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Abstract

We consider the parabolic Allen–Cahn equation in Rn, n ≥ 2,

ut = �u + (1 − u2)u in R
n × (−∞,0].

We construct an ancient radially symmetric solution u(x, t) with any given number k of transition layers between −1 and +1. At 
main order they consist of k time-traveling copies of w with spherical interfaces distant O(log |t |) one to each other as t → −∞. 
These interfaces are resemble at main order copies of the shrinking sphere ancient solution to mean the flow by mean curvature 
of surfaces: |x| = √−2(n − 1)t . More precisely, if w(s) denotes the heteroclinic 1-dimensional solution of w′′ + (1 − w2)w = 0

w(±∞) = ±1 given by w(s) = tanh
(

s√
2

)
we have

u(x, t) ≈
k∑

j=1

(−1)j−1w(|x| − ρj (t)) − 1

2
(1 + (−1)k) as t → −∞

where

ρj (t) =√−2(n − 1)t + 1√
2

(
j − k + 1

2

)
log

( |t |
log |t |

)
+ O(1), j = 1, . . . , k.
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1. Introduction

A classical model for phase transitions is the Allen–Cahn equation [1]

ut = �u + f (u) in R
n ×R (1.1)
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where f (u) = −F ′(u) where F is a balanced bi-stable potential namely F has exactly two non-degenerate global 
minimum points u = +1 and u = −1. The model is

F(u) = −1

4
(1 − u2)2, f (u) = (1 − u2)u. (1.2)

The constant functions u = ±1 correspond to stable equilibria of Equation (1.1). They are idealized as two phases of 
a material. A solution u(x, t) whose values lie at all times in [−1, 1] and in most of the space Rn takes values close 
to either +1 or −1 corresponds to a continuous realization of the phase state of the material, in which the two stable 
states coexist.

There is a broad literature on this type of solutions (in the static and dynamic cases). The main point is to derive 
qualitative information on the “interface region”, that is the walls separating the two phases. A close connection 
between these walls and minimal surfaces and surfaces evolving by mean curvature has been established in many 
works. To explain this connection, it is convenient to introduce a small parameter ε and consider the scaled version 
of (1.1) for uε(x, t) = u(εx, ε2t),

uε
t = �uε + ε−2f (uε). (1.3)

Let us consider a smooth embedded, orientable hypersurface �0 that separates Rn \ �0 into two components �−
0 and 

�+
0 and the characteristic function

u�0(x) =
{

−1 if x ∈ �−
0

+1 if x ∈ �+
0

.

The following principle (in suitable senses) has been explored in a number of works: the solution uε(x, t) of equa-
tion (1.3) with initial condition uε(x, 0) given by a suitable ε-regularization of u�0(x) satisfies

lim
ε→0

uε(x, t) = u�(t)(x), t > 0, (1.4)

where the surfaces �(t) in Rn evolve by mean curvature. In the smooth case this means that each point of �(t) moves 
in the normal direction with a velocity proportional to its mean curvature at that point. More precisely, there is a 
smooth family of diffeomorphisms Y(·, t) : �0 → �(t), t > 0 with Y(y, 0) = y, determined by the mean curvature 
flow equation

∂Y

∂t
= H�(t)(Y )ν(Y ), (1.5)

where H�(t)(Y ) designates the mean curvature of the surface �(t) at the point Y(y, t), y ∈ �0, namely the trace of 
its second fundamental form, ν is a choice of unit normal vector that points towards �+ at t = 0+. Besides (1.4), the 
profile of uε near the surface �(t) is given by

uε(x, t) ≈ w
( s

ε

)
, x = Y + sν(Y ), (1.6)

where w(s) is the unique (heteroclinic) solution to

w′′ + f (w) = 0 in R, w(0) = 0, w(±∞) = ±1

which exists and it is monotone. In the special case (1.2), it is given by

w(s) = tanh

(
s√
2

)
.

These asymptotic laws were first suggested by Allen–Cahn [1], then formally derived by Rubinstein–Sternberg–
Keller [22] and de Mottoni–Schatzmann [8]. Rigorous results on this line were obtained in the radial case by 
Bronsard–Kohn [2], and more in general by X. Chen [4]. In [17], Ilmanen proved the convergence (in a measure 
theoretical sense) to Brakke’s motion by mean curvature, for a setting not necessarily regular. Sáez [23] investigated 
the (smooth) link in R2 with curve-shortening flow.
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In the static case, the connection between interfaces and minimal surfaces �, namely H� = 0, has been investigated 
in many works starting with Modica [19], giving rise in particular to De Giorgi’s conjecture on the connection of the 
elliptic Allen–Cahn equation with Bernstein’s problem [7]. See for instance [11–13,18,20,21,24] and their references.

In the radial case where �(t) = ρ(t)Sn−1, it is easily checked that equation (1.5) reduces to the ODE

ρ′(t) = −n − 1

ρ(t)
,

which yields the “ancient” shrinking sphere solution

ρ∗(t) =√−2(n − 1)t, −∞ < t < 0. (1.7)

The result by Bronsard and Kohn [2] can be phrased like this: given a compact interval I ⊂ (−∞, 0), there exists a 
radial solution uε

I (r, t) of (1.3) that satisfies (1.4) for t ∈ I .
In this paper we will construct ancient solutions to Equation (1.1), with one or more transition layers close to the 

shrinking sphere (1.7) at all negative times. Because of self-similarity, we see that the transition layer |x| = ρ∗(t) for 
a solution uε of (1.3) corresponds to the same region for u(x, t) = uε(εx, ε2t), solution of (1.1). Thus in what follows 
we consider the problem

ut = �u + f (u) in R
n × (−∞,0], f (u) = (1 − u2)u. (1.8)

We prove

Theorem 1.1. There exists a radial solution u(x, t) of equation (1.8) such that

u(x, t) = w(|x| − ρ(t)) + φ(x, t)

where

ρ(t) =√−2(n − 1)t + O(1) as t → −∞,

where

lim
t→−∞φ(x, t) = 0 uniformly in x ∈R

n.

Our second result extends Theorem 1.1 to the case of ancient solutions with multiple interfaces. Given k ≥ 1, the 
point is to find solutions of the form

u(x, t) =
k∑

i=1

(−1)j−1w(|x| − ρj (t)) − 1

2
(1 + (−1)k−1) + φ(x, t) (1.9)

for a lower order perturbation φ(x, t) as t → −∞ and functions

ρ1(t) < ρ2(t) < · · · < ρk(t), (1.10)

which at main order satisfy ρj (t) ∼ √−2(n − 1)t . We prove

Theorem 1.2. Given any k ≥ 1, there exist functions ρj (t) as in (1.10) with

ρj (t) =√−2(n − 1)t + 1√
2

(
j − k + 1

2

)
log

( |t |
log |t |

)
+ O(1), j = 1, . . . , k, (1.11)

as t → −∞, and a radial ancient solution u(x, t) of equation (1.8) of the form (1.9) so that

lim
t→−∞φ(x, t) = 0 uniformly in x ∈R

n.
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The main difference between interfaces and surfaces evolving by mean curvature is that in the phase transition 
model different components do interact giving rise to interesting motion patterns. When regarded, after ε-scaling, as a 
solution of equation (1.3), the nodal set of uε(x, t) = u(ε−1x, ε−2t) has k components ρjε(t) which on each compact 
subinterval of (−∞, 0) satisfy

ρjε(t) =√−2(n − 1)t + 1√
2

(
j − k + 1

2

)
ε| log ε| + o(ε log ε).

The phenomenon described is not present in the limiting flow by mean curvature. Indeed there is a nonlocal interaction 
between the different components of the interface that leads to equilibrium. Solutions with multiple interfaces had 
already been constructed in [14]. In that reference the basic interface is a self-translating solution surface of mean 
curvature flow in Rn−1, n ≥ 3 of the form

xn = p(|x′|) + t, x′ ∈ R
n−1

where p is an entire radially symmetric function (at main order p(r) ∼ r2). Traveling wave solutions of equation (1.3)
with multiple-component resembling nested collapsing copies of this “paraboloid” were found in [14]. For a single 
component, this traveling wave solution was first found in [5]. The results of this paper can therefore be regarded as 
compact analogues of the traveling wave phenomenon. An important difference of the fact that in our current setting 
we cannot reduce the problem to the analysis of an elliptic equation and the parabolic problem must be considered 
all the way up to time t = −∞. Interaction of interfaces in the one-dimensional case in this problem has already 
been considered in [3,4,16,9], and in the static higher dimensional setting in [10,13,15]. As it will become clear in the 
course of this paper, the dynamics driving the interaction of the different components of the interface for a solution of 
the form (1.9) is given at main order by the first-order Toda type system,

1

β

(
ρ′

j + n − 1

ρj

)
− e−√

2(ρj+1−ρj ) + e−√
2(ρj −ρj−1) = 0, j = 1, . . . , k, t ∈ (−∞,0] (1.12)

with the conventions ρk+1 = ∞ and ρ0 = −∞, and a explicit constant β > 0. A proof consists of building by a 
Lyapunov–Schmidt type procedure a solution. It is made as a suitable small perturbation of a first approximation 
where the functions ρj (t) are left as parameters to be determined. The procedure reduces the construction to solving 
for the ρj ’s from a system which is a small nonlocal, nonlinear perturbation of (2.3). We carry out this procedure in 
the following sections.

2. The ansatz

We will only consider in the proof of Theorem 1.2 the case of an even number k ≥ 2. The odd situation (including 
the case k = 1 of Theorem 1.1) is similar.

