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WAVELET PACKET FILTER BANK SELECTION FOR TEXTURE RETRIEVAL

Durante los últimos años, el avance de la tecnología de captura y almacenamiento ha
generado un volumen sin precedentes de imágenes digitales almacenadas en las bases de
datos. Esto plantea el desafío de desarrollar sistemas autónomos que sean eficientes en la
búsqueda y organización del contenido digital. Como problema emblemático surgió Content-
Based Image Retrieval como área de investigación. Un sistema de indexación de imágenes
busca encontrar las imágenes más similares a una en particular y está compuesto de dos
etapas: extracción de características y medición de similitud. La primera etapa busca la
forma de representar la imagen extrayendo las características más discriminativas, mientras
que la segunda etapa es usada para ordenar las imágenes de acuerdo a su similitud.
Esta tesis propone el uso de Wavelet Packet para abordar el problema de indexación de
imágenes de texturas. Wavelet Packet es una herramienta del procesamiento de señales
que no ha sido usada en el estado del arte para enfrentar el problema de indexación y,
además, es capaz del proveer distintas representaciones para una imagen. Para seleccionar la
mejor representación de Wavelet Packet, este trabajo propone una nueva metodología para
el problema de indexación que aborda el problema de selección de bases para la familia de
Wavelet Packets utilizando el criterio de Mínima Probabilidad de Error. Como resultado de
la implementación de la metodología propuesta, se muestra que las soluciones provistas por
Wavelet Packet son adaptivas y mejoran el desempeño del sistema de indexación con respecto
a la solución Wavelet, bajo condiciones similares y modelos estadísticos.
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Summary

Over the last years, the advance on technology has produced an unprecedented amount of
digital content stored in databases. This situation motivates the development of systems
that can organize and search digital content automatically in real time. As a solution of this
challenge, the area of Content-Based Image Retrieval has emerged as a very relevant topic
on image processing. In a nutshell, an image retrieval system attempts to find the most
similar images to a query image. It is composed of two main stages: feature extraction and
similarity measurement. The first stage aims to find a way to represent the image extracting
discriminant characteristics from it, while the second stage ranks images in terms of their
similarity.
This thesis proposes the use of Wavelet Packets to address the texture image retrieval prob-
lem. Wavelet Packet is a signal processing tool that has not been used on the literature to
deal with the retrieval problem and can provide multiple representations for an image. A
novel methodology is proposed to select the best Wavelet Packet representation using the
Minimum Probability of Error criterion. As a result of the implementation of the proposed
methodology, it is shown that the adaptive nature of the proposed Wavelet Packets solution
improves the retrieval performance with respect to a Wavelet solution used under the same
conditions and model assumptions.
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Chapter 1

Introduction

Nowadays, retrieving information is a challenging problem because of increasing amounts of
data produced by technology. In particular, online data storage and digital cameras have
compelled search engines to develop new and efficient techniques to search images. Thus,
Content-Based Image Retrieval (CBIR) emerged as a research area. CBIR’s purpose is to
recover the most similar images (indexing task) from a database as compared to a particular
image of interest. An important problem within CBIR framework is texture image retrieval,
which is relevant in certain areas such as medical [1] and satellite [2] imaging. In the first
area, texture image retrieval is important to decrease the number of required procedures to
diagnose illnesses, while the second area, texture image retrieval is used to perform forest
inventory analysis. CBIR is composed of two main stages: Feature Extraction (FE) and
Similarity Measurement (SM). The first is used to extract the image features, while the
second measures the similarity among images using the extracted features.

One of the main studies in the CBIR area is the work of Do et al. [3] in which the authors
proposed a statistical framework, which entails a comparison of statistical models to improve
retrieval performance. Here, the retrieval problem is formulated as Multiple Hypothesis
Testing (MHT) providing a joint FE and SM scheme. They considered a texture image as a
realization of a statistical image model on the Wavelet domain where consequently the task
of indexing reduces to a MHT problem. Both the FE and the SM are obtained in closed form,
implementing the optimal decision rule based on the minimum probability of error criterion.

Since the work of Do et al. [3], CBIR experienced a breakthrough. From that point
onwards, the use of the statistical retrieval framework has grown significantly because it re-
duced the computational complexity and the dimensionality of the image retrieval problem.
Within this framework, different techniques have been applied to enhance the retrieval per-
formance. Researchers have usually made improvements in the FE stage in which different
signal processing (SP) tools have been used such as dual-tree complex wavelet transform
(DT-CWT) [4, 5, 6, 7], steerable filters [8, 9, 10], and gabor wavelets [11, 12]. These SP
tools capture details with different texture orientations. Another SP tool used in image
retrieval problem is the Discrete Cosine Transform [13] that chooses the most informative
orientations of details. Recently, new transforms such as contourlets [14] and shearlets [15]
have been applied to improve the retrieval performance [16, 17, 18]. Contourlets describe
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the contour of an object, while shearlets explore a wider variety of orientations of details
than other transforms. However, the changes on the FE stage not only comprise changes in
the feature represention, but also in the improvement on the characterization of the texture
models [19, 20, 21], for instance, modeling the inter-band dependencies [22, 7, 23, 24, 12].
The changes in the FE stage has also produced changes in the SM stage, because the goal is
to find closed expression to make more efficient the similarity calculation of image retrieval
[4, 5, 10, 25, 16, 26, 21, 27].

Based on the work of Do et al. [3], this work introduces the use of Wavelet Packet (WP)
in a texture retrieval problem. Some authors have studied WP qualities and effectiveness in
analysis, classification, and segmentation of textures [28, 29, 30, 31, 32, 33, 34]; however, WP
has not been explored in a retrieval context. Wavelet Packets (WPs) are a collection of bases
that offer many ways of decomposing the image spaces in terms of space-scale information
[35, 36]. This collection is induced by a two-channel filter (TCF) and organized in terms of
an embedded tree-structure. One emblematic case of this family is the Wavelet basis that
is constructed by iterating the TCF in the high scale band (or low frequency information)
producing a multi-resolution partition of the image space. However, by iterating the TCF
in different bands [36], a very rich collection of sub-space decompositions of the image space
can be constructed, which this thesis hypothesizes that it can benefit image texture retrieval
tasks.

1.1 Hypothesis

The rich collection of space-scale partitions of the image space can be used to find descrip-
tions that offer better texture discrimination and, consequently, better performance for the
indexing task. Furthermore, the adoption of a collection of filter bank representations allows
the possibility to formulate a learning criterion to adapt the problem to the nature of the
task in terms of discrimination and learning complexity.

1.2 Structure of the thesis

This thesis is organized in 8 chapters. In Chapter 2 presents some WP, which are essential to
understand the development of this work. In Chapter 3, the statistical framework proposed
in [3] is extended to include a more general family of transform based representations of the
image space, where the indexing task is reduced to the problem of joint parameter estimation
and minimum KL divergence similarity. This extension is used in Chapter 4 to provide a
novel framework based on WP basis selection. Furthermore, the basis selection approach
presented in Chapter 5 can be formulated as a trade-off between feature discrimination and
estimation errors. This trade-off appears since the indexing phase implies a parameter esti-
mation problem with a finite number of samples. Using the tree-structure of the WP family,
the WP selection is reduced to an equivalent minimum cost-tree pruning problem (Chapter
5.1). Remarkably this problem has natural connection with classification and regression trees
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(CART) algorithms [37], which offers a computational efficient solution. Chapter 6 presents
a systematic experimental analysis of the proposed WP solutions on synthetic data as well as
on six real datasets with different images sizes and texture classes. The achieved results are
very promising, demonstrating the ability of the proposed framework to adapt to the task,
providing more discriminative features. It is shown that WP representations offer important
improvements when it is compared with the standard Wavelet solutions in several scenarios,
where the obtained WP solutions explore new sub-spaces and scales that help to enhance the
discrimination among images. Finally, Chapter 7 presents the conclusions and future work.
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Chapter 2

Wavelet Packet Analysis

Wavelet Packets (WPs) offer different space-scale representations and the potential to adapt
to complex phenomena such as natural images and acoustic processes [38, 39]. This section
provides a brief presentation of WP with focus on its filter-bank characteristics, sub-band
frequency decomposition and indexed structure (tree-structure)1.

