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Abstract In this paper, a nonlinear constitutive relation is proposed to model the behaviour of sandstone. The
model is based on a relatively new class of constitutive relations proposed recently in the literature, which
cannot be classified as Cauchy or Green elastic bodies. A specific expression for the constitutive relation is
proposed on the basis of some experimental data for the compression of a sample of rock, and several boundary
value problems are analysed, considering homogeneous distributions of strains, as well as a problem wherein
one has a non-homogeneous distribution of strains. Finally, the behaviour of the P- and S-waves is studied
for a sample of rock under compression, and it is discovered that the wave speed depends on the compressive
load, a result supported by experiments.

1 Introduction

Rock is a material that exhibits nonlinear behaviour in the range of small displacement gradients and hence
small strains (see, for example, [1–10]). Traditionally, classical linearized elasticity and plasticity based on the
linearized strain have been used to model the behaviour of such materials1. In the present communication, we
propose amodel for themechanical behaviour of dry rock,which is based on the relatively recent implicit theory
for elastic bodies2 developed by Rajagopal and et al. [22–27]. Consider for instance the implicit constitutive
relation

F(T,B) = 0, (1)

where T is the Cauchy stress tensor and B is the left Cauchy Green tensor. Such a model is appropriate to
model isotropic materials (for classification of anisotropy for implicit constitutive relations see [28]) and as
rock is invariably anisotropic we need to consider a different class of implicit models. However, as a first step
in the development of constitutive relations for rocks, we shall consider the above constitutive relation. The
class of models described by (1) contains the interesting new subclass

B = G(T), (2)

1 See, for example, Chapter 11 of [11], Eq. 8.6 of [12], Section 4.8 of [13], Section 9.3 of [7], Eq. 1-2 in [14], Eq. (2.2)(1)
in [15,16] and Eq. 5 of [17]. One of the exceptions to this tendency is the nonlinear models proposed by Lyakhovsky and his
collaborators, see, for example, [18,19].

2 As a first approximation in this work, we neglect the dissipation of energy, which is present even for small strains, see, for
example, Figs. 1 and 3 in [20] and Section 7 of [21].
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as well as the classical constitutive equation for the most general class of homogeneous compressible nonlinear
Cauchy elastic bodies T = f(B) (see, for example, [29]). When the norm of the gradient of the displacement
field is assumed to be very small, we find that B ≈ 2ε + I, where ε is the linearized strain tensor, and I is the
identity tensor, respectively. From (2), we obtain the subclass

ε = H(T), (3)

which is very important in its own right, and which could be used to study problems, wherein we have elastic
bodies that behave nonlinearly even in the case of small strains, such as a variety of metallic alloys, cement
and also rock (see [30–32] and the references mentioned therein).

In this study the model (3) is used to fit some experimental data for Berea sandstone, see [2]. In Sect. 2, the
equations of kinematics and the general form of the constitutive equations are presented, and some constitutive
inequalities are proposed. In Sect. 3, some simple boundary value problems are studied, where we have
homogeneous distributions of stresses and strains. In Sect. 4, a specificmodel is presented to study the behaviour
of rock and the strains and stresses within the context of the problems presented in the previous Sect. 3 are
determined and plots for the same are documented. In Sect. 5, a boundary value problem where we have
non-homogenous distributions of stresses and strains is solved numerically, and the results for the nonlinear
model proposed in this study are compared against the prediction of the classical linearized constitutive theory.
Finally, in Sect. 6 the incremental analysis presented in [33] is used to obtain the speed of waves for an infinite
medium under the effect of compressive loads.

2 Basic equations

2.1 Kinematics and equation of motion

A particle in a bodyB is denoted by X , and in the reference configuration it occupies the positionX = κ R(X).
The reference configuration is denoted by κR(B). In the current configuration, the position of the point is
denoted by x, and it is assumed that there exists a one-to-one mapping χ such that x = χ(X, t). The current
configuration is denoted by κt (B). The deformation gradient, the left Cauchy–Green tensor, the displacement
vector, and the linearized strain tensor are defined as

F = ∂χ

∂X
, B = FFT, u = x − X, ε = 1

2

(
∂u
∂x

+ ∂u
∂x

T)
. (4)

The Cauchy stress tensor is denoted by T and the local form of the balance of linear momentum is

ρẍ = divT + ρb, (5)

where ρ is the density of the body and b represents the specific body forces in the current configuration and
where we use the notation ˙( ) for the time derivative. More details concerning the kinematics of deformable
bodies and about the balance equations can be found in [34].

2.2 Constitutive relations

The behaviour of rock is modelled by the new constitutive equation (3), under the assumption of the existence
of a scalar function � = �(T) such that (see, for example, [35–37])

ε = ∂�

∂T
. (6)

Conditions on � so that the response is actually elastic have been presented in [37].
If we further assume that the function � is isotropic, then � = �(σ1, σ2, σ3), where σp, p = 1, 2, 3 are

the eigenvalues of T. The function � must satisfy the symmetry conditions

�(σ1, σ2, σ3) = �(σ2, σ1, σ3) = �(σ1, σ3, σ2). (7)
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It follows from (6) that

ε =
3∑

p=1

∂�

∂σp
a(p) ⊗ a(p), (8)

where a(p) are the eigenvectors of T. If εp, p = 1, 2, 3 denote the principal strains, from (8) we have

εp = ∂�

∂σp
. (9)

The results presented in Sects. 4 and 5 will be compared against the results obtained for the classical
linearized model

ε = (1 + ν)

E
T − ν

E
(trT)I, (10)

where E and ν are the Young’s modulus and the Poisson ratio, respectively.

2.2.1 Constitutive inequalities and some additional restrictions

Some additional restrictions are imposed on the constitutive relation to ensure that the body exhibits reasonable
response, the first of such restrictions being a modification of the Baker–Ericksen inequality (see [38] and
Section 51 of [29]), which has been already proposed in [39] for the model (2):

(σa − σb)(εa − εb) > 0, σa �= σb. (11)

The above inequality implies that we assume that the directions of the principal strains are the same as the
directions of the principal stresses (see (8)). From (9), it follows that the inequality can be rewritten as

(σa − σb)

(
∂�

∂σa
− ∂�

∂σb

)
> 0, σa �= σb. (12)

In the special case of a body under the influence of a spherical stress T = σSI, from (9) we have

εS = ∂�

∂σS
, (13)

where εS corresponds to the spherical strain produced by σS . With the above definitions and results, we can
propose another constitutive inequality:

(σ ∗
S − σS)(ε

∗
S − εS) > 0, σ ∗

S �= σS, (14)

which is a modification of the pressure–compression (PC) inequality described in Section 51 of [29].
Finally, if we assume that when T = 0 the body does not have residual strains, then

∂�

∂σp
(0, 0, 0) = 0, p = 1, 2, 3. (15)

2.2.2 A special model

In order to fit some actual experimental data for rock, we propose the following particular expression for �
(this expression below has been used already in [39] for the model (2)):

�(σ1, σ2, σ3) = f1(σ1) + f1(σ2) + f1(σ3) + f2(σ1)(σ2 + σ3) + f2(σ2)(σ1 + σ3)

+f2(σ3)(σ1 + σ2) + f3

(
σ1 + σ2 + σ3

3

)
. (16)

Using (16) in (9), we obtain that

εp = ∂�

∂σp
= f′1(σp) + f′2(σp)(σq + σr ) + f2(σq) + f2(σr ) + 1

3
f′3
(

σ1 + σ2 + σ3

3

)
, p �= q �= r. (17)
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The second derivatives of � will be used in Sect. 6 and are listed here

∂2�

∂σp∂σs
=
{
f′′1(σp) + f′′2(σp)(σq + σr ) + 1

9 f
′′
3

(
σ1+σ2+σ3

3

)
, p = s, p �= q �= r,

f′2(σp) + f′2(σs) + 1
9 f

′′
3

(
σ1+σ2+σ3

3

)
, p �= s.

