To estimate A1 some standard calculations which we will omit are needed (c.f Section 2.2).
As a result we get

‖[Y ∗ε,hχ̃A1]‖‖E0,αµ (D̊τ×R) ≤ C0ε
3,

‖[Y ∗ε,hχ̃A1]⊥‖C0,αµ (D̊τ×R) ≤ C0ε
3,

‖(1− χ∗)A1‖C0,α(Rd−1×S2Tτ ) ≤ C0e
−θε−1

,

where C0, cµ and θ are positive constants. Now we use the linear theory developed in the
previous section to solve the nonlinear problem (3.44). Thus we write ϕ = χ∗ϕ̌ ◦ Yε,h + ψ,
and further decompose ϕ̌ = ϕ̌‖ + ϕ̌⊥ where ϕ̌‖ ∈ X ∩ C2,α

µ (D̊τ × R), ϕ⊥ ∈ Y ∩ C2,α
µ (D̊τ × R)

and ψ ∈ C2,α(Rd−1 × S2Tτ ). To set up a fixed point scheme we fix functions ϕ̃‖, ϕ̃⊥ and ψ̃ in
these sets such that

‖ϕ̃‖‖E2,αµ (D̊τ×R) ≤ Kε4−α,

‖ϕ̃⊥‖C2,αµ (D̊τ×R) ≤ Kε2,

‖ψ̃‖C2,α(Rd−1×S2Tτ ) ≤ Ke−θ̄ε
−1

,

(3.45)
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where K is a large constant to be chosen and θ̄ ∈ (θ/2, θ) is a constant. Let us denote the
right hand side of (3.44) by g. It is evident that under the assumptions (3.45), and with a
suitable choice of the constants α > 0 and µ ∈ (0, |η|) we can solve the problem (3.44) for
functions (ϕ̌‖, ϕ̌⊥, ψ) which again satisfy (3.45). Thus we have a non-linear map

(ϕ̃‖, ϕ̃⊥, ψ̃) 7−→ (ϕ̌‖, ϕ̌⊥, ψ), (3.46)

of this set into itself. To show that this map is a contraction is straightforward, using the
quadratic nature of the nonlinear functionQ(ϕ). At the end we have a solution of the problem:

ε∆u+
1

ε
f(u) = `ε +

d∑
j=1

χ∗cjZ
T,ej
τ,ε , in Rd−1 × S2Tτ , (3.47)

where ZT,ej
τ,ε is the (approximate) element of the kernel of the linear operator Lε associated

with translation in the direction of the xj axis. To show that in fact

cj = 0, j = 1, . . . , d,

we need:

Lemma 3.4.1 (Balancing formula) Let X =
∑
aj∂xj be the infinitesimal generator of trans-

lations or rotations in Rd. For any C2(Rd) function it holds:

div

[(
ε

2
|∇u|2 − 1

ε
F (u)

)
X(u)− εX(u)∇u

]
= −

[
ε∆u+

1

ε
F ′(u)

]
X(u).

Proof. Simple computations yields

−∆u(X · ∇u) = −div ((X · ∇u)∇u) +∇(X · ∇) · ∇u

div

(
1

2
|∇u|2X

)
=

1

2
∇
(
|∇u|2

)
·X

= ((∇u · ∇)∇u) ·X
= ∇(X · ∇u) · ∇u

div(F (u)X) = F ′(u)∇u ·X.

We will take Xj = ∂xj for some 1 ≤ j ≤ d and integrate the balancing formula over the
cylinder CR = BR × S2Tτ . Using (3.47) and Gauss theorem we get:∫

∂CR

(
ε

2
|∇u|2 − 1

ε
F (u) + `εu

)
nj dS︸ ︷︷ ︸

I1R

−
∫
∂CR

∂xju∂nu dS︸ ︷︷ ︸
I2R

= −
∫
CR

(
d∑

j′=1

χ∗cj′Z
T,ej′
τ,ε

)
∂xju︸ ︷︷ ︸

I3R

.

We first analyze d = 3, and distinguish the cases j = 3 and j = 1 or 2.
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Case j = 3. The first integral I1
R can be decomposed by the sum of the integrals over the

top, the bottom and the cylindrical surface. The integrals over the top and the bottom cancel
out, because u is periodic, on the other hand on the cylinder surface, sayMR = ∂BR×S2Tτ , we
have that the outer normal is r̂ = (x1, x2, 0)/r where r =

√
x2

1 + x2
2, hence ni := r̂ ·ei = xi/r,

n1 = sin θ, n2 = cos θ, and νε = −τ coshστ (s)r̂ + σ′τ (s)e3. correspond to the normal vectors.
But the integration on MR contains the term e3 · r̂ = 0, hence this integral also vanishes. The
integral I2

R admits the same decomposition and again integration on the top an the bottom
cancel out. Let us show that

ĺım
R→∞

∫
MR

∂x3u
∂u

∂r̂
dS = 0

We note that we may write
u = H(t) + σε + ε2ψ0(y, t) (3.48)

near D̊τ , thus ∇u = H ′(t)∇t + ε2∇ψ0, where ∇t = ντ . From the estimates

|ψ0|+ |∇ψ0| ≤ C(cosh t)µ

we obtain
∇u = H ′(t)ντ +O

(
ε2(cosh t)−µ

)
. (3.49)

Using the fact that ZT,ej
ε,τ = ντ · ej, we obtain ∇u · ej = H ′(t)ντ · ej +O (ε2(cosh t)−µ), hence

∂x3u∇u · r̂ = H2(t)τσ′τ coshστO
(
(cosh t)−µ

)
+O

(
ε2(cosh t)−µ

)
,

therefore∫
MR

∂x3u∇u · r̂ dA = O
(

1

R2

)∫
RS1

∫ sτ

0

τσ′τ coshσ +O
(

1

R2

)
= O

(
1

R

)
.

Case j = 1, 2. Similarly as before we have the top and the bottom integrals in IR cancel
out, equivalently for I2

R. Let us show that

ĺım
R→∞

∫
MR

(
ε

2
|∇u|2 − 1

ε
F (u) + `εu

)
n2 + ∂x2∇u · r̂ dS = 0.

One of the integral involved is∫
MR

∂x2u · r̂ dS = O
(

1

R2

)∫
RS1

∫ sτ

0

(τ coshστ )
2 +O

(
1

R2

)
= O

(
1

R

)
.

Using (3.49) we obtain

|∇u(x)|2 = |H ′(t)|2 +O
(
ε2(cosh t)−µ

)
,

therefore we have∫
MR

ε

2
|∇u|2n2 dS =

∫ sτ

0

∫ 2π

0

ε(H ′(t(z,R)))2 sin θ dθ dz +O
(
1/R2

)
=

∫ 2π

0

ε sin θ dθR

∫ sτ

0

(H ′(t(z, R))2 +O (1/R) = O (1/R) ,
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because the first integral equals zero and the second one is bounded, thus

ĺım
R→∞

∫
MR

ε

2
|∇u|2n2 dS = 0.

With similar arguments we obtain

ĺım
R→∞

∫
MR

`εun2 dS = ĺım
R→∞

∫
MR

1

ε
F (u)n2 dS = 0,

in fact, using the approximate estimate (3.48) for u we get∫
MR

`εun2 dS =

∫ sτ

0

∫ 2π

0

εH(t(z,R)) sin θ dθ dz +O
(
1/R2

)
=

∫ 2π

0

`ε sin θ dθR

∫ sτ

0

H(t(z,R) +O (1/R) = O (1/R) .

Finally, we multiply (3.47) by each element of the approximate kernel an integrate over
R2 × S2Tτ , using the computations we have just found, we obtain that for each j

ĺım
R→∞

I3
R = cj

∫
D̊τ×R

|ZT,ej
τ,ε |2 + o(1)

d∑
j′=1

cj′ ,

from which we get immediately cj = 0, j = 1, 2, 3. This conclude the case d = 3. For the
general case we argue in a similar way, in fact, using (2.20) we obtain that ντ = Λ1

τΘ + Λ2
τed,

for some bounded functions Λi
τ , therefore we distinguish two cases j = d and j = 1, . . . , d− 1

which are the equivalent cases as before.
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Chapter 4

Proof of the Theorem 1.2

4.1. Further properties of the radially symmetric solution
and the linearised operator for the periodic Delaunay
solution

For sake of simplicity from now one we will assume that the dimension is d = 3, and
rename by wτ the rotationally symmetric solution we have found in Theorem 1.1. In the
present section we will provide extra properties of wτ that are needed for the proof of Theorem
1.2. From what we have done in the previous chapter, we can describe in more detail the
local behavior of wτ . To begin with, we express wτ near Dτ in the local stretched Fermi
coordinates (y, t): since wτ is z periodic it suffices to restrict this last variable to one period
of Dτ . Thus by D̊τ we denote one period piece of Dτ with the top and bottom identified. We
recall weighted Hölder norms on D̊τ × R defined in (3.22)

‖u‖C0,αµ (D̊τ×R) = sup
t∈R

(cosh t)µ‖u‖C0,α(D̊τ×(t−1,t+1)),

‖u‖C1,αµ (D̊τ×R) = ‖u‖C0,αµ (D̊τ×R) + ‖∇D̊τ×Ru‖C0,αµ (D̊τ×R),

‖u‖C2,αµ (D̊τ×R) = ‖u‖C0,αµ (D̊τ×R) + ‖∇D̊τ×Ru‖C0,αµ (D̊τ×R) + ‖∇2
D̊τ×R

u‖C0,αµ (D̊τ×R),

where ∇Dτ×R = ∇D̊τ
+ ∂t. With these norms and the results of the previous Chapter there

exists µ0 > 0 and α0 > 0 such that for 0 < µ < µ0 and 0 < α < α0 it holds

Y ∗ε wτ (y, t) = U(t) +OC2,αµ (Dτ×R)(ε
2−α). (4.1)

Above the symbol OC2,αµ (Dτ×R)(ε
2−α) denotes functions whose C2,α

µ (Dτ ×R) norm is bounded
by a constant times ε2−α. This formula is valid in a tubular neighbourhood Nδ = Nδ(ε)
of D̊τ , where δ(ε) = O(ε2/3). In local variables this means |t| ≤ Cε−1/3. Outside of this
neighbourhood we have

wτ = ±1 + σ±ε + ψ, where ‖ψ‖C2(R3) ≤ Ce−c/ε
1/3

. (4.2)

In fact more is true: we claim that wτ converges exponentially to constants ±1 + σ±ε away
from Dτ . More precisely, if Dτ is given as the surface of revolution of the curve x1 = ρτ (z)
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then

|wτ (r, z) + 1− σ−ε | ≤ C exp
(
−c
ε

(r − ρτ (z))
)
, r > ρτ (z), r =

√
x2

1 + x2
2, (4.3)

with similar estimate when r < ρτ (z). To prove this we note that (4.3) valid in a tubular
neighbourhood of Dτ by (4.1) and the fact that t and (r−ρτ (z))

ε
are comparable in this neigh-

bourhood. Far form Dτ we use the fact that wτ = ±1 + σ±ε +ψ, where ψ is an exponentially
small in ε function (see (4.2)) and a comparison argument. These estimates can be made
more precise as far as the rate of exponential decay but we will not need such a precision
here.

