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Abstract: A well-known combinatorial theorem says that a set of n non-
collinear points in the plane determines at least n distinct lines. Chen and
Chvátal conjectured that this theorem extends to metric spaces, with an
appropriated definition of line. In this work, we prove a slightly stronger
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1. INTRODUCTION

A classic result in Euclidean geometry asserts that every noncollinear set of n points in
the Euclidean plane determines at least n distinct lines.

Erdős [14] showed that this result is a consequence of the Sylvester-Gallai theorem that
asserts that every noncollinear set of n points in the plane determines a line containing
precisely two points. Coxeter [12] showed that the Sylvester–Gallai theorem holds in a
more basic setting known as ordered geometry. Here, the notions of distance and angle
are not used and, instead, a ternary relation of betweenness is employed. We write [abc]
for the statement that b lies between a and c. In this notation, a line xy is defined (for any
two distinct points x and y) as:

xy = {x, y} ∪ {u : [uxy] or [xuy] or [xyu]} (1)

Betweenness in metric spaces was first studied by Menger [16] and further on by
Chvátal [10]. In a metric space (V, d), we define

[abc] ⇔ d(a, b) + d(b, c) = d(a, c).

Hence, in any metric space (V, d), we can define the line uv induced by two points
u and v as in (1). A line of a metric space (V, d) is universal if it contains all points
of V . With this definition of lines in metric spaces, Chen and Chvátal [7] proposed the
following beautiful conjecture.

Conjecture 1.1. Every metric space on n points, where n ≥ 2, either has at least n
distinct lines or has a universal line.

The best-known lower bound for the number of lines in metric spaces with no universal
line is �(

√
n) [2].

As it is explained in [3], it suffices to prove Conjecture 1.1 for metric spaces with
integral distances. This motivates looking at two particular types of metric spaces. First,
for a positive integer k, we define a k-metric space to be a metric space in which all
distances are integral and are at most k. Chvátal [11] proved that every 2-metric space on
n points (n ≥ 2) either has at least n distinct lines or has a universal line. The question
is open for k ≥ 3. Aboulker et al. [2] proved that, for all k ≥ 3, a k-metric space with no
universal line has at least n/5k distinct lines. The conjecture has also been studied in the
context of hypergraphs (see [1, 4, 15]) and for metric spaces (see [8]).

A second type of metric space with integral distances arises from graphs. Any finite
connected graph induces a metric space on its vertex set, where the distance between
two vertices u and v is defined as the length of a shortest path linking u and v. Such
metric spaces are called graph metrics and are the subject of this article. The best-
known lower bound on the number of lines in a graph metric with no universal line is
�(n4/7) [2]. In [5] and [3] it is proved that Conjecture 1.1 holds for chordal graphs and
for distance-hereditary graphs respectively.
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FIGURE 1. A line can be a proper subset of another line:
xz = {x, y, z} ⊆ xy = {v, x, y, z}

The main result of this article is to prove Conjecture 1.1 for all graphs that can be
constructed from chordal graphs by repeated substitutions and gluing along vertices. This
generalizes chordal and distance hereditary graphs.

2. STATEMENT OF THE MAIN THEOREM

Let G = (V, E ) be a graph. We denote by |G| the number of vertices of G. Let a, b, c
be three distinct vertices in V (G). The distance dG(a, b) (or simply d(a, b) when the
context is clear) between a and b is the length of a shortest path linking a and b if
such a path exists; otherwise, dG(a, b) = ∞. We write [abc]G (or simply [abc]) when

d(a, b) + d(b, c) = d(a, c) < ∞. Observe that [abc] ⇔ [cba]. We denote by ab
G

(or

simply ab) the line determined by two distinct vertices a, b, where ab
G = {a, b} ∪ {x :

[abx] or [axb] or [xab]}. Notice that with this definition, the line defined by two vertices
a, b lying in different connected components is {a, b}. We denote by L(G) the set of
distinct lines in G and by �(G) = |L(G)| the number of distinct lines in G.