(18)

Let us examine briefly the implications of the above model (16). First, we can see that (16) satisfies the
symmetry conditions (7), second from (16) we see that the term f′1(σp) could be used to fit the data from a
tension/compression test in a simple manner, while the terms f′2(σp)(σq +σr )+ f2(σq)+ f2(σr ) could be used
to consider the effect of lateral loads, while the last term 1

3 f
′
3

(
σ1+σ2+σ3

3

)
could be used to study the effect of

the spherical part of the load on the behaviour of the body.
From (16), we have

∂�

∂σp
(0, 0, 0) = f′1(0) + 2f2(0) + 1

3
f′3(0), (19)

and (15) is satisfied if we assume

f′1(0) = 0, f2(0) = 0, f′3(0) = 0. (20)

3 Boundary value problems: uniform distributions of stresses and strains

In this section, we study briefly some simple boundary value problems, wherein we assume homogeneous
distributions of stresses. Some of these problems are considered because they can be used to study some of
the experimental data presented in [2].

3.1 Uniform compression/tension of a cylinder without lateral constraints

Here, we are interested in studying the case of a cylindrical sample of rock that is compressed in the axial
direction, assuming that the lateral surface is free to expand radially. This is one of the experiments that is
routinely performed to study the behaviour of rock [40]. It is necessary to bear in mind that in the actual
experiment it is difficult to obtain such uniform distributions of strains, due to end effects (see, for example,
[4,5,7,40]).

Let us consider a cylinder that in the undeformed configuration is described in cylindrical coordinates by

0 ≤ r ≤ ro, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ L . (21)

Let us assume that this cylinder is deforming under the influence of the stress distribution

T = σzez ⊗ ez, (22)

where σz is constant. In this problem σ1 = σz and σ2 = σr = 0, σ3 = σθ = 0 and from (9) we have

εz = ∂�

∂σz

∣∣∣∣
(σz ,0,0)

, εr = εθ = ∂�

∂σr

∣∣∣∣
(σz ,0,0)

. (23)

In the special case of (16), we obtain

εz = f′1(σz) + 1

3
f′3
(σz

3

)
, (24)

εr = εθ = f2(σz) + f′2(0)σz + 1

3
f′3
(σz

3

)
. (25)

Since T is constant so is ε; therefore, it is possible to obtain u from (4) 4 and the equation of motion (5)
(assuming no body forces) is satisfied automatically. The same will be valid for the boundary value problems
presented in the following subsections. Notice that when using (6), (9) the radial and axial deformations are
obtained directly as functions of the load σz .

A restriction on � can be imposed in view of the above results, namely demanding that when3 σz < 0 we
have εz < 0 and εr > 0, while if σz > 0 we have εz > 0 and εr < 0.

Finally, in the case of the classical linearized elastic relation (10) we have

εz = σz

E
, εr = − ν

E
σz . (26)

3 See [39] for the counterpart of these inequalities for the case of large elastic deformations.
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3.2 Uniform compression/tension of a cylinder with lateral constraints

For this problem, consider the triaxial compression of a cylindrical sample, where the same cylinder described
in (21) is subjected to compression, but where we assume there is a lateral wall that does not allow the cylinder
to expand radially, i.e., we have the constraint

εr = 0 = εθ . (27)

Because of the above constraint, the presence of an axial compressive stress produces reaction loads in the
radial and circumferential directions; therefore, in general we must assume that the stress tensor is of the form

T = σrer ⊗ er + σθeθ ⊗ eθ + σzez ⊗ ez, (28)

where σz is given data and σr , σθ must be found from the constraint (27). Let us take σ1 = σz , σ2 = σr and
σ3 = σθ from (9) we have

εz = ∂�

∂σz
, 0 = ∂�

∂σr
, 0 = ∂�

∂σθ

, (29)

and it follows from (16) that

εz = f′1(σz) + f′2(σz)(σr + σθ ) + f2(σr ) + f2(σθ ) + 1

3
f′3
(

σr + σθ + σz

3

)
, (30)

0 = f′1(σr ) + f′2(σr )(σθ + σz) + f2(σθ ) + f2(σz) + 1

3
f′3
(

σr + σθ + σz

3

)
, (31)

0 = f′1(σθ ) + f′2(σθ )(σr + σz) + f2(σr ) + f2(σz) + 1

3
f′3
(

σr + σθ + σz

3

)
, (32)

and from (31), (32) we see that σr and σθ should be the same, therefore, if σθ = σr from (30)–(32) we finally
obtain

εz = f′1(σz) + 2f′2(σz)σr + 2f2(σr ) + 1

3
f′3
(
2σr + σz

3

)
, (33)

0 = f′1(σr ) + f′2(σr )(σr + σz) + f2(σr ) + f2(σz) + 1

3
f′3
(
2σr + σz

3

)
. (34)

Eq. (34) should be used to obtain σr as a function of σz .
A further restriction on the functions fi could be demanded when σz = 0. In this case, from (34) we obtain

that

0 = f′1(σr ) + f′2(σr )σr + f2(σr ) + 1

3
f′3
(
2σr
3

)
, (35)

and it is reasonable that in that case the solution of the above algebraic equation should be σr = 0.
Finally, in the case of the classical linearized elastic relation (10) it is possible to show that

σr = ν

(1 − ν)
σz, εz = 1

E

[
1 − 2ν2

(1 − ν)

]
σz . (36)

3.3 Triaxial loading of a block

Next, let us work with a block that in the reference configuration is described through

− Li

2
≤ xi ≤ Li

2
. (37)

This block is assumed to deform under the influence of the stress distribution

T =
3∑

i=1

σSei ⊗ ei , (38)
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where σS is constant. From (9), if σ j = σS , j = 1, 2, 3 we have

εS = ∂�

∂σS
, (39)

and in the case of (16) the above equation reduces to

εS = f′1(σS) + 2f′2(σS)σS + 2f2(σS) + 1

3
f′3(σS), (40)

where εS would be the strain associated with the above stress.
In the case of the classical linearized elastic relation (10), we have

εS = (1 − 2ν)

E
σS. (41)

3.4 Simple shear of a block

In this problem, we consider the same block described in (37), this time under the influence of the pure shear
stress distribution

T = τ(e1 ⊗ e2 + e2 ⊗ e1), (42)

where τ is assumed to be constant.
From (42), we have σ1 = τ , σ2 = −τ and σ3 = 0 and using this in (9) and appealing to (16), we obtain

that

∂�

∂σ1
= f′1(τ ) − f′2(τ )τ + f2(−τ),

∂�

∂σ2
= f′1(−τ) + f′2(−τ)τ + f2(τ ),

∂�

∂σ3
= f2(τ ) + f2(−τ). (43)