One property that we will need in the sequel is

Proposition 4.1.1 wτ is differentiable with respect to τ .

Proof. This is consequence of the version of the fixed point Banach theorem (see [30] Theo-
rem 3.2). Since wτ can be written as the fixed solution of the system (3.46), where all terms
are differentiable functions of τ . For instance, one of these terms is the ansatz U(t) which in
Fermi coordinate we have on Dτ

∂τt = ε−1∂τXτ ·Nτ = −ε−1ΦD
τ ,

where ΦD
τ is the Jacobi field onDτ associated with the change of the Delaunay parameter.

4.2. The linearized operator near Dτ

Our main objective in the next section will be to study the linearized operator of the
Delaunay solution

Lwτ = ε∆ +
1

ε
f ′(wτ ),

as an operator defined for functions on R3 and here we will introduce some basic observations
and notations needed later.

Using (2.5) we find expression of Lwτ in stretched Fermi coordinates in Nδ

Y ∗ε Lwτu = ε−1
[
∂ttu− ε(HDτ + εt|ADτ |2 + Qε)∂tu+ f ′(wτ )u

]
+ ε∆Dτu+ εAεu,

where with some abuse of notation we write u and wτ instead of Y ∗ε u and Y ∗ε wτ (we will
consistently abuse notation this way whenever it is unambiguous). One technical problem we
will have to face is the fact that while the operator Lwτ is defined in R3 its expression in
local coordinates Y ∗ε Lwτ makes sense only in Nδ and not as we would like in Dτ × R. There
are possibly many ways to extend Y ∗ε Lwτ and we will chose one of them for the rest of the
paper. Let χ(s) be a smooth nonnegative cut-off function equal to 1 for |s| ≤ 1 and equal to
0 for |s| > 2. We set

χε/δ(t) = χ
(εt
δ

)
. (4.4)

47



We need to extend the function Y ∗ε wτ in such a way that it is defined outside of Nδ. To this
end we set

wτ = χε/δ(t)Y ∗ε wτ +
(
1− χε/δ(t)

)
U(t).

Next we define the extension of the operator Y ∗ε Lwτ by

Lwτu = ε−1
[
∂ttu− ε

(
HDτ + εtχε/δ(t)|ADτ |2 + χε/δ(t)Qε

)
∂tu+ f ′(wτ )u

]
+ ε∆Dτu+ εχε/δ(t)Aεu. (4.5)

As we will see Lwτ resembles the operator

Lu =
1

ε
[∂ttu+ f ′(H)u] + ε

[
∆Dτu+ |ADτ |2u

]
whose kernel is fairly easy to determine by separation of variables. Indeed, taking u =
H ′(t)ψ(y) we get

L(H ′ψ) = εH ′
[
∆Dτψ + |ADτ |2ψ

]
(4.6)

and therefore the Jacobi fields of Dτ determine the Jacobi fields of L. Let us explain in what
sense Lwτ and L are similar. To do this we will use the operator Lwτ (our theory of the
operator Lwτ is based on exploiting this link). First we need a function which will play a
role of H ′(t). Since our proof is based on a perturbation argument there is no unique way to
define such a function but a natural candidate seems to be ∂tY ∗τ wτ . An important observation
to make is that ∂t and ∆ do not commute so we do not have Lwτ∂twτ = 0 and as we will
see below the commutator [∆, ∂t] gives rise to the term |ADτ |2 in L. Since ∂tY ∗τ wτ is defined
only in Nδ we define the extension of this function to Dτ × R by

W = χε/δ(t)∂tY
∗
ε wτ +

(
1− χε/δ(t)

)
U ′(t), (4.7)

where U is the solution of (2.10). Note that W depends on t ∈ R and y ∈ Dτ but using (4.1)
we get

W(y, t) = U ′(t) +OC1,α
µ (Dτ×R)(ε

2−α)

globally on Dτ × R, which means that the dependence on y is mild. Next we calculate

LwτW = χε/δLwτ∂tY ∗ε wτ +
(
1− χε/δ

)
LwτU ′ +

[
Lwτ , χε/δ

]
∂tY

∗
ε wτ +

[
Lwτ , 1− χε/δ

]
U ′.

(4.8)
The first term above is the most complicated. For brevity let us denote vτ = ∂tY

∗
ε wτ . With

this notation differentiating the equation satisfied by wτ in Nδ with respect to t we have

Lwτvτ − ε|ADτ |2vτ = −ε [Qε, ∂t] vτ + ε [Aε, ∂t]Y
∗
ε wτ ,

where [A,B] = AB −BA. By definition of Qε we see that

[Qε, ∂t] vτ = −ε2

(
2t

2∑
j=1

k3
j + 3εt2

2∑
j=1

k4
j + . . .

)
vτ = OC1,α

µ (Dτ×R)(ε
2).

The differential operator Aε contains derivatives in y ∈ Dτ only while Y ∗ε wτ is, up to order
OC2,α

µ (Dτ×R)(ε
2−α), a function of t. This gives

ε [Aε, ∂t]Y
∗
ε wτ = εAε∂tY

∗
ε wτ − ε∂tA(y, εt)Y ∗ε wτ = OC0,α

µ (Dτ×R)(ε
3−α).
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It follows that in Nδ we get

Lwτvτ − ε|ADτ |2vτ = OC0,α
µ (Dτ×R)(ε

3−α)

Considering other terms in (4.8) from the fact that χε/δ = χε/δ(t) and (4.1) we get[
Lwτ , χε/δ

]
∂tY

∗
τ wτ = OC0,α

µ (Dτ×R)(ε
3−α).

Similar estimates hold for terms involving U ′(t). In summary we get

LwτW− ε|ADτ |2W = OC0,α
µ (Dτ×R)(ε

3−α). (4.9)

Now let ψ ∈ C2,α(Dτ ) be fixed. Using (4.9) we get

Lwτ (ψW) = ψLwτW + εW
(
∆Dτ + χε/δAε

)
ψ + ε

[
∆Dτ + χε/δAε, W

]
ψ

= ψ
(
LwτW− ε|ADτ |2W

)
+ εW

(
∆Dτ + |ADτ |2 + χε/δAε

)
ψ + ε

[
∆Dτ + χε/δAε, W

]
ψ

= εW
(
JDτ + χε/δAε

)
ψ + ε

[
∆Dτ + χε/δAε, W

]
ψ +OC0,α

µ (Dτ×R)(ε
3−α)ψ.

(4.10)

For future reference we note that∥∥[∆Dτ + χε/δAε, W
]
ψ
∥∥
C0,α
µ (Dτ×R)

≤ Cε2−α‖ψ‖C1,α(Dτ ).

Observe that formula (4.10) is quite similar to (4.6) and in particular it is clear that if
Lwτ (ψW) ≈ 0 then ψ should be a Jacobi field on Dτ , and as a consequence we should get an
approximate Jacobi field of wτ . Indeed we can easily describe explicit Jacobi fields of the two
ended Delaunay solution wτ which are approximately of the form ψW. Let h =

∑3
i=1 hiei be

a vector, Rϑ(x) = Rϑ1,ϑ2(x) be a rotation in R3, where ϑi is the angle of the rotation about
the xi axis i = 1, 2, and η be a number such that |η| is small. Then the function

Φh,ϑ,η(wτ ) = (wτ+η ◦ Rϑ)(x + h),

is also a solution of the Cahn-Hilliard equation (1.12). In particular, taking derivatives of
Φh,ϑ,η(wτ ) with respect to the parameters we get

Lwτ∂hiΦh,ϑ,η(wτ ) |h,ϑ,η=0 = 0, i = 1, 2, 3,

Lwτ∂ϑiΦh,ϑ,η(wτ ) |h,ϑ,η=0 = 0, i = 1, 2,

Lwτ∂ηΦh,ϑ,η(wτ ) |h,ϑ,η=0 = 0,

and hence the 6 dimensional linear space

Iwτ = span {∂hiΦh,ϑ,η(wτ ) |h,ϑ,η=0, ∂ϑiΦh,ϑ,η(wτ ) |h,ϑ,η=0, ∂ηΦh,ϑ,η(wτ ) |h,ϑ,η=0}. (4.11)

These are the geometric Jacobi fields of Lwτ introduced already in the introduction. For
future use we state the following lemma

Lemma 4.2.1 With the above notations the following formulas hold in a tubular neighbour-
hood Nδ(ε), δ(ε) = O(ε

2
3 )

Y ∗ε ∂hiΦh,ϑ,η(wτ ) |h,ϑ,η=0 = ε−1ΦT,ei
τ W +OC1,α

µ (Dτ×R)(1),

Y ∗ε ∂ϑiΦh,ϑ,η(wτ ) |h,ϑ,η=0 = ε−1ΦR,ei
τ W +OC1,α

µ (Dτ×R)(1),

Y ∗ε ∂ηΦh,ϑ,η(wτ ) |h,ϑ,η=0 = ε−1ΦD
τ W +OC1,α

µ (Dτ×R)(1).

(4.12)
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Proof. We recall that by (4.1) in Nδ(ε) we have

Y ∗ε wτ (y, t) = U(t) +OC2,αµ (Dτ×R)(ε
2−α). (4.13)

In Nδ(ε) we can write explicitly using the isothermal coordinates on Dτ

x = Xτ (s, θ) + εtNτ (s, θ). (4.14)

Now, fix a unit vector e ∈ R3 and denote xh = x + he. Taking derivative in h of (4.14) and
evaluating at h = 0 we get

e = ε∂etNτ + ∂es[∂sXτ + εt∂sNτ ] + ∂eθ[∂θXτ + εt∂θNτ ].

Taking the scalar product with Nτ , ∂sXτ and ∂θXτ we find expression for ∂et, ∂es, ∂eθ.
Note in particular that ∂eit = ε−1ei · Nτ = ε−1ΦT,ei

τ . Then, taking derivatives ∂ei of (4.13)
we get the first formula in (4.12). We follow a similar argument to show the two remaining
identities.