2.1 WP Bases: A Tree-Structured Collection

Let X be a raw image space (pixel domain) that, without loss of generality, is assumed to have
a finite level of scale 2L or resolution 2−L, L being an integer strictly greater than zero [36].
Then, X is equipped with an orthonormal basis BL ≡

{
(ψL(t1 − 2Ln1, t2 − 2Ln2))(t1,t2)∈R2 :

(n1, n2) ∈ Z2} that is generated by the separable product of Wavelet Packet bases [36,
35, 40], where ψL is the mother wavelet function. For the 2D case, the WP framework
provides a way of decomposing BL into four orthonormal collections denoted by Bp

L+1 ≡{
(ψpL+1(t1 − 2L+1n1, t2 − 2L+1n2))(t1,t2)∈R2 : (n1, n2) ∈ Z2} for p ∈ {0, 1, 2, 3}. Then, denot-

ing by Up
L+1 ≡ span

{
(ψpL+1(t1 − 2L+1n1, t2 − 2L+1n2)) : (n1, n2) ∈ Z2} with p ∈ {0, 1, 2, 3},

it has the following sub-space decomposition [36]

X = U0
L+1 ⊕ U1

L+1 ⊕ U2
L+1 ⊕ U3

L+1. (2.1)

These WP sub-spaces are separable as well as their bases, which allows us to represent the 2D
WP analysis as an equivalent 1D WP analysis by properly organizing the rows and columns
of the image, see details on [36, Chap. 3]. The tree-structure of the WP bases comes from
the fact that

{
Bp
L+1 : p ∈ {0, 1, 2, 3}

}
are induced by a (discrete) pair of conjugate mirror

filters (CMF) that are denotes by (h0(n), h1(n))n∈N [36, Chap. 7.1.3]. More precisely, the
basis elements associated with the scale L + 1 are induced from ψL(t1, t2) in the following

1Comprehensive expositions can be found in [36, 35, 40].
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way:

ψ0
L+1(t1, t2) =

∑
n1∈Z

h0(n1)
∑
n2∈Z

h0(n2) · ψL(t1 − 2Ln1, t2 − 2Ln2),

ψ1
L+1(t1, t2) =

∑
n1∈Z

h1(n1)
∑
n2∈Z

h0(n2) · ψL(t1 − 2Ln1, t2 − 2Ln2),

ψ2
L+1(t1, t2) =

∑
n1∈Z

h0(n1)
∑
n2∈Z

h1(n1) · ψL(t1 − 2Ln1, t2 − 2Ln2),

ψ3
L+1(t1, t2) =

∑
n1∈Z

h1(n1)
∑
n2∈Z

h1(n2) · ψL(t1 − 2Ln1, t2 − 2Ln2), (2.2)

where h0(n) and h1(n) are related by the perfect reconstruction property2.

By iterating this filter bank approach on each basis element in {(ψpL+1(t1, t2)), p ∈ {0, 1, 2,
3}} [36, Th. 8.1], it can continue, in a tree-structured way, with the construction of bases
and sub-space decompositions for X. For example, after j iterations, it creates ψpL+j(t1, t2) for
any p ∈ {0, . . . , 4j − 1} where Up

L+j = span
{

(ψpL+j(t1 − 2L+jn1, t2 − 2L+jn2)) : (n1n2) ∈ Z2
}
,

see Figure 2.1. Furthermore by construction, ∀j ≥ 1, ∀p ∈ {0, . . . , 4j − 1},

Up
L+j = U4p

L+j+1 ⊕ U4p+1
L+j+1 ⊕ U4p+2

L+j+1 ⊕ U4p+3
L+j+1, (2.3)

where

ψ4p
L+j+1(t1, t2) =

∑
n1∈Z

∑
n2∈Z

h0(n1)h0(n2) · ψpL+j(t1 − 2L+jn1, t2 − 2L+jn2),

ψ4p+1
L+j+1(t1, t2) =

∑
n1∈Z

∑
n2∈Z

h1(n1)h0(n2) · ψpL+j(t1 − 2L+jn1, t2 − 2L+jn2),

ψ4p+2
L+j+1(t1, t2) =

∑
n1∈Z

∑
n2∈Z

h0(n1)h1(n1) · ψpL+j(t1 − 2L+jn1, t2 − 2L+jn2),

ψ4p+3
L+j+1(t1, t2) =

∑
n1∈Z

∑
n2∈Z

h1(n1)h1(n2) · ψpL+j(t1 − 2L+jn1, t2 − 2L+jn2). (2.4)

As a result, the WP creates a family of tree-structured bases induced by the iteration of the
two-channel filter (TCF) as illustrated in Figure 2.2.

A key property of WP is the inter-scale relationship induced in Eq. (2.4) among the WP
transform coefficients obtained across scales [36]. More precisely, the transform coefficients
of (x(t1, t2)) belong to Up

j ⊂ X are given by

dpj(x, n1, n2) ≡ 〈x(t1, t2), ψpj (t1 − 2jn1, t2 − 2jn2)〉, ∀(n1, n2) ∈ Z2. (2.5)

This decomposition allows an alternative analysis of (x(t1, t2)), which is based on the bases
associated with U4p

j+1, U
4p+1
j+1 , U4p+2

j+1 and U4p+3
j+1 using Eq. (2.3):

d4p+b
j+1 (x, n1, n2) = 〈x(t1, t2), ψ4p+b

j+1 (t1 − 2j+1n1, t2 − 2j+1n2)〉,
=
∑
k1∈Z

∑
k2∈Z

hf1(b)(k1 − 2n1)hf2(b)(k2 − 2n2) · dpj(x, k1, k2), (2.6)

2h1(n) = (−1)1−nh0(1− n), ∀n ∈ Z [41], [36, Th. 8.1].
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X

Uo
1 U1

1 U2
1 U3

1

U0
L+j Up

L+j U4L+j−1
L+j

U0
L+j+1 U1

L+j+1 U2
L+j+1 U3

L+j+1 U4p
L+j+1 U4p+1

L+j+1 U4p+2
L+j+1 U4p+3

L+j+1 U4L+j+1−4
L+j+1 U4L+j+1−3

L+j+1 U4L+j+1−2
L+j+1 U4L+j+1−1

L+j+1

Figure 2.1: Wavelet Packet Tree-structured Sub-space decomposition.

d0L

h0 h1

↓ 2 ↓ 2

h0 h1

↓ 2 ↓ 2

d0L+1 d1L+1

h0 h1

↓ 2 ↓ 2

d2L+1 d3L+1

dpL+j

h0 h1

↓ 2 ↓ 2

h0 h1

↓ 2 ↓ 2

d4pL+j+1 d4p+1
L+j+1

h0 h1

↓ 2 ↓ 2

d4p+2
L+j+1 d4p+3

L+j+1

d0L+j

h0

↓ 2

h0 h1

↓ 2 ↓ 2

d0L+j+1 d1L+j+1

d4
L+j−1

L+j

h1

↓ 2

h0 h1

↓ 2 ↓ 2

Figure 2.2: Wavelet Packet filter-bank implementation.

for all b ∈ {0, 1, 2, 3}, where f1(·) and f2(·) are discrete functions given by [36, Prop. 8.4]:

f1(b) =

{
0 b = 0 ∨ b = 1,
1 b = 2 ∨ b = 3.

f2(b) =

{
0 b = 0 ∨ b = 2,
1 b = 1 ∨ b = 3.

Therefore a closed-form relationship in the transform coefficients can be obtained for every
pair of basis elements in the WP, as illustrated in Figure 2.2. A key aspect of this property
is that the analysis in continuous time in Eq. (2.5) is moved to an analysis (algorithm) in
discrete time in Eq. (2.6). Furthermore, the WP quaternary structure presented in Eq. (2.6)
permits a fast algorithm implementation of the WP analysis [36, Chap. 7.3]. Because of
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the aforementioned inter-scale relationship of the WP coefficients, which allows a recursive
splitting of the TCFs creating the quad-tree structure (Figure 2.1).