The eigenvectors of T are

a(1) = 1√
2
(e1 + e2), a(2) = 1√

2
(−e1 + e2), a(3) = e3. (44)

Let us assume that a distribution of stress of the form (42) applied on the block described in (37) produces
a displacement field of the form

u1 = (λa − 1)x1 + γ x2, u2 = (λb − 1)x2, u3 = (λc − 1)x3. (45)

In this case, we obtain that

ε11 = λa − 1, ε22 = λb − 1, ε33 = λc − 1, ε12 = γ

2
. (46)

Substituting (46) in (8) in view of the above results, we finally obtain that

λa − 1 = λb − 1 = 1

2
{f′1(τ ) + f′1(−τ) + f2(τ ) + f2(−τ) + τ [f′2(−τ) − f′2(τ )]}, (47)

λc − 1 = f2(τ ) + f2(−τ), (48)

γ = f′1(τ ) − f′1(−τ) + f2(−τ) − f2(τ ) − τ [f′2(τ ) + f′2(−τ)]. (49)

In the case of the classical linearized model (10), there is no coupling between the shear stresses and the
longitudinal deformations, and we simply have

γ = 2(1 + ν)

E
τ. (50)



A nonlinear model for describing the mechanical behaviour of rock 257

3.5 Shear and compression of a block

In this last example, let us consider the block described by (37) now under the influence of the stress field

T = σe1 ⊗ e1 + τ(e1 ⊗ e2 + e2 ⊗ e1). (51)

It follows that the principal stresses are

σ1 = 1

2

[
σ +

√
σ 2 + 4τ 2

]
, σ2 = 1

2

[
σ −

√
σ 2 + 4τ 2

]
, σ3 = 0, (52)

and the principal directions are

a(1) = ℵ1(�1e1 + e2), a(2) = ℵ2(�2e1 + e2), a(3) = e3, (53)

where we have defined

ℵ1 =
√
2τ√

σ 2 + 4τ 2 + σ
√

σ 2 + 4τ 2
, ℵ2 =

√
2τ√

σ 2 + 4τ 2 − σ
√

σ 2 + 4τ 2
, (54)

�1 = σ + √
σ 2 + 4τ 2

2τ
, �2 = σ − √

σ 2 + 4τ 2

2τ
. (55)

Assuming that the body deforms in the same manner as in (45), from (8) we obtain that

λa − 1 = ∂�

∂σ1
ℵ2
1�

2
1 + ∂�

∂σ2
ℵ2
2�

2
2, (56)

λb − 1 = ∂�

∂σ1
ℵ2
1 + ∂�

∂σ2
ℵ2
2, (57)

λc − 1 = ∂�

∂σ3
, (58)

γ = 2

(
∂�

∂σ1
ℵ2
1�1 + ∂�

∂σ2
ℵ2
2�2

)
, (59)

where

∂�

∂σ1
= f′1(σ1) + f′2(σ1)σ2 + f2(σ2) + 1

3
f′3
(

σ1 + σ2

3

)
, (60)

∂�

∂σ2
= f′1(σ2) + f′2(σ2)σ1 + f2(σ1) + 1

3
f′3
(

σ1 + σ2

3

)
, (61)

where σ1, σ2 are given in (52).
Regarding this boundary value problem, we are particularly interested in studying the behaviour of γ in

terms of σ , because, as described in detail in the next section, there is some experimental information for the
shear modulus as a function of the compressive stress for a cylindrical sample under torsion and compression
(see [2]). To obtain such a shear modulus which would depend on the compressive stress, we can start from
(59). From (60), (61) and (52) we see that the right side of (59) depends on σ and τ , so let us define the function
H as

H(σ, τ ) = 2

(
∂�

∂σ1
ℵ2
1�1 + ∂�

∂σ2
ℵ2
2�2

)
, (62)

then (59) becomes
γ = H(σ, τ ). (63)

For our nonlinearmodel (63), the shearmodulus can be obtained by assuming τ to be very small (in comparison
to a given reference value for the stresses), and expressing γ as a Taylor series in τ , retaining only up to linear
terms in τ . From (63), we have

γ ≈ H(σ, 0) + ∂H
∂τ

∣∣∣∣
τ=0

τ. (64)
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Table 1 Constants for the functions presented in (69)

α1 α2 α3 c1 c2 c3 d1 d2 d3

0.011 −0.0004 0.001 −0.08 −0.05 −0.08 0.1 0.2 0.1

From (54) and (55), it is easy to see that ℵ2
1�1 = 0 and ℵ2

2�2 = 0 when τ = 0, therefore from (62),H(σ, 0) = 0
and from (64) we finally obtain

γ ≈ ∂H
∂τ

∣∣∣∣
τ=0

τ. (65)

The shear modulus G = G(σ ) could be defined as

G = 1
∂H
∂τ

∣∣∣
τ=0

. (66)

From (122) (see Appendix A) defining σ = −ϑ with ϑ > 0, we have that

∂H
∂τ

∣∣∣∣
τ=0

= 2

[
f2(−ϑ)

ϑ
− f′1(−ϑ)

ϑ
− f′2(0)

]
. (67)

4 A model for the mechanical behaviour of rock

Themain experimental information to be used in the present study is Figure 4 of [2],where the axial deformation
for a sample under compression assuming lateral constraint are documented. From Table 1 of [3], we also have
some information concerning the behaviour of different types of rock under tension, where the main result is
that most types of rock are less stiff under tension than compression4; therefore, one of the main considerations
here is that the behaviour of rock will be different in tension and compression, i.e., in general for the different
functions that appear in (16) we have

f(−x) �= −f(x). (68)

We propose the following expressions for the functions fi in (16):

f1(x) = α1
[
dc1x1 − c1 ln(d1)x

]
, f2(x) = α2

(
dc2x2 − 1

)
, f3(x) = 3α3

[
dc3x3 − c3 ln(d3)x

]
, (69)

where αi , ci and di , i = 1, 2, 3 are constants. The derivatives of the above functions are

f′1(x) = α1c1 ln d1
(
dc1x1 − 1

)
, f′2(x) = α2c2 ln(d2)d

c2x
2 , f′3(x) = 3α3c3 ln d3

(
dc3x3 − 1

)
, (70)

and it is easy to see that the restrictions (20) are satisfied.
The second derivatives of f1(x) and f3(x) are needed in Sect. 6 and are given as

f′′1(x) = α1c
2
1(ln d1)

2dc1x1 , f′′3(x) = 3α3c
2
3(ln d3)

2dc3x3 . (71)

Considering the results presented in Sect. 3.2 for a cylinder under compression with lateral constraint and
the data presented in [2], and based on the discussion of the behaviour of rock under tension [3], the list of
constants presented in Table 1 is proposed for the model (69) [see (16)]. In (69), the physical units of ci ,
i = 1, 2, 3 are of 1/MPa, while the units of α1 and α3 are MPa; finally, the constants di , i = 1, 2, 3 and α2 do
not have units.