The lines on this set can have strange properties. For example, two lines might have
more than one common point, and it is even possible for a line to be a proper subset of
another line as in Figure 1.

We denote by NG(v) the set of all neighbors of a vertex v in G. For a set of vertices S,
we denote by NG(S) (or simply N(S)) the set of all vertices outside S having a neighbor
in S . A set S is dominating if S ∪ NG(S) = V (G).

A set of vertices M of a graph G = (V, E ) is a module if for each a, b ∈ M, u /∈ M,
au ∈ E if and only if bu ∈ E. It is a nontrivial module if |G| > |M| ≥ 2. If M is a
dominating set, we call it a dominating module. In this situation, N(M) is also a module
unless M = V . When {u, v} is a module, we say that (u, v) is a pair of twins. If u and v
are adjacent they are called true twins; otherwise, they are called false twins.

A bridge ab is an edge whose deletion increases the number of connected components
of the graph. We denote by br(G) the number of bridges of G. If br(G) = 0, we say
that G is bridgeless. If ab is a bridge of a connected graph G, then for every vertex p ∈
V (G) \ {a, b}, we either have [pab] or [abp]. Hence ab

G = V (G) and thus Conjecture 1.1
is only interesting for bridgeless graphs.

We are going to define a class of graphs that includes chordal graphs (graphs without
induced cycles of length more than three) and distance hereditary graphs (graphs whose
induced paths are shortest paths) (see [6] for further references).

Let C be the class of graphs G such that every induced subgraph of G either is a
chordal graph, or has a cut-vertex, or has a nontrivial module. By definition, this class is
hereditary, that is, if G ∈ C, then every induced subgraph of G is also in C.

Let F = {C4, K2,3,W4,W ′
4, K′

6, K′
8} (see Fig. 2). In this work, we prove the following

theorem.
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FIGURE 2. Graphs in F .

FIGURE 3. The three known minimal counter-examples with a bridge to
�(G) + br (G) ≥ |G|.

Theorem 2.1. For each connected graph G ∈ C \ F , �(G) + br(G) ≥ |G|.
As a consequence we have that Chen-Chvatal conjecture holds for C, as it holds for

graphs in F (they all have a universal line). Since all distance-hereditary graphs contain
either a pendant edge or a pair of twins, C is a super class of distance hereditary graphs.
It is also clearly a super class of chordal graphs.

The difference between our result and the original conjecture is that we count a
universal line as any other line but, since each bridge defines a universal line, we keep
track of the number of ways that universal lines are caused by bridges. It is tempting
to conjecture that the property �(G) + br(G) ≥ |G| holds for all but a finite number of
graphs. We know this to be false in general, as it was pointed out to us by Yori Zwols, owing
to counter-examples that results from replacing a bridge by paths of arbitrary length. The
three minimal counterexamples known so far that contain a bridge are shown in Figure 3.
It remains unknown, however, whether all counter-examples to �(G) + br(G) ≥ |G| can
be obtained from a finite set of graphs by replacing a bridge by a path. Since the bridge
is a pendant edge for these three graphs, we venture to propose the following conjecture.

Conjecture 2.2. There is a finite set of graphs F0 such that every connected graph
G /∈ F0 either has a pendant edge or satisfies �(G) + br(G) ≥ |G|.

So far, we know that if such a family F0 exists, it contains the list of graphs in Figures 2
and 4. An interesting variation of the conjecture can be stated as follows, denoting by
ul(G) the number of pairs of vertices in G that induce a universal line.

Conjecture 2.3. For every connected graph G, �(G) + ul(G) ≥ |G|.
Although less general (a bridge always induces a universal line but not all universal

lines are induced by bridges), this conjecture has the merit of being true for all the known
graphs in F0 \ F (see Fig. 4). Thus, there is no known counter-example to Conjecture
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FIGURE 4. Known graphs in F0 \ F .