2.2 Filter-Bank Implementation and the WP Sub-Space
Frequency Decomposition

The analysis step in Eq. (2.6) can be implemented by a two-channel filter (TCF), followed by
a down-sampling operation by a factor of 2 (non-linear)[35, 36]. This basic step is extended
in the following result:

Proposition 2.1 [42, Chap. 11.3.3] Let x(t1, t2) be in a finite 2L scale space X, with
transform coefficients (d0

L(x, n1, n2))(n1,n2)∈Z2 obtained from Eq. (2.5). Considering an ar-
bitrary sub-space Up

j induced from the WP filter bank decomposition with j > L and p ∈{
0, . . . , 4j−L − 1

}
. Denoting by (h0(n))n∈Z and (h1(n))n∈Z, the conjugate mirror filter pair

(with transfer function H0(z) and H1(z)), by Up1
L+1, . . . , U

pj−L−1

j the sequence of intermediate
sub-spaces used to go from X to Up

j , and by Θ(j, p) = (θ̄1, . . . , θ̄j−L) ∈ ({0, 1}×{0, 1})j−L the
binary path code. In the last definition, choosing θ̄k implies filtering with Hθ̄k(1)(z1)·Hθ̄k(2)(z2)
and then applying the down-sampler by 2 on each coordinate at step k of the iteration. Then
(dpj(x, n1, n2))(n1,n2)∈Z2 is obtained by passing (d0

L(x, n1, n2))(n1,n2)∈Z2 through the following
discrete time filter

HΘ(j,p)(z1, z2) =

j−L∏
i=1

Hθ̄k(1)(z
2i−1

1 ) ·Hθ̄k(2)(z
2i−1

2 ), (2.7)

and then applying the down-sampler by 2j−L operator on each coordinate.

d0
L

dpj↓ 2 ↓ 2 ↓ 2Hθ1(1)(z1)Hθ1(2)(z2) Hθ2(1)(z1)Hθ1(2)(z2) Hθj−L(1)(z1)Hθj−L(2)(z2)

d0
L

dpjKHΘ(j,p)(z1, z2)

Figure 2.3: The system view process to determine the transform coefficients of the sub-space
Up
j , presented in Proposition 2.1. The aggregated down-sampler is by K = 2j−L.

Remark 1 Note that the process that relates the coefficients (d0
L(x, n1, n2))(n1,n2)∈Z2 with

(dpj(x, n1, n2))(n1,n2)∈Z2 in Eq. (2.7) is linear but not time invariant. Therefore, it is inaccurate
to talk about the frequency response associated with the process of projecting (x(t1, t2)) into
the WP sub-space Up

j . Pavez et al. [39] addressed this issue by considering only the equivalent
filtering part in Eq. (2.7) and avoiding the last down-sampling stage. This consideration
offers a characterization of the frequency content associated with each sub-space (or sub-
band), from which can be defined the frequency decomposition achieved by a given WP
basis. For illustration, this frequency partition is shown for the ideal Shannon two-channel
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filter [36]3. A basis is indexed by {(ji, pi) : i = 1, . . . ,M} associated with the basis element
B =

⋃M
i=1 B

pi
ji

and sub-space decomposition X =
⊕M

i=1 U
pi
ji
. For each (ji, pi), its equivalent

filters H i(z) ≡ HΘ(ji,pi)(z1, z2) can be obtained by Eq. (2.7) and, consequently, reduces the
analysis to the frequency response of an M -channel filter-bank. Examples of the frequency
response before the down-sampling stage are presented in Figures 2.4 and 2.5. From these
examples, it can notice that the Wavelet type of structure, which is produced by iterating
H0,0(ejw1 , ejw2) in every step, it obtains a solution that increases the resolution in the low
frequency range. In general, the frequency support of the resulting sub-space is reduced by
half on each dimension in each step of iterating the TCF as illustrated in Figure 2.4c.

3The frequency partition generated by filter bank iterations is not ordered in frequency [36, Chap. 8]
and for this reason the Gray Code is used to find the correct frequency partition. An example of this is
illustrated in Figure 2.5, where the ordered frequency partitions generated by the filter bank iterations in
Figures 2.5a and 2.5b are given by Figures 2.5c and 2.5d, respectively. Details are presented in Chapter 8.1
for completness.
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(a) Wavelet case
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h0 h1

↓ 2 ↓ 2

h0 h1
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h0 h1

↓ 2 ↓ 2

h0 h1

↓ 2 ↓ 2

h0 h1
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h0 h1
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↓ 2 ↓ 2
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↓ 2 ↓ 2

h0 h1
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h0 h1
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h0 h1
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h0 h1
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(b) Balanced tree case

0

0

π

4

π

4

π

2

π

2

3π

4

3π

4

π

π

(c) Frequency response of equiva-
lent filterbank of figure 2.4a

0

0

π

4

π

4

π

2

π

2

3π

4

3π

4

π

π

(d) Frequency response of equiv-
alent filterbank of figure 2.4b

Figure 2.4: Illustration of the frequency division of Wavelet Packet bases for two tree
structures. The ideal Shannon conjugate filter pair is considered, which provides perfect
dyadic partitions of the interval [−π, π] × [−π, π]. Scenario (2.4a-2.4c) shows a iteration
of H0(z1)H0(z2) (Wavelet type), and scenario (2.4b-2.4d) presents a balanced tree structure
(uniform frequency resolution).

9



h0 h1

↓ 2 ↓ 2

h0 h1

↓ 2 ↓ 2

h0 h1

↓ 2 ↓ 2

h0 h1

↓ 2 ↓ 2

h0 h1

↓ 2 ↓ 2

h0 h1

↓ 2 ↓ 2

h0 h1

↓ 2 ↓ 2

h0 h1

↓ 2 ↓ 2

h0 h1

↓ 2 ↓ 2

(a) Center-right iterated
channel
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↓ 2 ↓ 2

h0 h1
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(b) Left iterated channel
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(c) Frequency response of equiva-
lent filterbank of figure 2.5a
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π
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(d) Frequency response of equiva-
lent filterbank of figure 2.5b

Figure 2.5: The same scenario as in Figure 2.4. Scenario (2.5a-2.5c) shows a double iter-
ation of H0(z1)H1(z2). Meanwhile, scenario (2.5b-2.5d) is a iteration of H0(z1)H1(z2) and
H0(z1)H0(z2) filters.
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2.3 Tree Indexing

To formulate the problem of WP basis selection, the rooted tree notation used in Silva et al.
[38] is adopted. The tree-structure creates a particular WP basis by iterating the four-channel
filter bank as illustrated in Figure 2.2. Let J denotes the maximum number of iterations of
the sub-band decomposition and let G = (V,E) be a graph with

V = {(0, 0), (1, 0), (1, 1), (1, 2), (1, 3), . . . , (J, 0), . . . , (J, 4J − 1)}

and E the collection of arcs on V × V that characterizes the full balanced rooted tree with
root vroot = (0, 0) in Figure 2.1. Instead of representing a tree as a collection of arcs in G,
this work uses the convention used by Breiman et al. in CART [37] in which sub-graphs
are represented as a subset of nodes of the full graph. In particular, a rooted quad-tree
T = {v0, v1, . . .} ⊂ V is defined as a collection of nodes: the root, internal nodes and leaf
nodes. L(T ) is defined as the set of leaves of T and I(T ) as the set of internal nodes, where
consequently T = L(T )∪ I(T ). A rooted quad-tree S is a subtree of T if S ⊂ T , and if the
root of S and T are the same, then S is a pruned version of T , denoted by S � T . If the
root of S is an internal node of T , then S is a branch of T . For any v ∈ T , the largest branch
of T rooted at v is denoted by Tv. The size of a rooted quad-tree T is the cardinality of
L(T ) and is denoted by |T |. Finally, Tfull ≡ V denote the full quad-tree, and consequently,
the collection of WP bases will be indexed by the collection {T ⊂ V : T � Tfull}.

Any pruned version of Tfull in Figure 2.2 represents a particular WP basis by the iteration
of the TCF. In particular, for an arbitrary rooted tree T � Tfull of size M , each of its leaf
nodes L(T ) = {(jk, pk) : k = 1, . . . ,M} ⊂ V represents a sub-space generated by the appli-
cation of WP. Then, the sub-space decomposition produced by WP with tree-representation
T is given by:

UT =
{
Upk
jk

: k = 1, . . . ,M
}
, (2.8)

where X =
⊕M

k=1 U
pk
jk
. Each of these sub-spaces is induced by a basis Bpk

jk
with k = 1, · · · ,M ,

so the WP basis induced by T is given by,

BT = ∪Mk=1B
pk
jk
, (2.9)

Finally for any x ∈ X, the transform coefficients with respect to BT can be determined by Eq.
(2.5). In particular, considering the realistic finite dimensional case, where dim(X) = 4J (2D
dyadic image)4 for any (jk, pk), the projection of x in U jk

pk
is determined by 4J−jk transform

coefficients that are obtained by the discrete time signal processing equation in (2.6). For
simplicity, the index (n1, n2) ∈

{
1, . . . , 2J−jk

}2 is mapped into n ∈
{

1, . . . , 4J−jk
}
to represent

the transform coefficients as a 1D vector. Thus, the transform coefficients of x in Upk
jk

are
denoted by Dpk

jk
(x) =

(
dpkjk (x, n)