Now, regarding the linearized model (10) we obtain the constants by considering (9) and assuming that
|σi |, i = 1, 2, 3 are very small (compared with a given characteristic value for the stress), in such a case from
(9) we have the approximation

εp ≈ ∂2�

∂σp∂σs

∣∣∣∣
(0,0,0)

σs, (72)

4 See also, for example, Fig. 6 of [18] and Figs 1, 3 of [19].
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20 15 10 5 5

0.008

0.006

0.004

0.002

0.002

σz MPa

εz

Fig. 1 Compression/tension of a cylinder subject to lateral constraint. The continuous blue line shows results for the nonlinear
model (16), (69). The circular black markers show experimental results taken from Figure 4 of [2] (where results are shown
only for compression). The dashed magenta line indicates the results for the linearized model (10) considering (75) (color figure
online)

where we have used (15) and where from (16) we have

∂2�

∂σp∂σs

∣∣∣∣
(0,0,0)

=
{
f′′1(0) + 1

9 f
′′
3(0), p = s

2f′2(0) + 1
9 f

′′
3(0), p �= s

=
⎧⎨
⎩

α1c21(ln d1)
2 + α3c23

3 (ln d3)2, p = s

2α2c2 ln d2 + α3c23
3 (ln d3)2, p �= s

(73)

Replacing the above results in (72) and comparing the expression with (10), it is possible to show that

E = 1[
α1c21(ln d1)

2 + α3c23
3 (ln d3)2

] , ν = −

[
2α2c2 ln d2 + α3c23

3 (ln d3)2
]

[
α1c21(ln d1)

2 + α3c23
3 (ln d3)2

] , (74)

and considering the values for the constants from Table 1 we have

E ≈ 2600MPa, ν ≈ 0.1038. (75)

With regard to some of the plots to be presented in this and in the following sections, we compare the
behaviour of the rock by considering (16), (69) and for the linearized model (10) by considering (75).

In the following figures, we portray the behaviour of the cylinders and slabs described in the problems
presented in Sect. 3, within the context of the particular expressions for the constitutive functions given above.

In Fig. 1, results are presented for the compression/tension of a cylinder assuming that the lateral surface
of the cylinder cannot deform (see Sect. 3.2), results are shown for the axial component of the strain εz by
comparing the results for our model (16), (69), against the experimental results in Figure 4 of [2].

In Fig. 2, we document the predictions of the model for the radial reaction stress as a function of the axial
stress applied on the cylinder. It is necessary to point out that for the model (16), (69) the restriction that is
proposed in (35) is satisfied.

In Fig. 3, we present results for the cylinder described in Sect. 3.1, for the model (16), (69), deforming
under compression/tension, but now assuming that the lateral wall is free to expand/compress. Results are
presented for the axial and the radial components of the strain as functions of the axial stress. From that figure,
we see that the restrictions proposed at the end of Sect. 3.1 are satisfied.

In Fig. 4, results are shown for the problem presented in Sect. 3.3 for the deformation of a slab under the
influence of a spherical stress.

In Figs. 5 and 6, we see results for the problem presented in Sect. 3.4 in the case of (16), (69). Figure 5
displays the results for the axial stretching/shortening of the slab under shear stress, while in Fig. 6 we provide
the results for the shear deformation in terms of the shear stress.

Within the context of (16), (69), let us study the constitutive inequality (12). In the case of (16), the
inequality becomes

(σa − σb)[f′1(σa) − f′1(σb) + f2(σb) − f2(σa) + f′2(σa)(σb + σc) − f′2(σb)(σa + σc)] > 0, (76)
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Fig. 2 Compression/tension of a cylinder subject to lateral constraint. The continuous blue line shows results for the nonlinear
model (16), (69). The dashed magenta line shows results for the linearized model (10) (color figure online)
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Fig. 3 Axial and radial strains for the case of a cylinder under compression/tension without lateral constraints in the case of the
nonlinear model (16), (69)
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Fig. 4 Strain for the case of a block under the influence of triaxial stress. The continuous blue line shows the results for the case
of the nonlinear model (16), (69). The dashed magenta line presents the results for the linearized model (10) for the values of the
constants presented in (75) (color figure online)

which must be true for σa �= σb. Now, considering the specific expressions for the functions fi (x), i = 1, 2, 3
assumed in (69), and the numerical values of the constants shown in Table 1 that are used to define such
functions, it is easy to demonstrate that (σa − σb)[f′1(σa) − f′1(σb)] > 0 and (σa − σb)[f2(σb) − f2(σa)] > 0,
however, that is not the case when considering (σa − σb)[f′2(σa)(σb + σc) − f′2(σb)(σa + σc)]. Therefore,
in order to explore if (69) satisfy (76) in Fig. 7 we show contour plots for the function g(σa, σb) = (σa −
σb)[f′1(σa) − f′1(σb) + f2(σb) − f2(σa) + f′2(σa)(σb + σc) − f′2(σb)(σa + σc)] for some specific values for σc,
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Fig. 5 Shearing of a block. Results for the extension/compression of the block under simple shear within the context of the
nonlinear model (16), (69)
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Fig. 6 Results for the shear deformation of a block. The continuous blue line shows the results in the case of the nonlinear model
(16), (69). Themagenta dashed line represents the results with regard to the linearized model (10) when (75) (color figure online)

considering a range of values for σa and σb from −20 to 5 MPa. From such plots, it is possible to observe that
for the range of values for σa and σb, and for the four specific values for σc, the function g(σa, σb) would be
positive and (76) would be satisfied.

Regarding the PC inequality (14), we have not been able to show analytically that such a restriction is
satisfied for (16), but by studying contour plots similar to that is shown in Fig. 7 for the range of values for σ ∗

S
and the σS between −23 and 5 MPa, it is possible to see that such an inequality would be satisfied with regard
to (69) for the constants presented in Table 1. For brevity, we do not show such plots here.

Finally, in Fig. 8 some results are presented for the case of the shearing of a slab that is also subject
to compression that was studied in Sect. 3.5. Specifically, the results for the function ∂H

∂τ
(ϑ, 0)/ ∂H

∂τ
(0, 0) =

G(ϑ = 0)/G(ϑ) are depicted (see (67) recalling that H = H(σ, τ )). These results could be compared with
the experimental results obtained from Figure 7 of [2], where the difference in the shear modulus is presented
as a function of the compressive stress for a cylinder under compression and torsion.

5 Boundary value problem wherein non-uniform distributions of stresses and strains are considered:
expansion–compression of a cylindrical annulus

In this section, we present results for a boundary value problem, wherein the distributions of stresses and
strains are inhomogeneous, to study the predictions of the nonlinear model (16), (69), and then compare these
results, for some cases, with that for the linearized model (10).

Let us consider a cylindrical annulus that in the undeformed configuration is described through

ri ≤ r ≤ ro, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ L . (77)

This annulus is assumed to be subject to the following distribution of stresses

T = Trr (r)er ⊗ er + Tθθ (r)eθ ⊗ eθ + Tzz(r)ez ⊗ ez, (78)
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Fig. 8 Dimensionless shear modulus for a slab under the influence of a compressive load, in the case of the nonlinear model (16),
(69)
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which we assume produces the displacement field (see [36])

u = ur (r)er + (λ − 1)zez, (79)

where λ is a positive constant.
For the stress distribution (78), the equilibrium equation becomes

Tθθ = d

dr
(rTrr ), (80)

while from (4)4 and (79) we obtain that

εrr = dur
dr

, εθθ = ur
r

, εzz = λ − 1. (81)

In this problem, we have σ1 = Trr , σ2 = Tθθ = d
dr (rTrr ), σ3 = Tzz and ε1 = dur

dr , ε2 = ur
r and ε3 = λ − 1.