2.3 to this day. Moreover, it remains stronger than the original Chen-Chvatal conjecture
without ruling out graphs with universal lines as trivial solutions.

3. PRELIMINARIES

In this section, we give some results on the number of lines of graphs in F or that are
constructed from a graph in F adding a vertex.

Lemma 3.1. �(C4) = 1, �(K′
6) = 4, and for H ∈ F \ {C4, K′

6}, �(H) = |H| − 1.

Proof. Remark that the graphs K′
6 and K′

8 belong to the family of graphs obtained
from complete graphs K2n by removing a perfect matching. In Case 4.1 of the proof of
Theorem 2.1 we shall see that �(K′

2n) = (n
2

) + 1, when n ≥ 3. For n = 3, 4 we have that
�(K′

6) = 4 and �(K′
8) = 7. The lines of the remaining graphs are computed by brute force

(See Fig. 5.) �
Lemma 3.2. Let G ∈ C \ F be a graph.

1) If G has a pendant vertex v such that G − v ∈ F \ {C4}, then �(G) + br(G) =
�(G) + 1 ≥ |G|.

2) If G contains a nontrivial module M and G − v ∈ F \ {C4}, for some v ∈ M, then
�(G) ≥ |G| + 1.

Proof. The proofs of both statements are easy although tedious. In the first case,
if u is the neighbor of v in G, then wvG defines different lines, when w varies over the
neighbors of u in G − v. These lines are not in L(G − v) if G − v ∈ F \ {C4} . Since the
graphs in F have no vertex of degree one, we obtain at least two new lines.

In the second case, for each G′ ∈ F we need to consider all graphs G arising from G′

by adding a copy v of a vertex v′ in G′ so as (v, v′) is a pair of twins (true or false) in G.
We do this with the help of a computer program 1. �

1For the sake of completeness, the R code and environment used to check all the
cases are available in http://www.math.sciences.univ-nantes.fr/˜rochet/recherche/
Code_lines.R http://www.math.sciences.univ-nantes.fr/˜rochet/recherche/Code_
lines.R with the environment http://www.math.sciences.univ-nantes.fr/˜rochet/
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13 = 14 = 36 = 46
{2, 3, 4, 5} =
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{2, 4, 5, 7} = 24 = 25 = 47 = 57
{3, 4, 5, 6} = 34 = 35 = 46 = 56
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FIGURE 5. H5 and the graphs in F . For each graph in F ∪ {H5}, we have
computed all their lines.

4. PROOF OF THEOREM 2.1

We prove Theorem 2.1 by induction on the number of vertices of G. Let G ∈ C \ F with
|G| = n. By the definition of C, the proof splits into four parts: (1) G has a bridge, (2) G
has no bridge, and has a cut-vertex, (3) G is 2-connected and chordal, (4) G is 2-connected
and has a nontrivial module.

recherche/env_lines.RData http://www.math.sciences.univ-nantes.fr/˜rochet/
recherche/env_lines.RData to be downloaded separately.
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Part 1: G has a bridge.
Let e = u1u2 be a bridge of G. Let G1 and G2 be the connected components of G − e

that contain respectively u1 and u2. We denote by G/e the graph obtained by contracting
the edge e of G. That is, the edge e is deleted from G and its ends are identified. Name u
the vertex of G/e appeared after the contraction.

We shall prove that �(G) ≥ �(G/e). From the definition of a line, it follows that for
each x, y, z ∈ V (G) \ {u1, u2} we have that z ∈ xyG if and only if there is a shortest path
in G containing {z, x, y}.

To each path P in G we associate a path P′ in G/e as follows. When V (P) ⊆ V (G/e),
we set P′ = P. If e is an edge of P, then P′ = P/e. If {u1, u2} ∩ V (P) = {ui}, then
P′ is obtained from P by replacing ui by u. It is easy to see that for P and P′ so
defined, P is a shortest path in G if and only if P′ is a shortest path in G/e. Moreover,
V (P) \ {u1, u2} = V (P′) \ {u}.