)
n=1,...,4J−jk

and the transform coefficients for the basis BT
are given and represented by

DT (x) = (Dpk
jk

(x))k=1,...,M . (2.10)

Note that the number of transform coefficients of the node (j, p) ∈ V scales like 4J−j.
4Without loss of generality the pixel based representation of x corresponding to the transform coefficients

of the trivial WP basis {vroot} � Tfull, i.e., (x(n)) = (d00(n) : n = 1, . . . , 4J) is the representation at the
smaller scale.
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Chapter 3

The Multiple Hypothesis Problem for
Image Retrieval

Following the approach proposed by Do et al. [3], the indexing problem is formulated as a mul-
tiple hypothesis testing (MHT) problem. A query image x is represented by a set of observa-
tions in a finite dimensional space X = RL. Each candidate image in the database is presented
by a statistical model (or a probability measure in X) that it denotes by {µθi : i = 1, . . . ,M},
where µθi ∈ P(X). Then, the (content-based) indexing of x reduces to find the closest N
candidates in {µθi : i = 1, . . . ,M} by applying the maximum likelihood (ML) principle, i.e.,
to find the N models

{
µθki : i = 1, . . . , N

}
with the highest likelihood of observing x, i.e.,

ki = arg max
k∈[M ]\{k1,...,ki−1}

µθk({x}), ∀i = 1, . . . , N, (3.1)

where [M ] ≡ {1, . . . ,M}. The ML criterion in Eq. (3.1) is well-known to be the optimal
from the probability of error viewpoint [43]. However, in this context, it is computationally
expensive and intractable in general. For that reason, Do et al. [3, Section II] proposed the
adoption of an efficient two-stage principle that asymptotically (in the size of the image)
approximates Eq. (3.1). This chapter elaborates a slightly more general version of this
approach to apply it to the case of WP texture analysis.

First, this work focuses on a parametric context, i.e., µθi is equipped with a density
function fθi(x)1 that is fully characterized by a vector of parameters θi ∈ Θ. Then, in order to
evaluate the probability, the likelihood log fθ(x) for each θ ∈ Θ̄ = {θi : i = 1, . . . ,M} is used
to solve Eq. (3.1). Furthermore, it is considered that X =

⊗T
i=1 Xi, i.e., x = (x1, . . . ,xT)

where xt = (xt,1, . . . , xt,Lt) ∈ Xt is a finite dimensional vector of dimension Lt ≥ 1 and,
consequently, L =

∑T
t=1 Lt. Consistent with this cartesian product splitting of X, it is

assumed that each fθi with θi ∈ Θ̄ decomposes in T independent (product) components
indexed by θi = (θ1

i , . . . , θ
T
i ), where

log fθi(x) =
T∑
t=1

log
Lt∏
j=1

(
fθti (xt,j)

)
=

T∑
t=1

(
Lt∑
j=1

log fθti (xt,j)

)
. (3.2)

1This means that the density function fθi(x) =
∂µθi
∂λ (x) is well defined.
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Therefore, fθi in X is fully determined by a set of marginals pdfs
{
fθ1i , . . . , fθTi

}
in R. More

specifically, Eq. (3.2) means that under the hypothesis that x1, . . . ,xT follows µθi , x1, . . . ,xT

is a set of independent but non identically distributed vectors, where each t component xt

corresponds to i.i.d. realizations of the density fθti . This assumption is important for the
texture model adopted in this work.

It is assumed that the query image x comes from an underlying parametric model µθq ∈
P(X) that has the same independent structure stated for the database models, i.e., θq =
(θ1
q , . . . , θ

T
q ) and xt,1, . . . , xt,Lt are i.i.d. realizations of fθtq for each t ∈ {1, . . . , T}. In this

context, if t is fixed and Lt −→ ∞ is taken (and consequently L −→ ∞), the law of large
numbers implies that [44]

lim
Lt−→∞

− 1

Lt

Lt∑
j=1

log fθti (xt,j) = −EX∼f
θtq

log fθti (X) = D(fθtq ||fθti ) + h(fθtq), (3.3)

almost surely. Here D(fθtq ||fθti ) is the Kullback-Leibler divergence of fθtq with respect to fθti
[45] and h(fθtq) is the differential entropy of fθtq [45]. Finally, assuming a non-uniform rate of
convergence, it defines 2

wt = lim
L−→∞

Lt
L
, (3.4)

for all t ∈ {1, . . . , T} such that
∑T

t=1 wt = 1. The result in Eq. (3.3) can be used to show
that the global likelihood rate convergences to

lim
L−→∞

− 1

L
log fθi(x) =

T∑
t=1

wt

(
D(fθtq ||fθti ) + h(fθtq)

)
(3.5)

almost surely. Then, asymptotically (as the number of observations goes to infinity) the ML
principle in Eq. (3.1) reduces to the minimum weighted divergence decision:

ki = arg min
k∈[M ]\{k1,...,ki−1}

T∑
t=1

wt ·D(fθtq ||fθtk), ∀i = 1, ..., N. (3.6)

As stated in [3], the asymptotic equivalence between Eqs. (3.6) and (3.1) (when L goes to
infinity) is instrumental because the ML decision reduces to find a consistent estimate θ̂q(x)
of θq from x, for instance using the ML estimator, and then using the weighted divergence in
Eq. (3.6) to select the M closest models in Θ̄ of the target density fθ̂q(x). The first stage is
reminiscent of a feature extraction phase (or estimation phase) that goes from the image space
to parameters, and the second stage is a selection phase using the weighted divergence (as a
similarity metric) at the parameter level [3]3. The next chapter contextualizes this framework
for the case of texture indexing when the images are represented in a WP domain.

2It will be shown that the non-uniform rate assumption in Eq. (3.4) is important for the adoption of this
MHT framework in the context of WPs.

3Under the assumption of a consistent estimator of θq, asymptotic connection between Eqs. (3.1) and
(3.6) is achieved. Interestingly for the case of a discrete or quantized problem where the ML estimator is the
empirical distributions, the connection between Eqs. (3.1) and (3.6) is achieved for any finite L [3, Section
II-A].

13



Chapter 4

Wavelet Packet Texture Retrieval

This study extends the statistical model proposed by Do et al. [3] for texture image in the
WP domain. Their idea was that the texture image can be represented in the transform
domain as the concatenation of independent vectors (the coefficients obtained for each sub-
band of the Wavelet basis), where each of these vectors has an invariant behavior in the
sense that they are i.i.d. realizations of a given parametric distribution. This work extends
this transform domain texture model when it is considered an arbitrary Wavelet Packet basis
and, consequently, for a wider range of sub-band decomposition for X (see Eq. (2.8)). The
purpose of this extension from wavelet transform to WP is that WP is capable to explore
other space-scale domains. This allows us to obtain details of the texture that can improve
the performance of the retrieval system. This work will demonstrate that using WP instead
of wavelet basis improves the texture retrieval performance.

Considering T � Tfull with L(T ) = {(jk, pk) : k = 1, . . . , K} ⊂ V , then the texture model
for a random image X ∈ X is determined in the transform domain of BT . More precisely, the
transform-based random vector DT (X) = (Dpk

jk
(X))k=1,...,K in Eq. (2.10) follows a parametric

model µθ̄ with density fθ̄, where θ̄ = (θ((pk,jk)) : k = 1, . . . , K) ∈ Θ and for any x ∈ X its pdf
has the following product of marginal structure:

log fθ̄(DT (x))︸ ︷︷ ︸
joint pdf in the transform domain

=
K∑
k=1

log
4(J−jk)∏
n=1

fθ((pk,jk))(d
pk
jk

(x, n))︸ ︷︷ ︸
marginal pdf of the sub-band Upkjk

=
K∑
k=1


4(J−jk)∑
n=1

log fθ((pk,jk))(d
pk
jk

(x, n))︸ ︷︷ ︸
i.i.d.assumption for the transform coeff. at Upkjk

 , (4.1)

where fθ((pk,jk)) is a pdf in R for each k = 1, . . . , K. From Eq. (4.1), the components of
the image projected at the sub-bands of WP are independent, and within each sub-band its
transform coefficients are i.i.d. characterized by a pdf. For this last pdf, this work considers
the Generalized Gaussian model (GGM) adopted in [3] with zero mean and parametrized by
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θ = (α, β) ∈ R2 in the following way:

fθ(d) =
β

2αΓ (1/β)
e−( |d|α )

β

. (4.2)

Finally, it is important to note the scaling on the number of transform coefficients for an
arbitrary node (jk, pk) ∈ L(T ). If the size of the image is denoted by L = 4J for some
J > 0 (the dyadic case studied in Chapter 2.3), then the size of the vector Dpk

jk
(X) is L/4jk ,

which is a exclusive function of jk (the number of arcs that connects (jk, pk) with the root
(0, 0)). Then, it is clear that if T is not a balanced tree [37, 46], an asymmetric number of
transform coefficients is obtained per sub-band. This should be considered in the asymptotic
connection derived between ML and the divergence principle in Eq. (3.5).