From (78), (80), (81) and (9), we have

dur
dr

= ∂�

∂σ1
(Trr , T

′
rr , Tzz, r),

ur
r

= ∂�

∂σ2
(Trr , T

′
rr , Tzz, r), λ − 1 = ∂�

∂σ3
(Trr , T

′
rr , Tzz, r). (82)

And from (82)1,2, we can obtain that

d

dr

(
r

∂�

∂σ2

)
= ∂�

∂σ1
. (83)

The above equation and (82)3 should be solved for Trr (r) and Tzz(r), where ur (r) and Tθθ (r) are obtained
from ur (r) = r ∂�

∂σ2
(Trr , T ′

rr , Tzz, r) and Tθθ = d
dr (rTrr ), respectively.

It has not been possible so far to solve (83) and (82)3 exactly in the case of the nonlinear model (16), (69);
therefore, we solve them using the finite element method (see [36]), for which we first take the derivative of
(82)3

0 = d

dr

(
∂�

∂σ3

)
, (84)

and we assume that Tzz(r) is given in terms of the auxiliary potential τzz(r) as

Tzz(r) = dτzz
dr

(r). (85)

Eqs. (83) and (84) correspond to two nonlinear second-order coupled ordinary differential equations for Trr (r)
and τzz(r), which are solved using the program Comsol 3.4 [41].

Regarding the boundary conditions, we consider two cases

Case A: Trr (ri ) = −P, Trr (ro) = 0, (86)

Case B: Trr (ri ) = 0, Trr (ro) = −P, ro 
 ri . (87)

In the first case A, we are interested in studying the behaviour of an annulus under a radial load applied inside,
while in the second case B we are interested in studying the behaviour of a large body with a cylindrical hole
under the effect of a far away radial compressive load. In both cases, we assume that λ < 1, i.e., we assume
compression in the axial direction.

The above conditions have to be supplemented with the following boundary conditions when using the
finite element method for the nonlinear model (16):

τz(ri ) = 0, λ − 1 = ∂�

∂σ3
(Trr , T

′
rr , Tzz, ro)

∣∣∣∣
r=ro

. (88)
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Fig. 9 Distributions of the dimensionless components of the stress and the strain tensors for the boundary condition case A when
P = 1 MPa and λ = 0.99746

When considering the linearized model (10), Eqs. (82) can be solved exactly obtaining

Trr (r) = C0 + C1

r2
, Tθθ (r) = C0 − C1

r2
, Tzz(r) = E(λ − 1) + 2νC0, (89)

ur (r)

r
= 1

E

{
C0[1 − ν(1 + 2ν)] − C1

r2
(1 + ν)

}
, (90)

where

Case A: C0 = Pr2i
(r2o − r2i )

, C1 = Pr2i r
2
o

(r2o − r2i )
, (91)

Case B: C0 = Pr2o
(r2i − r2o )

, C1 = Pr2i r
2
o

(r2i − r2o )
. (92)

For the plots presented in Figs. 9, 10, 11, 12, 13 and 14, we shall use the following notation

T̄rr = Trr
P

, T̄θθ = Tθθ

P
, T̄zz = Tzz

P
, r̄ = r

ri
, ūr = ur

ri
, P̄ = P

Pmax
. (93)

For the case A, we provide plots for ri = 0.1m, ro = 0.2 m, while for the case Bwe provide plots for ri = 1m,
ro = 100 m.

For real samples of rock, the maximum strains before failure are in general smaller than the maximum
strains that are shown in Figs. 9 and 10, but in the present work we are not concerned with a damage theory
for such materials.

In Fig. 9, results are presented for the distributions of the dimensionless components of the stress and the
strain tensor as functions of the dimensionless radius r̄ , solving the differential equations (83), (84), for the
case of the boundary conditions A [see (86)], when5 P = 1 MPa and λ = 0.99746.

Figure 10 presents for the distribution of the dimensionless components of the stress and strain tensors,
for the case of the boundary conditions B [see (87)], when P = 600 Pa and λ = 0.9985, which were the
maximum and minimum values for P and λ, for which the numerical code converges.

In Fig. 11, a plot of ūr evaluated at r̄ = 1 as a function of P̄ is presented, for the boundary conditions,
case A [see (86)], where we compare the results obtained for the nonlinear model (16), (69), and the linearized
model (10) with Young’s modulus given by (75).

5 The specific value for λ presented here was chosen such that εθ , which for this problem is positive, would be ‘small’ enough
that the constitutive theory (6) would be still valid.
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Fig. 10 Distributions of the dimensionless components of the stress and strain tensors for the boundary conditions case B when
P = 600 Pa and λ = 0.9985
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Fig. 11 Dimensionless radial displacement as a function of P̄ for the case A. It is assumed that λ = 1. In the main plot, results
are shown for the nonlinear model (16), (69), while in the subplot results are presented in the case of the linearized model (10)
when considering (75)

The maximum applied load P was Pmax = 1.5 MPa. The results for the nonlinear model are one order of
magnitude larger than the results for the linearized model (10); therefore, the results are presented in a subplot
in the same figure.

In Fig. 12, similar results are presented in the case of the boundary conditions B [see (87)], comparing the
results for the nonlinear model (16), (69) with the results of the linearized case (10).

It can be observed that since the compressive load is applied on the outer surface of the body, the dimen-
sionless inner radial displacement is negative, which is the opposite of what is observed in Fig. 11.

In Figs. 13, 14, we provide plots for λ as a function of the total axial force exerted on the tube Fz , which
is defined as

Fz = 2π
∫ ro

ri
Tzz(r)r dr, (94)
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Fig. 13 Axial stretching λ as a function of the total axial force F (in N) for the case A, assuming P = 1 MPa, comparing the
results for the linearized model (10) and the nonlinear model (16), (69)

which in the special case of the linearized model (10) in virtue of (94) leads to

Fz = π[E(λ − 1) + 2νC0](r2o − r2i ). (95)

In Fig. 13 (case A, see (86)), it has been assumed that P = 1 MPa, while in Fig. 14 (case B, see (87)) P is
assumed to be 600 Pa. In both cases, a comparison between the predictions of the nonlinear model (16), (69)
and the linearized model (10) is presented.

6 Propagation of waves of small amplitude

In this section, we study the speed of the S- and P-waves propagating in a sample of rock under compression.
First, it is necessary to mention that we have two options for studying the propagation of waves using the
model (6):
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Fig. 14 Axial stretching λ as a function of the total axial force F (in N) for the case B, assuming P = 600 Pa, comparing the
results for the linearized and the nonlinear models

• One possibility would be to consider that the amplitude of such waves (for the stress tensor T) is similar or
larger in comparison with a characteristic value for the stress, and in such a case we would need to solve
in general a complicated system of nonlinear partial differential equations in order to obtain T(x, t) and
u(x, t); such an analysis has been considered, for example, in [42]. In that particular nonlinear case, it is
necessary to take into account the fact that quantities such as the frequency and the speed of a wave could
depend on the stress, but also could change in time.