This means that the elements of Iwτ are at most linearly functions in the along direction
of Dτ and exponentially decaying in the transversal direction of Dτ , thus they correspond
to Jacobi fields of Lwτ with temperate grow in the direction of of the axis of rotation of wτ .
It is reasonable to conjecture that all Jacobi fields which are at most linearly growing are of
this form. Proving this fact is a very important element in our analysis since the invertibility
theory of Lwτ depends on the precise knowledge of this type of Jacobi fields. In order to
establish the precise meaning of a at most linearly growing Jacobi field we need to set up
several weighted Sobolev spaces. First, let dist (x, Dτ ) denote the signed distance function,
where we chose the orientation of Dτ in such a way that the sign of dist (x, Dτ ) agrees with
that of ρτ (z)− r. We have globally

|dist (x, Dτ )| ≤ |r − ρτ (z)|,

and the two quantities are comparable near Dτ . Recall that above we have denoted t =
1
ε
dist (x, Dτ ) as long as |dist (x, Dτ )| ≤ δ.

We will define the weighted Sobolev norms we will use in the sequel. First, let us consider
Sobolev spaces L2(Dτ ×R) and H`(Dτ ×R). Since functions in these spaces can be expressed
in terms of the isothermal coordinates (s, θ) and the Fermi coordinate t we define

L2
a,γ(Dτ × R) = cosh−a(s) cosh−γ(t)L2(Dτ × R)

H`
a,γ(Dτ × R) = cosh−a(s) cosh−γ(t)H`(Dτ × R).

Second, let us consider the subspace H`(R3)+ (respectively H`(R3)−) of H`(R3) which
consists of functions supported in the set {z ≥ −1} (respectively in {z ≤ 1}). We define
weighted Sobolev norms in these subspaces as follows

‖u‖H`
a,γ(R3)+ =

∑̀
|α|=0

‖e aze γ
(
r−ρτ (z)

ε

)
Dαu‖L2(R3)+ ,

‖u‖H`
a,γ(R3)− =

∑̀
|α|=0

‖e−aze γ
(
r−ρτ (z)

ε

)
Dαu‖L2(R3)− ,

(4.15)
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where α = (α1, α2, α3) is a multi index and derivatives are taken with respect to (x1, x2, z).
We agree

‖u‖L2
a,γ(R3)+ = ‖u‖H0

a,γ(R3)+ ,

‖u‖L2
a,γ(R3)− = ‖u‖H0

a,γ(R3)− .

Note that γ measures the rate of decay or growth of the functions in the transversal direction
to Dτ and a measures the rate of decay or growth along the axis of Dτ in the positive
(respectively negative) direction. Next, we define

L2
a,γ(R3) = L2

a,γ(R3)+ ⊕ L2
a,γ(R3)−,

H`
a,γ(R3) = H`

a,γ(R3)+ ⊕H`
a,γ(R3)−.

With these definitions when γ > 0, a > 0 our spaces consist of exponentially decaying
functions, in the opposite case they are exponentially increasing. Combinations of signs for
γ and a are of course allowed.

Finally, we define the weighted Sobolev spaces

L̄a,γ(R3) := L2
a,γ(R3) ∩ L2

a,−γ(R3), H̄`
a,γ(R3) := H`

a,γ(R3) ∩Hs
a,−γ(R3).

Note that u ∈ L̄a,γ(R3) decays away from Dτ as cosh−γ
(
r−ρτ (z)

ε

)
if γ > 0, and decays (for

a > 0) or grows (for a < 0) along Dτ at the rate cosh−a z.

Theorem 4.1 For all τ ∈ (0, 1), and ε > 0 sufficiently small there exits δτ > 0 and a finite
set S0 such that for all a, γ satisfying a2 +γ2 < δτ and a /∈ S0, the operator Lwτ it is injective
in the space L̄a,γ(R3) for some a, γ. Moreover, the Jacobi fields of Lwτ that belong to L̄2

a,γ

correspond to Iwτ .

It is clear that Theorem 1.2 is a direct consequence of Theorem 4.1, thus we focus on
proving the last one.

The norms H`
a,γ(Dτ × Iδ/ε) (where Iδ/ε = (−δ/ε, δ/ε)) and H`

a,γ(R3 ∩ {|dist (x, Dτ )| < δ})
are equivalent in the following sense

‖φ‖L2
a,γ(R3∩{|dist (x,Dτ )|<δ}) ≤ Cε1/2‖Y ∗ε φ‖L2

a∗,γ∗ (Dτ×Iδ/ε),

‖φ‖L2
a,γ(R3∩{|dist (x,Dτ )|<δ}) ≥ Cε1/2‖Y ∗ε φ‖L2

a∗,γ∗ (Dτ×Iδ/ε),
(4.16)

where in general constants a, γ, a∗, γ∗ and a∗, γ∗ are different. In addition, relating the norms
of gradients and second derivatives we expect to loose powers of ε. For instance

‖∇φ‖L2
a,γ(R3∩{|dist (x,Dτ )|<δ}) ≤ Cε−1/2‖∇Y ∗ε φ‖L2

a∗,γ∗ (Dτ×Iδ/ε),

‖∇φ‖L2
a,γ(R3∩{|dist (x,Dτ )|<δ}) ≥ Cε1/2‖∇Y ∗ε φ‖L2

a∗,γ∗ (Dτ×Iδ/ε).
(4.17)

Similar estimates hold for the second derivatives. We will use these estimates later on.
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4.3. The Fourier-Laplace transform of Lwτ

We will consider the linear operator Lwτ acting on the space L2
a,γ(R3) with dense domain

D(Lwτ ) = H2
a,γ(R3) defined by

Lwτ : H2
a,γ(R3) 7−→ L2

a,γ(R3),

u 7−→ Lwτu.

The important property of the operator Lwτ is the fact that it is periodic in z. This will allow
us to define the Fourier-Laplace transform of Lwτ (this idea was originated by Taubes [61],
[60] and developed in the form that we adopt here in [48] and [45]).

To begin we define the Fourier-Laplace transform for functions on R by

ĥ(σ, ζ) = F(h) =
∑

−∞<k<∞

e−i(k+σ)ζh(σ + k), σ ∈ [0, 1), ζ = µ+ iν. (4.18)

Observe that with this definition we have

ĥ(σ + 1, ζ) =
∑

−∞<k<∞

e−i(k+1+σ)ζh(σ + k + 1) = ĥ(σ, ζ). (4.19)

Note that the definition we adopt here is slightly different from the one in [48] the two differ
by a factor e−iσζ and this factor turns ĥ into a periodic function.

The Fourier-Lapalace transform can be inverted and the inverse is given by an explicit
formula. To state it let s ∈ R be given and denote the fractional part of s by smod 1. With
this notation we have

h(s) = F−1(ĥ)(s) =
1

2π

∫ 2π

µ=0

e isζ ĥ(smod 1, ζ) dµ, (4.20)

where we integrate along the line Im ζ = ν, ζ = µ + iν (see [60]). The Fourier-Laplace
transform is well defined in the Schwartz class S and, by Cauchy’s theorem, the value of the
integral in the inversion formula does not depend on ν, since the segment along which we
integrate can be vertically shifted. However, for our purpose it is convenient to consider the
class of functions which are allowed to grow exponentially at +∞ (or at −∞). Suppose for
instance that h is a continuous function, supported in [−1,∞) and such that |e ash(s)| <∞.
Then the series in (4.18) is well defined as long as Im ζ = ν < a. Likewise, we can define the
transform on a subspace

H`
a(R)+ = e−asH`(R),

of the Sobolev space H`(R) consisting of functions supported in [−1,∞), where a is the rate
of exponential decay or growth. In a similar way we define the subspace H`

a(R)− of H`(R)
consisting of exponentially decaying or growing functions supported in (−∞, 1]. As long as
Im ζ = ν ≤ a the Fourier-Laplace transform of h ∈ H`

a(R)+ is well defined. Moreover the
function h can be recovered from ĥ(·, ζ) if the path of integration in the formula (4.20) is
taken in the lower half plane H−a = {Im (ζ) = ν ≤ a}. The situation is similar when instead
we consider the Fourier-Laplace transform in the space of functions H`

a(R)−, except that now
the transform is defined in the upper half plane H+

a = {Im ζ = ν ≥ a}.
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We observe that from Plancherel’s formula∫ 2π

µ=0

∫ 1

0

|ĥ(σ, ζ)|2 dσ dµ =

∫
R
|e νsh(s)|2 ds, ζ = µ+ iν,

it follows that L2 norms of the Fourier-Laplace transforms are equal to the exponentially
weighted L2 norm of functions. This property is crucial for our purpose.

Note that if u(σ, ζ) is an L2([0, 1]) function which is analytic as a function of ζ with values
in L2([0, 1]) in the lower half plane H−a then, by Cauchy’s theorem, the path of integration in
the inversion formula (4.20) can be shifted down to any path ζ = µ+ iν, ν < a. If in addition
u(·, ζ) is bounded by e−ν along such paths then the inverse transform F−1u(s) is supported
in [−1,∞). This explains the reason we have paid so much attention to functions defined on
a half-line. On the other hand Fourier-Laplace transforms of functions in H`

a(R)+ have the
property described above.

The Fourier-Laplace transform plays a similar role as the Fourier transform in the theory of
linear PDEs with constant coefficients when the differential operator at hand is periodic with
respect to the independent variable. To fix attention on a concrete example let us suppose
that A(s) : L2

a(R)+ → L2
a(R)+, s ∈ R is a family of densely defined, linear operators. Then it

is natural to define
(Âĥ)(σ, ζ) = Â(s)h(σ, ζ).

Now, let us suppose that A is periodic with period 1, i.e. A(s) = A(s+ 1). We have

(Âĥ)(σ, ζ) =
∑

−∞<k<∞

e−i(k+σ)ζA(σ + k)h(σ + k) = e−iζσA(σ)e iζσĥ,

hence explicitly
Â(σ, ζ) = e−iζσA(σ)e iζσ.

With our definition of the Fourier-Laplace transform we have ĥ(σ) = ĥ(σ + 1) and also
Â(σ, ζ) = Â(σ + 1, ζ). It follows that the operator Â(σ, ζ) is naturally defined on functions
in the space of L2 functions defined on S1. Through the identification u(σ) = ũ(e 2πiσ) we
consider this as a space of periodic functions on [0, 1] and denote it by L2

per([0, 1]).

Often one has to deal with operators that are periodic with period T > 0 that is not
necessarily equal to 1. It is elementary to modify our definitions of the Fourier-Laplace
transform of a function and a linear operator in this case. For a given function h and T > 0
our objective is to define the Fourier-Lapalace transform of h which is periodic of period T .
We set hT (x) = h(Tx) and let naturally ĥ(ξ, ζ) = ĥT (ξ/T, ζ) so that

ĥ(ξ, ζ) =
∑

−∞<k<∞

e−i(ξ+Tk)ζ/Th(ξ + Tk), h(x) =
1

2π

∫ 2π

µ=0

e ixζ/T ĥ(xmodT, ζ/T ) dµ,

the Plancherel’s formula is∫ 2π

µ=0

∫ T

0

|ĥ(σ, ζ)|2 dσ dµ =

∫
R
|e νs/Th(s)|2 ds, ζ = µ+ iν,
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and the Fourier-Laplace transform of a T periodic operator A is

Â(ξ, ζ) = e−iξζ/TA(ξ)e iξζ/T .