Setting r = |x| and with some abuse of notation u = u(t, r), we want to find a k-layer solution to the equation

ut = urr + n − 1

r
ur + f (u), for all (t, r) ∈ (−∞,−T ] × (0,∞), (2.1)

ur(t,0) = 0 for all t ∈ (−∞,−T ],
for a large, given T > 0. Let w(s) = tanh( s√

2
) and k ≥ 2 be an even natural number. We set

wj(t, r) = w(r − ρj (t)),

where the functions ρi(t) are ordered,

0 < ρ1(t) < · · · < ρk(t).

Our purpose is to find a solution of (1.8) of the form

u(t, r) =
k∑

(−1)j−1wj(t, r) − 1 + ψ(t, r), (2.2)

j=1
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where the functions ρj (t) are required to satisfy at main order the system

1

β

(
ρ′

j + n − 1

ρj

)
− e−√

2(ρj+1−ρj ) + e−√
2(ρj −ρj−1) = 0, j = 1, . . . , k, t ∈ (−∞,−T ] (2.3)

with the conventions ρk+1 = ∞ and ρ0 = −∞, and a explicit constant β > 0 given by (5.2) below. We will prove in 
Section 5 that system (2.3) has a solution with the following form

ρj (t) = ρ0
j (t) + hj (t) (2.4)

where hj (t) = O((log |t |)−1) as t → −∞ and ρ0
j (t) takes the form

ρ0
j (t) =√−2(n − 1)t + (j − k + 1

2
)η + γj (2.5)

where the γj are explicit constants (given in Lemma 5.3) and η(t) solves the ODE

η′ + 1

2t
η + e−√

2η = 0, t ∈ (−∞,−1] (2.6)

η(−1) = 0, (2.7)

which according to Lemma 5.2 satisfies as t → −∞,

η(t) = 1√
2

log

( |t |
log |t |

)
+ O(1), (2.8)

and γj are the constants defined in Lemma 5.3. Let us set ρ(t) = (ρ1(t), . . . , ρk(t)) and write

ρ(t) := ρ0(t) + h(t), (2.9)

where the ρ0
j ’s are the functions in (2.5) and the (small) functions hj (t) are parameters to be found, on which we only 

a priori assume

sup
t≤−2

|h(t)| + sup
t≤−2

|t |
log |t | |h

′(t)| < 1.

We look for a solution of equation (2.1) of the form (2.2). We set

z(t, x) =
k∑

j=1

(−1)j+1wj(t, x) − 1 (2.10)

and consider the following projected version of equation (2.1) in terms of ψ :

ψt = ψrr + n − 1

r
ψr + f ′(z(t, r))ψ + E + N(ψ)

−
k∑

i=1

ci(t)w
′(r − ρi(t)), in (−∞,−T ) × (0,∞) (2.11)

and
∞∫

0

rn−1ψ(t, r)w′(r − ρi(t))dr = 0, for all i = 1, . . . , k, t < −T , (2.12)

where

E =
k∑

j=1

(−1)j+1
(

w′(r − ρj (t))ρ
′
j (t) + n − 1

r
w′(r − ρj (t))

)
+ f (z(t, r))

−
k∑

j=1

(−1)j+1f (wj (t, r)), (2.13)
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N(ψ) = f (ψ(t, r) + z(t, r)) − f (z(t, r)) − f ′(z(t, r))ψ,

where the functions ci(t) are chosen so that ψ satisfies the orthogonality condition (2.12), namely in such a way that 
the following (nearly diagonal) system holds.

k∑
i=1

ci(t)

∞∫
0

w′(r − ρi(t))w
′(r − ρj (t))r

n−1dr

= −
∞∫

0

ψrw
′′(r − ρj (t))r

n−1dr +
∞∫

0

f ′(z(t, r))ψw′(r − ρj (t))r
n−1dr

− ρ′
j (t)

∞∫
0

ψ(t, r)w′′(r − ρj (t))r
n−1dr

+
∞∫

0

(E + N(ψ))w′(r − ρj (t))r
n−1dr, ∀i = 1, ..., k, t < −T . (2.14)

Later we will choose h(t) such that ci(t) = 0, ∀ i = 1, ..., k. In the following lemma we find a bound for the error 
term E = E(t, r) in (2.13).

Lemma 2.1. Let T0 > 1, 0 < σ <
√

2, we define

�(t, r) = e
σ(−r+ρ0

j−1(t)) + e
σ(r−ρ0

j+1(t)),

if
ρ0

j (t) + ρ0
j−1(t)

2
≤ r ≤ ρ0

j (t) + ρ0
j+1(t)

2
, j = 2, ..., k,

�(t, r) = eσ(r−ρ0
2 (t)), if

ρ0
0(t) + ρ0

1(t)

2
≤ r ≤ ρ0

1(t) + ρ0
2(t)

2

�(t, r) = eσ(r−ρ0
1 (t)), if r ≤ ρ0

0(t) + ρ0
1(t)

2
(2.15)

with ρ0
0 = ρ0

1 − η and ρ0
k+1 = ∞. Then there exists a uniform constant C > 0 which depends only on k, such that

|E(t, r)| ≤ C(1 + 1

r
)�(t, r), ∀(t, r) ∈ (−∞,−T0] × (0,∞),

where E is the error term in (2.13), and ρ satisfies the assumptions of this section.

Proof. First we note that

|ρ′
j (t) + n − 1

r
| ≤ C

log |t |
|t | , if

ρ0
1(t) + ρ0

0(t)

2
≤ r ≤ ρ0

k +
√

2 + σ√
2 − σ

η,

w′(r − ρ0
j (t))

�
≤ C

(
log |t |

|t |
)

, ∀ r ≥ ρ0
k +

√
2 + σ√
2 − σ

η

and

w′(r − ρj (t))

�
≤ C

(
log |t |

|t |
)− σ√

2
, ∀r > 0,

for some positive constant independent of t , T0 and r .
Next assume that

ρ0
j (t) + ρ0

j−1(t) ≤ r ≤ ρ0
j (t) + ρ0

j+1(t)
, j = 1, ..., k.
2 2
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If i ≤ j − 1, by our assumptions on ρi , there exists a uniform constant C > 0 such that

|w(r − ρi(t)) − 1| ≤ Ce

√
2(−r+ρ0

j−1(t)).

Similarly if i ≥ j + 1

|w(r − ρi(t)) + 1| ≤ Ce

√
2(r−ρ0

j+1(t)).

We set

g =
j−1∑
i=1

(−1)i+1 (w(r − ρi) − 1) +
k∑

i=j+1

(−1)i+1 (w(r − ρi) + 1) .

Then∣∣∣∣∣f
(
g + (−1)j+1w(r − ρj (t))

)
−

k∑
i=1

(−1)i+1f (wi(t, r))

∣∣∣∣∣
≤ C

⎛
⎝j−1∑

i=1

|w(r − ρi) − 1| +
k∑

i=j+1

(−1)i+1|w(r − ρi) + 1|
⎞
⎠ .

Combining all above and using the properties of ρ we can reach to the desired result. �
3. The linear problem

This section is devoted to building a solution to the linear parabolic problem

ψt = ψrr + n − 1

r
ψr + f ′(z(t, r))ψ + g(t, x) −

k∑
j=1

ci(t)w
′(r − ρj (t)), in (−∞,−T0] × (0,∞), (3.1)

∫
R

rn−1ψ(t, r)w′(r − ρi(t))dr = 0, ∀i = 1, ..., k, t ∈ (−∞,−T0] (3.2)

for a bounded function g, and T0 > 0 fixed sufficiently large. In this section we use the following notations

Notation 3.1. i)

ρ = ρ0 + h,

ii)

z(t, x) =
k∑

j=1

(−1)j+1w(x − ρj (t)) − 1,

where h :R �→ R
k is a function that satisfies

sup
t≤−2

|h(t)| + sup
t≤−2

|t |
log |t | |h

′(t)| < 1.

The numbers ci(t) are exactly those that make the relations above consistent, namely, by definition for each t < −T0
they solve the linear system of equations

k∑
i=1

ci(t)

∞∫
w′(r − ρi(t))w

′(r − ρj (t))r
n−1dr
0
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= −
∞∫

0

ψrw
′′(r − ρj (t))r

n−1dr +
∞∫

0

f ′(z(t, r))ψw′(r − ρj (t))r
n−1dr

− ρ′
j (t)

∞∫
0

ψ(t, r)w′′(r − ρj (t))r
n−1dr

+
∞∫

0

g(t, r)w′(r − ρj (t))r
n−1dr, ∀i = 1, ..., k, t < −T . (3.3)

This system can indeed be solved uniquely since if T0 is taken sufficiently large, the matrix with coefficients ∫
R

rn−1w′(r − ρi(t))w
′(r − ρj (t))dr is nearly diagonal.

Our purpose is to build a linear operator ψ = A(g) that defines a solution of (3.1)–(3.2) which is bounded for norm 
suitably adapted to our setting.

Let C�((s, t) × (0, ∞) be the space of continuous functions with norm

||u||C�((s,t)×(0,∞)) =
∣∣∣∣∣∣ u

�

∣∣∣∣∣∣
L∞((s,t)×(0,∞))

, (3.4)

where � has been defined in (2.15).