Let x, y ∈ V (G) \ {u1, u2}. Since x and y belong to a shortest path in G if and only
if they belong to a shortest path in G/e, for each z ∈ V (G) \ {u1, u2} we have that
z ∈ xyG if and only if z ∈ xyG/e. Thus, xyG \ {u1, u2} = xyG/e \ {u}. Similarly, we also
have that xui

G \ {u1, u2} = xuG/e \ {u}, for each i = 1, 2. Moreover, u ∈ xyG/e if and only
if {u1, u2} ∩ xyG 
= ∅.

By using this information, we can describe lines in G in terms of lines in G/e as
follows.

� xyG = xyG/e, if u /∈ xyG/e.
� xyG = (xyG/e − {u}) ∪ {ui}, if x, y ∈ V (Gi), [xuy]G/e and i ∈ {1, 2}.
� xyG = (xyG/e − {u}) ∪ {u1, u2} in the remaining two situations: First, if x, y ∈

V (Gi) for i ∈ {1, 2} and [xyu]G/e or [yxu]G/e; Second, if x ∈ V (Gi) and y ∈ V (G3−i)

for i ∈ {1, 2}.
In fact, the first equality is direct from the above discussion. The second equality comes

from the fact that when [xuy]G/e and x, y ∈ V (Gi) (i ∈ {1, 2}), then there is a shortest
path P′ in G/e between x and y that contains u and its associated path P contains ui

but does not contain u3−1. Hence, ui ∈ xyG and no path between x and y in G contains
u3−i. Thus, xyG = (xyG/e − {u}) ∪ {ui}. The third equality occurs in two situations. In
the first situation, when [xyu]G/e or [yxu]G/e, there is a shortest path in G/e containing
{x, y, u} and ending in u. Its associated path in G contains {x, y, ui} and ends in ui. Hence,
by adding the edge e we obtain a shortest path in G that contains {x, y, u1, u2}. Thus,
xyG = (xyG/e − {u}) ∪ {u1, u2}. In the second situation, we can assume that x ∈ V (G1)

and y ∈ V (G2). It is clear that a shortest path between x and y in G/e contains u, and that
a shortest path between them in G contains {u1, u2}. Therefore, in this situation, we also
have xyG = (xyG/e − {u}) ∪ {u1, u2}.

The description we have just obtained shows an injective correspondence between
L(G/e) and L(G). This implies that �(G) ≥ �(G/e). Moreover, it is clear that br(G) =
br(G/e) + 1. If G/e ∈ C \ F , then by induction we have �(G/e) + br(G/e) ≥ |G/e| =
|G| − 1 and thus �(G) + br(G) ≥ |G| and we are done.

So we may assume that G/e ∈ F . Since graphs in F are 2-connected, it implies that
u1u2 is a pendant edge of G. Then the result follows by Lemma 3.2 when G/e 
= C4, and
it is easily checkable when G/e = C4.

Part 2: G has no bridge and has a cut-vertex.
Let u be a cut-vertex of G. Let C1 be a connected component of G − {u} and let

C2 be the union of the other connected components of G. Set G1 = G[V (C1) ∪ {u}],
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and G2 = G[V (C2) ∪ {u}]. Observe that, since G is bridgeless, G1 and G2 are also
bridgeless.

We can argue as in the previous case. For each i = 1, 2, any path in G between two
vertices x and y in V (Gi) is also a path in Gi. Hence, xyGi = xyG ∩ V (Gi). Moreover, if
such a path end in u, then for each z ∈ V (G3−i) this path can be extended to a path in G
between x and z.

Notice that a shortest path containing {u, x, y} and ending in u exists if and only if
[xyu]G or [yxu]G. This happens if and only for some z ∈ V (G3−i), there is a shortest path
containing {z, x, y} that contains a subpath containing {u, x, y} that ends in u.

This shows the following property.