• A second simpler option is to suppose that the magnitude of the waves for the stresses is assumed to be
very small in comparison with a characteristic stress, and is denoted by �T(x, t), superimposed upon a
time-independent stress field To(x). In this case, the properties of the wave motion �u associated with
�T(x, t) can be obtained by solving some incremental linearized equations. The properties of the wave
motion will depend on the time-independent stress distribution To(x). We choose this second method to
study the propagation of waves for a rock sample.

Let us briefly present some elements of the incremental analysis within the context of (6) and (8) (see [33]).
Let us assume that there is a time-independent distribution of stress To(x) that produces a time-independent
displacement field uo(x). These two fields are assumed to be solutions of (5) and (6) (see also (8)). A small
time-dependent stress �T(x, t) is superimposed on the body, and we obtain the total stress field

T = To(x) + �T(x, t), (96)

where we assume that |�T(x, t)| � |To(x)|. This small time-dependent stress distribution is assumed to pro-
duce a small time-dependent incremental displacement field that is denoted�u. We define a total displacement
field u as u = uo + �u. The key step now is to require that T = To(x) + �T(x, t) and u = uo + �u are also
solutions of (5) and (6), (8), and sinceTo(x) and uo(x) are solutions of (5) and (6), (8) after somemanipulations
we obtain the incremental equations

div�T = ρ
∂2�u
∂t2

, �ε = A(To)�T, (97)

where we have defined

A = ∂2�

∂T∂T
. (98)

In index notation (Cartesian coordinates), (97) becomes

∂�Ti j
∂x j

= ρ
∂2�ui
∂t2

,
1

2

(
∂�ui
∂x j

+ ∂�u j

∂xi

)
= Ai jkl�Tkl . (99)
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In the case that �(T) is written in terms of the principal stresses � = �(σ1, σ2, σ3), we have (see [43])

A =
3∑

q=1

3∑
p=1

1

2

∂2�

∂σp∂σq

(
a(p) ⊗ a(p) ⊗ a(q) ⊗ a(q) + a(q) ⊗ a(q) ⊗ a(p) ⊗ a(p)

)
+

3∑
p=1

∂�

∂σp

∂(a(p) ⊗ a(p))

∂T
,

(100)
where

∂(a(p) ⊗ a(p))

∂T
= 1

σp − σq
Q(pq) + 1

σp − σr
Q(pr), p �= q �= r, p not summed, (101)

and where

Q(pq) = Q(qp) = 1

2
(a(p) ⊗ a(q) ⊗ a(p) ⊗ a(q) + a(p) ⊗ a(q) ⊗ a(q) ⊗ a(p)

+ a(q) ⊗ a(p) ⊗ a(p) ⊗ a(q) + a(q) ⊗ a(p) ⊗ a(q) ⊗ a(p)). (102)

It is possible to show that

Ai jkl = Akli j = A j ikl = Ai jlk, (103)

which is a consequence of the original definition A = ∂2�
∂T∂T .

The system of equations (99) is linear for �Ti j and �ui , but the components of Ai jkl depend on Toi j .

Now, considering the solution for To obtained in Sect. 3.2 and presented in Figs. 1, 2, we proceed to solve
(99) assuming that media is infinite. To assume that the cylinder is an infinite body in order to solve (99) is an
important simplification, but considering the kind of data presented in [2] and in other works (see, for example,
[1,40]), such an assumption is important to simplify the problem and to avoid the appearance of reflection of
waves at the boundary of the cylinder.

In view of the above remarks, we solve (99) assuming that �Ti j and �ui are given as

�Ti j (x, t) = Ti j e
ıω(sn·x−t), �ui (x, t) = Ui e

ıω(sn·x−t), (104)

where ı = √−1 is the imaginary number, ω is the frequency of the wave, s is the slowness and n is the
direction or propagation, and where Ti j , Ui are constant. Substituting the same in (99), we obtain the linear
system of equations

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1,1 0 0 M1,4 M1,5 0 M1,7 0 0
0 M2,2 0 M2,4 0 M2,6 0 M2,8 0
0 0 M3,3 0 M3,5 M3,6 0 0 M3,9

M4,1 M4,2 M4,3 M4,4 M4,5 M4,6 M4,7 0 0
M5,1 M5,2 M5,3 M5,4 M5,5 M5,6 0 M5,8 0
M6,1 M6,2 M6,3 M6,4 M6,5 M6,6 0 0 M6,9
M7,1 M7,2 M7,3 M7,4 M7,5 M7,6 M7,7 M7,8 0
M8,1 M8,2 M8,3 M8,4 M8,5 M8,6 M8,7 0 M8,9
M9,1 M9,2 M9,3 M9,4 M9,5 M96 0 M9,8 M9,9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T11
T22
T33
2T12
2T13
2T23
U1
U2
U3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (105)
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Fig. 15 Results for the wave speed 1/s in m/s as a function of the axial stress −σz in MPa. In a results are shown for the P-wave,
and in b results are presented for the S-wave

where we have defined

M1,1 = ısn1, M1,4 = ısn2
2

, M1,5 = ısn3
2

, M1,7 = ρω, (106)

M2,2 = ısn2, M2,4 = ısn1
2

, M2,6 = ısn3
2

, M2,8 = ρω, (107)

M3,3 = ısn3, M3,5 = ısn1
2

, M3,6 = ısn2
2

, M3,9 = ρω, (108)

M4,1 = A1111, M4,2 = A1122, M4,3 = A1133, M4,4 = A1112, M4,5 = A1113, (109)

M4,6 = A1123, M4,7 = −n1ıωs, (110)

M5,1 = A1122, M5,2 = A2222, M5,3 = A2233, M5,4 = A2212, M5,5 = A2213, (111)

M5,6 = A2223, M5,8 = −n2ıωs, (112)

M6,1 = A1133, M6,2 = A2233, M6,3 = A3333, M6,4 = A3312, M6,5 = A3313, (113)

M6,6 = A3323, M6,9 = −n3ıωs, (114)

M7,1 = A1112, M7,2 = A2212, M7,3 = A3312, M7,4 = A1212, M7,5 = A1213, (115)

M7,6 = A1223, M7,7 = −n2ıωs

2
, M7,8 = −n1ıωs

2
, (116)

M8,1 = A1113, M8,2 = A2213, M8,3 = A3313, M8,4 = A1213, M8,5 = A1313, (117)

M8,6 = A1323, M8,7 = −n3ıωs

2
, M8,9 = −n1ıωs

2
, (118)

M9,1 = A1123, M9,2 = A2223, M9,3 = A3323, M9,4 = A1223, M9,5 = A1323, (119)

M9,6 = A2323, M9,8 = −n3ıωs

2
, M9,9 = −n2ıωs

2
, (120)

where the expressions for Ai jkl in the case of (16) are computed in Appendix B.
A non-trivial solution of (105) can be found when

det[M] = 0, (121)

where [M] is the 9 × 9 matrix with componentsMmn . From (121), we obtain a polynomial equation for s.
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We display the results for the wave speed 1/s for the special case n = e3 that is taken to be equal to ez
(see Sect. 3.2), for different applied external loads σz . A wave speed 1/s that is a solution of (121), which is
associated with a vector U1 = U2 = 0 and U3 = 1 could be considered as a P-wave, whereas a solution of
(121) for which U3 = 0 can be considered as a S-wave.