Proposition 3.2. Let g = g1/r + g2. There exist positive numbers T0 and C such that for each g1, g2 ∈
C�((−∞, 0) × R), there exists a solution of Problem (3.1)–(3.2) ψ = A(g) which defines a linear operator of g
and satisfies the estimate

||ψ ||C�((−∞,t)×(0,∞)) ≤ C
(||g1||C�((−∞,t)×(0,∞)) + ||g2||C�((−∞,t)×(0,∞))

)
, ∀t ≤ −T0. (3.5)

The proof will be a consequence of intermediate steps that we state and prove next. Let g(t, r) ∈ C�((−∞, −T ) ×
(0, ∞)). For T > 0 and s < −T we consider the Cauchy problem

ψt = ψrr + n − 1

r
ψr + f ′(z(t, r))ψ + g(t, r), in (s,−T ] × (0,∞),

ψ(s, r) = 0, in (0,∞)

lim
r→0

rn−1ψr(t, r) = 0, ∀t ∈ (s,−T ] (3.6)

which is uniquely solvable. We call ψs(t, r) its solution.

3.1. A priori estimates for the solution of the problem (3.6)

We will establish in this subsection a priori estimates for the solutions ψs of (3.6) that are independent of s.

Lemma 3.3. Let g = g1/r + g2, g1, g2 ∈ C� ((s,−T ) × (0,∞)) and ψs ∈ C� ((s,−T ) × (0,∞)) be a solution of the 
problem (3.6) which satisfies the orthogonality conditions

∞∫
0

rn−1ψs(t, r)w′(r − ρi(t))dr = 0, ∀i = 1, ..., k, s < t < −T . (3.7)

Then there exists a uniform constant T0 > 0 such that for any t ∈ (s, −T0], the following estimate is valid

||ψs ||C�((s,t)×(0,∞)) ≤ C
(||g1||C�((s,t)×(0,∞)) + ||g2||C�((s,t)×(0,∞))

)
, (3.8)

where C > 0 is a uniform constant.
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Proof. Set

A
(s,t)
j =

{
(τ, r) ∈ (s, t) × (0,∞) : ρ0

j (τ ) + ρ0
j−1(τ )

2
< r <

ρ0
j (τ ) + ρ0

j+1(τ )

2

}
,

with ρ0
0 = ρ0

1 − η and ρ0
k+1 = ∞, and

A
(s,t)
j,R =

{
(τ, x) ∈ (s, t) × (0,∞) : |r − ρ0

j (τ )| < R + 1
}

.

We will prove (3.8) by contradiction. Let {si}, {t i} be sequences such that si < ti ≤ −T0, and si ↓ −∞, t i ↓ −∞. 
We assume that there exists gi = g1,i/r + g2 such that ψi solves (3.6) with s = si , −T = t i , g = gi and satisfies (3.7).

Finally we assume that

||ψi ||C�((si ,t i )×(0,∞)) = 1, (3.9)∣∣∣∣g1,i

∣∣∣∣
C�((si ,t i )×(0,∞))

+ ∣∣∣∣g2,i

∣∣∣∣
C�((si ,t i )×(0,∞))

→ 0,

First we note that we can assume

si + 1 < ti.

Indeed, set

φj (t, r) = MC(gi)e
l(t−si )

(
e
σ
(
−r+ρ0

j+1(t)
)
+ e

σ
(
r−ρ0

j−1(t)
)
+ eσ

(
4−r−ρ0

1 (t)
))

,

where

C(gi) = ∣∣∣∣g1,i

∣∣∣∣
C�((si ,t i )×(0,∞))

+ ∣∣∣∣g2,i

∣∣∣∣
C�((si ,t i )×(0,∞))

.

If we choose M, l > 0 large enough, we can use φj like barrier to obtain

|ψi(t, r)| ≤ Cel(t−si )�(t, r)
(∣∣∣∣g1,i

∣∣∣∣
C�((si ,t i )×(0,∞))

+ ∣∣∣∣g2,i

∣∣∣∣
C�((si ,t i )×(0,∞))

)
. (3.10)

Thus by above inequality we can choose si + 1 < ti .
To reach at contradiction we need the following assertion.

Assertion 1. Let R > 0 then we have

lim
i→∞

∣∣∣∣
∣∣∣∣ψi

�

∣∣∣∣
∣∣∣∣
L∞(A

(si ,ti )

j,R )

= 0, ∀j = 1, ...k. (3.11)

Let us first assume that (3.11) is valid.
Set

μi,j :=
∣∣∣∣
∣∣∣∣ψi

�

∣∣∣∣
∣∣∣∣
L∞(A

(si ,ti )

j,R )

−→i→∞ 0, ∀j = 1, ...k.

Let

ρ0
j (t) + ρ0

j−1(t)

2
≤ x ≤ ρ0

j (t) + ρ0
j+1(t)

2
, j = 1, ..., k

with ρ0
0 = ρ0

1 − η and ρ0
k+1 = ∞.

If n ≤ j − 1, then we have by our assumptions on ρn

|w(r − ρn(t)) − 1| ≤ Ce
√

2(−r+ρn−1(t)) ≤ Ce−
√

2
2 (ρj −ρj−1(t)) ≤ C

(
log |t |) 1

2

.
|t |
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Similarly if n ≥ j + 1

|w(r − ρn(t)) + 1| ≤ 2e
√

2(r−ρn+1(t)) ≤ C

(
log |t |

|t |
) 1

2

.

Moreover if we assume that |r − ρj (t)| > R + 1, then we have that

|w(r − ρj (t))| ≥ w(R).

Combining all above for any 0 < ε <
√

2 there exists i0 ∈N and R > 0 such that

−f ′(z(r, x)) ≥ 2 − ε2, ∀t ≤ t i , x ∈ R \ ∪k
j=1A

(si ,ti )
j,R and i ≥ i0. (3.12)

Consider the function

φi,j (t, r) = M

(
e
σ
(
−r+ρ0

j+1(t)
)
+ e

σ
(
r−ρ0

j−1(t)
)
+ e

σ
(

4M̃−r−ρ0
1 (t)

))

×
(∣∣∣∣g1,i

∣∣∣∣
C�((si ,t i )×(0,∞))

+ ∣∣∣∣g2,i

∣∣∣∣
C�((si ,t i )×(0,∞))

+ sup
1≤j≤k

μi,j

)
,

where M, M̃ > 1 is large enough which does not depend on si, t i .
First we note that

max(ψi(t, x) − φi,j (t, x),0) = 0, ∀ (t, x) ∈ ∪k
j=1A

(si ,t i )
j,R .

Now, let ε > 0, M̃ > 1 be such that n−1
M̃

+ 2 − ε2 > σ 2. Then we can choose i0 such that for any i > i0, we can 
use φi,j like a barrier to obtain

|ψi(t, r)| ≤ |φi,j (t, r)|, ∀(t, r) ∈ ((si , t i) × (0,∞)) \ ∪k
j=1A

(si ,t i )
j,R , j = 1, ...k, i ≥ i0.

The above inequality implies

1 = ||ψi ||C�((si ,t i )×(0,∞)) ≤ M

(
||gi ||C�((si ,t i )×(0,∞)) + sup

1≤j≤k

μi,j

)
,

which is clearly a contradiction if we choose i large enough.

Proof of Assertion 1. We will prove Assertion 1 by contradiction in four steps.
Let us give first the contradict argument and some notations. We assume that (3.11) is not valid. Then there exists 

j ∈ {1, ..., k} and δ > 0 such that∣∣∣∣
∣∣∣∣ψi

�

∣∣∣∣
∣∣∣∣
L∞(A

(si ,ti )

j,R )

> δ > 0, ∀i ∈ N.

Let (ti , yi) ∈ A
(si ,t i )
j,R such that∣∣∣∣ψi(ti , yi)

�(ti , yi)

∣∣∣∣> δ. (3.13)

We observe here that by definition of �

�(ti, yi) = eσ(−yi+ρj−1(ti )) + eσ(yi−ρj+1(ti )). (3.14)

We set r = x + ρj (t + ti ), yi = xi + ρj (ti) and

φi(t, x) = ψi(t + ti , x + xi + ρj (t + ti ))

�(t , x + ρ (t ))
.

i i j i
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Then φi satisfies

(φi)t = (φi)xx + n − 1

x + xi + ρj (t + ti )
(φi)x

+ ρ′
j (t + ti )(φi)x + f ′(z(t + ti , x + xi + ρj (t + ti )))φi

+ gi(t + ti , x + xi + ρj (t + ti ))

�(ti , xi + ρj (ti))
, in �

(si ,ti )
j ,

φi(si − ti , x) = 0, in (−xi − ρj (t + ti ),∞), (3.15)

where

�
(si ,ti )
j = {(t, x) ∈ (si , ti] ×R : −xi − ρj (t + ti ) < x}.

Also set

Bti ,n,j =
{

(t, x) ∈ (si − ti ,0] ×R : ρ0
n(t + ti ) + ρ0

n−1(t + ti )

2
− ρj (t + ti ) − xi

≤ x ≤ ρ0
n(t + ti ) + ρ0

n+1(t + ti )

2
− ρj (t + ti ) − xi

}

and

BM
ti ,n,j = Bti ,n,j ∩

{
(t, x) ∈ (si − ti ,0] ×R : |x + ρj (t + ti ) + xi − ρ0

n(t + ti )| > M
}

where n = 1, ...., k and M > 0. We note here that |xi | < R + 1, ∀ i ∈ N, |φi(0, 0)| = |ψi(ti , yi)/�(ti , yi)| > δ > 0. 
Also in view of the proof of (3.10) and the assumption (3.13) we can assume that

lim inf ti − si > ∞.

Without loss of generality we assume that xi → x0 ∈ BR+1(0), limi→∞ ti − si = ∞ (otherwise take a subsequence).