In the context of the texture indexing problem, M probability models represent the tex-
ture database

{
fθ̄i : i = 1, . . . ,M

}
, each of them following the model in Eq. (4.1) and, con-

sequently, they are fully characterized by

Θ̄ =
{
θ̄i = (θ

((jk,pk))
i )k=1,...,K : i = 1, . . . ,M

}
⊂ Θ = R2·|T |.

In addition, it is assumed an underlying (hidden) query model fθ̄q consistent with Eq. (4.1)
and parametrized by θ̄q = (θ

((jk,pk))
q )k=1,...,K ∈ Θ that produces a realization x. Then, the

solution of the MHT problem (3.1), considering the regime L −→∞ and T � Tfull, reduces
to:

ki = arg min
l∈[M ]\{k1,...,ki−1}

K∑
k=1

w(jk,pk) ·D(f
θ
((jk,pk))
q

||f
θ
((jk,pk))

l

),

= arg min
l∈[M ]\{k1,...,ki−1}

K∑
k=1

w(jk,pk) ·
[

log

(
β

((jk,pk))
q α

((jk,pk))
l Γ(1/β

((jk,pk))
l )

β
((jk,pk))
l α

((jk,pk))
q Γ(1/β

((jk,pk))
q ))

)

+

(
α

((jk,pk))
q

α
((jk,pk))
l

)β
((jk,pk))

l
Γ((β

((jk,pk))
l + 1)/β

((jk,pk))
q )

Γ(1/β
((jk,pk))
q )

− 1

β
((jk,pk))
q

 , (4.3)

from Eqs. (3.5), (3.6) and (4.2). Given the scaling on the number of transform coefficients
described above, it is simple to show that w(jk,pk) = 4−jk for all k = 1, . . . , K. Then, for the
selection of the closest M models, the terminal nodes that are closer to the root are more
significant in the decision than nodes deeper in the tree, because the number of coefficients of
the first groups is orders of magnitude greater than the number of coefficients of the second
group. Finally as mentioned in Chapter 3, to implement Eq. (4.3) a first-stage (feature
extraction) is conducted where the ML criterion is used to estimate θq from x.
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Chapter 5

Wavelet Packet Basis Selection

WPs provide a wide range of representations for the indexing problem that rises the problem
of basis selection (BS). A clear objective for this task is seeking the basis that maximizes
the discrimination among the texture classes considering the MHT formulation. However,
texture discrimination is not the exclusive criterion in this task. The complexity of the tree
also needs to be considered, as a large tree (in terms of the number of leaves) implies deeper
leaves with their reduced number of transform coefficients to estimate the parameters in the
FE phase of the indexing task (see Eq. (4.3)). This issue rises the existence of non-trivial
estimation error in the FE phase that needs to be considered for BS.

For that reason, the BS can be posed as a statistical learning problem that finds an optimal
balance between an estimation and an approximation errors [47, 37, 46, 48]. In particular,
the following regularization problem is stated,

T ∗(λ) = arg min
T �Tfull

−R̂(T ) + λ · Φ(T ), (5.1)

where R̂(T ) models the discrimination quality of the features induced by T and Φ(T ) rep-
resents its learning complexity. λ is a regularization parameter that models the compromise
between the fidelity and cost in this context. In particular, the tree size is adopted for Φ(T ) =
|T | as it has been used in CART [37] and other tree learning problems [39, 49, 38, 50, 46] to
model estimation errors. The assumption here is that the deviation of the estimated param-
eters in Eq. (4.3) from the true parameters is proportional to the size of the tree [37, 46].
For the fidelity measure, a global indicator of pair-wise weighted divergence is considered,
used in Eq. (4.3), between classes given by

R̂(T ) =
1

M(M − 1)

M∑
c=1

M∑
k=1
k 6=c

(
T∑
t=1

w(jt,pt)D(fθc((jt,pt))‖fθk((jt,pt)))
)
, (5.2)

where Θ =

{
θ̄c =

(
θ

((jt,pt))
c

)
t=1,...,T

: c = 1, . . . ,M

}
denotes (in the simplest case) the se-

lection of one model per class from the database. The use of the weighted divergence as
an indicator of the discrimination capacity of the indexing task is justified from the Stein’s
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lemma [45, Th. 12.8.1], where the weighted divergence determines the error exponent of the
type 2 error given a fixed type 1 error in a two class (hypothesis testing) problem1.

5.1 Minimum Cost-Tree Pruning Algorithm

The type of regularization problem stated in Eq. (5.1) has been addressed by Breiman et al.
[37] and Scott [46] in the context of decision trees for which efficient algorithms are available
[46]. For the application of these results in the thesis context, the fidelity measure R̂(T )
must be additive with respect to the tree [37, 46]2, which follows from construction as

R̂(T ) =
∑
t∈L(T )

R̂((jt, pt)), (5.3)

with R̂((jt, pt)) ≡
1

M(M − 1)

M∑
c=1

M∑
k=1
k 6=c

w(jt,pt)D(f
θ̄c

((jt,pt))‖fθ̄k((jt,pt))). Considering that both

the fidelity and the cost terms are additive functionals of the tree and the fidelity function
is nondecreasing, the result of Theorem 5.1 can be used to solve Eq. (5.1).

Theorem 5.1 (Scott [46, Th. 1] and Chou et al. [50, Th. 3]) The complete solution of Eq.
(5.1) is characterized by a sequence of embedded tree-structures Tfull � R1 � R2 � . . . �
Rm = {root} and weights 0 = λ0 < λ1 < . . . < λm = ∞ such that for any l ∈ {1, ..,m},
T ∗ (λ) = Rl for all λ ∈ [λl−1, λl).

This result states that there is a family of embedded trees that offers all the admissible
solutions for Eq. (5.1)3. The specification of the values of 0 = λ0 < λ1 < . . . < λm = ∞
and their respective trees {R1, . . . , Rm} is called the solution of the family pruning problem
[37, 46]. In addition, it is well-known from [38] that the set of possible solutions of Eq. (5.1),
i.e., {T ∗(λ), λ ≥ 0}, is given by the following cost-fidelity problem [46, 38]:

T k∗ = arg max
{T �Tfull : |T |≤k}

R̂(T ), (5.4)

for all k = 1, 4, . . . , |Tfull|. For any admissible quad-tree size k > 0, Eq. (5.4) finds the
tree of size equal to or smaller than k that maximizes the fidelity measure. Connecting
these two characterizations (cost-fidelity solutions and the family pruning problem), it is
direct to show that

{
T k∗, k = 3l + 1 with l = 0, . . . , (|Tfull| − 1) /3

}
= {R1, . . . , Rm} and,

consequently, the solutions of the cost-fidelity problem in Eq. (5.4) are embedded in the
sense that {root} = T 1∗ � T 4∗ � . . . � T (3·l+1)∗, where l defines the number of tree
branches. This embedded structure is the key to obtain implementable algorithms to solve{
T k∗, k = 3l + 1 with l = 0, . . . , (|Tfull| − 1) /3

}
and then {T ∗(λ), λ ≥ 0}. For completeness,

Algorithm 1 presents this solution4.
1The details of this result are presented in Chapter 8.2.
2A functional f(T ) is additive if it is the sum of components of the leaves of T [46].
3In the sense that {T ∗(λ), λ ≥ 0} = {R1, . . . , Rm}.
4The complexity of this algorithm is O(|Tfull| · log(|Tfull|)). See details in [46] and reference therein.