(1) For i = 1, 2 and for all x, y ∈ V (Gi) we have:
� if [xyu] or [yxu], then xyG = xyGi ∪ V (C3−i),
� otherwise xyG = xyGi and in particular xyG ∩ V (C3−i) = ∅.

This implies that, for i = 1, 2, a line induced by two vertices in V (Gi) is either disjoint
from V (C3−i) or contains V (C3−i). In particular, it implies that a line induced by two
vertices in V (G1) is distinct from a line induced by two vertices in V (G2), except in the
case where this line is universal.

We next prove the following lower bound for �(G).

(2) �(G) ≥ �(G1) + �(G2) − 1 + |NG1 (u)||NG2 (u)|.

For i = 1, 2, let Li = {ab
G

: a, b ∈ V (Gi)}. By (1) |Li| = �(Gi), and the only possible
line in L1 ∩ L2 is the universal line. Hence |L1 ∪ L2| ≥ �(G1) + �(G2) − 1. Moreover,
for all lines l in L1 ∪ L2, l contains either V (C1) or V (C2).

For i = 1, 2, let ui be a neighbor of u in Gi. We have that u1u2
G ∩ N(u) = {u1, u2}

and since u has at least two neighbors in both G1 and G2 (because G is bridgeless),
then u1u2

G ∩ V (Gi) /∈ {∅,V (Gi)} for each i = 1, 2 and thus it is distinct from all lines in
L1 ∪ L2. Moreover, for every ui, vi neighbors of u in Gi, for each i = 1, 2, if {u1, u2} 
=
{v1, v2}, then u1u2

G 
= v1v2
G. Therefore, there are at least |NG1 (u)||NG2 (u)| lines inL(G) \

(L1 ∪ L2).
Since |NG1 (u)||NG2 (u)| ≥ 4 we get �(G) ≥ �(G1) + �(G2) + 3. If �(G1) + �(G2) ≥

|G1| + |G2| − 4, then �(G) ≥ |G1| + |G2| − 1 = |G|. If �(G1) + �(G2) ≤ |G1| + |G2| −
5, by the induction hypothesis, we conclude that both G1 and G2 are in F . Moreover,
from Lemma 3.1 we get that G1 = G2 = C4 or {G1, G2} = {C4, K′

6}. We have verified
that in the first case we have 11 lines, while in the second, we have 20 lines (see Fig. 6).

Part 3: G is 2-connected and chordal.
In [5] it was proved that Conjecture 1.1 holds for chordal graphs. The proof of this

part is the same as their proof. We first need Lemma 2 of [5]:

Lemma 4.1. Let G be a chordal graph and let s, x, y in V (G) such that [sxy]. If sx = sy,
then x is a cut-vertex of G.

A vertex of a graph is called simplicial if its neighbors are pairwise adjacent. By a
classic result of Dirac [13], a chordal graph has at least two simplicial vertices. Let s be a
simplicial vertex of G. Since s is simplicial for any pair of vertices x, y ∈ V (G) \ {s}, [xsy]
does not hold. Hence, if sx = sy, we must have [sxy] or [syx] and thus, by Lemma 4.1, x
or y is a cut vertex, a contradiction.
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Lines of C4 ⊕ C4

{1, 2, 3, 4, 5, 6, 7} = 12 = 13 = 14 = 16 = 23 = 34
= 35 = 36 = 37 = 56 = 67

{1, 2, 3, 4, 5, 6} = 15 {1, 2, 3, 4, 6, 7} = 17
{1, 2, 3, 4} = 24 {1, 2, 3, 5, 6} = 25
{1, 2, 3, 5, 6, 7} = 26 {1, 2, 3, 6, 7} = 27
{1, 3, 4, 5, 6} = 45 {1, 3, 4, 5, 6, 7} = 46
{1, 3, 4, 6, 7} = 47 {3, 5, 6, 7} = 57 1