Step 1 We assert that φi → φ locally uniformly, φ(0, 0) > δ and φ satisfies

φt = φxx + f ′(w(x + x0))φ, in (−∞,0] ×R. (3.16)

Let (t, x) ∈ Bti ,n,j , 1 ≤ n ≤ k. By (2.9), (3.9) and (3.14) we have that

|φi(t, x)| ≤
∣∣∣∣ψi(t + ti , x + xi + ρj (t + ti ))

�(ti , xi + ρj (ti))

∣∣∣∣
≤
∣∣∣∣�(t + ti , x + xi + ρj (t + ti ))

�(ti , xi + ρj (ti))

∣∣∣∣
≤ C0(β, ||h||L∞ , sup

1≤j≤k

|γj |, σ,R)

×
( |ti | log |t + ti |

|t + ti | log |ti |
) σ√

2
eσ |x+ρj (t+ti )−ρn(t+ti )|, ∀i ∈N, (t, x) ∈ Bti ,n,j . (3.17)

Now note here that

∪∞
i=1Bti ,j,j = (−∞,0] ×R.

Thus the proof of the assertion of this step is complete.

Step 2 In this step we prove the following orthogonality condition for φ.∫
φ(t, x)w′(x + x0)dx = 0, ∀t ∈ (−∞,0]. (3.18)
R
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Let t ∈ ∩∞
i=i0

(si − ti , 0], for some i0 ∈ N.

x ∈ Bt,ti ,n,j =
{

x ∈R : ρ0
n(t + ti ) + ρ0

n−1(t + ti )

2
− ρj (t + ti ) − xi

≤ x ≤ ρ0
n(t + ti ) + ρ0

n+1(t + ti )

2
− ρj (t + ti ) − xi

}
.

By (3.17) we have that∣∣∣∣∣∣∣
∫

Bt,ti ,j,j

xαφi(t, x)w′(x + xi)dx

∣∣∣∣∣∣∣≤ C0

∫
R

rαe−(
√

2−σ)|x|dx < C, ∀α = 0,1, ..., n − 1. (3.19)

Let α ∈ N ∪ {0} and n > j . By (3.17), the assumptions on ρ (see Notation 3.1) and the fact that |xi | < R + 1 we 
have that∣∣∣∣∣∣∣

∫
Bt,ti ,n,j

xαφi(t, x)w′(x + xi)dx

∣∣∣∣∣∣∣

≤ C0

ρ0
n(t+ti )+ρ0

n+1(t+ti )

2 −ρj (t+ti )−xi∫
ρ0
n(t+ti )+ρ0

n−1(t+ti )

2 −ρj (t+ti )−xi

|x|αe−√
2x+σ |x+ρj (t+ti )−ρn(t+ti )|dx

≤ C(log |t + ti |)α
(

log |t + ti |
|t + ti |

) (
√

2−σ)

2
√

2 →i→∞ 0. (3.20)

Similarly the estimate (3.20) is valid if n < j .
By (3.19), (3.20) we have that

0 = lim
i→∞

1

(ρj (t + ti ))n−1

∞∫
−xi−ρj (t+ti )

(x + ρj (t + ti ) + xi)
n−1φi(t, x)w′(x + xi)dx

=
∫
R

φ(t, x)w′(x + x0)dx

and the proof of this assertion follows.

Step 3 In this step we prove the following assertion:
There exists C = C(R, σ) > 0, such that

|φ(t, x)| ≤ Ce−σ |x|, ∀(t, x) ∈ (−∞,0] ×R. (3.21)

Now, note that if (t, x) ∈ Bti ,n,j , by definition of ρ (Notation 3.1), we have

eσ |x+ρj (t+ti )−ρn(t+ti )| ≤ C0(β, ||h||L∞ , sup
1≤j≤k

|γj |, σ,R)eσ |x|.

Thus, in view of the proof of (3.17) we have that∣∣∣∣gi(t + ti , x + xi + ρj (t + ti ))

�(ti , xi + ρj (ti))

∣∣∣∣≤ CC1(gi)e
σ |x|, ∀x ≥ −xi − ρj (t + ti ) + M̃, ∀i ∈N

and



M. del Pino, K.T. Gkikas / Ann. I. H. Poincaré – AN 35 (2018) 187–215 199
∣∣∣∣gi(t + ti , x + xi + ρj (t + ti ))

�(ti , xi + ρj (ti))

∣∣∣∣≤ CC1(gi)
||gi ||C�((si ,t i )×R)

x + xi + ρj (t + ti )
eσ |x|

∀ − xi − ρj (t + ti ) < x ≤ −xi − ρj (t + ti ) + M̃, ∀i ∈N

where

C1(gi) = ∣∣∣∣g1,i

∣∣∣∣
C�((si ,t i )×(0,∞))

+ ∣∣∣∣g2,i

∣∣∣∣
C�((si ,t i )×(0,∞))

.

Let ε > 0 be such that σ + ε <
√

2, set

G(t, x) = C(M)
(
e−σ |x| + ||gi ||C�((si ,t i )×(0,∞))

(
e(σ+ε)x + e−(σ+ε)x

))
.

In view of the proof of Assertion 1 we can find i0, R, M̃ and M > 0 such that we use G(t, x) like a barrier to obtain

φi ≤ G(t, x), ∀(t, x) ∈ �
(si ,ti )
j .

The proof of (3.21) follows if we send i → ∞.

Step 4 In this step we prove the assertion (3.11). Consider the Hilbert space

H = {ζ ∈ H 1(R) :
∫
R

ζ(x)w′(x)dx = 0}.

Then it is well known that the following inequality is valid∫
R

|ζ ′(x)|2 − f ′(w)|ζ |2 ≥ c

∫
R

|ζ(x)|2dx, ∀φ(x) ∈ H ∩ L2(R). (3.22)

Thus if we multiply (3.16) by φ and integrate with respect to x we have

0 = 1

2

∫
R

(φ2)t dx +
∫
R

|φx |2 − f ′(w(x))|φ|2

≥ 1

2

∫
R

(φ2)t dx + c

∫
R

|φ(t, x)|2dx.

Set a(t) = ∫
R

|φ(t, x)|2dx, we have that there exists a c0 such that

a′(t) ≤ −c0a(t) ⇒ a(t) > a(0)ec0|t |,

which is a contradiction since

||eσ |x|φ||L∞((−∞,0]×R) < C. �
3.2. The problem (3.6) with g(t, r) = h(t, r) −∑k

j=1 ci(t)w
′(r − ρj (t))

In this subsection, we study the following problem.

ψt = ψrr + n − 1

r
ψr

+ f ′(z(t, r))ψ + h(t, r) −
k∑

j=1

ci(t)w
′(r − ρj (t)), in (s,−T ] × (0,∞),

ψ(s, r) = 0, in (0,∞)

lim
r→0

rn−1ψr(t, r) = 0, ∀t ∈ (s,−T ] (3.23)

where h = h1/r + h2, h1, h2 ∈ C�((s, −T ) ×R) and ci(t) satisfies the following (nearly diagonal) system
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k∑
i=1

ci(t)

∞∫
0

w′(r − ρi(t))w
′(r − ρj (t))r

n−1dr

= −
∞∫

0

rn−1ψrw
′′(r − ρj (t))dr +

∞∫
0

f ′(z(t, r))ψw′(r − ρj (t))r
n−1dr

− ρ′
j (t)

∞∫
0

ψ(t, r)
(
w′(r − ρj (t))r

n−1
)

r
dr

+
∞∫

0

h(t, r)w′(r − ρj (t))r
n−1dr, ∀i = 1, ..., k, t < −T0. (3.24)

We note here that if ψ is a solution of (3.23) and ci(t) satisfies the above system then ψ satisfies the orthogonality 
conditions

∞∫
0

ψ(t, r)w′(r − ρi(t))r
n−1dr = 0, ∀i = 1, ..., k, s < t < −T0.

The main result of this subsection is the following

Lemma 3.4. Let h = h1/r + h2, h1, h2 ∈ C�((s, −T ) × R). Then there exist a uniform constant T0 ≥ T > 0, and a 
unique solution ψs of the problem (3.23).

Furthermore, we have that ψs satisfies the orthogonality conditions (2.12), ∀s < t < −T0, and the following 
estimate

||ψs ||C�((s,t)×(0,∞)) ≤ C
(||h1||C�((s,t)×(0,∞)) + ||h2||C�((s,t)×(0,∞))

)
, (3.25)

where C > 0 is a uniform constant.

To prove the above Lemma we need the following result

Lemma 3.5. Let T > 0 big enough, h = h1/r + h2, h1, h2 ∈ C�((s, −T ) ×R) and ψ ∈ C�((s, −T ) × (0, ∞)). Then 
there exist ci(t), i = 1, ..., k such that the nearly diagonal system (3.24) holds.

Furthermore the following estimates for ci are valid, for some constant C > 0 that does not depend on 
T , s, t, ψ, f

|ci(t)| ≤ C

(
log |t |

|t |
)1+ σ

2
√

2 ||ψ ||C�((s,−T )×(0,∞))

+ C

(
log |t |

|t |
) 1

2 + σ

2
√

2 (||h1||C�((s,−T )×(0,∞)) + ||h2||C�((s,−T )×(0,∞))

)
, ∀ t ∈ [s,−T ], ∀ i = 1, ..., k

and ∣∣∣∣ci(t)w
′(r − ρi(t))

�(t, r)

∣∣∣∣≤ C

(
log |t |

|t |
)1− σ

2
√

2 ||ψ ||C�((s,−T )×(0,∞))

+ C

(
log |t |

|t |
) 1

2 − σ

2
√

2 (||h1||C�((s,−T )×(0,∞)) + ||h2||C�((s,−T )×(0,∞))

)
, ∀ t ∈ [s,−T ], ∀ i = 1, ..., k.