The operator Â(ξ, ζ) acts on a space of functions L2
per([0, T ]). Note that from the Plancherel’s

formula we see that if h ∈ L2
a(R)+ and its Fourier-Laplace transform is T periodic then it is

natural to take ζ = µ+ iν = µ+ iTa, µ ∈ (0, 2π) as the path of integration.

In many applications, and this will be in particular the case in our context, the family of
operators Â(σ, ζ) is Fredholm and depends holomorphically on the variable ζ. If this is the
case one can use the analytic Fredholm theorem to conclude that either Â(σ, ζ) is nowhere
invertible or it is invertible in the set of all admissible ζ except possibly a discrete set. If the
latter happens then in order to solve the equation

A(x)h = g,

we can pass to the Fourier-Laplace transform

Â(ξ, ζ)ĥ(ξ, ζ) = ĝ(ξ, ζ) =⇒ h(x) =
1

2π

∫ 2π

µ=0

e ixζ/T (Â−1ĝ)(xmodT, ζ/T ) dµ, (4.21)

where in the last integral the path of integration should avoid the poles of Â−1ĝ(xmodT, ζ).
If between two such paths there is no pole of Â−1ĝ(xmodT, ζ) then the path of integration
can be shifted from one of the paths to the other horizontally without changing the value of
the integral. This follows by Cauchy’s theorem, since the integrals over the vertical segments
cancel out due to (4.19). This means for instance that we can get the inverse of A(x) in
a space of functions L2

a(R)+ whenever Â−1ĝ(ξ, ζ) is analytic in some neighbourhood of the
segment ζ = µ + iTa, µ ∈ [0, 2π]. Alternatively, this means that Â−1ĝ(ξ, ζ) is well defined
in the space L2

per([0, T ]), for ζ = µ + iTν, |ν − a| < κ with some κ > 0. It may however
happen that Â−1ĝ(ξ, ζ) is analytic along two paths ζj = µ + iTνj, j = 1, 2, µ ∈ [0, 2π] and
ν1 < ν2, but it has a pole at some ζ∗ = µ∗+ iTν∗, with ν1 < ν∗ < ν2, µ∗ ∈ (0, 2π). In this case
formula (4.21) would give two solutions h1 and h2 (by integrating over the paths ζ = µ+iTνj,
j = 1, 2) which would differ by an element of the kernel of A(x). This corresponds to the
residue of Â−1ĝ(ξ, ζ), ζ∗ = µ∗ + iTν∗.

4.4. Mapping properties of Lwτ in weighted Sobolev spa-
ces

Going back to our context, we see that since Lwτ is Tτ periodic in the z variable, and
so is it induces a family of operators on L2

γ,per(R2 × [0, Tτ ]), which is densely defined and
holomorphic, as a function of ζ, in a neighbourhood of the segment [0, 2π]. Here and below
H`
γ,per(R2 × [0, Tτ ]) is a subspace of H`(R2 × [0, Tτ ]) which consists of functions that are

periodic in z and whose grow (decay) away from Dτ is controlled by e−γ
(
r−ρτ (z)

ε

)
, cf. (4.15).

In detail

H`
γ,per(R2 × [0, Tτ ]) = {u ∈ H`(R2 × [0, Tτ ])|u is Tτ -peridic in z, ‖u‖H`

γ,per(R2×[0,Tτ ]) <∞},
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where
‖u‖H`

γ,per(R2×[0,Tτ ]) =
∑
|α|≤`

∥∥∥e γ( r−ρτ (ξ)ε )Dαu
∥∥∥
L2(R2×[0,Tτ ])

.

Later on we will also consider the space of functions H`
γ,per(D̊τ ×R) consisting of functions

defined on D̊τ (here by D̊τ we denote a one period portion of Dτ with the top and the bottom
identified) and whose decay away from D̊τ is controlled by e−γt, i.e.

‖u‖H`
γ,per(D̊τ×R) =

∑
|α|≤`

∥∥∥e γtDα
D̊τ×R

Y ∗ε u(y, t)
∥∥∥
L2(D̊τ×R)

We also agree that

L2
γ,per(R× [0, Tτ ]) = H0

γ,per(R× [0, Tτ ]),

L2
γ,per(D̊τ × R) = H0

γ,per(D̊τ × R).

These two norms are related locally, near D̊τ , by formulas analogous to (4.16)–(4.17).

If we restrict Lwτ to the subspace of L2
a,γ(R3)+ of L2

a,γ(R3) functions that are supported
in the set z > −1, and consider it as acting on Fourier-Laplace transforms of such functions,
then we can obtain a parametrix for the operator Lwτ via the Fourier-Laplace inversion
formula (4.21). As we pointed out earlier the advantage in working with the family L̂wτ (ζ),
is the fact that we can use the theory developed in [43] and [54].

Using the Fourier-Laplace transform we can consider the family of operators L̂wτ (ζ) instead
of Lwτ . We will write the operator L̂wτ (ζ) in terms of variables (x1, x2, ξ) (here ξ ∈ [0, Tτ ])

L̂wτ (ζ) = ε[∆ + T−2
τ (∂ξξ + 2iζ∂ξ − ζ2)] +

1

ε
f ′(wτ ) (here ∆ = ∂2

x1
+ ∂2

x2
).

This operator is defined for functions in H2
γ,per(R2 × [0, Tτ ]) and induces a densely defined

operator on L2
γ,per(R2 × [0, Tτ ]). In order that the inversion formula for the Fourier-Laplace

transform made sense we need to know the Fredholm property at least for ζ = µ+ iν, where
µ ∈ [0, 2π] and |ν| is small, or in other words when ζ is in a neighbourhood of the segment
[0, 2π]. In order to prove that this operator is Fredholm we use the following

Lemma 4.4.1 Let AR = {(x, ξ) | r − ρτ (ξ) ∈ (−R,R), r = |x| =
√
x2

1 + x2
2, ξ ∈ [0, Tτ ]} and

let M > 0 be such that f ′(wτ ) < −
√

2
2

in R2× [0, Tτ ] \AεM . There exists δτ > 0 such that for
all ζ = µ+ ia, µ ∈ [0, 2π], and γ such that a2 + γ2 < δτ , and all sufficiently small ε, it holds

ε‖∇φ‖2
L2
γ,per(R2×[0,Tτ ]) + ε−1‖φ‖2

L2
γ,per(R2×[0,Tτ ]) ≤ C‖L̂wτ (ζ)φ‖2

L2
γ,per(R2×[0,Tτ ]) + Cε−1‖φ‖2

L2(AεM ).

for any function φ ∈ H2
γ,per(R2 × [0, Tτ ]). The constant C above depends on ζ,M and γ.
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Proof. This type of estimate is well known and it can be found for instance in [1]. We will
outline the proof here (following the proof of a similar result in [19]). We agree that Γ is one
of the functions

Γ = e γ
(
r−ρτ (ξ)

ε

)
, Γ = coshγ

(r − ρτ (ξ)
ε

)
.

We take a cutoff function χεM which is supported in the complement of the set AεM/2 and is
identically equal to 1 in the complement of the set AεM . Let us denote

φζ = e iζξ/Tτφ,

so that
L̂wτφ = e− iζξ/Tτ [ε∆ +

1

ε
f ′(wτ )]φζ = g.

Multiply the left hand side of the last equation by φ̄Γχ2
εM and integrate by parts. This gives∫

R2×[0,Tτ ]

L̂wτ (ζ)φφ̄Γχ2
εM = −ε

∫
R2×[0,Tτ ]

[|∇φζ |2 + ζ2|φζ |2]Γχ2
εM

+
1

ε

∫
R2×[0,Tτ ]

f ′(wτ )|φζ |2Γχ2
εM − ε

∫
R2×[0,Tτ ]

∇φζ φ̄ζ∇(Γχ2
εM) (4.22)

Young’s inequality gives for example

ε|∇φζ · ∇Γφ̄ζ | ≤ εκ|∇φζ |2Γ +
ε

4κ
|φζ |2

|∇Γ|2

Γ
≤ εκ|∇φζ |2Γ +

Cγ

4εκ
|φζ |2Γ.

Combining similar manipulations and adjusting the constants in the Young’s inequality and
the exponent γ suitably we find

ε

∫
R2×[0,Tτ ]

|∇φζ |2Γχ2
εM +

1

ε

∫
R2×[0,Tτ ]

|φζ |2Γχ2
εM ≤ C

∫
R2×[0,Tτ ]

|g|2Γχ2
εM

+ Cε

∫
R2×[0,Tτ ]

|φζ |2|∇χεM |2. (4.23)

As |∇χεM | = O(ε−1) and

|φζ | = e ξImζ/Tτ |φ|, |∇φ| = |∇(e− iζξ/Tτφζ)| ≤ e |ξImζ|/Tτ |∇φζ |+
|ζ|
Tτ
e |ξImζ|/Tτ |φζ |,

the Lemma follows from this.

Remark 4.1. Estimate (4.23) is of separate interest and it and its variants will be used for
instance when we analyse the operator Lwτ below. In particular we will need such a variant
in the proof Lemma 4.4.4 (to follow). To explain this let us suppose that the weight function

Γ depends on z as well, say Γ = (cosh z)ae γ
(
r−ρτ (z)

ε

)
and consider the problem

Lwτφ = g,

where φ, g ∈ L2
a,γ(R3). Choosing the cutoff function χεM as above (understood now as a

function on R3) and multiplying by φΓχ2
εM we see that the term we need to control is of the

form
ε|∇φ · ∇Γφ| ≤ εκ|∇φζ |2Γ +

Cγ

4εκ
|φζ |2Γ,
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where the last inequality follows since we still have

|∇Γ|
Γ
≤ Cε−1.

As a consequence we get an estimate of the same type as (4.23) but with integrals taken over
the whole space R3.

Lemma 4.4.2 The operator L̂wτ (ζ) acting on H2
γ,per(R2 × [0, Tτ ]) is Fredholm.

Proof. We need to show that L̂wτ (ζ) has finite dimensional kernel, closed range and that
codimension of the range is also finite. To see that the dim Ker L̂wτ (ζ) is finite we argue by
contradiction. Using notation of Lemma 4.4.1 let

B1 =
{
φ ∈ H2

γ,per(R2 × [0, Tτ ]) | L̂wτ (ζ)φ = 0, ‖φ‖L2(AεM ) = 1
}
.