17



Algorithm 1 Proposed minimum cost-tree algorithm
Require: Tree-structure T k
maxNumberLeaves
while k ≤ maxNumberLeaves do
maxCost= 0
∆ = 0
for t ∈ L(T k) do
Tt = split(T k, t)
∆(T 4

t ) = R̂(T 4
t )

if maxCost < ∆ then
maxCost ← ∆
T k+3 ← {T k ∪ L(Tt)} \ {t}

end if
end for
Set k = k + 3

end while
Ensure: Sequence of tree-structure decomposition of T k

Finally, the solution of the original problem in Eq. (5.1) requires to know the true trade-
off between fidelity and cost functions that is denoted by λ∗. In practice, this value can be
determined experimentally via cross-validation or from a validation and test setting. The
choice of one approach or another depends on the amount of data available. In this work,
the selection of λ∗ will be done considering an empirical risk minimization (ERM) approach
over the admissible set of tree solutions given by {R1, . . . , Rm}.
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Chapter 6

Experimental Analysis

This chapter presents the results for the family of adaptive trees obtained as the solutions
of Eq. (5.4). Results will be presented for different datasets to evaluate the adaptive nature
of the framework and its performance as a function of the tree size. In particular, the
family of WP solutions indexed by

{
T k∗, k = 3l + 1 with l = 0, . . . , (|Tfull| − 1) /3

}
will be

evaluated in terms of performance as well as the structure of their filter-bank decomposition
and partition of the 2D frequency plane.

6.1 Synthetic Scenario

Before presenting the results on real texture databases, the adaptive capacity of the proposed
framework will be evaluated on a controlled (synthetic) two texture indexing problem. For
that, WP statistical models following the GGM model presented in Chapter 4 were selected
by simply choosing a balanced tree of depth 3. In this context, the statistics of the GGM
for each of their leaves were considered the same except for one of the terminal nodes, which
is the node that (by design) offers the discrimination power for the task, see the expression
in Eq. (3.6). The idea was to put all the texture discrimination information in a specific
sub-band to see if the solutions in Eq. (5.4) promote better frequency resolutions in this
target band as k grows. Synthetic samples were created by simulating the transform coef-
ficients of the two models (see examples of synthetic textures in Figure 6.1). From these
data, the fidelity measure was estimated using Eq. (5.2) considering the weighted divergence
for 16 examples per class. Figure 6.2 reports the estimation of the weighted divergence as
well as the energy that was considered in this analysis as a reference (non-discriminative)
fidelity indicator. In particular, these figures plots the term w(jt,pt)D(fθc((jt,pt))‖fθk((jt,pt))) in
Eq. (5.2) associated with the additive contribution of the node (jt, pt) organized by raw
jt and column pt. From these graphics, it is possible to see how the weighted divergence
appropriately captures the frequency bands that are more discriminative for the task. For
the illustration, two contexts are considered where the discriminative bands are indexed
by the pair (3, 21) and (3, 49), respectively. From the result, it is observed that the pro-
posed method captures the discrimination of this task on the right bands and, consequently,
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(a) (b) (c) (d)

Figure 6.1: Examples of synthetic textures.

{
T k∗, k = 3l + 1 with l = 0, . . . , (|Tfull| − 1) /3

}
increases the resolution on the bands that

are more informative. In contrast, it is shown that the amount of energy of the leaves is not
always mapped to the parents and also the modified node is not always the more energetic
one. Those factors produce that energy as a fidelity measure does not capture the more
discriminative bands for the task.
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(a) Example 1: Energy (Baseline)
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(b) Example 2: Energy (Baseline)
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(c) Example 1: Weighted divergence (Proposed
approach)
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(d) Example 2: Weighted divergence (Proposed
approach)

Figure 6.2: These maps shows the weighted divergence and energy term indexed by a sub-
band in the WP decomposition.
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6.2 Texture Databases

For the analysis on real texture images, the evaluation considers the VisTex [51] (Figure 6.3),
Brodatz [52] (Figure 6.4), STex [53] (Figure 6.5), and ALOT [54] (Figure 6.6) datasets. The
VisTex database is composed of 40 color textures of 512 × 512 pixels, which is considered
in [3]. The Brodatz consists of 30 gray-scale textures of 640 × 640 pixels each, which is the
setting used in [28]. Moving on larger sets, it is extracted two collection of images from
STex and ALOT databases respectively to create the full STex, full ALOT, reduced STex,
and reduced ALOT. On the one hand, the full STex and full ALOT contain 436 color and
250 gray-scale textures of 1024 × 1024 pixels and 1536 × 1024 pixels, respectively. On the
other hand, the reduced STex and reduced ALOT consist of 40 color and gray-scales textures
of 1024 × 1024 pixels and 1536 × 1024 pixels, respectively. Each texture from VisTex and
Brodatz is divided in 16 and 25 non-overlapping textures of 128 × 128 pixels, respectively.
However, each texture of the Full STex, Full ALOT, Reduced STex, and Reduced ALOT
is divided into 16 non-overlapping textures of 256 × 256 pixels. After this division, the
color images are transformed into gray-scale versions and, subsequently, all images on the
collections are normalized to zero mean and unit variance, which is a standard normalization
used on previous studies [3, 8, 9, 55, 10]. In summary, this work uses six databases with
different images sizes and number of textures, which offer a rich context to evaluate the
potential of WP based texture indexing.

For each context, the dataset is divided in training and testing in a proportion of 3 : 7,
where 30% of the data is used to find the tree-structure solving Eq. (5.4) and the remaining
70% is used for the evaluation of the texture retrieval. The training phase involves computing
the fidelity measure in Eq. (5.2) to obtain the family

{
T k∗, k

}
. The testing phase computes

the performances of this family as a function of the size of the tree. For the retrieval perfor-
mance, it is used one query example per class in the dataset and the standard average recall
metric adopted in [3] given by

Recall =
1

M · C
C∑
c=1

M∑
m=1

1{km,c=c},

where C is the number of total classes in the dataset (in the case of this work C =
{40, 30, 436, 250}), M is the number of examples per class (16 and 25 depending on the
dataset) and km,c denotes the true class of the M closest retrieved image when the query
image belongs to the class c. Finally in all the analysis, Daubechies 4 is used as the mother
Wavelet basis, because it is the one considered by Do et al. [3] and the one that shows the
best performances for analysis made in this thesis.
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Figure 6.3: Texture images VisTex used for the experiments. Bark0, Bark6, Bark8, Bark9,
Brick1, Brick4, Brick5, Buildings9, Fabric0, Fabric4, Fabric7, Fabric9, Fabric11, Fabric14,
Fabric15, Fabric17, Fabric18, Flowers5, Food0, Food5, Food8, Grass1, Leaves8, Leaves10,
Leaves11, Leaves12, Leaves16, Metal0, Metal2, Misc2, Sand0, Stone1, Stone4, Terrain10,
Tile1, Tile4, Tile7, Water5, Wood1 y Wood2.

Figure 6.4: Texture images Brodatz used for the experiments. D102, D103, D105, D11, D16,
D19, D21, D24, D29, D3, D34, D36, D4, D52, D53, D55, D57, D6, D65, D68, D74, D77,
D78, D79, D82, D83, D84, D9, D92 y D95.
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Figure 6.5: Example of texture images STex used for the experiments. Bark0000, Bark0003,
Bark0004, Bark0012, Bush0000, Bush0003, Bush0009, Bush0015, Fabric0002, Fabric0003,
Fabric0008, Fabric0027, Fabric0028, Fabric0030, Fabric0031, Fabric0052, Fabric0055, Fab-
ric0073, Floor0002, Floor0003, Floor0004, Food0007, Food0008, Gravel0005, Gravel0011,
Metal0000, Metal0010, Metal0018, Misc0018, Misc0021, Rattan0000, Rattan0002, Rub-
ber0005, Rubber0007, Stone0005, Styrofoam0000, Tile0002 Tile0003, Wall0006, Wood0034 y
Wood0035.
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Figure 6.6: Example of texture images ALOT used for the experiments. Fruit sprinkles, cous-
cous, toilet paper, spearmint, bread (wholewheat), silver foil (heavily cramped), soya beans,
wool knitwear, sand (wet), ricotta rice, sage, cotton (color orange), terry cloth (orange), rock
salt, cork, mustard seed (yellow) ribbed cotton (yellow), pine seeds, scourer (rough side), lef
(brown), poppy seed, rosemary leaves, stones (gray level), fake fur, moss (green), vitamin
C pills (roter), flan (apple), snail poison, reed (plumes), lego (plates yellow and blue), lace,
spaguetti (regularly ordered), ribbed cardboard, carpet (blue), wallpaper (beige motive),
chamois (punched), carpet (beige), cotton (blue and purples stripes), sand paper (roughness
40), and rabbit food.
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6.3 Analysis of the Sub-Band Model Fitting

Considering that WPs offer a rich range of filter-bank decomposition, this chapter evaluates
numerically the fitting of the GGM model considered in Eq. (4.2) to model the statistical
dependencies of the transform coefficients in each of the induced sub-bands as considered in
Chapter 4. For that it is used the ML estimator of its parameters for numerous sub-bands
and texture in the rich collection of datasets. In general, it was observed that the GGM
model captures the marginal statistics of transforms coefficients of any arbitrary band and,
consequently, the modeling extension adopted in Chapter 4 seems reasonable. For illustration,
Figure 6.7 presents some of these fittings.
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Figure 6.7: Histograms and ML fitting of the WP sub-band coefficients associated with the
nodes indexed by (2, 4), (2, 5), (2, 6), (2, 7), (2, 12), (2, 13), (2, 14), (2, 15). The Generalized
Gaussian Model in Eq. (4.2) is used for the histogram fitting. The image 20_c1l1 from
ALOT database is used for illustration.