Proof. For i < j , we have
∞∫

0

rn−1w′(r − ρi(t))w
′(r − ρj (t))dr =

∞∫
−ρ (t)

(x + ρj (t))
n−1w′(x + (ρj (t) − ρi(t)))w

′(x)dx
j
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n−1∑
l=0

(
n − 1

l

)
(ρj (t))

n−1−l

∞∫
−ρj (t)

xlw′(x + (ρj (t) − ρi(t)))w
′(x)dx

≤ (ρ0
j (t))n−1(η(t))n+1 | log |t ||

t
,

thus the system is nearly diagonal and we can solve it for T big enough.
Also we can easily prove that

∞∫
0

xl�(t, x)dx ≤ C

k∑
j=1

(ρ0
j (t) + ρ0

j−1(t))
l

(
log |t |

|t |
) σ

2
√

2
(3.26)

and
∞∫

0

xl�(t, x)w′(r − ρj (t))dx ≤ C

k∑
j=1

(ρ0
j (t) + ρ0

j−1(t))
l

(
log |t |

|t |
) 1

2 + σ

2
√

2
, (3.27)

where ρ0
0 = ρ1 − η, ρ0

k+1 = ∞.
By assumptions on ρ we have∣∣∣∣ρ′

j (t) + n − 1

r + ρj (t)

∣∣∣∣≤ C
log |t |

|t | , if
ρ0

1(t) + ρ0
0(t)

2
≤ r ≤ ρ0

k +
√

2 + σ√
2 − σ

η, (3.28)

thus we can show∣∣∣∣∣∣
∞∫

0

rn−1
(

ρ′
j (t) + n − 1

r

)
ψw′′(r − ρj (t))dr

∣∣∣∣∣∣≤ C

k∑
j=1

(ρ0
j (t) + ρ0

j−1(t))
n−1
(

log |t |
|t |

)1+ σ

2
√

2
. (3.29)

Now, by (3.27), we have∣∣∣∣∣∣∣
∞∫

−ρj (t)

(r + ρj (t))
n−1 (f ′(w(r)) − f ′(z(t, r + ρj (t)))

)
ψ(t, r + ρj (t))w

′(r)dx

∣∣∣∣∣∣∣
≤ C ||ψ ||C�((s,−T )×(0,∞))

log |t |
|t |

∞∫
−ρj (t)

(r + ρj (t))
n−1�(t, r + ρj (t))dr

≤ C ||ψ ||C�((s,−T )×(0,∞))

(
log |t |

|t |
)1+ σ

2
√

2
k∑

j=1

(ρ0
j (t) + ρ0

j−1(t))
n−1. (3.30)

Using all above and by simple calculations, we can reach at the proof of the first inequality of the Lemma.
The second inequality is a consequence of the fact that∣∣∣∣ci(t)w

′(x − ρi(t))

�(t, x)

∣∣∣∣≤ C

( |t |
log |t |

) σ√
2
.

The proof of Lemma is complete. �
Proof of Lemma 3.4. We will prove that there exists a unique solution of the problem (3.23) by using a fix point 
argument.

Let

Xs = {ψ : ||ψ ||C�((s,s+1)×(0,∞) < ∞}.
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We consider the operator As : Xs → Xs given by

As(ψ) = T s(h − C(ψ)),

where T s(g) denotes the solution to (3.6) and C(ψ) =∑k
j=1 ci(t)w

′(x −ρj (t)). Also by standard parabolic estimates 
we have

||As(ψ)||C�((s,s+1)×(0,∞)) ≤ C0
(||h2 − C(ψ)||C�((s,s+1)×(0,∞)) + ||h1||C�((s,s+1)×(0,∞))

)
, (3.31)

for some uniform constant C0 > 0. We will show that the map As defines a contraction mapping and we will apply 
the fixed point theorem to it. To this end, set

c = C0
(||h1||C�((s,−T )×(0,∞)) + ||h2||C�((s,−T )×(0,∞))

)
and

Xs
c = {ψ : ||ψ ||C�((s,s+1)×(0,∞)) < 2c},

where constant C0 is taken from (3.31), for C(T , s) = C(s + 1, s). We note here that by standard parabolic theory, the 
constant C(T , s) = C0|(−T − s)|.

We claim that As(Xs
c) ⊂ Xs

c , indeed by inequality (3.31) we have

||As(ψ)||C�((s,s+1)×(0,∞)) ≤ C0
(||h2 − C(ψ)||C�((s,s+1)×(0,∞)) + ||h1||C�((s,s+1)×(0,∞))

)
≤ C0

(||h1||C�((s,−T )×(0,∞)) + ||h2||C�((s,−T )×(0,∞)) + ||C(ψ)||C�((s,s+1)×(0,∞))

)
≤ C0√|s + 1|

(||ψ ||C�((s,s+1)×(0,∞))

)+ c

≤ c + c,

where in the above inequalities we have used Lemma 3.5 and we have chosen |s| big enough. Next we show that As

defines a contraction map. Indeed, since C(ψ) is linear in ψ we have

||As(ψ1) − As(ψ2)||C�((s,s+1)×(0,∞))

≤ ||C(ψ1) − C(ψ2)||C�((s,s+1)×(0,∞)) = ||C(ψ1 − ψ2)||C�((s,s+1)×(0,∞))

≤ C√|s + 1| ||(ψ1 − ψ2)||C�((s,s+1)×(0,∞))

≤ 1

2
||(ψ1 − ψ2)||C�((s,s+1)×(0,∞)).

Combining all above, we have by fixed point theorem that there exists a ψs ∈ Xs so that As(ψs) = ψs , meaning that 
the equation (3.23) has a solution ψs , for −T = s + 1.

We claim that ψs(t, x) can be extended to a solution on (s, −T0] × (0, ∞), still satisfies the orthogonality condi-
tion (2.12) and the a priori estimate. To this end, assume that our solution ψ(t, ·) exists for s ≤ t ≤ −T , where T > T0
is the maximal time of the existence. Since ψs satisfies the orthogonality condition (2.12), we have by (3.8)

||ψs ||C�((s,−T )×(0,∞)) ≤ C
(||h2 − C(ψ)||C�((s,−T )×(0,∞)) + ||h1||C�((s,−T )×(0,∞))

)
.

Thus if we choose T0 big enough, we have by Lemma 3.5 that

||ψs ||C�((s,−T )×(0,∞)) ≤ C
(||h1||C�((s,−T )×(0,∞)) + ||h2||C�((s,−T )×(0,∞))

)
≤ C

(||h1||C�((s,−T0)×(0,∞)) + ||h2||C�((s,−T0)×(0,∞))

)
.

It follows that ψs can be extended past time −T , unless T = T0. Moreover, (3.25) is satisfied as well and ψs also 
satisfies the orthogonality condition. �
Proof of Proposition 3.2. Take a sequence sj → −∞ and ψj = ψsj where ψsj is the function (3.23) with s = sj . 
Then by (3.8), we can find a subsequence {ψj } and ψ such that ψj → ψ locally uniformly in (−∞, −T0) × (0, ∞).

Using (3.8) and standard parabolic theory we have that ψ is a solution of (3.23) and satisfies (3.5). The proof is 
concluded.
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4. The nonlinear problem

Going back to the nonlinear problem, function ψ is a solution of (2.11) if and only if ψ ∈ C�((−∞, −T0) ×(0, ∞))

solves the fixed point problem

ψ = A(ψ) (4.1)

where

A(ψ) := T (E(ψ)),

A is the operator in Proposition 3.2 and

E(ψ) = E + N(ψ) −
k∑

i=1

ci(t)w
′(x − ρi(t)).

Let T0 > 1, then we define

� =
{

h ∈ C1(−∞,−T0] : sup
t≤−T0

|h(t)| + sup
t≤−T0

( |t |
log |t | |h

′(t)|
)

< 1

}

and

||h||� = sup
t≤−T0

(|h(t)|) + sup
t≤−T0

( |t |
log |t | |h

′(t)|
)

.

The main goal in this section is to prove the following Proposition.

Proposition 4.1. Let σ <
√

2 and ν =
√

2−σ

2
√

2
. There exists number T0 > 0, depending only on σ such that for any 

given functions h in �, there is a solution ψ = �(h) of (4.1), with respect to ρ = ρ0 + h. The solution ψ satisfies the 
orthogonality conditions (2.9)–(2.10). Moreover, the following estimate holds

||�(h1) − �(h2)||C�((−∞,−T0)×(0,∞)) ≤ C

(
logT0

T0

)ν

||h1 − h2||�, (4.2)

where C is a universal constant.

To prove Proposition 4.1 we need to prove some lemmas first.
Set

XT0 = {ψ : ||ψ ||C�((−∞,−T0)×(0,∞)) < 2C0

(
logT0

T0

)ν

},

for some fixed constant C0.
We denote by N(ψ, h) the function N(ψ) in (3.3) with respect to ψ and ρ = ρ0 + h. Also we denote by zi the 

respective function in (2.10) with respect to ρ = ρi = ρ0 + hi , i = 1, 2.

Lemma 4.2. Let h1, h2 ∈ � and ψ1, ψ2 ∈ XT0 . Then there exists a constant C = C(C0) such that

||N(ψ1, h1) − N(ψ2, h2)||C�((−∞,−T0)×(0,∞))

≤ C

(
logT0

T0

)ν (||ψ1 − ψ2||C�((−∞,−T0)×(0,∞)) + ||h1 − h2||�
)
.