By Lemma 4.4.1 we know that set B1 is bounded in H1
γ,per(R2× [0, Tτ ]) and then by Sobolev

embedding it is compact in L2(AεM) and thus it must be finite dimensional. To show that
L̂wτ (ζ) has finite range we argue similarly (see for instance [54] for a detailed proof). To
show that the codimension of the range is finite we use the fact that dim Ker L̂wτ (ζ) =
codim Range(L̂wτ (ζ̄)), by duality (the dual of L2

γ,per(R2× [0, Tτ ]) being L2
−γ,per(R2× [0, Tτ ])).

We will use this in proving

Proposition 4.4.1 There exists δτ > 0 and a finite set S0, such that for all a, γ with
a2 +γ2 < δτ , a /∈ S0, for all sufficiently small ε and for all g ∈ L2

a,γ(R3) there exists a solution
of the problem

Lwτφ = g, (4.24)

where φ ∈ H2
−|a|,γ(R3).

Note that even if the right hand side of (4.24) is decaying as z → ±∞ (i.e. a > 0) we get a
solution which in general may be increasing as z → ±∞ at the exponential rate proportional
to e |a||z|.

Proof of Proposition 4.4.1. The idea of the proof is to show that L̂wτ (ζ) is an isomorphism
for ζ in some neighbourhood of [0, 2π], except possibly a finite set of points, and then use
the parametrix formula to solve (4.24). Since L̂wτ (ζ) is a Fredholm family of holomorphic
operators in an open set U ⊂ C with [0, 2π] ⊂ U it is either non invertible everywhere in U or
it is invertible except a discrete subset of U [57]. In particular, if we consider ζ ∈ [0, 2π] (note
that the operator L̂wτ (ζ) is self adjoint for ζ ∈ R) and are able to show that it is injective
there except possibly a discrete set of points then we will conclude that it is invertible in
[0, 2π] except the discrete set and then the same will be true at least in a neighbourhood U
of this segment.

To carry out this plan we consider L̂wτ taken with respect to variable z. This operator is
defined on the space of functions in H2

per(R2 × [0, Tτ ]) which consists of functions which are
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periodic with period Tτ . Recall that we have

L̂wτ (ζ) = e−iζξ/Tτ{ε∆ + ε−1f ′(wτ )}e iζξ/Tτ .

We want to express L̂wτ in terms of the stretched Fermi co-ordinates in Nδ. Let D̊τ be the
one period piece of Dτ (i.e. 0 ≤ z ≤ Tτ ) with the top and the bottom identified. The natural
domain for the expression of the Fourier-Laplace transforms of functions in L2

per(R2× [0, Tτ ])

in the stretched Fermi coordinates is D̊τ × [−δ/ε, δ/ε]. For example from the definition of the
shifted Fermi coordinates we see that

(Y ∗ε ξ)(y, t) = [y + εtNτ (y)] · e3.

It is convenient to extend this function from D̊τ × [−δ/ε, δ/ε] to D̊τ ×R. We will use for this
purpose the cutoff function χδ/ε defined in (4.4) and set

ξ∗ = χε/δ(Y
∗
ε ξ) + (1− χε/δ)y · e3

for the extension of (Y ∗ε ξ) = ξ∗, understanding that this is a function of (y, t).

We use the operator Lwτ (see (4.5)) to define also a natural extension of Y ∗ε L̂wτ to D̊τ ×R

L̃wτ (ζ) = e−iζξ
∗/TτLwτ e iζξ

∗/Tτ .

The operator L̃wτ (ζ) is “almost” the Fourier-Laplace transform of Lwτ . Note that L̃wτ (0) =
Lwτ . The strategy of the proof is to show first that the operator L̃wτ (ζ) is injective and then
conclude from this that L̂wτ (ζ) is injective.

We will study the kernel of L̃wτ (ζ) in the space of functions L2
γ,per(D̊τ×R). Let us suppose

that for some γ, |γ| < δτ , and ζ ∈ [0, 2π] there exists a function φ0 ∈ H2
γ,per(D̊τ × R)

L̃wτ (ζ)φ0 = Lwτ (e iζξ
∗/Tτφ0) = Lwτφ0ζ = 0,

where we have denoted
φ0ζ = e iζξ

∗/Tτφ0.

We can normalize ‖φ0ζ‖L2
γ(D̊τ×R) = 1 and then by elliptic estimates for any M > 0 in the set

D̊τ × (−M,M) the function φ0ζ is bounded (we bound the real and imaginary parts of φ0ζ

separately). Take M large so that f ′(wτ ) < −2 + η with some small η > 0. Take δτ in the
statement of the Proposition small so that γ ∈ (−

√
2− η,

√
2− η). Using the comparison

principle for the operator L̃wτ it is then easy to show that in fact

|φ0ζ(y, t)| = |φ0| ≤ Ce−
√

2−η|t| (4.25)

and therefore φ0 ∈ H2(D̊τ × R).

For complex valued functions φ1, φ2 ∈ L2(D̊τ × R) we define Hermitian inner product

〈φ1, φ2〉 =

∫
D̊τ×R

φ1φ̄2dVD̊τdt.
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Above ∇D̊τ
and dVD̊τ are respectively the gradient and the volume element on D̊τ . We

introduce an orthogonal decomposition in L2(D̊τ×R) as follows. Let W be the function defined
in (4.7) (we recall that it is an extension of ∂tY ∗ε wτ ). Given a function φ ∈ L2(D̊τ × R) we
denote φζ = e iζξ

∗/Tτφ and decompose

φζ = φ
‖
ζ + ψζW,

where

φ
‖
ζ ∈ Xγ :=

{
φ ∈ L2

γ,per(D̊τ × R)

∣∣∣∣∫
R
φW dt =

∫
R
φ̄W dt = 0

}
, ψζ =

∫
R φζW dt∫
R V

2 dt
.

In particular for φ0 ∈ Ker L̃wτ (ζ) we have

Lwτφ0ζ = Lwτφ
‖
0ζ + Lwτ (ψ0ζW) = 0 (4.26)

and 〈
−Lwτφ

‖
0ζ , φ

‖
0ζ

〉
= −

〈
Lwτψ0ζW, φ

‖
0ζ

〉
. (4.27)

We will use this identity to estimate φ‖0ζ in terms of suitable norm of ψ0ζ . To do so we need

Lemma 4.4.3 It holds∣∣∣〈−Lwτφ‖ζ , φ‖ζ〉∣∣∣ ≥ C

ε

(
‖∂tφ‖ζ‖

2
L2(D̊τ×R)

+ ‖φ‖ζ‖
2
L2(D̊τ×R)

)
+ Cε‖∇D̊τ

φ
‖
ζ‖

2
L2(D̊τ×R)

.

Proof. We recall the well known fact: with H(x) = tanh
(
x√
2

)
the bilinear form∫

R
|ψ′|2 − f ′(H)ψ2 (4.28)

is positive definite on the space of functions L2(R) orthogonal to H ′(x). Consider a quadratic
form

B(φ, φ) =
1

ε

∫
D̊τ×R

|∂tφ|2 + ε2|∇D̊τ
φ|2 − f ′(H)|φ|2

for φ ∈ Xγ. Write

φ = φ1 + φ2H
′, where (φ1, H

′) = 0, φ2 =
(φ,H ′)

(H ′, H ′)

and where we have denoted
(φ, ψ) =

∫
R
φψ̄ dt.

We have
0 = (φ, W) = (φ,H ′) + (φ, W−H ′) = φ2 (H ′, H ′) + (φ, W−H ′)

and also

0 = ∇D̊τ
(φ, W) =

(
∇D̊τ

φ, W
)

+
(
φ,∇D̊τ

W
)

= ∇D̊τ
φ2 (H ′, H ′)

2
+
(
∇D̊τ

φ, W−H ′
)

+
(
φ,∇D̊τ

W
)
.
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Since

W−H ′ = U ′ −H ′ +OC1,αµ D̊τ×R(ε2−α) = OC1,αµ D̊τ×R(ε), ∇D̊τ
W = OC1,αµ D̊τ×R(ε2−α),

we get
‖φ2H

′‖H1(D̊τ×R) ≤ Cε‖φ‖H1(D̊τ×R). (4.29)

By (4.28)

B(φ1, φ1) ≥ C

ε

(
‖φ1‖2

L2(D̊τ×R)
+ ‖∂tφ1‖2

L2(D̊τ×R)
+ ε2‖∇D̊τ

φ1‖2
L2(D̊τ×R)

)
,

hence from (4.29)

B(φ, φ) ≥ C

ε

(
‖φ‖2

L2(D̊τ×R)
+ ‖∂tφ‖2

L2(D̊τ×R)
+ ε2‖∇D̊τ

φ‖2
L2(D̊τ×R)

)
,

for any φ ∈ Xγ.

We get

〈−Lwτφ
‖
ζ , φ

‖
ζ〉 = B(φ

‖
ζ , φ

‖
ζ)−

1

ε

∫
D̊τ×R

[f ′(wτ )− f ′(H)]|φζ |2 dVD̊τdt

− ε

2

∫
D̊τ×R

∂t
(
tχε/δ

)
|AD̊τ |

2|φζ |2 dVD̊τdt

+ 〈χε/δQε∂tφζ , φζ〉+ ε〈χε/δAεφζ , φζ〉

= B(φ
‖
ζ , φ

‖
ζ) +

(
O(1) +O(ε/δ) +O(δ2)

) (
‖φ‖ζ‖

2
L2(D̊τ×R)

+ ‖∂tφ‖ζ‖
2
L2(D̊τ×R)

)
+O(εδ)‖∇D̊τ

φ
‖
ζ‖

2
L2(D̊τ×R)

.

Since δ can be taken as small as we wish the assertion of the Lemma follows.

Now, we need to control the mixed term in (4.27)

〈−Lwτ (ψ0ζW), φ
‖
0ζ〉 = −ε

〈
W
(
JDτ + χε/δAε

)
ψ0ζ , φ

‖
0ζ

〉
− ε

〈[
∆Dτ + χε/δAε, W

]
ψ0ζ , φ

‖
0ζ

〉
+
〈
OC0,α

µ (Dτ×R)(ε
3−α)ψ0ζ , φ

‖
0ζ

〉
=
〈
OC0,α

µ (Dτ×R)(ε
2)∇D̊τ

ψ0ζ ,∇D̊τ
φ
‖
0ζ

〉
+
〈
OC0,α

µ (Dτ×R)(ε
3−α)ψ0ζ , φ

‖
0ζ

〉
,

where the last equality follows because the coefficients of the operator Aε are bounded by εt
and W is exponentially decaying in t. By the Cauchy-Schwarz inequality for any some η > 0
small we get∣∣∣〈−Lwτ (ψ0ζW), φ

‖
0ζ

〉∣∣∣ ≤ η
(
ε−1‖φ‖0ζ‖

2
H1(D̊τ×R)

+ ε‖φ‖0ζ‖
2
H1(D̊τ×R)

)
+ Cηε

3‖ψ0ζ‖2
H1(D̊τ )

.