2 4

3

5 7

6

Lines of C4 ⊕ K′
6

{1, 2, 3, 4, 5, 6, 7, 8, 9} = 34 = 37 = 38
= 39 = 48 = 78 = 89

{2, 3, 4, 5, 7, 8, 9} = 23 = 24 = 35 = 45
{1, 2, 5, 6} = 12 = 15 = 26 = 56
{1, 3, 4, 6, 7, 8, 9} = 13 = 14 = 36 = 46
{1, 2, 3, 4, 5, 6} = 16 = 25
{1, 2, 3, 4, 5, 6, 7, 8} = 47
{1, 2, 3, 4, 5, 6, 8, 9} = 49

{1, 3, 4, 7, 8} = 17 {1, 3, 4, 7, 8, 9} = 18
{1, 3, 4, 8, 9} = 19 {2, 3, 4, 7, 8} = 27
{2, 3, 4, 7, 8, 9} = 28 {2, 3, 4, 8, 9} = 29
{3, 4, 5, 7, 8} = 57 {3, 4, 5, 7, 8, 9} = 58
{3, 4, 5, 8, 9} = 59 {3, 4, 6, 7, 8} = 67
{3, 4, 6, 7, 8, 9} = 68 {3, 4, 6, 8, 9} = 69
{3, 7, 8, 9} = 79
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1
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FIGURE 6. Lines of the graphs C4 ⊕ C4 and C4 ⊕ K ′
6 obtained by gluing,

respectively, two copies of the graph C4 and a copy of C4 and a copy of K ′
6.

Hence, the set {su : u ∈ V (G) \ {s}} has n − 1 distinct lines. Observe that all these
lines contain s. Now, since G is 2-connected, s has at least two neighbors a, b and s /∈ ab.
Thus, the graph G has at least n different lines.

Part 4: G is 2-connected, nonchordal and has a nontrivial module
We first consider the case when G has a nontrivial nondominating module.
Let M = {v1, . . . vs} be a nontrivial nondominating module of G with neighborhood

N(M) of minimal size. Set G′ := G − {v1}. If G′ ∈ F \ {C4}, we are done by Lemma 3.2.
If G′ = C4, then G is either K2,3 or W ′

4, a contradiction with G /∈ F . So we may assume
that G′ /∈ F and from the induction hypothesis we get �(G′) + br(G′) ≥ |G′| = |G| − 1.

Set L′ = {xyG : x, y ∈ V (G′)}. Since G′ is an isometric subgraph of G (i.e. for all x, y ∈
V (G′), dG′ (x, y) = dG(x, y)), we have, for all a, b ∈ V (G′), ab

G = ab
G′

or ab
G′

∪ {v1}.
Hence

|L′| = �(G′) ≥ |G| − 1 − br(G′). (2)
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Moreover, each line in L′ that contains v1 must contain at least one other vertex of M.
In effect, if v1 ∈ ab ∈ L′ and a, b /∈ M, then ab contains M. Hence, each line in L′ that
contains v1 must contain at least one other vertex of M.

Let t ∈ G − (M ∪ N(M)). It is clear that v1 is the unique vertex in M that belongs to
the line v1tG. Hence, v1tG

/∈ L′ and thus, if br(G′) = 0, we are done by (2).
So we may assume that G′ has at least one bridge. Let ab be a bridge of G′, and let

Ga, Gb be the connected components of G′ − ab that contain respectively a and b. We
are going to prove that one of Ga, Gb consists of one vertex of degree exactly 2 and that
this vertex is in N(M) (and so |M| = 2). Since a vertex in Ga has at most one common
neighbor with a vertex in Gb and |N(M)| ≥ 2, because G is 2-connected and thus vertices
in M − {v1} have at least two common neighbors in G′, M − {v1} cannot intersect both Ga

and Gb. So we may assume without loss of generality that M − {v1} ⊆ V (Ga). Since ab
is not a bridge of G, v1 must have neighbors in both Ga and Gb. Hence the only neighbor
of v1 in Gb is b, v2 = a and M = {v1, v2}. Moreover, since G has no cut-vertex, Gb = {b}.
Finally, by minimality of N(M), v2b is the unique bridge of G′ (If G′ has another bridge,
then there exists a vertex b′ 
= b such that v2b′ is a bridge of G′ and NG(b′) = {v1, v2};
hence {b, b′} is a nontrivial nondominating module of G and |N({b, b′})| < |N({v1, v2})|,
a contradiction).