6.4 Wavelet Packets Retrieval Performances

This work proposes a novel methodology for the WP basis selection for texture retrieval.
Because of that, this chapter presents the retrieval performance associated with the solutions
of Eq. (5.4) for each of the datasets adopting the weighted divergence in Eq. (5.2), and
then comparing the retrieval performance of different WP bases with the wavelet solution.
For completeness, it is also considered the tree solutions obtained for the same regularization
problem but adopting the non-weighted divergence and the energy per-band used in [28] as
alternatives fidelity measures.
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Figure 6.8 shows the retrieval performance as a function of the size of the tree for the three
fidelity measures. The dashed lines correspond to the wavelet decomposition which serves
as baseline and is denoted by WT. Overall, it is observed the expected trade-off between
estimation and approximation errors in the evolution of each of the performance curves.
At the beginning, more complex trees improves dramatically the retrieval accuracy. Then,
the estimation error dominates, implying a saturation which leads to a deterioration on the
retrieval performances as k increases. It is important to note that these changes on the regime
of the performance curves is a function of the complexity of the task. For the smaller (VisTex
and Brodatz) and larger image size datasets (STex and ALOT) these changes happen in the
range [10− 34] of the tree sizes. From these curves, it can be determined the trees that offer
the optimal balance between estimation and approximation errors and, consequently, the
best performance for the tasks. In general, the solution obtained with the proposed weighted
divergence shows one of the best performance in almost all the scenarios. There are three
exceptions that happen for the Full ALOT, Reduced ALOT and Reduced STex. However,
the performances deviate from the best solution (obtained with the energy fidelity and non-
weighted divergence) very slightly, which are 0.76%, 1.58%, and 0.31% relative for each case,
respectively. It is also interesting to note that WP solutions associated with the energy as
a fidelity measure present very competitive results in all the scenarios. The exception is the
VisTex and Reduced ALOT datasets where the non-weighted and weighted divergences show
the best performance, respectively. This suggests that energy is a very good proxy of the
discrimination power of the WP bands in natural texture indexing, which is something that
was also observed on the analysis of acoustic signal on automatic speech recognition (ASR)
[39].

Finally, it is provided the performance of the Wavelet basis used in [3] for performance
comparison (see dashed lines in Figure 6.8). Remarkably, the conjecture of this work is con-
firmed that stated that the family of WPs and their richer sub-band decompositions offer
descriptions with relevant improvements in indexing performance. This gain is more promi-
nent in the case of the largest size datasets, where alternative WP trees show very significant
gains with respect to the conventional Wavelet solution. Nevertheless, the improvements were
not so significant for the case of smaller databases (VisTex and Brodatz). A possible explana-
tion is that in the context of smaller texture images WPs do not have room to take advantage
the discrimination power of non-conventional (Wavelet type) frequency bands. Rapidly mov-
ing to the regime were estimation error dominates the performance curves. Interestingly in
these contexts, the smaller sizes trees (sizes 4, 7 and 10) matches the Wavelet solution and,
consequently, it is recovered as part of this work formulation the solution proposed in [3]
as the optimal basis for these datasets. Table 6.1 presents the best performance obtained
(optimal trees) for each fidelity measure and the performances of the Wavelet solution which
is denoted by WT. The last column of Table 6.1 shows the gain in relative percentage with
respect to the Wavelet solution, which shows that the best improvements of the retrieval
performance are achieved for the larger size texture datasets.
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(b) Brodatz
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(c) Reduced STex
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(d) Reduced ALOT
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(e) Full STex
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Figure 6.8: Retrieval performance for the family of Wavelet Packets solutions of the regular-
ized problem in Eq. (5.1) using the weighted divergence, the divergence and the energy as
fidelity measures. Results are presented independently for the databases: VisTex, Brodatz,
Full STex, Full ALOT, Reduced STex and Reduced ALOT.

27



Table 6.1: Best Retrieval Performance

Texture WT WP Energy WP KLD WP WKLD Best Relative Gain

VisTex 73.41% 73.41% 73.64% 74.09% 0.92%
Brodatz 94.38% 94.38% 94.38% 94.38% 0%

Reduced STex 67.27% 72.73% 72.50% 72.50% 7.77%
Reduced ALOT 52.50% 58.18% 58.41% 57.50% 11.25%

Full STex 32.60% 36.27% 36.27% 36.27% 11.25%
Full ALOT 25.85% 28.95% 28.73% 28.73% 11.99%

6.5 Analysis of the Optimal Tree Structure of WPs

The filter-bank decomposition of the best WPs solutions for each datasets are presented in
Figures 6.9 and 6.10. It is observed that the solutions follow a Wavelet type of path as low
frequencies are iterated in the decomposition at the beginning of the WP decomposition.
However, for many of the scenarios, there are non-trivial deviations from the Wavelet path
as other frequency bands are iterated on the process of creating the optimal trees. These
non-Wavelet type of bands offer better discrimination than the recursive iteration of the low
frequency that defines a Wavelet case.
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Figure 6.9: First column shows the frequency partitions induced by the best WP solution,
which is represented by the tree in the second column.
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Figure 6.10: First column shows the frequency partitions induced by the best WP solution,
which is represented by the tree in the second column.
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Chapter 7

Conclusions and Future Work

This work shows performance improvements for texture retrieval from the design of a new
set of filter-bank discriminative features. The tree-indexed WP collection was used to find
an adequate balance between feature discrimination and some learning over-fitting effects.
On the implementation of this idea, the WP filter bank structure was central to address
the problem of optimal representation as a minimum cost-tree pruning algorithm, which is
reminiscent of the solution proposed in the context of classification and regression trees. It is
shown how adaptive the proposed WP solution is to the nature of the problem in terms of the
number of classes and the size of the image (aspect of the problem that is tightly related with
over-fitting). Overall, WPs offer features that outperforms the Wavelet representation as an
evidence that the exploration of different sub-bands offers a better texture discrimination
than the standard Wavelet filter-bank partition.

As a direction of future research, it is conjectured that the idea of adaptive WP filter-banks
will benefit from the adoption of better texture models, in particular by adding non-trivial
inter-band dependencies for instance copulas [23, 24], changing the wavelet packets coef-
ficients models [19, 20, 32, 31] and other improvements such as the consideration of the
parameter error estimation in the formulation of the problem because deeper nodes have
less data for the parameter estimation. Furthermore, the adaptive nature of the proposed
methodology provides an opportunity to incorporate the WP methodology in diverse kind of
problems such as face recognition and emotion recognition. In the face recognition problem,
the main idea would be to find the best WP tree-structure (basis) that represents a face pro-
viding an improvement on the performance of face-no face discrimination tasks. Finally, this
methodology can be used beyond faces detection to achieve recognition of human emotions.
For that, an initial representation of the facial landmarks with WP tree-structure could result
in an advanced characterization capable of discriminating among emotions.
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Chapter 8

Appendix

8.1 The Gray Code

The frequency partition generated by filter bank iterations is not ordered in the frequency
domain [36, Chap. 8] and for this reason the Gray Code is used to find the ordered frequency
partition. Thus, to find the ordered frequency partition, it is needed to evaluate the range of
frequencies that contributes with the image texture discrimination and comparing WP basis
frequency partition with the frequency partition generated by the Wavelet solution.

Proposition 8.1 [36, Chap. 8.1.2] Let (j, p) be an admissible sub-band of the Shannon WP
decomposition. Associating to p ∈ {0, . . . , 4j − 1} a pair (q1, q2) ∈ {0, . . . , 2j − 1}2. Where
q1, q2 are the indexes of the 1D subbands that generate the sub-band Up

j . Then, its equivalent
frequency-ordered label (j, k) is constructed by the following rule

ki = G(qi) ≡
j−L∑
h=1

q̄i,h · 2h ∈
{

0, . . . , 2j−L − 1
}
, i ∈ {1, 2}

where q̄i,h ≡
(∑j−L

l=h qi,l

)
mod 2 ∈ {0, 1}, ∀h ∈ {1, . . . , j − L}. Hence, the ordered frequency

partition of a 2D signal is given by the following intervals

[
−(k1 + 1)2j−Lπ,−k12j−Lπ

]
×
[
−(k2 + 1)2j−Lπ,−k22j−Lπ

]
∪[

k12j−Lπ, (k1 + 1)2j−Lπ
]
×
[
k22j−Lπ, (k2 + 1)2j−Lπ

]
.