It follows from (4.27) and Lemma 4.4.3

1

ε

(
‖∂tφ‖0ζ‖

2
L2(D̊τ×R)

+ ‖φ‖0ζ‖
2
L2(D̊τ×R)

)
+ ε‖∇D̊τ

φ
‖
0ζ‖

2
L2(D̊τ×R)

≤ Cε3‖ψ0ζ‖2
H1(D̊τ )

.
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Now consider the orthogonal complement of Xγ. From (4.10) we obtain

Lwτ (ψ0ζW) = εW
(
JD̊τ + χε/δAε

)
ψ0ζ + ε

[
∆Dτ + χε/δAε, W

]
ψ0ζ +OC0,α

µ (Dτ×R)(ε
3−α)ψ0ζ ,

Using this and projecting (4.26) onto W and integrating over R we get

JD̊τψ0ζ = T (ψ0ζ , φ0ζ), (4.30)

where

‖T (ψ0ζ , φ0ζ)‖L2(D̊τ ) ≤ Cδ‖ψ0ζ‖H2(D̊τ ) + C
(
ε−1‖φ‖0ζ‖L2(D̊τ×R) + ε2−α‖φ‖0ζ‖H1(D̊τ×R)

)
≤ C

(
δ‖ψ0ζ‖H2(D̊τ ) + ε‖ψ0ζ‖H1(D̊τ )

)
.

(4.31)

We claim that from this it follows that for any ζ ∈ (0, 1) there exists εζ > 0 such that for any
ε ∈ (0, εζ) we have ψ0ζ = 0 and hence φ0 = 0. To show this claim we note that by definition

ψ0ζ =
(φ0ζ , W)

(W, W)

=

(
e iζξ

∗/Tτφ0, W
)

(W, W)

=

(
e iζ(y3+εχε/δtNτ ·e3)/Tτφ0, W

)
(W, W)

=
e iζy3/Tτ

(
e iζεχε/δtNτ ·e3)/Tτφ0, W

)
(W, V)

= e iζy3/Tτ ψ̃0ζ ,

where ψ̃0ζ is periodic in y3 with period Tτ . We see that ψ0ζ satisfies

ψ0ζ(y1, y2, y3 + Tτ ) = e iζψ0ζ(y1, y2, y3), y = (y1, y2, y3) ∈ Dτ ,

with similar relation for ∂y3ψ0ζ . By Proposition 4.2 in [45] we know that the operator JD̊τ is
invertible in the space of functions satisfying these conditions as long as ζ ∈ (0, 2π) with an
inverse whose norm depends on τ . The claim now follows from (4.30) and (4.31).

In particular we conclude that the operator L̃wτ (ζ) is injective for ζ ∈ (0, 2π) and by
the same argument for ζ ∈ (−2π, 0) (note that L̃∗wτ (ζ) = L̃wτ (−ζ)). A version of Lemma
4.4.1 for L̃wτ (ζ) shows that this operator is Fredholm, depends analytically on ζ and, as a
consequence, it is invertible in a neighbourhood of [0, 2π] except for a discrete set.

Now let us suppose that for some ζ ∈ (0, 2π) there exists a function φ0 ∈ H2
γ,per(R2 ×

[0, Tτ ]), with some γ, |γ| small, such that L̂wτ (ζ)φ0 = 0. Since φ0 is bounded locally near
D̊τ we can use comparison principle to show that φ0 is decaying away from D̊τ at least like
e−
√

2−η |r−ρ(ξ)|
ε (the argument is similar to the one leading to (4.25)). Using Lemma 4.4.1 we

get
‖φ0‖H2

±γ,per(R2×[0,Tτ ]) ≤ Cε−1‖φ0‖L2
per(R2×[0,Tτ ]). (4.32)

We normalize ‖φ0‖H1
per(R2×[0,Tτ ]) = 1 and set φ̃0 = χε/δY

∗
ε φ0. With this notation (see (4.16))

‖φ̃0‖L2(D̊τ×R) ∼ ε−1/2‖φ0‖L2({dist (x,D̊τ )<δ}),
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since dtdVD̊τ ∼ ε−1dx. Similarly, we have

‖φ̃0‖H1(D̊τ×R) ∼ ε1/2‖φ0‖H1({dist (x,D̊τ )<δ}).

Next, we observe that since φ0 is decaying exponentially away from D̊τ we have by (4.32)

‖φ0‖2
H1
per(R2×[0,Tτ ]) = ‖φ0‖2

H1({dist (x,D̊τ )<δ}) + ‖φ0‖2
H1({dist (x,D̊τ )>δ})

≤ ‖φ0‖2
H1({dist (x,D̊τ )<δ}) +O(e−cδ/ε)‖φ‖2

H1
γ,per(R2×[0,Tτ ])∩H1

−γ,per(R2×[0,Tτ ])

≤ ‖φ0‖2
H1({dist (x,D̊τ )<δ}) +O(ε−1e−cδ/ε)‖φ0‖2

H1
per(R2×[0,Tτ ]),

hence
‖φ0‖2

H1({dist (x,D̊τ )<δ}) ≥
1

2
‖φ0‖2

H1
per(R2×[0,Tτ ]) =

1

2
. (4.33)

Given all this we claim that we can find a nontrivial function φ̃ = φ̃0 + φ̃1, ψ ∈ L2(D̊τ ×R),
such that L̃wτ (ζ)φ̃ = 0, by solving

L̃wτ (ζ)φ̃1 = −
[
χε/δ, L̃wτ (ζ)

]
φ̃0

− e−iζξ∗/Tτχε/δ(1− χε/δ)
[(
εt|ADτ |2 + Qε

)
∂t + εAε

]
e iζξ

∗/Tτ φ̃0

:= Rε/δ(y, t).

In fact, since Rε/δ is supported in the set δ/2ε ≤ |t| ≤ δ/ε therefore

‖Rε/δ‖L2(D̊τ×R) ≤ Ce−cδ/ε‖φ0‖H1
γ,per(R2×[0,Tτ ])∩H1

−γ,per(R2×[0,Tτ ]).

Next we decompose φ̃1 = φ̃
‖
1 + ψ̃1W and use (with only slight modifications) the argument

that we have used to show that L̃wτ (ζ) is injective to get

‖φ̃1‖H1(D̊τ×R) ≤ Cε−1‖Rε/δ‖L2(D̊τ×R) ≤ Ce−cδ/ε‖φ0‖L2
per(R2×[0,Tτ ]).

From (4.33) it now follows

‖φ̃‖H1(D̊τ×R) ≥ ‖φ̃0‖H1(D̊τ×R) − ‖φ̃1‖H1(D̊τ×R)

≥ Cε1/2‖φ0‖2
H1({dist (x,D̊τ )<δ}) +O(e−cδ/ε)‖φ0‖L2

per(R2×[0,Tτ ]) > 0,

for ε sufficiently small. This contradicts the fact that L̃wτ (ζ) is injective. Taking this into
account we see that L̂wτ (ζ) is invertible at least for ζ ∈ (0, 2π), and thus by the Fredholm
alternative is invertible for all ζ such that |Im ζ| < δτ , expect possibly a finite set where
L̂−1
wτ (ζ) has poles. We claim that the required properties of Lwτ follow now by taking the

inverse Fourier-Laplace transform at any a for which L̂−1
wτ ,γ(ζ) is well defined for ζ = µ+ iTτa,

µ ∈ [0, 2π]. Indeed, given g ∈ L2
a,γ(R3) with a2 + γ2 < δτ and cutoff functions χ±(z) such

that χ+(z) + χ−(z) = 1 and suppχ+ = (−1,∞) we can solve

Lwτφ
± = χ±g.

To do this we let ĝ± to be the Fourier-Laplace transforms of g±. Then we solve

L̂wτ (ζ)φ̂± = ĝ± =⇒ φ̂± = L̂wτ (ζ)−1ĝ±,
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and by taking the inverse of the Fourier-Laplace transform F we determine

φ± = F−1
(
L̂wτ (ζ)−1ĝ±

)
,

and define
φ = Gwτ (g) := φ− + φ+.

This ends the proof.

Remark 4.2. We will describe a useful consequence of local elliptic estimates. Let us suppose
that we know a priori φ, g ∈ L2

a,γ(R3) where

∆φ = g.

The goal is to obtain weighted Sobolev estimates for the derivatives of φ. First, consider a
cube Qr(x0) centered at x0 ∈ R3 and with its sides equal to r. Standard elliptic estimates
show

r‖D2φ‖L2(Qr(x0)) + ‖∇φ‖L2(Qr(x0)) ≤ C‖g‖L2(Q2r(x0)) + Cr−1‖φ‖L2(Q2r(x0)).

If r = ε then we get from this

ε‖D2φ‖L2
a,γ(Qε(x0)) + ‖∇φ‖L2

a,γ(Qε(x0)) ≤ C‖g‖L2
a,γ(Q2ε(x0)) + Cε−1‖φ‖L2

a,γ(Q2ε(x0)),

since the exponential weights are comparable on the sets with diameters proportional to ε.
Arranging now a countable collection of cubes {Qε(xj)}j∈N in such a way that for each xj the
number of cubes Q2ε(xj′), j′ 6= j, whose intersection with Qε(xj) is nonempty is finite and
bounded independently on j, while at the same time R3 = ∪j∈NQε(xj), we see that above
local estimates can be summed up to yield

ε‖D2φ‖L2
a,γ(R3) + ‖∇φ‖L2

a,γ(R3) ≤ C‖g‖L2
a,γ(R3) + Cε−1‖φ‖L2

a,γ(R3).

Lemma 4.4.4 Let φ ∈ L2
a,γ′(R3) be a solution of Lwτφ = g with g ∈ L2

a,γ(R3) where γ > 0,
γ′ < γ and a2 + γ2 < δτ , a2 + γ′2 < δτ . Then φ ∈ L2

a,γ(R3). An analogous statement holds
when we assume that γ < 0 and γ < γ′.

Proof. We follow the proof of a similar result in [19]. Let χ be a cutoff function supported
in the set εM < r − ρτ (z), r2 = x2

1 + x2
2, and such that χ ≡ 1 in the set r − ρτ (z) > 2εM

where M is chosen so that f ′(wτ ) < −1 for r − ρτ (z) > εM . We calculate

Lwτ (χφ) = χg + [ε∆, χ]φ ≡ g1, [ε∆, χ]φ = ε∆(χφ)− εχ∆φ.