The results shown in Fig. 15 could be compared, at least qualitatively, with the results presented in Figure 5
of [2].
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Appendix A

In this appendix, we derive the form of the derivative of H with respect to τ that is used in Sect. 3.5. From
(62), we have

∂H
∂τ

= 2

[(
∂2�

∂σ 2
1

∂σ1

∂τ
+ ∂2�

∂σ1∂σ2

∂σ2

∂τ

)
ℵ2
1�1 + ∂�

∂σ1

(
2ℵ1

∂ℵ1

∂τ
�1 + ℵ2

1
∂�1

∂τ

)

+
(

∂2�

∂σ1∂σ2

∂σ1

∂τ
+ ∂2�

∂σ 2
2

∂σ2

∂τ

)
ℵ2
2�2 + ∂�

∂σ2

(
2ℵ2

∂ℵ2

∂τ
�2 + ℵ2

2
∂�2

∂τ

)]
, (122)

but from (52), (54) and (55) we have

∂σ1

∂τ
= 2τ√

σ 2 + 4τ 2
,

∂σ2

∂τ
= − 2τ√

σ 2 + 4τ 2
, (123)

∂ℵ1

∂τ
=

√
2στ

√
1

1− σ√
σ2+4τ2

(σ 2 + 4τ 2)3/2
,

∂ℵ2

∂τ
= −

√
2στ

√
1

1− σ√
σ2+4τ2

(σ 2 + 4τ 2)3/2
, (124)

∂�1

∂τ
= −

(
σ + σ 2√

σ 2+4τ 2

)
2τ 2

,
∂�2

∂τ
=
(
−σ + σ 2√

σ 2+4τ 2

)
2τ 2

. (125)

From (123), we note that as τ → 0 this implies that ∂σ1
∂τ

→ 0 and ∂σ2
∂τ

→ 0. On the other hand, from (124)
and (125) we have

2ℵ1
∂ℵ1

∂τ
�1 + ℵ2

1
∂�1

∂τ
= σ 2

(σ 2 + 4τ 2)3/2
, 2ℵ2

∂ℵ2

∂τ
�2 + ℵ2

2
∂�2

∂τ
= − σ 2

(σ 2 + 4τ 2)3/2
, (126)

which as τ → 0 become ± 1
|σ | , respectively.

If τ = 0, from (52), we find that σ1 = 1
2 (σ + |σ |) and σ2 = 1

2 (σ − |σ |), then by defining σ = −ϑ with ϑ > 0
we find that σ1 = 0 and σ2 = −ϑ . Using all these results when τ → 0 in (122) and recalling (16), we obtain
(67).

Appendix B

In this appendix, we obtain explicit expressions for the components of the tensor A presented in Sect. 6 (Eq.
(100)) in the case of the particular expression for � presented in (16), for the special case ai = ei , i = 1, 2, 3.
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In this case, from (100) we obtain that

A1111 = f′′1(σ1) + f2(σ1)(σ2 + σ3) + 1

9
f′′3
(

σ1 + σ2 + σ3

3

)
, (127)

A2222 = f′′1(σ2) + f2(σ2)(σ1 + σ3) + 1

9
f′′3
(

σ1 + σ2 + σ3

3

)
, (128)

A3333 = f′′1(σ3) + f2(σ3)(σ1 + σ2) + 1

9
f′′3
(

σ1 + σ2 + σ3

3

)
, (129)

A1122 = f′2(σ1) + f′2(σ2) + 1

9
f′′3
(

σ1 + σ2 + σ3

3

)
, (130)

A1133 = f′2(σ1) + f′2(σ3) + 1

9
f′′3
(

σ1 + σ2 + σ3

3

)
, (131)

A2233 = f′2(σ2) + f′2(σ3) + 1

9
f′′3
(

σ1 + σ2 + σ3

3

)
, (132)

A1212 = [f2(σ2) − f2(σ1) + f′1(σ1) − f′1(σ2) + (σ2 + σ3)f
′
2(σ1) − (σ1 + σ3)f

′
2(σ2)]

2(σ1 − σ2)
, (133)

A1313 = [f2(σ3) − f2(σ1) + f′1(σ1) − f′1(σ3) + (σ2 + σ3)f
′
2(σ1) − (σ1 + σ2)f

′
2(σ3)]

2(σ1 − σ3)
, (134)

A2323 = [f2(σ3) − f2(σ2) + f′1(σ2) − f′1(σ3) + (σ1 + σ3)f
′
2(σ2) − (σ1 + σ2)f

′
2(σ3)]

2(σ2 − σ3)
, (135)

A1112 = 0, A1113 = 0, A1123 = 0, A2212 = 0, A2213 = 0, A2223 = 0, (136)

A3312 = 0, A3313 = 0, A3323 = 0, A1213 = 0, A1223 = 0, A1323 = 0. (137)

If σ1 → σ2 = σ , it follows from (133) that

A1212 = 1

2

[
f′′1(σ ) + (σ + σ3)f

′′
2(σ ) − 2f′2(σ )

]
. (138)

On the other hand, if σ1 → σ3 = σ from (134) we have

A1313 = 1

2

[
f′′1(σ ) + (σ2 + σ)f′′2(σ ) − 2f′2(σ )

]
. (139)

Finally, if σ2 → σ3 = σ from (135) we obtain that

A2323 = 1

2

[
f′′1(σ ) + (σ1 + σ)f′′2(σ ) − 2f′2(σ )

]
. (140)

References

1. Guyer, R.A., Johnson, P.A.: Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media Including Rocks
and Soil. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009)

2. Johnson, P.A., Rasolofosaon, P.N.J.: Manifestation of nonlinear elasticity in rock: convincing evidence over large frequency
and strain intervals from laboratory studies. Nonlinear Process. Geophys. 3, 77–88 (1996)

3. Haimson, B.C., Tharp, B.C.: Stresses around boreholes in bilinear elastic rock. In: Paper SPE2141, SPE-AIME Sixth
Conference on Drilling and Rock Mechanics, Austin Texas, American Institute of Mining, Metallurgical, and Petroleum
Engineers, Inc., pp. 145–151 (1974)

4. Hoek, E.: The development of rock engineering. In: Practical Rock Engineering. www.rocscience.com (2007)
5. Hudson, J.A., Harrison, J.P.: Engineering Rock Mechanics: An Introduction to the Principles. Pergamon, Oxford (1997)
6. Peltzer, G., Crampé, F., King, G.: Evidence of nonlinear elasticity of the crust from the Mw7.6 Mayi (Tibet) earthquake.

Science 286, 272–276 (1999)
7. Lama, R.D., Vutukuri, V.S.: Handbook on Mechanical Properties of Rocks: Testing Techniques and Results, vol. III. Trans.