Consider now the line v1v2. We claim that v1v2 /∈ L′ ∪ {v1t} that gives the result by
(2). If v1v2 is an edge of G, then v1v2 = {v1, v2} and the result holds. Hence we may
assume that v1v2 is not an edge and thus v1v2 = M ∪ N(M). So v1v2 
= v1t and we may
assume for contradiction that v1v2 ∈ L′ that implies there exists x, y ∈ N(M) ∪ M − {v1}
such that xy = M ∪ N(M). If {x, y} ∩ {b, v2} 
= ∅, then xy must contain some vertices of
V (G) − (M ∪ N(M)), so we may assume that {x, y} ⊆ N(M) \ {b}, but then b /∈ xy.

We now consider the case where all the nontrivial modules of G are dominating.
In this case, G has diameter 2. It was proven in [11] that for every graph G of diameter

2, G either has an universal line or it has at least |G| distinct lines. Since what we want to
prove is stronger, we cannot use this result. We will need the following lemma that was
already proved in [9].

Lemma 4.2. Let G be a graph of diameter two and let x, a, b be three vertices of G
such that xa = xb. Then either (a, b) is a pair of false twins and d(x, a) = d(x, b) = 1,
or d(x, a) 
= d(x, b).

Proof. Assume that d(x, a) = d(x, b). If d(x, a) = 2, then a /∈ xb, a contradiction,
so d(x, a) = 1. If a and b are adjacent, then again a /∈ xb, so a and b are not adjacent.
Assume now that there exists a vertex c adjacent to a but not to b, i.e. d(c, a) = 1 and
d(c, b) = 2. If d(c, a) = 1, then c ∈ xb and c /∈ xa, and if d(c, x) = 2, then c /∈ xb and
c ∈ xa, a contradiction in both cases. So (a, b) is a pair of false twins. �

Notice that for any nontrivial dominating module M, the set N(M) is a module as well
and M ∪ N(M) = V (G). Moreover, for each u ∈ M and each v ∈ N(M) the line uv is
given by

uv = (M − N(u)) ∪ (N(M) − N(v)).

We assume first that G does not contain pairs of false twins. Let M be a module of G.
For u, u′ ∈ M and v, v′ ∈ N(M) with {u, v} 
= {u′, v′} we have that uv 
= u′v′. Hence,
�(G) ≥ |M||N(M)|. Since |M| ≥ 2, then the equality |M||N(M)| = |M| + |N(M)| +
(|M| − 1)(|N(M)| − 1) − 1 implies that �(G) ≥ |G| when N(M) is not a singleton.
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If N(M) = {x}, then all the lines xv are distinct, when v varies over M. This gives us
|G| − 1 distinct lines, all containing x. Since M has no pair of false twins, it contains at
least one edge ab, and ab is a new line since x /∈ ab.

Hence, we can assume that every nontrivial module M is a dominating set and the
graph G contains pairs of false twins.

Let (u1, v1), (u2, v2), . . . , (ut, vt ) be the pairs of false twins of G and set T =
{u1, v1, . . . , ut, vt}. Since {ui, vi} is a nontrivial module for i = 1, . . . , t, it must be a dom-
inating module and thus N(ui) = N(vi) = V (G) \ {ui, vi}. This implies that all vertices
in {u1, v1, . . . , ut, vt} are pairwise distinct, i.e. |T | = 2t, and that T induces a complete
graph minus a perfect matching.

Set U = {u1, . . . , ut} and LU = {uiu j : 1 ≤ i 
= j ≤ t} ∪ {u1v1}. For 1 ≤ i 
= j ≤ t, we
have uiu j = {ui, vi, u j, v j} and u1v1 = V (G). So

(|LU |=
t2+1

)
.