We have ε∇χ = O(1) and ε∆χ = O(ε−1). Moreover, by local elliptic estimates applied to
the equation

∆φ = ε−1g + ε−2f ′(wτ )φ

we can show that (see Remark 4.2)

‖ε∇χ · ∇φ‖L2
a,γ(R3) ≤ Cε−1‖g‖L2

a,γ(R3) + Cε−2‖φ‖L2
a,γ′ (R

3).

We find from this

‖ε∇χ · ∇φ‖L2
a,γ(R3) + ‖εφ∆χ‖L2

a,γ(R3) ≤ Cε−1‖g‖L2
a,γ(R3)‖+ Cε−2‖φ‖L2

a,γ′ (R
3).
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Above, we use the fact that the weighed norms ‖ · ‖L2
a,γ(R3) and ‖ · ‖L2

a,γ′ (R
3) are comparable

in the set r − ρτ (z) ∈ [εM, 2εM ]. From this we obtain

‖g1‖L2
a,γ(R3) ≤ Cε−1‖g‖L2

a,γ(R3) + Cε−2‖φ‖L2
a,γ′ (R

3).

Now we solve the problem
Lwτφ1,R = g1 in ΩεM,R,

φ1,R = 0 on ΩεM,R,

in a bounded set ΩεM,R = {εM < r − ρτ (z) < R, |z| < R}. Using similar argument as the
one leading to (4.23) in the proof of Lemma 4.4.1 we get

‖φ1,R‖H1
a,γ(ΩεM,R) ≤ Cε−1/2‖g1‖L2

a,γ(R3)

≤ Cε−3/2‖g‖L2
a,γ(R3) + Cε−5/2‖φ‖L2

a,γ′ (R
3).

Note the that in the first of the above inequalities only the right hand side of the equation
appears, which is due to the fact that we assumed homogeneous Dirichlet boundary conditions
on φ1,R and we do not need to introduce the cut off function χεM in proving a version of
Lemma 4.4.1 needed here. Letting R → ∞ we get a solution φ1 of the equation Lwτφ1 = g1

but now in the set εM < r − ρτ (z), such that

‖φ1‖H1
a,γ(R3) ≤ Cε−3/2‖g‖L2

a,γ(R3) + Cε−5/2‖φ‖L2
a,γ′ (R

3).

We also have Lwτ (χφ − φ1) = 0 and φ1 = χφ = 0 along the surface εM = r − ρτ (z). Then,
an estimate similar to (4.23), shows that actually χφ = φ1. Similar argument applied in the
set −εM > r − ρτ (z) ends the proof.

4.5. The deficiency space and the kernel of Lwτ

Let us summarize our results so far. Let g ∈ L2
a,γ(R3) with a2 + γ2 < δτ , and cutoff

functions χ±(z) such that χ+(z) + χ−(z) = 1 and suppχ+ = [−1,∞) be given.

(i) As in Proposition 4.4.1 we can solve

Lwτφ
± = χ±g

where φ± ∈ H2
−|a|,γ(R3)±, (except for a finite set of a).

(ii) If we have Lwτφ = g, φ ∈ L2
a,γ′(R3), g ∈ L2

a,γ(R3) with γ > 0 and γ′ < γ then
φ ∈ H2

a,γ(R3). In particular if g is decaying exponentially away from the surface Dτ , so
that we have g ∈ L2

a,γ(R3)∩L2
a,−γ(R3) then φ ∈ H2

a,γ(R3)∩H2
a,−γ(R3). This means that

the decay rate of the solution away from the nodal set improves together with the rate
of decay of the right hand side.

(iii) When the right hand side decays both along the nodal set and in the direction trans-
versal to it, for example g ∈ L2

a,γ(R3) ∩ L2
a,−γ(R3), with a > 0, then we can use the

parametrix to solve the equation Lwτφ+ = χ+g and determine a solution φ+ such that
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χ+φ+ ∈ L2
a,γ(R3)+ ∩ L2

a,−γ(R3)+. At the same time we can find another solution φ+
1 ,

such that χ+φ+
1 ∈ L2

−a,γ(R3)+ ∩ L2
−a,−γ(R3)+ and we get the following decomposition

φ+ =
k∑
j=1

Z+
j + φ+

1 ,

where Z+
j are in the kernel of the operator Lwτ . Then we have

φ+ = χ+φ+ + χ−φ+ = χ+φ+ + χ−φ+
1 +

k∑
j=1

Z+
j χ
−,

where (χ+φ+ + χ−φ+
1 ) ∈ H2

a,γ(R3). Of course we can argue similarly for the equation
Lwτφ

− = χ−g and thus at the end we get the following formula

φ = φ0 +
k∑
j=1

χ−Z+
j +

k∑
j=1

χ+Z−j ,

where φ0 ∈ H2
a,γ(R3). This is the so called linear decomposition formula. It says that

any solution to Lwτφ = g can be decomposed into an exponentially decaying part and
and a linear combination of 2k functions which are related to the residues of L̂−1

wτ ,γ(ζ)
at its poles. We say that these functions belong to the deficiency space. Clearly the
elements of the kernel of Lwτ (which is k dimensional) belong to the deficiency space
and thus removing them from it we obtain a space on which Lwτ is an isomorphism
(see Lemma (4.5.1) below).

Before stating precisely the next Lemma we introduce weighted Sobolev spaces

L̄a,γ(R3) := L2
a,γ(R3) ∩ L2

a,−γ(R3), H̄`
a,γ(R3) := H`

a,γ(R3) ∩H`
a,−γ(R3).

Note that φ ∈ L̄a,γ(R3) decays away from Dτ as cosh−|γ|
(
r−ρτ (z)

ε

)
if γ > 0, and decays (for

a > 0) or grows (for a < 0) along Dτ at the rate cosh−a z. Based on observations (i)–(iii) we
have

Lemma 4.5.1 Let γ > 0, a > 0, with a2 + γ2 < δτ and let us define the deficiency space

Dwτ = span
{
χ+Zj, χ

−Zj, j = 1, . . . k, Zj ∈ KerLwτ
}
.

We further decompose Dwτ = Kwτ ⊕ Ewτ , where Kwτ = KerLwτ . Then the operator

Lwτ : H̄2
a,γ(R3)⊕ Ewτ −→ L̄2

a,γ(R3)

φ 7−→ Lwτφ.

is an isomorphism.

Note that dim Ewτ = k = dimKwτ and that we know already that k ≥ 6 = dim Iwτ where
the linear subspace Iwτ was defined in (4.11). We will show next that indeed k = 6.
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Proposition 4.5.1 We have Kwτ = Iwτ .

Proof of Proposition 4.5.1. The idea of the proof is to relate the kernel of the operator
Lwτ with the space of the Jacobi fields of the operator JDτ that is explicitly known and
in particular its dimension is 6. Let us consider a φ ∈ Kwτ . A priori it may happen that
φ is exponentially increasing in the z variable but we know already (see the argument lea-
ding to (4.32) an also Lemma 4.4.4 and Remark 4.1) that it must be decaying at least like
cosh−γ( r−ρτ (z)

ε
) with some γ > 0. In particular all integrations with respect to the transversal

direction to Dτ that will appear below are justified.

Next, we note that formula (4.10) suggests that near the surface Dτ the elements of Kwτ
should be proportional, asymptotically as ε→ 0, to W times a function on Dτ . To make this
rigorous we first prove the following

Lemma 4.5.2 Let φ ∈ Kwτ be such that∫
R
(Y ∗ε φ)(y, t)W(y, t)χε/δ(t) dt = 0 ∀y ∈ Dτ . (4.34)

Then we have φ ≡ 0.

Proof of Lemma 4.5.2. As we have pointed out it is not hard to show that φ decays expo-
nentially like cosh−γ

( r−ρτ (z)
ε

) and so we can compute∫
R2

φ2(x, z) dx = h(z), x = (x1, x2).

Direct calculation shows

ε

2

d2h

dz2
=

∫
R2

[
ε|∇xφ|2 −

1

ε
f ′(wτ )φ

2
]
dx+ ε

∫
R2

|∂zφ|2 dx. (4.35)

We claim that the orthogonality condition (4.34) implies∫
R2

[
ε|∇xφ|2 −

1

ε
f ′(wτ )φ

2
]
dx ≥ κ

ε

∫
R2

φ2(x, z) dx =
κ

ε
h, (4.36)

with some constant κ > 0. To prove this claim we need

Lemma 4.5.3 There exists a constant κ > 0 such that for any sufficiently large R and any
v ∈ H1((−R,R)) it holds∫ R

−R
|v′|2 − f ′(H)v2 ≥ κ

∫ R

−R
v2 whenever

∫ R

−R
vH ′χR = 0,

where χR is a smooth cutoff function supported in (−R,R) such that χR(x) = 1 in (−R/2, R/2).

A proof of this Lemma (using for instance (4.28) as a point of departure) is omitted.
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Changing to Fermi coordinates we have in Nδ

ε|∇xφ|2 =
1

ε
|∂tY ∗ε φ|2 +O(ε)|∂sY ∗ε φ|2 +O(ε)|∂θY ∗ε φ|2.

Next, for a fixed z we consider a diffeomorphism (x1, x2) 7→ (θ, t) defined by

xj = (Xτ (s, θ) + εtNτ (s, θ)) · ej

where s = s(θ, t; z) is determined from

z = (Xτ (s, θ) + εtNτ (s, θ)) · e3.

The Jacobian matrix of this map can be calculated explicitly but for our purpose it is enough
to note that

dx1dx2 = εµ0(θ) dθdt + ε2tµ1(θ, t) dθdt,

where µ0, µ1 are positive densities and

|µ1(θ, t)| ≤ C.

From this we find∫
R2

[
ε|∇xφ|2 −

1

ε
f ′(wτ )φ

2
]
dx ≥

∫ 2π

0

{∫
|t|≤δ/ε

[
|∂tY ∗ε φ|2 − f ′ (H(t)) |Y ∗ε φ|2

]
dt

}
µ0dθ

+

∫
R2\Nδ

[
ε|∇xφ|2 +

1

ε
φ2

]
dx

−K(δ + ε)

∫
R2

[
ε|∇xφ|2 +

1

ε
φ2

]
dx

The potential f ′(wτ ) in the first line on the left can be replaced by f ′(H) on the right
of this line since Y ∗ε wτ = H + O(ε). The term in the second line above appears because
f ′(wτ ) < −2 + η in the complement of Nδ. Finally, all the other terms are of smaller size and
can be controlled by the integral in the third line times K(δ + ε), where K is a constant.
Using Lemma 4.5.3 and going back to the original variables we get∫ 2π

0

{∫
|t|≤δ/ε

[
|∂tY ∗ε φ|2 − f ′ (H(t)) |Y ∗ε φ|2

]
dt

}
µ0dθ ≥

C

ε

∫
Nδ
φ2 dx.