Tech Publications, Zürich (1978)
8. Tutuncu, A.N., Podio, A.L., Sharma, M.M.: Nonlinear viscoelastic behavior of sedimentary rocks, part II: hysteresis effects

and influence of type of fluid on elastic moduli. Geophysics 63, 195–203 (1998)

www.rocscience.com


272 R. Bustamante, K. R. Rajagopal

9. Görte, U.J., Nagel, T., Kolditz, O.: On the necessity and a generalized conceptual model for the consideration of large strains
in rock mechanics. In: Idelpsohn, S., Papadrakakis, M. (eds.) Computational Methods for Coupled Problems in Science and
Engineering V. A Conference Celebrating the 60th Birthday of Eugenio Oñate, Santa Eulalia, Ibiza, Spain, pp. 80–91, 17–19
June (2013)

10. Paterson, M.S., Olgaard, D.L.: Rock deformation tests to large shear strains in torsion. J. Struct. Geol. 22, 1341–1358 (2000)
11. Truchaninov, I.A., Iofis, M.A., Kasparian, E.V.: Principles of Rock Mechanics. Terraspace Inc., Rockville (1979)
12. Stagg, K.G., Zienkiewicz, O.C.: Rock Mechanics in Engineering Practice. Wiley, Hoboken (1968)
13. Asszonyi, C., Richten, R.: The Continuum Theory of Rock Mechanics. Trans. Tech. Publications, Zürich (1979)
14. Cowie, P.A., Scholz, C.H.: Physical explanation for the displacement-length relationship of faults using a post-yield fracture

mechanics model. J. Struct. Geol. 14, 1133–1148 (1992)
15. Dragon, A., Mróz, Z.: A continuum model for plastic-brittle behaviour of rock and concrete. Int. J. Eng. Sci. 17, 121–137

(1979)
16. Poulos, H.G., Davis, E.H.: Elasic Solutions for Soil and Rock Mechanics. Wiley, Hoboken (1974)
17. Fliss, S., Bhat, H.S., Dmowska, R., Rice, J.R.: Fault branching and rupture directivity. J. Geophys. Res. 110, B06312 (2005)
18. Lyakhovsky, V., Reches, Z., Weinberger, R.: Nonlinear viscoelastic behavior of sedimentary rocks, part II: hysteresis effects

and influence of type of fluid on elastic moduli. Geophysics 63, 195–203 (1998)
19. Lyakhovsky, V., Hamiel, Y., AMpuero, J.P., Ben-Zion, Y.: Nonlinear damage rheology and wave resonance in rocks. Geo-

physics 178, 910–920 (2009)
20. Ashby, M.F., Hallan, S.D.: The failure of brittle solids containing small cracks under compressive stress states. Acta Metall.

34, 497–510 (1986)
21. Aydin, A., Borja, R.I., Eichhubl, P.: Geological and mathematical framework for failure modes in granular rock. J. Struct.

Geol. 28, 83–98 (2006)
22. Rajagopal, K.R.: On implicit constitutive theories. Appl. Math. 48, 279–319 (2003)
23. Rajagopal, K.R.: The elasticity of elasticity. Z. für Angew. Math. Phys. 58, 309–317 (2007)
24. Rajagopal, K.R., Srinivasa, A.R.: On the response of non-dissipative solids. Proc. R. Soc. A 463, 357–367 (2007)
25. Rajagopal, K.R., Srinivasa, A.R.: On a class of non-dissipative solids that are not hyperelastic. Proc. R. Soc. A 465, 493–500

(2009)
26. Rajagopal, K.R.: On a new class of models in elasticity. Math. Comput. Appl. 15, 506–528 (2010)
27. Rajagopal, K.R.: Conspectus of concepts of elasticity. Math. Mech. Solids 16, 536–562 (2011)
28. Rajagopal, K.R.: A note on the classification of anisotropy of bodies defined by implicit constitutive relations. Mech. Res.

Commun. 64, 38–41 (2015)
29. Truesdell, C.A., Noll, W.: The non-linear field theories of mechanics, 3rd edn. Springer, Berlin (2004)
30. Bustamante, R.: Some topics on a new class of elastic bodies. Proc. R. Soc. A 465, 1377–1392 (2009)
31. Bustamante, R., Rajagopal, K.R.: A note on plain strain and stress problems for a new class of elastic bodies. Math. Mech.

Solids 15, 229–238 (2010)
32. Rajagopal, K.R.: On the nonlinear elastic response of bodies in the small strain range. Acta Mech. 225, 1545–1553 (2014)
33. Arrue, P., Bustamante, R., Sfyris, S.: A note on incremental equations for a new class of constitutive relations for elastic

bodies. Wave Motion 65, 44–54 (2016)
34. Truesdell, C.A., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/I. Springer, Berlin

pp. 226–902 (1960)
35. Bustamante, R., Rajagopal, K.R.: Solutions of some simple boundary value problems within the context of a new class of

elastic materials. Int. J. Nonlinear Mech. 46, 376–386 (2011)
36. Bustamante, R., Rajagopal, K.R.: Solutions of some boundary value problems for a new class of elastic bodies. Comparison

with the classical theory of linear elasticity: part I. Problems with cylindrical symmetry. Acta Mech. 226, 1815–1838 (2015)
37. Bustamante, R., Rajagopal, K.R.: A note on some new classes of constitutive relations for elastic bodies. IMA J. Appl. Math.

80, 1287–1299 (2015)
38. Baker, M., Ericksen, J.L.: Inequalities restricting the form of the stress-deformation relations for isotropic elastic solids and

Reiner–Rivlin fluids. J. Wash. Acad. Sci. 44, 33–35 (1954)
39. Bustamante, R.: Solutions of some boundary value problems for a class of constitutive relations for non-linear elastic bodies

that is not Green elastic. Q. J. Mech. Appl. Math. 69, 257–279 (2016)
40. Mogi, K.: Experimental Rock Mechanics. Taylor & Francis, London (2007)
41. Comsol Multiphysics, Version 3.4, Comsol Inc. Palo Alto, CA (2007)
42. Bustamante, R., Sfyris, D.: Direct determination of stresses from the stress equations of motion and wave propagation for a

new class of elastic bodies. Math. Mech. Solids 20, 80–91 (2015)
43. Shariff, M.H.B.M.: Spectral derivatives in continuum mechanics Q. Jl. Mech. Appl. Math. doi:10.1093/qjmam/hbx014

http://dx.doi.org/10.1093/qjmam/hbx014

	A nonlinear model for describing the mechanical behaviour of rock
	Abstract
	1 Introduction
	2 Basic equations
	2.1 Kinematics and equation of motion
	2.2 Constitutive relations
	2.2.1 Constitutive inequalities and some additional restrictions
	2.2.2 A special model


	3 Boundary value problems: uniform distributions of stresses and strains
	3.1 Uniform compression/tension of a cylinder without lateral constraints
	3.2 Uniform compression/tension of a cylinder with lateral constraints
	3.3 Triaxial loading of a block
	3.4 Simple shear of a block
	3.5 Shear and compression of a block

	4 A model for the mechanical behaviour of rock 
	5 Boundary value problem wherein non-uniform distributions of stresses and strains are considered: expansion–compression of a cylindrical annulus
	6 Propagation of waves of small amplitude 
	Acknowledgements
	Appendix A
	Appendix B
	References