Proof. First we will prove that there exists constant C > 0 which depends only on C0 such that

||N(ψ1, h1) − N(ψ2, h1)||C�((−∞,−T0)×(0,∞)) ≤ C

(
logT0

)ν

||ψ1 − ψ2||C�((−∞,−T0)×(0,∞)). (4.3)

T0
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By straightforward calculation we can easily show that

|N(ψ1, h1) − N(ψ2, h1)| ≤ C

(
logT0

T0

)ν

|ψ1 − ψ2|(� + �2),

where the constant C depends on C0 and the proof of (4.3) follows.
Now we will prove that

||N(ψ2, h1) − N(ψ2, h2)||C�((−∞,−T0)×(0,∞)) ≤ C

(
logT0

T0

)ν

||h1 − h2||�, (4.4)

where the constant C depends on C0.
By straightforward calculations we have

|N(ψ2, h1) − N(ψ2, h2)| = | − (z1 + ψ2)
3 + z3

1 + 3z2
1ψ2 + (z2 + ψ2)

3 − z3
2 − 3z2

2ψ2|

≤ C

(
logT0

T0

)ν

|h1 − h2|�2, (4.5)

which implies (4.4). By (4.3) and (4.4) the result follows. �
We denote by E(h) the function E in (3.3) with respect to ψ and ρ = ρ0 + h.

Lemma 4.3. Let h1, h2 ∈ �. Then there exists constant C = C(C0) such that

||E(h1) − E(h2)||C�((−∞,−T0)×(0,∞)) ≤ C

(
logT0

T0

)ν

||h1 − h2||�. (4.6)

Proof. Set ρ = ρ0 + h1, ζ = ρ0 + h2. In view of the proof of Lemma 2.1 and the above inequality we have

|f (z1(t, r)) −
k∑

j=1

(−1)j+1f (w(r − ρj )) − f (z2(t, r)) +
k∑

j=1

(−1)j+1f (w(r − ζj ))

≤ C|h1 − h2||w′(r − ρ0
j−1(t))|, if

ρ0
j (t) + ρ0

j−1(t)

2
≤ r ≤ ρ0

j (t) + ρ0
j+1(t)

2
,

with ρ0
0 = ρ0

1 − η and ρ0
k+1 = ∞.

By the assumptions on ζ we have that there exists a positive constant C = C(N, k, σ) > 0 such that

|ζ ′
j (t) + n − 1

r
| ≤ C

(
log |t |

|t |
)

, if
ρ0

1(t) + ρ0
0(t)

2
≤ r ≤ ρ0

k +
√

2 + σ√
2 − σ

η,

w′(r − ρj (t))

�
≤ C

(
log |t |

|t |
)

, ∀ r ≥ ρ0
k +

√
2 + σ√
2 − σ

η,

w′(r − ρj (t))

�
≤ C

(
log |t |

|t |
)ν

, ∀ r ≤ ρ0
1(t) + ρ0

0(t)

2
, j = 1, ..., k,

and

1

r
|

k∑
j=1

(−1)j+1w′(r − ρj (t)) −
k∑

j=1

(−1)j+1w′(r − ζj (t))|

≤ C

r
|w′(r − ρ0

j (t))|||h1 − h2||�, ∀r ≤ ρ0
1(t) + ρ0

0(t)

2
.

Combining all above we can reach to the desired result by simple arguments. �
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Lemma 4.4. Let h1, h2 ∈ �, ψ1, ψ2, ψ ∈ X. Also let C(ψ, h, t) = (c1(t), ..., ck(t)) satisfy (3.24) with respect to ψ

and ρ = ρ0 + h. Then

|C(ψ1, h1, t) − C(ψ2, h2, t)| ≤ C

( | log |t |
|t |

)1+ σ

2
√

2 ||ψ1 − ψ2||C�((−∞,−T0)×(0,∞))

+ C

(
log |t |

|t |
)ν+ σ√

2 ||h1 − h2||�, (4.7)

for some positive constant C0 which depends only on C0.

Proof. For the proof of Lemma, we do very similar calculations like in Lemmas 3.5, 4.2, 4.3 and we omit it. �
Proof of Proposition 4.1. a) We consider the operator A : C�((−∞, −T0) × (0, ∞)) → C�((−∞, −T0) × (0, ∞)), 
where A(ψ) denotes the solution to (4.1). We will show that the map A defines a contraction mapping and we will 
apply the fixed point theorem to it. First we note by Lemma 2.1 and Theorem 3.2 that

||A(0)||C�((−∞,−T0)×(0,∞)) ≤ C0

(
logT0

T0

)ν

,

and by Proposition 3.2 and Lemma 3.4

||A(ψ1) − A(ψ2)||C�((−∞,−T0)×(0,∞))

≤ C

(
logT0

T0

)ν (||ψ1 − ψ2||C�((−∞,−T0)×(0,∞))

)
providing

||ψi ||C�((−∞,−T0)×(0,∞)) ≤ 2C0

(
logT0

T0

)ν

.

Thus if we choose T0 big enough we can apply the fix point Theorem in

XT0 = {ψ : ||ψ ||C�((−∞,−T0)×(0,∞)) < 2C0

(
logT0

T0

)ν

},
to obtain that there exists ψ such that A(ψ) = ψ .

b) For simplicity we set ψ1 = �(h1) and ψ2 = �(h2). The estimate will be obtained by applying the estimate (3.8). 
However, because each ψi satisfies the orthogonality conditions (2.12) with ρ(t) = ρi(t) := ρ0(t) + hi(t), the differ-
ence ψ1 − ψ2 doesn’t satisfy an exact orthogonality condition. To overcome this technical difficulty we will consider 
instead the difference Y := ψ1 − ψ

2
, where

ψ
2 = ψ2 −

k∑
i=1

λi(t)w
′(x − ρ1

i ),

with

k∑
i=1

λi(t)

∞∫
0

rn−1w′(r − ρ1
i (t))w′(r − ρ1

j (t))dx =
∞∫

0

rn−1ψ2(t, r)w′(x − ρ1
j (t))dr,

j = 1, ..., k. Clearly, Y satisfies the orthogonality conditions (2.12) with ρ(t) = ρ1(t). Denote by Li
t the operator

Li
tψ

i = ψi
t − ψi

rr − n − 1

r
ψi

r − f ′(zi(t, x))ψi.

By Lemmas 4.2, 4.3 and 4.4 and the fact that

w(r − ρ0
j (t)) ≤ C|t | σ√

2 , ∀r > 0 and j = 1, ..., k,

�
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we can easily prove

||Y ||C�((−∞,−T0)×(0,∞)) ≤ C

(
logT0

T0

)ν (||ψ1 − ψ2||C�((−∞,−T0)×(0,∞)) + ||h1 − h2||�
)

+ C

(
logT0

T0

)ν
(

k∑
i=1

sup
t∈(−∞,−T0)

|t | σ√
2 |λi(t)|

)
. (4.8)

Now, by orthogonality conditions (2.12) and (3.26), we have∣∣∣∣∣∣
∞∫

0

rn−1ψ2(t, x)w′(r − ρ1
j (t))dr

∣∣∣∣∣∣=
∣∣∣∣∣∣

∞∫
0

rn−1ψ2(t, r)(w′(r − ρ1
j (t)) − w′(r − ρ2

j (t)))dr

∣∣∣∣∣∣
≤ C

(
logT0

T0

)ν

|t |− σ√
2 ||h1 − h2||�

k∑
i=1

(ρ0
i )n−1. (4.9)

Now∣∣∣∣∣
d
∫∞

0 rn−1ψ2(t, r)w′(r − ρ1
j (t))dr

dt

∣∣∣∣∣
=
∣∣∣∣∣
d
∫∞

0 rn−1ψ2(t, r)(w′(r − ρ1
j (t)) − w′(r − ρ2

j (t)))dr

dt

∣∣∣∣∣ . (4.10)

But
∞∫

0

rn−1ψ2
t (t, r)(w′(r − ρ1

j (t)) − w′(r − ρ2
j (t)))dr

= −
∞∫

0

rn−1ψ2
r (t, x)(w′′(r − ρ1

j (t)) − w′′(r − ρ2
j (t)))dr

+
∞∫

0

rn−1L2
t ψ

2(w′(r − ρ1
j (t)) − w′(r − ρ2

j (t)))dr

+
∫

(0,∞)

f ′(z2(t, x))ψ2(t, x)(w′(r − ρ1
j (t)) − w′(r − ρ2

j (t)))dr

=
∞∫

0

rn−1ψ2(t, r)(rn−1(w′′(r − ρ1
j (t)) − w′′(r − ρ2

j (t))))rdr

+
∞∫

0

rn−1L2
t ψ

2(w′(r − ρ1
j (t)) − w′(r − ρ2

j (t)))dr

+
∞∫

0

rn−1f ′(z2(t, r))ψ2(t, r)(w′(r − ρ1
j (t)) − w′(r − ρ2

j (t)))dr.

By the fix point argument in a) we have that∣∣∣∣∣∣
∞∫

rn−1ψ2
t (t, r)(w′(r − ρ1

j (t)) − w′(r − ρ2
j (t)))dr

∣∣∣∣∣∣

0



M. del Pino, K.T. Gkikas / Ann. I. H. Poincaré – AN 35 (2018) 187–215 207
≤ C

(
logT0

T0

)ν

|t |− σ√
2 ||h1 − h2||�

k∑
i=1

(ρ0
i )n−1. (4.11)

By (4.9), (4.10), (4.11) and definitions of λi we have that

|λi(t)| + |λ′
i (t)| ≤ C

(
logT0

T0

)ν

|t |− σ√
2 ||h1 − h2||�.