It follows∫
R2

[
ε|∇xφ|2 −

1

ε
f ′(wτ )φ

2
]
dx ≥ C

ε

∫
R2

φ2 dx−K(ε+ δ)

∫
R2

[
ε|∇xφ|2 +

1

ε
φ2

]
dx,

hence

[1 +K(ε+ δ)]

∫
R2

[
ε|∇xφ|2 −

1

ε
f ′(wτ )φ

2
]
dx ≥ C

ε

∫
R2

φ2 dx− K(ε+ δ)

ε

∫
R2

[1 + f ′(wτ )]φ
2 dx

which gives (4.36) provided that ε and δ are small enough. From (4.36) and (4.35) we find

ε

2

d2h

dz2
− κ

ε
h > 0.
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By Lemma 4.5.1 we know a priori that φ, hence h, is growing in z at ±∞ at some exponential
rate which is independent on ε. Applying the comparison principle we see that h, and hence
φ, is actually decaying as z → ±∞, at some exponential rate proportional to ε−1. Using
again orthogonality condition (4.34) we calculate

〈−Lwτφ, φ〉 =

∫
R3

[
ε|∇φ|2 − 1

ε
f ′(wτ )φ

2

]
dxdz ≥ cε−1‖φ‖2

L2(R3),

hence φ ≡ 0 as claimed. This ends the proof of the Lemma.

We continue with the proof of the Proposition. For a given φ ∈ Kwτ we define

ϕ = (Y ∗ε φ)χδ/ε.

The function ϕ is a cutoff of Y ∗ε φ and is supported inNδ. Since φ ∈ H̄2
a,γ(R3) with some a ∈ R,

and γ > 0 both small (φ decays or grows in z like cosh−a z, and it decays like cosh−γ
( r−ρτ (z)

ε

)
away from Dτ ) we have that ϕ ∈ H̄2

a∗,γ∗(Dτ × R) with some a∗ ∈ R and γ∗ > 0 both small.
We also have

‖ϕ‖L̄2
a∗,γ∗ (Dτ×R) ≤ Cε−1/2‖φ‖L̄2

a,γ(R3),

with similar estimates for other Sobolev norms. Note that since φ decays like cosh−γ
( r−ρτ (z)

ε

)
away from Dτ then ϕ decays at least like cosh−γ̄ t with some γ̄ > 0. Above estimate holds
then for any γ∗ < γ̄ and we will consider only γ∗ restricted this way.

In what follows we will argue by contradiction and we will assume that dimKwτ > 6. Since
we know explicitly six linearly independent elements in Kwτ , which are the geometric Jacobi
fields spanning the subspace Iwτ defined in (4.11) we can find a function φ ∈ Kwτ such that
φ /∈ Iwτ and in particular we can assume∫

Dτ×R
χδ/ε(Y

∗
ε φ)(Y ∗ε Φ•) cosha∗(s) dVDτdt = 0, ∀Φ• ∈ Iwτ . (4.37)

We decompose

ϕ = ψW + ϕ‖,

∫
R
χε/δϕ

‖(y, t)W(y, t) dt = 0.

From Lemma 4.5.2 we know that ψ 6= 0 and therefore we can assume ‖ψ‖L2
a∗ (Dτ ) = 1 (indeed

we expect ‖ϕ‖‖L2
a∗,γ∗ (Dτ×R) = o(1)). We compute

Lwτϕ = (Y ∗ε Lwτ )ϕ+ [Lwτ − (Y ∗ε Lwτ )]ϕ ≡ g,

where, more explicitly,

(Y ∗ε Lwτ )ϕ = ε−1[(Y ∗ε φ)∂ttχε/δ + 2∂t(Y
∗
ε φ)∂tχε/δ]− (HDτ + εt|ADτ |2 + Qε)(Y

∗
ε φ)∂tχε/δ

[Lwτ − (Y ∗ε Lwτ )]ϕ = (1− χε/δ)(εt|ADτ |2 + Qε)∂tϕ− ε(1− χε/δ)Aεϕ.

It is not hard to see that

‖χε/δg‖L̄2
a∗,γ∗ (Dτ×R) ≤ O(e−cδ/ε)‖ϕ‖H̄2

a∗,γ∗ (Dτ×R),
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since γ∗ < γ̄. Using this we can calculate∫
R
χε/δLwτϕW dt =

∫
R
χε/δgϕW dt

which gives
JDτψ = T (ϕ‖, ψ),

where T is a linear operator satisfying

‖T (ϕ‖, ψ)‖L2
a∗ (Dτ ) ≤ Cε−1‖ϕ‖‖L̄2

a∗,γ∗ (Dτ×R) + Cε‖ϕ‖‖H̄2
a∗,γ∗ (Dτ×R)

+ Cε1−α‖ψ‖H1
a∗ (Dτ ) + Cδ‖ψ‖H2

a∗ (Dτ ), (4.38)

with some α ∈ (0, 1). Next we will estimate ϕ‖. Since this argument is similar to that of
Proposition 4.4.1 we will outline the main points omitting some tedious but straightforward
calculations. Let K > 0 be a large constant and χ± : R → R+ be smooth cutoff functions
such that χ+ +χ− ≡ 1, χ+(s) = 1 when s > 1 and χ+(s) = 0 when s < −K and additionally
K|χ±s |+K2|χ±ss| ≤ C.

We define ϕ‖,± = χ±ϕ‖. Taking the Fourier-Laplace transform (with respect to s) we get

(Lwτϕ‖,±)
∧

= (χ±Lwτϕ‖)∧ +
([
Lwτ , χ±

]
ϕ‖
)∧

= (χ±g)∧ −
(
χ±Lwτ (ψW)

)∧
+
([
Lwτ , χ±

]
ϕ‖
)∧
.

We can project∫
[0,Tτ ]×[0,2π]×R

ϕ̂‖,±(Lwτϕ‖,±)
∧

=

∫
[0,Tτ ]×[0,2π]×R

ϕ̂‖,±(χ±g)∧

−
∫

[0,Tτ ]×[0,2π]×R
ϕ̂‖,±

(
χ±Lwτ (ψW)

)∧
+

∫
[0,Tτ ]×[0,2π]×R

ϕ̂‖,±
([
Lwτ , χ±

]
ϕ‖
)∧
.

(4.39)

Since we have ∫
R
χε/δϕ̂

‖,±W dt = 0,

therefore the bilinear form on the left hand side in (4.39) is positive definite and by an
argument similar to the one in Proposition 4.4.1 we get∣∣∣∣∫

[0,Tτ ]×[0,2π]×R
ϕ̂‖,±(Lwτϕ‖,±)

∧
∣∣∣∣ ≥ C

ε
‖ϕ̂‖,±‖2

L2([0,Tτ ]×[0,2π]×R) ≥
C

ε
‖ϕ‖,±‖2

L2
a∗ (Dτ×R)±

,

where the last inequality follows from Plancherel’s identity. Using Cauchy-Schwarz inequality
and Plancherel identity again on the right hand side of (4.39) we find

ε−1‖ϕ‖,±‖L2
a∗ (Dτ×R)± ≤ C

(
‖χ±g‖L2

a∗ (Dτ×R)± + ‖χ±Lwτ (ψW)‖L2
a∗ (Dτ×R)±

+
∥∥[Lwτ , χ±]ϕ‖∥∥L2

a∗ (Dτ×R)±

)
.
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Using an argument similar to the one indicated in Remark 4.1 and Remark 4.2 we can show
from this

ε−1‖ϕ‖,±‖L2
a∗,γ∗ (Dτ×R)± + ε‖∇ϕ‖,±‖L2

a∗,γ∗ (Dτ×R)± + ε‖D2ϕ‖,±‖L2
a∗,γ∗ (Dτ×R)± ≤ CR, (4.40)

where

R ≡
(
‖χ±g‖L2

a∗,γ∗ (Dτ×R)± + ‖χ±Lwτ (ψW)‖L2
a∗,γ∗ (Dτ×R)± +

∥∥[Lwτ , χ±]ϕ‖∥∥L2
a∗,γ∗ (Dτ×R)±

)
.

We have

‖χ±g‖L2
a∗,γ∗ (Dτ×R)± ≤ O(e−cδ/ε)

(
‖ϕ‖‖H2

a∗,γ∗ (Dτ×R) + ‖ψ‖H2
a∗ (Dτ )

)
,

‖χ±Lwτ (ψW)‖L2
a∗,γ∗ (Dτ×R)± ≤ Cε‖ψ‖H2

a∗ (Dτ ),∥∥[Lwτ , χ±]ϕ‖∥∥L2
a∗,γ∗ (Dτ×R)±

≤ Cε

K
‖ϕ‖‖H1

a∗,γ∗ (Dτ×R).

Combining these inequalities we get from (4.40)

ε−1‖ϕ‖‖L2
a∗ (Dτ×R) + ε‖∇ϕ‖‖L2

a∗,γ∗ (Dτ×R) + ε‖D2ϕ‖‖L2
a∗,γ∗ (Dτ×R) ≤ Cε‖ψ‖H2

a∗ (Dτ ). (4.41)

This and estimate (4.38) imply

‖T (ϕ‖, ψ)‖L2
a∗ (Dτ ) ≤ C(ε1−α + ε)‖ψ‖H2

a∗ (Dτ ) + Cδ‖ψ‖H2
a∗ (Dτ ).

Decomposing ψ = ψ+ + ψ−, where ψ± = χ±ψ we can use the Fourier-Laplace transform
to show that

ψ = ψ0 + ψ1

where ψ0 is a linear combination of the the geometric Jacobi fields and

‖ψ1‖H2
a∗ (Dτ ) ≤ C‖T (ϕ‖, ψ)‖L2

a∗ (Dτ ) ≤ C(ε1−α + ε)‖ψ‖H2
a∗ (Dτ ) + Cδ‖ψ‖H2

a∗ (Dτ ). (4.42)

When a∗ > 0 then ψ0 ≡ 0 and (4.42) implies that ψ ≡ 0. In case a∗ < 0 from (4.37), (4.41)
and Lemma 4.2.1 we see that ψ satisfies∫

Dτ

ψΦ•τ cosha∗ s dVDτ = 0 =⇒
∫
Dτ

ψ0Φ•τ cosha∗ s dVDτ = −
∫
Dτ

ψ1Φ•τ cosha∗ s dVDτ

for each geometric Jacobi field Φ•τ of JDτ . It follows that

‖ψ0‖L2
a∗ (Dτ ) ≤ C‖ψ1‖L2

a∗ (Dτ )

which, together with (4.42), implies ψ1 ≡ 0 hence ψ ≡ 0. In both cases this is a contradiction.
The proof of the proposition is complete.
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