Because of the symmetry of these intervals, it is possible to do the WP frequency analysis
using the positive part of the intervals.

[
k12j−Lπ, (k1 + 1)2j−Lπ

]
×
[
k22j−Lπ, (k2 + 1)2j−Lπ

]
.
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8.2 Weighted divergence and Stein’s Lemma

It is proposed the extension of Stein’s Lemma [45, Th. 12.8.1] to the weighted divergence.
The purpose is to support the decision of considering weighted divergence as fidelity measure.
The Stein’s Lemma is restated for the proposed problem as follows,

Theorem 8.2 (Stein’s Lemma restated) Let DT (x) =
(
Dpt
jt

(x)
)
t=1,...,T.

be i.i.d. ∼ fθ̄ with

θ̄ =
(
θ

((jt,pt))
i

)
t=1,...,T

. Consider the hypothesis test between two alternatives, fθ̄ = fθ̄1 and

fθ̄ = fθ̄2, where D(fθ̄1‖fθ̄2) < ∞. Let AL ⊂ X L be an acceptance region for hypothesis H1.
Let the probabilities of error be

αL,AL = PL
θ̄1

(AcL), βL,AL = PL
θ̄2

(AL).

And for 0 < ε < 1
2
, define

βε
∗

L,AL
= min

AL,AL⊂X
L

αL,AL<ε

βL,AL .

Then,

lim
L→∞

1

L
log
(
βε
∗

L,AL

)
= −

T∑
t=1

wtD(f
((jt,pt))
θ1

‖f ((jt,pt))
θ2

).

Proof. The proof is based on the Stein’s Lemma [45, Th. 12.8.1]. Let X be a raw image
and be x ∈ X, in which transformed coefficients are given by DT (x) =

(
Dpt
jt

(x)
)
t=1,...,T.

. Each
node (jt, pt) contains transformed coefficients

(
dptjt (x, n)

)
n=1,...,Lt

, which the sum of their size

is the total number of coefficients dim (X) = L =
∑T

t=1 Lt.
From Chapter 3, it is known that all of the data in a leaf is i.i.d. and each leaf is independent
from the others. Then, let

(
θ((jt,pt))

)
t=1,...,T

be the parameters of the statistical model of(
Dpt
jt

(x)
)
t=1,...,T.

, where each statistical model µθ is equipped with a density function fθ . It
is stated the following hypothesis test,

H1 : fθ = fθ1 ,

H2 : fθ = fθ2 .

With θi =

{(
θ

((jt,pt))
i

)
t=1,...,T

}
i=1,2

and {fθi}i=1,2 their respective density functions, each one

equipped with statistical models {µθi}i=1,2. For the achievability part, it is considered the
log-likelihood ratio as follows,

1

L
log

(
fθ1(D

p1
j1

(x), . . . , DpT
jT

(x))

fθ2(D
p1
j1

(x), . . . , DpT
jT

(x))

)
. (8.1)

Because the sub-bands are independent, Eq. (8.1) can be written as

1

L

T∑
t=1

log

(
fθ1(D

pt
jt

(x))

fθ2(D
pt
jt

(x))

)
. (8.2)
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Furthermore, the transformed coefficients are considered i.i.d. then,

1

L

T∑
t=1

Lt∑
j=1

log

(
fθ1(D

pt
jt

(xt,j))

fθ2(D
pt
jt

(xt,j))

)
=

T∑
t=1

Lt
L

Lt∑
j=1

1

Lt
log

(
fθ1(D

pt
jt

(xt,j))

fθ2(D
pt
jt

(xt,j))

)
, (8.3)

where xt,j is the j coefficient of the node or sub-band t. Similar to Chapter 3, if wt =
limL−→∞

Lt
L

is considered, then when L −→∞ Eq. (8.3) is equivalent to:

T∑
t=1

wtEDptjt (xt,j)∼f
((jt,pt))
θ1

log

(
fθ1(D

pt
jt

(xt,j))

fθ2(D
pt
jt

(xt,j))

)
=

T∑
t=1

wtD(f
θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

). (8.4)

Thus,
1

L
log

(
fθ1(D

p1
j1

(x), . . . , DpT
jT

(x))

fθ2(D
p1
j1

(x), . . . , DpT
jT

(x))

)
−→

T∑
t=1

wtD(f
θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

) (8.5)

in probability one. The sequence of acceptance region can de defined as follows,

AL(δ) =

{
DT (x) : 2

L(
∑T
t=1 wtD(f

θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)−δ)
≤
fθ1(D

p1
j1

(x), . . . , DpT
jT

(x))

fθ2(D
p1
j1

(x), . . . , DpT
jT

(x))
∧

fθ1(D
p1
j1

(x), . . . , DpT
jT

(x))

fθ2(D
p1
j1

(x), . . . , DpT
jT

(x))
≤ 2

T (
∑T
t=1 wtD(f

θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)+δ)
}

The acceptance probability is:

PL
θ1

(AL(δ)) = PL
θ1

(∣∣∣∣∣ 1L fθ1(D
p1
j1

(x), . . . , DpT
jT

(x))

fθ2(D
p1
j1

(x), . . . , DpT
jT

(x))
−

T∑
t=1

wtD(f
θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)

∣∣∣∣∣ < δ

)
,

= 1− αL,AL(δ).

Also, it has the following:

PL
θ2

(AL(δ)) =
∑
AL(δ)

fθ2(DT (x)),

≤
∑
AL(δ)

fθ1(DT (x))2
−L(

∑T
t=1 wtD(f

θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)−δ)
,

= 2
−L(

∑T
t=1 wtD(f

θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)−δ)
(1− αL,AL(δ)),

and,

PL
θ2

(AL(δ)) =
∑
AL(δ)

fθ2(DT (x)),

≥
∑
AL(δ)

fθ1(DT (x))2
−L(

∑T
t=1 wtD(f

θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)+δ)
,

= 2
−L(

∑T
t=1 wtD(f

θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)+δ)
(1− αL,AL(δ)).
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Therefore,

2
−L(

∑T
t=1 wtD(f

θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)+δ)
(1− αL,AL(δ)) ≤ βL,AL(δ),

2
−L(

∑T
t=1 wtD(f

θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)−δ)
(1− αL,AL(δ)) ≥ βL,AL(δ).

Then,

−
T∑
t=1

wtD(f
θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)− δ +
log(1− αL,AL(δ))

L
≤ 1

L
log(βL,AL(δ)),

−
T∑
t=1

wtD(f
θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

) + δ +
log(1− αL,AL(δ))

L
≥ 1

L
log(βL,AL(δ)).

It is known from the law of large numbers that as L→∞ then αL,AL(δ) → 0 and PL
θ1

(AL(δ))→
1. Fixing ε = δ > 0, thus

lim
ε→0

lim
L→∞

1

L
log(βL,AL(ε)) = −

T∑
t=1

wtD(f
θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

).

Finally, for the converse, it is demonstrated that there is no other sequence of acceptance
regions better than the previous one. Let BT be a sequence of acceptance region with
αL,BL = PL

θ1
(BL) < ε.

βL,BL = PL
θ2

(BL) ≥ PL
θ2

(AL ∩BL),

=
∑

AL∩BL

fθ2(DT (x)),

≥
( ∑
AL∩BL

fθ1(DT (x))

)
2
−L(

∑T
t=1 wtD(f

θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)+δ)
,

= (µθ1(AL ∩BL)) 2
−L(

∑T
t=1 wtD(f

θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)+δ)
,

≥ (1− µθ1(AcL)− µθ1(Bc
L)) 2

−L(
∑T
t=1 wtD(f

θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)+δ)
,

= (1− αL,AL − αL,BL) 2
−L(

∑T
t=1 wtD(f

θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

)+δ)
.

Repeating the previous procedure on the last equation,

lim
L→∞

1

L
log(βL,BL) ≥ −

(
T∑
t=1

wtD(f
θ
((jt,pt))
1

‖f
θ
((jt,pt))
2

) + δ

)
,

for a δ arbitrarily small.
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