Set R = V (G) \ T . We split the rest of the proof into three cases.

Case 4.1: R is empty.
In this case |G| = 2t. If t ∈ {2, 3, 4}, then G ∈ {C4, K′

6, K′
8}, which is a contra-

diction. If t ≥ 5, then
(
�(G)≥|LU |≥

t2≥2t

)
and we are done.

Case 4.2: R is a clique.
Set |R| = k ≥ 1. Set LR = {xy : x, y ∈ R}. Notice that each pair of vertices
x, y ∈ R are true twins, resulting in xy = {x, y}, which means that each pair of
vertices of R determines a different line. Now, for each x ∈ R, set LxU = {xui :
i = 1, . . . , t}. Observe that xui = {x, ui, vi}. It follows that lines in ∪x∈RLxU

are all pairwise distinct and disjoint of LU . Moreover, lines in ∪x∈RLxU are
not universal (except when |R| = 1 and T = {u1, v1}, but then the graph is not
2-connected). Hence, all lines in LU , LR, and ∪x∈RLxU are pairwise distinct.
So if |R| and t are greater than 2 we have that:

�(G) ≥
(

t

2

)
+

(|R|
2

)
+ t|R| + 1 ≥ 2t + |R| = |G| (3)

If |R| = 1 and t ≥ 2, �(G) ≥ (t
2

) + t + 1.If t ≥ 3 this quantity is greater than
|G|. If t = 2 then G = W4 that is a contradiction because W4 ∈ F . If |R| = 1
and t = 1, then G is not 2-connected. Hence, R is not a clique.

Case 4.3: R is nonempty and is not a clique.
There exists x, y ∈ R such that xy is not an edge. Since (x, y) is not a pair of
false twin, we may assume that there exists z ∈ R \ {x, y} such that z is adjacent
to y but not to x. Set Lx = {xa : a ∈ U or a ∈ R \ {x}}.

Suppose Lx contains an universal line xa. If a ∈ R, then d(x, a) = 2 and all the other
vertices in R are at distance 1, but this would imply that (x, a) is a pair of false twins.
Hence, a = ui for some i ∈ {1, 2, . . . , t}. Notice that xui = {vi} ∪ (R \ N(x)). If it is
universal, then i = 1, t = 1 and N(x) = T . But then, R \ {x} is a nontrivial nondominating
module that is a contradiction. Hence, we can assume thatLx does not contain an universal
line.

Recall that all lines in LU are subsets of T except for the universal line. Since no line in
Lx is universal, then Lx ∩ LU = ∅. Moreover, since x /∈ yz, yz /∈ Lx and since yz ∩ T = ∅,
yz /∈ LU . Hence, we have that

(
�(G)≥

t2+2+|Lx|
)

if t ≥ 2 or �(G) ≥ 2 + |Lx| if t = 1.
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In both cases if |Lx| ≥ |R| + t − 1 then �(G) ≥ 2t + |R| = |G|. Thus it is enough to
prove that for all a, b ∈ U ∪ R \ {x}, we have xa 
= xb.

Let a, b ∈ U ∪ R \ {x} and let us prove that xa 
= xb. Since a, b ∈ U ∪ R \ {x}, (a, b) is
not a pair of false twins, and thus, by Lemma 4.2, we may assume that d(x, a) 
= d(x, b).
Without loss of generality, d(x, a) = 1 and d(x, b) = 2 that implies in particular that
b ∈ R \ {x}. If a ∈ R \ {x}, then T ⊆ xb and T ∩ xa = ∅. So we may assume that a ∈ U .
One of the vertices y, z is distinct from b, say y 
= b. We have [xay], so y ∈ xa. But
d(x, y) = d(x, b) = 2 that implies that y /∈ xb.

Thus, �(G) ≥ |R| + 2 = |G| that proves the Theorem.
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