Combining all above we have that

||Y ||C�((−∞,−T0)×(0,∞)) ≤ C

((
logT0

T0

)ν

||ψ1 − ψ2||C�((−∞,−T0)×(0,∞)) + ||h1 − h2||�
)

.

But

||ψ1 − ψ2||C�((−∞,−T0)×(0,∞)) ≤ ||Y ||C�((−∞,−T0)×(0,∞)) + C

(
k∑

i=1

sup
t∈(−∞,−T0)

|t | σ√
2 |λi(t)|

)

≤ C

(
logT0

T0

)ν (||ψ1 − ψ2||C�((−∞,−T0)×(0,∞)) + ||h1 − h2||�
)
,

and the proof of inequality (4.2) follows if we choose T0 big enough. �
5. The choice of ρi

Let T0 big enough, 
√

2
2 < σ <

√
2 and ψ ∈ C�((−∞, −T0) × (0, ∞)) be the solution of the problem (2.11). We 

want to find ρi such that ci = 0 in (2.14) for any i = 1, ..., k.
We will study only the error term E. Let 1 < j < k, then we have that

∞∫
0

rn−1

(
f (z(t, r)) −

k∑
i=1

(−1)i+1f (w(r − ρi(t)))

)
w′(r − ρj (t))dr

=
∞∫

−ρj (t)

(x + ρj (t))
n−1

(
f (z(t, x + ρj (t))) −

k∑
i=1

(−1)i+1f (w(x + ρj (t) − ρi(t)))

)
w′(x)dx.

For simplicity we assume that i is even. Set

g =
j−2∑
i=1

(−1)i+1 (w(x + ρj (t) − ρi(t)) − 1
)

+
k∑

i=j+2

(−1)i+1 (w(x + ρj (t) − ρi(t)) + 1
)
,

g1 = w(x + ρj − ρj−1) − 1,

and

g2 = w(x + ρj − ρj+1) + 1.

By straightforward calculations we have
∞∫

−ρj (t)

(x + ρj (t))
n−1

(
f (z(t, x − ρj (t))) −

k∑
i=1

(−1)i+1f (w(x + ρj (t) − ρi(t)))

)
w′(x)dx

= 3

∞∫
−ρ (t)

(x + ρj (t))
n−1(g1 + g2)(1 − w2(x))w′(x)dx + 3

∞∫
−ρ (t)

g2
1(1 + w(x))w′(x)dx
j j
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+ 3

∞∫
−ρj (t)

(x + ρj (t))
n−1g2

2(w(x) − 1)w′(x)dx +
∞∫

−ρj (t)

(x + ρj (t))
n−1F0(t, x)w′(x)dx,

where

F0(t, x) = O(g) + O(g1g2).

By a simple argument we can show
∞∫

−ρj (t)

(x + ρj (t))
n−1g1(1 − w2(x))w′(x)dx

= −2e−√
2(ρj −ρj−1)

n−1∑
l=1

(
n − 1

l

)
ρl

j

∫
R

xn−1−le−√
2x(1 − w2(x))w′(x)dx

+ F2(ρ)

where F2 satisfies

|F2| ≤ C

k∑
l=1

|ρj (t) − ρj−1(t)|le−√
2(ρj −ρj−1)

n−1∑
l=1

ρl
j (t) + O(ρn−1

j e−√
2ρj (t)).

Similarly for g2, j = 1, ..., k, and in view of the proof of Lemma 3.5 we can reach at the ODE, for ρ = (ρ1, ..., ρk)

ρ′
j + n − 1

ρj

− βe−√
2(ρj+1−ρj ) + βe−√

2(ρj −ρj−1) = Fi(ρ
′, ρ), j = 1,2, ..., k, t ∈ (−∞,−T0], (5.1)

with ρk+1 = ∞, ρ0 = −∞ and

β = 6
∫
R

e
2x√

2 (1 − w2(x))w′(x)dx∫
R
(w′(x))2dx

. (5.2)

We recall here that we assume T0 > 1, we denote by

� = {h ∈ C1(−∞,−T0] : sup
t≤−T0

|h(t)| + sup
t≤−T0

|t |
log |t | |h

′(t)| < 1}

and

||h||� = sup
t≤−T0

(|h(t)|) + sup
t≤−T0

(
|t |

log |t | |h
′(t)|).

We set

F(h′, h) = F(ρ′, ρ),

where ρ = ρ0 + h.
Working like above and as in Lemmas 4.9, 4.10, 4.11 and using (4.2) we have the following result.

Proposition 5.1. Let 
√

2
2 < σ <

√
2 and h, h1, h2 ∈ �. Then there exists a constant C = C(σ, n, k) > 0 such that

|F(h′, h)| ≤ C

|t | ,
and

|F(h′
1, h2) − F(h′

1, h2)| ≤ C

(
log |t |

|t |
) 1

2 + σ√
2 ||h1 − h2||�.

In the rest of this section we will study the system (5.1) using some ideas in [6].



M. del Pino, K.T. Gkikas / Ann. I. H. Poincaré – AN 35 (2018) 187–215 209
5.1. The choice of ρ0

Lemma 5.2. There exists a unique solution η with η(−1) = 0 of the problem

η′ + 1

2t
η + e−√

2η = 0, t ∈ (−∞,−1]. (5.3)

Furthermore there exist T̃0 and a positive constant C = C(T̃0) > 0 such that

− 1√
2

log

(
C−1 log |t |

|t |
)

≤ η(t) ≤ − 1√
2

log

(
C

log |t |
|t |

)
, ∀t ≤ −T̃0, (5.4)

0 ≤ −η′(t) ≤ C
log |t |

|t | , ∀t ≤ −T̃0. (5.5)

Proof. By standard ODE theory we have that there exists a unique solution η of the Problem (5.3) which satisfies

η = 1√−t

−1∫
t

√−te−√
2η(s)ds, t ≤ −1. (5.6)

Note that by (5.6), η ≥ 0 and η is not bounded.
Next we claim that η is non-increasing. We will prove it by contradiction; we assume that η′ changes signs.
First we note that, since η(t) > 0 ∀ t ≤ −1, η(−1) = 0 and η is not bounded, we can assume that there exist t0 > t1

such that η′(t0) = η′(t1) = 0 and

η′(t) < 0, ∀t ∈ (t0,−1) and η′(t) > 0, ∀t ∈ (t1, t0).

But by (5.3), we have that

1

−2t1
η(t1) <

1

−2t0
η(t0) = e−√

2η(t0) < e−√
2η(t1) = 1

−2t1
η(t1),

which is clearly a contradiction.
Now since η ≥ 0 we have by (5.3)

η′(t) ≥ −e−√
2t ⇒

(
e
√

2η
)′ ≥ −√

2 ⇒ η(t) ≤ − 1√
2

log(−√
2(t + 1)), ∀t ≤ −1. (5.7)

Using the fact that η is non-increasing, (5.6) and (5.7) we have

e−√
2η(t) 1√−t

−1∫
t

√−tds ≤ 1√−t

−1∫
t

√−te−√
2η(s)ds = η ≤ − 1√

2
log(−√

2(t + 1)),

which implies the existence of C = C(T̃0, n) > 0 such that

e−√
2η(t) ≤ −C

log(−√
2(t + 1))

t
and η(t) ≥ − 1√

2
log

(
C

log(−√
2(t + 1))

−t

)
, ∀t ≤ −T̃0.

By (5.7) and the above inequality we can easily obtain that there exists C1 = C1(T̃0, n) > 0 such that

η(t) ≥ C1 log(−t), ∀t ≤ −T̃0.

Now, using the fact that η is non-increasing, (5.3) and the above inequality, we have

e−√
2η(t) ≥ C2 log

(
log(−t)

−t

)
, ∀t ≤ −T̃0,

where C2 = C2(T̃0, n) > 0 and the result follows. �
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Lemma 5.3. Let

bl = − 1√
2

log

(
1

2β
(k − l)l

)
, l = 1, ..., k − 1,

and

−γj = γk−j+1 = 1

2

k−j∑
i=j

bi, for j ≤ k

2
.

Then the function ρ̃0
j (t) =

(
j − k+1

2

)
η + γj is a solution of

ρ′
j + 1

2t
ρj − βe−√

2(ρj+1−ρj ) + βe−√
2(ρj −ρj−1) = 1

2t
γj , j = 1,2, ..., k, t ∈ (−∞,−1], (5.8)

with ρk+1 = ∞ and ρ0 = −∞ and η being the function in Lemma 5.2.

Proof. We set

Rl(ρ) := −e−√
2(ρj+1−ρj ) + e−√

2(ρj −ρj−1),

R(ρ) =
⎡
⎢⎣

R1(ρ)
...

Rk(ρ)

⎤
⎥⎦

and

γ = [γ1, ..., γk]T and b = [b1, ..., bk−1]T .

We want to solve the system ρ′ + 1
2t

ρ + βR(ρ) = 1
2t

γ . To do so we find first a convenient representation of the 
operator R(ρ). Let us consider the auxiliary variables

v :=
[

v

vk

]
, v =

⎡
⎢⎣

v1
...

vk−1

⎤
⎥⎦ ,

defined in terms of ρ as

vl = ρl+1 − ρl with l = 1, ..., k − 1, vk =
k∑

l=1

ρl,

and define the operators

S(v) :=
[

S(v)

0

]
, S(v) =

⎡
⎢⎣

S1(v1)
...

Sk−1(v1)

⎤
⎥⎦ ,

where

Sl(v) : Rl+1(ρ) − Rl(ρ) =

⎧⎪⎪⎨
⎪⎪⎩

2e−√
2v1 − e

√
2v2 if l = 1

−e
√

2vl+1 + 2e−√
2vl − e

√
2vl−1 if 2 ≤ l ≤ k − 2

2e−√
2vk − e

√
2vk−1 if l = k − 1.

Then the operators R and S are in correspondence through the formula

S(v) = BR(B−1v),
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where B is the constant, invertible k × k matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0

0 −1 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −1 1

1 . . . 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and then through the relation ρ = B−1v the system ρ′ + 1
2t

ρ + βR(ρ) = 1
2t

γ is equivalent to v′ + 1
2t

v + βS(v) = 1
2t

b, 
which decouples into

v′ + 1

2t
v + βS(v) = 1

2t
b, (5.9)

v′
k = 0,

where

S(v) = C

⎡
⎢⎢⎣

e−√
2v1

...

e−√
2vk−1

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0

−1 2 −1 · · · 0
...

. . .
. . .

. . .
...

0 · · · −1 2 −1

0 . . . −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.10)

We claim now that the function

v0
l (t) = η + bl (5.11)

is a solution of (5.9).
Indeed, substituting this expression into the system we see that the following equations for the numbers bl are 

satisfied

C

⎡
⎢⎢⎣

e−√
2b1

...

e−√
2bk−1

⎤
⎥⎥⎦= 1

β

⎡
⎢⎣

1
...

1

⎤
⎥⎦ .

Now we note that bl = bk−l for l = 1, .., k − 1, thus by (5.8) we have that

ρk−j+1 = −ρj , j ≤ k

2
,

and

ρj = 1√
2

(
j − k + 1

2

)
η + γj ,

and the result follows. �
5.2. The solution of the problem (5.1)

We keep the notations of the previous subsection. Set ζ = √−2(n − 1)t , and e = [1, ..., 1]T .
We look for solutions of the form ρ = √−2(n − 1)te + h̃, then h̃ satisfies

h̃′ + 1

2t
h̃ = F(h̃′ + eζ ′, h̃ + eζ ) + n − 1

ζ
e + 1

2t
h̃ − βR(h̃), in (−∞,−T0]

where T0 ≥ T̃0.
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Let η be the function in Lemma 5.2, we look for solutions of the form h̃ = ρ̃0(t) + h then h satisfies

h′ + 1

2t
h + βDρR(ρ̃0(t))h = F(h′ + eζ ′ + (ρ̃0)′, h̃ + eζ + ρ̃0) + n − 1

ζ
e + 1

2t
(h + ρ̃0(t))

− βR(ρ̃0(t) + h) + βR(ρ̃0(t)) + βDρR(ρ̃0(t))h + 1

2t
γ

:= E(h′, h) + 1

2t
γ , in (−∞,−T0] (5.12)

where γ = [γ1, ..., γ2]T .
Set v0 = Bη and p = Bh. Then we have that E(h′, h) = E(B−1h′, B−1h) = E(p′, p), and by S(v) = BR(B−1v), 

we have that S(v0) = BR(ρ̃0(t))B−1.
Thus (5.12) is equivalent to

p′ + 1

2t
p + βDvS(v0)p = BE(p′,p) + 1

2t
Bγ := L(p′,p) + 1

2t
Bγ , in (−∞,−T0]. (5.13)

By (5.12) we have that

Lk(h
′, h) =

k∑
i=1

(Fi(h
′ + eζ ′ + (ρ̃0)′, h̃ + eζ + ρ̃0) + n − 1

ζ
+ 1

2t
(ρ̃0

i + hi)), (5.14)

thus writing p = (p, pk) and L = (L, Lk), the latter system decouples as

p′ + 1

2t
p + βDvS(v0) = L(p′,p) + 1

2t
Bγ , in (−∞,−T0]

p′
k + 1

2t
pk = Lk(p

′,p), in (−∞,−T0]. (5.15)

Now, by (5.11) we have

DvS(v0) = −√
2C

⎡
⎢⎢⎢⎢⎢⎣

e−√
2v1 0 · · · 0

0 e−√
2v2 · · · 0

...
. . .

...

0 0 · · · e−√
2vk−1

⎤
⎥⎥⎥⎥⎥⎦

= e−√
2η

2β
C

⎡
⎢⎢⎢⎢⎣

a1 0 · · · 0

0 a2 · · · 0
...

. . .
...

0 0 · · · ak−1

⎤
⎥⎥⎥⎥⎦ ,

where al = (k − l)l, l = 1, ..., k − 1, where the matrix C is given in (5.10). C is symmetric and positive definite. 
Indeed, a straightforward computation yields that its eigenvalues are explicitly given by

1,
1

2
, ...,

k − 1

k
.

We consider the symmetric, positive definite square root matrix of C and denote it by C
1
2 . Then setting

p = C
1
2 w, Q(w′,p′

k,w,pk) = C− 1
2 L(C

1
2 w′,p′

k,C
1
2 w,pk)

and

Qk(w
′,p′

k,w,pk) = Lk(C
1
2 w′,p′

k,C
1
2 w,pk)



M. del Pino, K.T. Gkikas / Ann. I. H. Poincaré – AN 35 (2018) 187–215 213
we see that equation (5.15) becomes

w′ + 1

2t
w + e−√

2η(t)

2
Aw = Q(w′,p′

k,w,pk) + 1

2t
C− 1

2 Bγ ,

p′
k + 1

2t
pk = Qk(w

′,p′
k,w,pk) (5.16)

where

A = C
1
2

⎡
⎢⎢⎢⎢⎣

a1 0 · · · 0

0 a2 · · · 0
...

. . .
...

0 0 · · · ak−1

⎤
⎥⎥⎥⎥⎦C

1
2 .

In particular A has positive eigenvalues λ1, λ2, ..., λk−1. Let the orthogonal matrix � be such that D = �T A�, where 
D is the diagonal matrix such that Dii = λi, i = 1, ..., k − 1. Set now

ω = �T w, �(ω′,p′
k,ω,pk) = �T Q(�ω′,�ω),

and

�k(ω
′,p′

k,ω,pk) = Qk(�w′,p′
k,�w,pk);

we have that (5.16) becomes equivalent to

ω′ + 1

2t
ω + e−√

2η(t)

2
Dω = �(ω′,p′

k,ω,pk) + 1

2t
δ, in(−∞,−T0]

p′
k + 1

2t
pk = �k(ω

′,p′
k,ω,pk), in(−∞,−T0], (5.17)

where δ = �T C− 1
2 Bγ .

We will solve (5.17) by using the fix point Theorem in a suitable space with initial data ω(−T0) = 0 and 
pk(−T0) = 0. If (ω, pk) is a solution of the problem (5.17) with initial data 0 then it has the form

ωi(t) = − 1√−tg(t)

−T0∫
t

√−sg(s)

(
�i(ω

′,p′
k,ω,pk) + δi

2t

)
ds, i = 1, ..., k − 1

pk = − 1√−t

−T0∫
t

√−s�k(ω
′,p′

k,ω,pk)ds, (5.18)

where

g(t) = e
1
2

∫ −T̃0
t e−√

2η(s)ds,

T0 > T̃0 and T̃0 has been defined in Lemma 5.2.
By Lemma 5.2 we have

1√−tg(t)

−T0∫
t

√−sg(s)

−s
ds ≤ 1

g(t)

−T0∫
t

g(s)

−s
ds ≤ C(T̃0)

1

log(T0)
. (5.19)

Finally by Proposition 5.1 and (5.14), we have that there exists constant C = C(n, k, σ) > 0 such that

|�i(0)| ≤ C ∀i = 1, ..., k,

t
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and

|�k(h1) − �k(h2)| ≤ C

(
log |t |

|t |
) 1

2 + σ√
2 ||h1 − h2||�.

Let A(ω, p) be a solution of (5.18), then we have

|Ai(0)| ≤ C1

log(T0)
∀i = 1, ..k − 1 and |Ak(0)| ≤ C2. (5.20)

Similarly

|t |
log |t | |Ai(0)| ≤ C1

log(T0)
∀i = 1, ..k, (5.21)

if we choose T0 > 1 large enough. We consider the space

X = {(h,p) ∈ C1(−∞,−T0] : ||h||� ≤ 4C1

log(T0)
and ||p||� ≤ 4C2},

where C1, C2 are the constants in (5.20) and (5.21).
Now, we have

|Ai(h1,p1) − Ai(h2,p2)| ≤ C

logT0
(||h1 − h2||� + ||p1 − p2||�) , ∀i = 1, ..., k − 1

and for some 0 < α < 1

|Ak(h1,p1) − Ak(h2,p2)| ≤ C

T α
0

(||h1 − h2||� + ||p1 − p2||�) .

Also we have

|t |
log |t | |A

′
i (h1,p1) − A′

i (h2,p2)| ≤ C

logT0
(||h1 − h2||� + ||p1 − p2||�) , ∀i = 1, ..., k − 1

and

|t |
log |t | |Ak(h1,p1) − Ak(h2,p2)| ≤ C

T α
0

(||h1 − h2||� + ||p1 − p2||�) .

The result follows by Banach fixed point theorem, if we choose T0 big enough. We observe that a posteriori, the 
equation satisfied by h(t) yields that h(t) → 0, with precise rate

|h(t)| ≤ C

log |t | as t → −∞.
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